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The dihedral contact angles between interfaces in three-fluid-phase equilibria must be continuous
functions of the bulk thermodynamic fields. This general argument, which we propose, predicts a
nonwetting gap in the phase diagram, challenging the common belief in “critical-point wetting”, even
for short-range forces. A demonstration is provided by exact solution of a mean-field two-density
functional theory for three-phase equilibria near a tricritical point (TCP). Complete wetting is found
in a tiny vicinity of the TCP. Away from it, nonwetting prevails and no wetting transition takes
place, not even when a critical endpoint is approached. Far from the TCP, reentrant wetting may
occur, with a different wetting phase. These findings shed light on hitherto unexplained experiments
on ternary H2O-oil-nonionic amphiphile mixtures in which nonwetting continues to exist as one
approaches either one of the two critical endpoints.

Wetting phenomena and in particular wetting phase
transitions have enjoyed much attention from physicists
and other scientists or engineers. The first theoreti-
cal predictions and experimental observations of a phase
transition from a state of partial wetting (“nonwet”), in
which three phases are pairwise in contact at their mu-
tual interfaces and meet at a common contact line, to a
state of complete wetting (“wet”), in which one phase in-
trudes at the interface between the other two, date from
the late 1970s [1–3]. Not only first-order but also critical
wetting transitions (of second or higher order) may oc-
cur [4, 5]. Numerous reviews have since been dedicated
to the development of this fascinating field, e.g., [6–11].

In 1977 Cahn predicted that complete wetting must
be expected upon approach of a critical point where two
phases become identical. This is termed “critical-point
wetting” (CPW) [1]. Subsequently, insight was gained in
which systems CPW does occur and in which it does not.
For short-range forces, CPW must take place when two
coexisting phases adsorbed at a wall with a nonzero “sur-
face field” approach bulk criticality, as found in [5] and
[12] (surface phase transition class C defined in [12]). For
a vanishing surface field CPW is suppressed [13–15]. For
long-range wall-fluid and/or fluid-fluid forces, nonwetting
gaps exist in which CPW does not occur, as predicted in
[16, 17] and recently demonstrated in [12] (classes A, B
and D defined in [12]).

In this Letter we ask whether CPW should be expected
when three coexisting fluid phases are treated on equal
footing instead of replacing one of them by an ad hoc
“wall” boundary condition. We consider molecular fluids
governed by van der Waals forces, or fluids with forces
of shorter range, such as plasmas and electrolytes [6] or
colloid-polymer mixtures [18]. CPW can be tested ap-
proaching a critical endpoint (CEP) where two (out of
three) phases become identical and the resulting critical
phase coexists with the third, noncritical, phase. Espe-
cially relevant is the vicinity of a tricritical point (TCP)
at which two CEP lines meet, in accord with Gibbs’ phase
rule. Pioneering experiments in this arena were carried
out by Widom et al. [19, 20] and [20] was judged to be

consistent with CPW [21]. However, in ternary H2O-oil-
nonionic amphiphile mixtures nonwetting was observed
to persist [22].

To shed light on these issues, we consider a mixture
with three components and study three-phase equilibria
with coexisting phases α, β and γ in mean-field density-
functional theory (DFT) with two spatially varying den-
sities ρ1 and ρ2. Two densities are necessary because
near a TCP, in a single-density theory the “middle” phase
always wets the interface between the other two phases
[23, 24]. Gibbs’ phase rule dictates that two linear combi-
nations of pressure p, temperature T and chemical poten-
tials µi, i = 1, 2, 3, can be taken as independent field co-
ordinates, say s and t, in the two-dimensional three-phase
coexistence surface in thermodynamic space. This sur-
face is bounded by two CEP lines that meet tangentially
(with a power 3/2) at the TCP, located at s = t = 0,
along an asymptote that we take to be the t-axis. We
can use t ≥ 0 to measure the “temperature distance” to
the TCP , in the (s, t)-plane, and use s to interpolate
between two CEPs at fixed t [19, 24, 25].

