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Quantum shape effect appears under the size-invariant shape transformations of strongly confined
structures. Such a transformation distinctively influences the thermodynamic properties of confined
particles. Due to their characteristic geometry, core-shell nanostructures are good candidates for
quantum shape effects to be observed. Here we investigate the thermodynamic properties of non-
interacting degenerate electrons confined in core-shell nanowires consisting of an insulating core
and a GaAs semiconducting shell. We derive the expressions of shape-dependent thermodynamic
quantities and show the existence of a new type of quantum oscillations due to shape dependence,
in chemical potential, internal energy, entropy and specific heat of confined electrons. We provide
physical understanding of our results by invoking the quantum boundary layer concept and eval-
uating the distributions of quantized energy levels on Fermi function and in state space. Besides
the density, temperature and size, the shape per se also becomes a control parameter on the Fermi
energy of confined electrons, which provides a new mechanism for fine tuning the Fermi level and
changing the polarity of semiconductors.

I. INTRODUCTION

Physical properties of nanostructures are affected by
their geometry when the thermal de Broglie wavelength
of particles is comparable with the sizes of the struc-
ture. As a manifestation of this geometry dependence,
quantum size effects constitute one of the backbones of
nanoscience and nanotechnology, paving the way to the
enhancement of electrical, optical, thermal and thermo-
electric properties of materials [1–4].

Quantization of energy levels in low-dimensional
nanosystems causes oscillations in the electronic prop-
erties of materials. The well-known examples are the
quantum oscillations in resistivity (Shubnikov–de Haas
effect) and in magnetization (de Haas–Van Alphen ef-
fect) caused by Landau quantization due to the mag-
netic field [5]. Energy level quantization due to size ef-
fects also causes quantum oscillations in certain thermo-
dynamic and transport properties [6–15] of various semi-
conductor and metallic nanostructures which have been
extensively studied due to their importance on nanoscale
electronics and nano-engineered devices [16–19]. In low
dimensional materials, quantum size effects [3, 20, 21]
become stronger and give rise to distinct subbands [22]
and size quantization effect [23, 24]. Stepwise (staircase-
like) behaviors of some physical quantities (e.g. internal
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energy [25], conductance [22]) and oscillatory character-
istics of others (e.g. specific heat [25–29], thermopower
[30, 31]) appear due to the nature of Fermi-Dirac dis-
tribution function and its derivative with respect to en-
ergy (so called occupancy variance or thermal broadening
function) respectively [32–34]. Size-dependent quantum
oscillations attracted a great deal of interest particularly
in recent decades [6, 8–15, 35].

Sizes of a nanostructure are determined by geomet-
ric size parameters (Weyl parameters) [1, 36] i.e. vol-
ume V , surface area A, peripheral lengths P and number
of vertices NV under the standard Lebesgue measure.
Here A,P and NV constitute the lower-dimensional sizes
which can play a significant role in lower-dimensional sys-
tems. Changing the size parameters of a domain also
causes change of its shape and vice versa in general.
However, recently it has been shown that distinguish-
ing the size and shape effects from each other is possi-
ble through a size-invariant shape transformation, which
enables changing the shape of a nanostructure without
altering its geometric size parameters. The process of
size-invariant shape transformation elicits a new physi-
cal phenomenon called the quantum shape effect [36–38]
at nanoscale.