Of chief interest here are fluids with short-range forces,
for which the single-density approximation with a wall
boundary condition always predicts CPW. The model
we employ is a square-gradient DFT akin to model T in
[27], in which the bulk free-energy density is a product of
three potential wells, centered about different points in
the (ρ1, ρ2)-plane, with bulk phase density pairs (ρν1 , ρ

ν
2),

with ν = α, β, γ. In the theory of tricritical phenom-
ena due to Griffiths an important constraint reflects the
asymptotic scaling properties of the three-phase region
close to the TCP [24, 25]. Using linear combinations of
the densities, which we rename to be just our ρ1 and ρ2,
the constraint on the bulk densities, in each phase, takes
the form

ρν2 = −(ρν1)2. (1)

The (dimensionless) interfacial free-energy density Ψ is
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taken to be

Ψ(ρ1, ρ2) =
1

2

∑
i=1,2

(
dρi
dz

)2

+
∏

ν=α,β,γ

∑
i=1,2

(ρi−ρνi )2. (2)

This simple symmetric form has been chosen in the in-
terest of obtaining an exactly solvable DFT. Additional
parameters may affect the (order and locus of the) wet-
ting transitions, as they do in [26], but the presence of
a nonwetting gap, for which we will give a general argu-
ment, ought to be robust.

The bulk free-energy density is minimal and takes
equal values (chosen to be zero) in all three bulk phases.
The densities ρ1(z) and ρ2(z), with z the coordinate per-
pendicular to the interface between any two phases, char-
acterize the structure of that interface. The equilibrium
(or “optimal”) densities minimize the excess free-energy
functional associated with the interface,

σ[ρ1, ρ2] =

∫ ∞
−∞

dz Ψ(ρ1, ρ2), (3)

subject to the boundary conditions that the interface
connects two (spatially homogeneous) bulk phases that
are a macroscopic distance apart. Therefore we impose
one of the bulk phases, e.g., α, at z = −∞ and the other,
e.g., β, at z = ∞. The equilibrium interfacial tension
σαβ is then the value of σ[ρ1, ρ2] for the optimal density
profiles.

The densities ρ1 for the three coexisting phases, cal-
culated to be the zeroes of the third-degree polyno-
mial P (ρ1) = ρ31 − 3tρ1 + 2s, are ordered in the man-

ner ρα1 (s, t) ≤ ρβ1 (s, t) ≤ ργ1(s, t) [24]. At fixed t, s
can interpolate between two CEPs, one at αβ critical-
ity (s t−3/2 = −1) and one at βγ criticality (s t−3/2 = 1).
The results for s < 0 can be obtained from those for s > 0
by interchanging phases α and γ, so we consider s ≥ 0
and investigate the range 0 ≤ st−3/2 ≤ 1.

There are now two possibilities. Either the β phase
does not wet the αγ interface, in which case

σαγ < σαβ + σβγ , nonwet, (4)

or the β phase wets the αγ interface, and then,

σαγ = σαβ + σβγ , wet, (5)

the latter of which is sometimes referred to as “Antonov’s
rule” [24]. When β does not wet the αγ interface, it is
possible that γ wets the αβ interface (or that it does not).

We take a twofold approach. High-precision numerical
integration of the free-energy density is performed to ob-
tain the interfacial tensions. Also, recently conjectured
simple analytic forms of these interfacial tensions [28] are
used to calculate them exactly. The two methods provide
indistinguishable results, while the analytic calculation is
by far the simplest.

The analytic forms allow one to obtain a geometrical
representation of the wetting criterion. To elucidate this

we recall the analytic expression for, say, σαγ uncovered
in [28]. It is applicable to a three-phase triangle of arbi-
trary geometry and valid for a non-wet interface,

σαγ =

√
2

6
p3`, (6)

with p the Euclidean distance from α to γ and ` the
Euclidean distance from β to the midpoint of the αγ line,
in the (ρ1, ρ2)-plane. Note that p is the length of an edge,
and ` that of the conjugate median, in the three-phase
triangle.
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Figure 1. Two representative three-phase triangles, after a
coordinate transformation from (ρ1, ρ2) to (x, y), together
with the two curves y(x) that correspond to the exact phase
boundaries for wetting of the αγ interface by the β-phase.
The curves feature y(0)2 = 2

√
3 − 3 and |dy/dx|x=±1 =

√
3.

A (non)wet state results if β is (outside) inside the domain
bounded by the curves.

We now construct the geometrical wetting criterion
(see Fig.1). We translate, rotate and uniformly rescale
the three-phase triangle without affecting its shape, in
the (ρ1, ρ2)-plane. After this, the α-phase point is fixed
at (x, y) = (−1, 0) and the γ-phase point at (x, y) =
(1, 0). Next we express the wetting condition (5) in x and
y, using (6) for each interface, assuming a nonwet state
(none of the interfaces between any two phases is wet by
the third phase). We find that supposing Antonov’s rule
is equivalent to drawing two curves y(x), which trace the
boundary of the domain of wet states. An involved alge-
braic calculation, invoking Apollonius’ geometrical theo-
rem, shows that the curves satisfy

y2 = x2 − 3 + 2
√
x4 − 3x2 + 3. (7)

A state in which the αγ interface is wet by β results
if and only if the β-phase point lies inside the domain
bounded by these curves. The boundary corresponds to
the wetting transition. A similar construction applies for
wetting by α or γ. Consequently, a necessary condition
for wetting of an interface between two phases by a third



3

phase is that the former two span the longest edge of the
three-phase triangle.

The global wetting phase diagram is displayed in
Fig.2. Very close to the TCP, we find what can be
called “tricritical-point wetting”; e.g., for s = 0 and
t < 2/

√
3− 1 = 0.1547..., β wets the αγ interface, in ac-

cord with findings in [27]. The profiles ρ1(z) and ρ2(z),
that connect α to γ in the (ρ1, ρ2)-plane, pass through
β. There is no direct αγ contact, but a composite αγ
configuration is found that consists of an αβ interface,
an intruding bulk β phase, and a βγ interface.
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Figure 2. Global wetting phase diagram near a TCP. Pro-
jected onto the (s, t)-plane, the three-phase coexistence re-
gion is the surface bounded by the two CEP lines, one for αβ
criticality and one for βγ criticality. Very close to the TCP
a second-order wetting phase boundary is found above which
β wets the αγ interface. Far from the TCP and close to the
CEP lines reentrant second-order wetting phase boundaries
appear, one for s < 0, leading to wetting of the βγ interface
by α, and one for s > 0, leading to wetting of the αβ interface
by γ. The wetting phase boundaries terminate at four points
denoted u−, u+ on the CEP lines, leaving a large gap in t,
t−u < t < t+u , in which only nonwetting occurs. Also shown
are the 3 (dotted) lines of symmetry on each of which two
interfacial tensions are equal. The circular cartoons depict
three-phase configurations: a nonwet state for s = 0 close to
the TCP, the fully symmetric state at (s = 0, t = 1), and
three nonwetting states infinitesimally close to the CEP line
for βγ criticality. In the latter three the βγ interface, with
vanishing tension, is diffuse (dotted line) and the asymptotic

value of cos β̂ along the CEP line is displayed in Fig.3.

Very close to the TCP a wetting transition phase
boundary is found, with midpoint (0, 2/

√
3− 1) and ter-

minating on the CEP lines at “unbinding transition”
points u− (discussed later). For 2/

√
3 − 1 < t < t−u ≡

(7 −
√

33)/8 = 0.1569... we obtain the locus t ≡ tβw(s)
of transitions from nonwet to wet states. Their existence
was anticipated in [27].