In this paper, we show the existence of distinct, shape-
dependent quantum oscillations in the thermodynamic
quantities of electrons due to the quantum shape effect
(QShE). We investigate the chemical potential, internal
energy, entropy and specific heat of electrons in core-shell
nanowires. We examine the shape-dependent quantum
oscillations for various temperature and electron den-
sities (concentrations), ranging from weakly to moder-
ately degenerate regimes. In particular, the oscillatory
behavior of chemical potential and internal energy in-
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duced by the QShE is interesting since those quantities
do not oscillate but exhibit essentially stepwise behavior
in case of the variations in size [25]. The role of shell
volume in core-shell nanostructures has not been well-
understood before [39]. Within the perspective of the
quantum boundary layer (QBL) concept [36, 37, 40, 41],
we provide physical insights on the role of shell volume
in the shape-dependent thermodynamic properties. In
particular, the shell volume becomes an effective vol-
ume due to the quantum nature of confined electrons
and plays an important role in the existence of the new
type of quantum oscillations. We investigate the distri-
butions of quantized energy levels on Fermi function and
in state space to explain the origins of these oscillations.
Quantum shape dependence of chemical potential opens
the possibility of tuning the Fermi energy or degener-
acy by controlling the shape parameter. We also find
that while the oscillation amplitudes are higher for lower
electron densities and temperatures in general, there are
deviations from this general trend. The deviations are
due to the fact that density dictates the magnitude of
the QShE more dominantly than temperature. Further-
more, the frequency of quantum shape oscillations in-
creases with increasing electron density while their am-
plitudes become weaker. We see that the magnitude of
oscillations due to QShE is in the order of that of quan-
tum size effects for the chosen system parameters here.
Finally, we show the oscillatory violation of entropy-heat
capacity equivalence at the high degeneracy limit due to
distinct shape dependencies of both quantities.

In the following section, Sec. II, we provide our model,
formalism and semi-analytical expressions. We begin
Sec. III by presenting and examining the quantum shape
oscillations. We then discuss the masking of the temper-
ature effect, oscillatory violation of entropy-heat capac-
ity equivalence and mention the possibility of controlling
the Fermi energy by varying the shape. We conclude our
findings in Sec. IV.

II. MODEL AND FORMALISM

A. Non-interacting electrons in a core-shell
nanostructure

We consider a core-shell nanowire structure with an
insulating core and semiconducting shell. The schematic
transverse views of the considered core-shell nanowires is
seen in Fig. 1. QShE takes place in the shell nanowire,
when the core nanowire is rotated along its transverse
axis. Notice that such a transformation preserves all
of the geometric size variables, while still allowing the
change of the shape of shell structure where electrons
are confined. Naturally, rather than actual rotation of
the core structure, core-shell nanowires could also be
thought to be prepared separately so that properties of
nanowires with the different angular configurations can
be compared with each other.

We are interested in the thermodynamic properties of
electrons confined within the shell structure, where the
change of domain shape occurs and is controllable by the
variable θ, denoting the rotation angle in the transverse
axis. In this regard, semiconductor core-shell nanostruc-
tures are suitable materials for QShE to occur [38, 42–
50]. Thus, to highlight the QShE, we choose a well-known
semiconducting material of electron-doped Gallium Ar-
senide (GaAs) as a shell structure, due to its low effec-
tive electron mass, meff = 0.067me where me is the bare
electron mass [22, 51]. GaAs is a direct band gap semi-
conductor with a spherical Fermi surface and perfectly
parabolic band structure at Gamma point which justifies
the use of free electron model with the effective mass ap-
proximation for the equilibrium properties of conduction
electrons around band bottom[52, 53]. In particular, the
non-interacting electron model is widely used for study-
ing the equilibrium properties of GaAs nanostructures
[54–57]. This model, albeit it is simple, can capture the
essential geometric effects in the energy spectrum which
is what we need for QShE. Note that the characteristic
behaviors obtained in this study will remain almost the
same but only their magnitudes will change even if we
use different effective mass values. The core structure
can be made of any insulating material. Side lengths of
shell and core nanowires are chosen as Ls = 64nm and
Lc = 41nm respectively whereas the longitudinal length
of core-shell nanowires is Ll = 763nm. The confinement
domain with these size parameters imposes strong quan-
tum confinement conditions in the transverse direction
and very weak confinement in longitudinal direction for
the electrons of GaAs in conduction band. Nanowires
are chosen to be free of any defect and roughness. The
presence of defects in shell structure or roughness on the
boundaries could impact the results if the size of the im-
perfectness is in the order of Fermi wavelength (see Table
1) or even larger. In the case of small defects or rough-
ness, however, QShE remains the dominant effect since
they are induced by the entire boundaries. The effect
of any imperfections can also be distinguished and sepa-
rated from QShE by invoking their different temperature
dependencies.