States above this line are wet states near the TCP.
States below it feature pairwise direct interfacial contact
between α and β, α and γ, and β and γ. The three phases
meet along a contact line, such that, in a projection onto
a plane perpendicular to the line, the three interfaces
display dihedral contact angles named after the phase
they subtend [24], e.g., ν̂ is the angle for phase ν.

The dihedral angles are related to the interfacial ten-
sions geometrically through Neumann’s triangle [27].
The relevant angle for describing (non-)wetting by β is

β̂, and it satisfies

cos β̂ =
1

2

(
σαγ
σαβ

σαγ
σβγ
− σαβ
σβγ
− σβγ
σαγ

)
. (8)

We find that cos β̂ approaches unity proportionally to
the second power of the field distance to wetting,{

cos β̂ − 1 ∝ (t− tw)2, for fixed s

cos β̂ − 1 ∝ (s− sw)2, for fixed t,
(9)

with (sw, tw) a point on tβw(s). This is characteristic of a
critical wetting transition of second order.

The physics changes drastically when we move away
from the TCP, in the broad temperature range t−u < t <

t+u ≡ (7 +
√

33)/8 = 1.5930.... All states are nonwet.
Even approaching a CEP, no wetting takes place. For
example, for t−u < t < 1/2 and in the limit s t−3/2 → 1,

both σαγ − σαβ and σβγ vanish but their ratio, cos β̂,
remains finite and strictly below unity. So the αγ in-

terface is not wet by β. The asymptotic value of cos β̂
varies along the CEP line (see Fig.3). This persistence
of nonwetting, or equivalently, the absence of CPW, was
missed in [27].

Farther away from the TCP, for t > t+u , the longest
edge of the three-phase triangle (Fig.1) is no longer
spanned by α and γ and the necessary condition for wet-
ting by β is no longer met. Instead the longest edge may
be spanned by α and β, in the vicinity of a CEP for βγ
criticality. The wetting phase then becomes the γ phase.

In the three-phase region with t > t+u and s > 0 there is
a locus t ≡ tγw(s) of critical (second-order) wetting transi-
tions, in which γ intrudes between α and β. The wetting
phase boundary terminates on the CEP line at u+ (see
Fig.2). The relevant angle for describing (non-)wetting
by γ is γ̂, and it satisfies (8) after a cyclic permutation
of the phase labels. So we find that CPW takes place
in two distinct regimes, separated by a nonwetting gap.
Varying t, from the TCP outwards, one encounters CPW,
nonwetting, and “reentrant” CPW (Fig.2).

The nonwetting gap contradicts Cahn’s theory and is
at variance with the wetting phase diagrams derived for
wall-fluid systems with short-range forces [1, 5, 12]. This
requires a novel explanation. First, notice the three (dot-
ted) lines of symmetry in Fig.2, along each of which
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two interfacial tensions are equal. These may act as
“neutral lines” with respect to wetting. For example,
the line σαβ = σαγ excludes wetting by β or γ, since

β̂ = γ̂. Some exactly calculated points on this line are
(s = 0, t = 1), (s = (1/

√
3)3/2/

√
2, t = 1/

√
3) and

(s = (1/2)3/2, t = 1/2). The latter is a common point
of the neutral line and the CEP line. It is character-
ized by α̂ = 180◦ and, asymptotically, β̂ = γ̂ = 90◦.
Next, we know that in the wet regimes the asymptotic

angle is β̂ = 0 or β̂ = 180◦. If there were no nonwetting

gap, the asymptotic value of β̂ on the CEP would have
to jump discontinuously from 0 to 180◦ at the neutral
point, where, by symmetry, it is 90◦.

A discontinuity of this caliber in a dihedral angle is pos-
sible, and does exist, in the single-density theory with a
wall, when the surface field is varied through zero, asymp-
totically close to the critical temperature Tc. This is
conspicuous in the wetting phase diagram in [5]. How-
ever, there are no surface fields or other boundary effects
that can cause discontinuities in observable dihedral an-
gles, when all three phases are treated on equal footing
and only bulk thermodynamic fields are varied within
the two-dimensional subspace of three-phase equilibria.

Consequently, all angles 0 < β̂ < 180◦ must be encoun-
tered in a continuous manner also when moving along,
and infinitesimally close to, the CEP line. This implies
the existence of a nonwetting gap.

This general argument is supported in detail by the
exact solution of the DFT. Upon approach of a CEP,
the βγ interface becomes diffuse as β and γ become one
and the same critical phase, named βγ. The angle α̂ ap-
proaches 180◦, and α and βγ each fill a half-space. They
are separated by a planar non-critical interface, denoted
by α, βγ. For t−u < t < t+u , in the βγ half-space the
diffuse βγ interface, with vanishing interfacial tension,

makes a non-zero contact angle β̂ with the α, βγ inter-
face. The diffuse interface is still bound, or localized,
at the non-critical interface in the limit that the CEP is
attained.

From the analytic expressions for the interfacial ten-
sions we calculate, using series expansion to third order
in the small distance ε = 1− s t−3/2 from the CEP line,

the asymptotic contact angle β̂ along the CEP line. The
exact result, displayed in Fig.3, is

cos β̂ =
(2t− 1)(1− 31t+ 4t2)

((1 + t)(1 + 4t))3/2
, for t−u < t < t+u . (10)

The values t−u and t+u , which span the nonwetting gap,

are found by solving cos2 β̂ = 1 (which leads to t(1 −
7t + 4t2)2 = 0). When t ↓ t−u , cos β̂ → 1. When t ↑ t+u ,

cos β̂ → −1 and reentrant CPW is found.
Starting in the nonwetting gap and moving along,

and infinitesimally close to, either one of the two CEP
lines, we may encounter an interfacial phase transition
in which the diffuse interface unbinds from the planar
non-critical interface. These “diffuse-interface unbind-
ing” transitions, at u±, are critical and of second order,

-1

 0

 1

1 2

cos ̂β

t
t−
u t+

u

α
β
γ

1
2

Figure 3. Infinitesimally close to the CEP line for βγ critical-
ity, the cosine of the asymptotic contact angle β̂ is a continu-
ous function of the bulk thermodynamic field t. Second-order
diffuse-interface unbinding occurs at t = t−u ≡ (7 −

√
33)/8

where β̂ = 0, γ̂ = 180◦ and wetting by β terminates at a CEP,
and also at t = t+u ≡ (7 +

√
33)/8 where β̂ = 180◦, γ̂ = 0 and

wetting by γ terminates at a CEP. The three-phase configu-
ration for t = 1/2 where a neutral line (see Fig.2) terminates
at a CEP is also shown.

with

cos β̂ ± 1 ∝ (t− t±u )2, for s t−3/2 = 1−, (11)

Our findings make it necessary to reinterpret the ex-
perimental observation of a hitherto unexplained nonwet-
ting state, which continues to exist when either one of the
two CEPs is approached in ternary H2O-oil-nonionic am-
phiphile mixtures at three-phase coexistence [22]. A drop
of the “middle” phase was observed not to spread but to
form a lens, with a contact angle close to 90◦. It was
thought that this angle must approach exactly 90◦ close
to the CEP based on a scaling argument. Other values,

0 < β̂ < 180◦, were, unfortunately, not given attention
because the authors excluded the very case (x = y in
[22]) which is realized in the nonwetting gap of our ex-
actly solved two-density DFT.

In conclusion, for three-fluid-phase equilibria in sys-
tems with a TCP that are not approximated by two-
phase equilibria at a wall, but described by a two-density
DFT, the global wetting phase diagram largely contra-
dicts the CPW scenario. A pronounced nonwetting gap
is found in an exactly solved DFT paradigm and, we ar-
gue, must also generally be present by virtue of thermo-
dynamic continuity of the dihedral angles as a function of
bulk thermodynamic field variables, in three-phase equi-
libria of fluids.
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