The main target of the study is to propose and ex-

FIG. 1. Transverse views of core-shell nanowires. Rotation
of the core wire leads to a size-invariant shape transforma-
tion of the shell structure wherein the electrons are confined.
Quantum shape effect is associated with and controlled by the
independent variable θ.
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amine the shape-induced quantum oscillations in ther-
modynamic properties of confined electrons in core-shell
semiconductor structures. A reliable but simple model
based on ideal conditions provides an effective tool to
predict the ultimate values of these oscillations and re-
veal their fundamental mechanisms. Such a model gives
some primary results guiding further studies besides the
intuitions to see if these oscillations give us some addi-
tional and useful control possibilities on material proper-
ties. One of the most widely used approaches for calcu-
lating material properties is the density functional theory
(DFT). On the other hand, it requires limitations for the
number of atoms to be considered due to heavy compu-
tational loads. Here the considered domain contains tens
of thousands of atoms for each atomic layer in the trans-
verse direction. Therefore, the problem is far beyond
the practical capabilities of a DFT calculation. How-
ever, the effect we consider here is mainly based on the
shape-induced density variations near the Fermi surface.
Therefore, albeit a full DFT simulation may change some
aspects of the energy bands deeply below the Fermi level,
they do not influence the physics close to the Fermi level.
This is similar to the concepts of the Fermi liquid theory,
for instance, where merely the properties of the electrons
near the Fermi level are regarded as relevant. Hence, it is
justified to restrict our discussion to the electronic den-
sity in the conduction band which is sufficiently dilute for
the pertinent exchange and correlation potentials in the
DFT simulations to be negligible. As a consequence, the
theory is effectively single electron-like and we can just
as well employ an effective mass single electron (non-
interacting) Schrödinger equation for reaching the same
qualitative results. There may naturally be some small
differences in magnitudes when comparing the numbers,
however, on the qualitative scale, there should be no con-
siderable differences between the methods.

We use the usual statistical mechanical framework
to calculate the thermodynamic quantities of non-
interacting electrons inside the shell wire. Fermi-Dirac
distribution function reads f = 1/[exp(ε̃−Λ) + 1] where
Λ = µ/(kBT ) with µ is chemical potential and ε̃ =
ε/(kBT ) with ε is energy eigenvalues of the confined elec-
trons with kB Boltzmann constant and T temperature.
Essentially, the shape dependence is embedded into the
energy eigenvalues, {ε1(θ), ε2(θ), ε3(θ), . . .}. Due to the
strong confinement in the transverse direction, the wave
nature of electrons becomes dominant and causes an in-
crease in the discreteness of energy eigenvalues. These
eigenvalues of electrons in the shell structure are obtained
by numerically solving the Schrödinger equation sepa-
rately for each integer degree of angular configuration be-
tween 0◦ ≤ θ ≤ 45◦. When necessary, we use even higher
resolution ∆θ = 0.25◦ for angular steps, especially for
highly degenerate cases. To maximize the shape effect,
we impose Dirichlet boundary conditions so that elec-
trons cannot leak through the material boundaries or into
the insulating part. We use COMSOL® Multiphysics
software to solve the time-independent Schrödinger equa-

tion and obtain the energy eigenvalues for the electrons
confined in the regions denoted by blue color in Fig. 1.

The elongated geometry of the nanowire allows us to
make use of a bounded continuum approximation for the
component of energy eigenvalues in the longitudinal di-
rection which reduces the numerical workload from 3D
to 2D workspace. Electrons are relatively unconfined (al-
most free) in longitudinal direction so that the number of
Fermi wavelengths fitting into the length of the nanowire
is large, λF /Ll << 1. Therefore, continuum-based ana-
lytical methods can be used to calculate the contributions
coming from the longitudinal modes. Energy eigenvalues
of this system can be separated as ε = εt(θ)+εl(Ll) where
εt and εl denotes transverse and longitudinal eigenvalues
respectively. By this way, we calculate transverse eigen-
values numerically, which becomes much easier for a 2D
domain and obtain longitudinal contribution using the
bounded continuum approach. This provides not only a
quite accurate approximation, but also makes it possible
to obtain semi-analytical expressions for the thermody-
namic properties of electrons confined at nanoscale.

For weakly confined systems, bounded continuum ap-
proximation gives more accurate results than the usual
continuum approximation, because the former takes the
non-zero value of the ground state into account, whereas
the latter considers a continuous spectrum starting from
zero energy values [1, 58–61]. Although both approxima-
tions are sufficient for the chosen length of longitudinal
direction in this work, we choose to use bounded contin-
uum approximation to get more precise results.

B. Thermodynamic expressions

The number of particles is determined by the sum-
mation of the distribution function over all eigenvalues
and considering the spin degree of freedom gs (which
is a factor of two), N = gs

∑
ε fε. We can write

N = gs
∑
εt

∑
εl
fε to explicitly show the contributions

of transverse and longitudinal parts. Now by invoking
the first two terms of the Poisson summation formula
[1, 21] we apply the bounded continuum approximation
to the summation for the longitudinal part. The number
of particles gives N ≈ gs[

∑
εt

∫
fdil− f(0)/2] where il is

the momentum state variable for longitudinal direction,
noting that εl = h2i2l /8meffL

2
l . Hence, the expression for

the number of particles in our system is obtained as

N = gs
∑
εt

[− Ll
λth

Li 1
2
(z) +

1

2
Li0(z)], (1)

where Li is the polylogarithm function with argument
z = − exp(Λ− ε̃t). λth = h/

√
2πmeffkBT is the thermal

de Broglie wavelength of unbounded electrons with effec-
tive mass meff = 0.067me. The chemical potential can
be numerically solved from Eq. (1) as the total number
of electrons in the shell structure is equal to the density
multiplied by the volume.
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FIG. 2. Shape dependencies (characterized by θ) of the normalized (a), (b) chemical potential, (c), (d) internal energy, (e), (f)
entropy and (g), (h) heat capacity at constant Weyl parameters. Red and blue colors correspond to T = 50K and T = 20K
temperature values respectively. Solid curves correspond to twice the electron density of those with dashed curves in their
respective subfigures. (a), (c), (e) and (g) plots are for weakly degenerate, (b), (d), (f) and (h) plots are for moderately
degenerate conditions, which are determined by the electron densities. All quantities are normalized to their values at θ = 0◦.
Temperatures are given in Kelvin scale and the unit of the densities is m−3 in the legend.

By the same approach, we find the semi-analytical ex-
pressions for internal energy, entropy and heat capacity
respectively as follows

U

kBT
= gs

∑
εt

[− Ll
2λth

Li 3
2
(z)− ε̃t

Ll
λth

Li 1
2
(z) + ε̃t

1

2
Li0(z)],

(2)

S

kB
= gs

∑
εt

[− 3Ll
2λth

Li 3
2
(z) +

1

2
Li1(z)

+ (Λ− ε̃t)
Ll
λth

Li 1
2
(z)− (Λ− ε̃t)

1

2
Li0(z)],

(3)

CW
kB

= gs
∑
εt

[− 3Ll
4λth

Li 3
2
(z)− 2ε̃t

Ll
λth

Li 1
2
(z)

− ε̃2
t

Ll
λth

Li− 1
2
(z) +

1

2
Li−1(z)

−

[∑
εt
− Ll

2λth
Li 1

2
(z)− ε̃t Ll

λth
Li− 1

2
(z) + 1

2Li−1(z)
]2

∑
εt
− Ll

λth
Li− 1

2
(z) + 1

2Li−1(z)
].

(4)

It is worthwhile to mention that here heat capacity is de-
fined not just at constant volume but at constant Weyl
parameters, which includes lower dimensional sizes as

well in addition to volume. These thermodynamic ex-
pressions are valid as long as the confinement in longitu-
dinal direction is not strong (a valid assumption for most
nanowire geometries), which is also the case here.

III. RESULTS AND DISCUSSION

A. Quantum shape oscillations

We present the variations of the thermodynamic prop-
erties of electrons due to the changes in shape parameter
characterized by the rotation angle of the core structure,
θ, in Fig. 2. All thermodynamic quantities in Fig. 2 are
normalized by their respective values at θ = 0◦. We fo-
cus on low temperature regimes to consider the quantum
degeneracy effects as well. Hot-cold color scheme by the
shades of red and blue are valid for all figures where red
and blue shades correspond to T = 50K and T = 20K
respectively. Solid curves correspond to density values
which are twice of the electron densities of those with
dashed curves for their respective subfigures. Electron
densities of n = 1023 m−3 and n = 2 × 1023 m−3 cor-
respond to weakly degenerate conditions (red and blue
colors in Fig. 2a, c, e, g), whereas n = 1024 m−3 and
n = 2 × 1024 m−3 (red and blue colors in Fig. 2b, d,
f, h) correspond to moderately degenerate ones. Elec-
tron density can be modified within the chosen ranges
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by moderately or highly doping the GaAs [55, 62].

Firstly, from Fig. 2, the following general inferences for
the behavior of thermodynamic quantities under QShE
can be drawn: (1) The magnitude of QShE (deviations
due to shape variation, θ) is larger in weakly degener-
ate regimes compared to the moderate degeneracies. (2)
Quantum shape oscillations start to appear at moder-
ately degenerate conditions, whereas smoother changes
occur for weak degeneracies. (3) The expected behavior
of the usual reciprocal relation between temperature and
QShE strength does not always hold.

The reason why QShE is stronger for weaker degenera-
cies can be understood from the electron (Fermi) wave-
length analysis. The strength of the quantum shape de-
pendence is directly related with the Fermi wavelength.
Under quantum confinement, the density distribution of
confined electrons becomes non-uniform near to the im-
penetrable domain boundaries where quantum bound-
ary layers (QBLs) are formed in which the local density
changes drastically [13, 40]. Due to QBL, particles oc-
cupy an effective volume that is smaller than the appar-
ent volume. When the confinement becomes strong, the
QBLs of inner and outer cores start to overlap with each
other [36, 37]. The amount of overlap determines the
strength of QShE and it is directly related with the ther-
mal de Broglie wavelength of particles, or Fermi wave-
length in this case. Therefore, in general, the larger
the Fermi wavelength, the larger the influence of QShE
on the system. In our previous study about QShE on
thermodynamic properties of a non-interacting Maxwell-
Boltzmann gas [37], we were able to obtain fully analyti-
cal expressions by using the QBL method [36, 37, 40, 41].
For a brief review of the QBL method, please see Chap-
ter 2.3 of Ref [36]. In the case of degenerate Fermi gas,
however, QBL becomes much more complicated due to
the existence of Friedel oscillations [13, 63] and make it
impractical to get the analytical results based on QBL
approach. That’s why, here we perform numerical cal-
culations. Although the QBL concept cannot provide
analytical expressions here, it helps us to interpret the
underlying physical mechanisms of the quantum shape
oscillations.

The temperature corrected Fermi wavelength is given
by λF (T ) = 2λth/

√
Λ(T ) for unbounded particles so

that λF (T ) ∝ 1/
√
µ(T ). The comparison of Fermi wave-

lengths for the considered electron densities and temper-
atures are given in Table I. While the chemical potential
is directly proportional to the Fermi energy, µ(T = 0),
finite temperature causes just a perturbative correction
on the chemical potential under degenerate conditions,
which is the case here. Finite temperature effect on elec-
trons’ wavelength is weaker than that of electron density,
as is clearly seen from Table I. Due to this fact, changes in
electron density have a stronger effect on the strength of
QShE, compared to the changes in temperature. Some-
times this can cause the masking of the finite temperature
effects on the QShE, on which we will elaborate more in
the next section. In any case, it is clear that weakly de-

TABLE I. Finite-temperature electron (Fermi) wavelength
values for the considered electron densities and temperatures.

Conditions n (m−3) T (K) λF (nm)

1023 20 22.60

Weakly

degenerate
2 × 1023 20 21.41

2 × 1023 50 21.56

1024 20 16.32

Moderately

degenerate
2 × 1024 20 13.35

2 × 1024 50 13.37

generate conditions are more favorable for QShE because
of the larger Fermi wavelengths which make the quantum
confinement effects stronger.

For moderately degenerate conditions, on the other
hand, QShE lead to an irregular oscillatory behavior,
despite their weaker magnitude. Quantum oscillations
due to quantum size effects at nanoscale have been at-
tributed to the strong variations in the occupations of
the states near to the Fermi surface [12, 32–34, 64]. A
similar effect also plays a role here in the systems under
QShE. However, quantum shape-dependent oscillations
cannot be explained solely by the states near the Fermi
surface. The oscillatory behaviors appear not only in
entropy and heat capacity, but also in the chemical po-
tential and internal energy of electrons, which do not
occur under quantum size effects. Entropy and heat
capacity are the quantities related with the occupancy
variance (derivative of the Fermi distribution function).
Therefore, quantum oscillations in those quantities result
from the variations of the states near the Fermi surface.
The chemical potential and internal energy, however, are
directly related with the occupancy function itself (the
Fermi distribution function), not its variance. Fermi sur-
face states have only negligible contributions on chemical
potential and internal energy, yet we observe noticeable
oscillatory-like behaviors in those quantities. This sug-
gests that quantum shape oscillations seen in Fig. 2(b)
and (d) have a different origin than the ones in Fig. 2(f)
and (h).

The origin of the internal energy oscillations lies in the
chemical potential and its shape dependence. To find
the chemical potential, we fix the number of particles in
the system. The chemical potential does not oscillate
under size variations because the occupancies of energy
levels do not fluctuate but shift accordingly with the size
(e.g. due to the opening of subbands). Even though the
geometric (apparent) volume of the confinement domain
remains unchanged under QShE, shape transformations
cause an effective volume change in the confinement do-
main of electrons due to overlap of QBL of core and shell
structures. Since we keep the number of electrons con-
stant at each case, the change in effective volume causes
a variation in the effective density and the occupancies
of energy states of electrons. However, unlike the size
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FIG. 3. Comparison of the quantum thermal densities (normalized to classical densities n) and the distribution of the states
for the most degenerate case (upper row figures) and the least degenerate case (lower row figures) for the θ = 25◦ configuration
as an example. Energies are given in the units of kBT . For T = 20K and n = 2 × 1024 m−3, (a) Cross-sectional view of the
core-shell nanowire. Appearance of Friedel oscillations in the electron density. Emergence of the effective volume and quantum
boundary layers (QBLs) are also seen. δ denotes the QBL thickness. (b) Distribution of first 50 transverse energy eigenstates
in the Fermi function and manifestation of a sharp Fermi surface. (c) Energy versus number of states (NOS) plot for the first
50 transverse energy eigenstates. Low-lying degeneracies of energy levels and their positions can clearly be seen. Ground state
and low-lying states are usually four-fold degenerate. For T = 50K and n = 1023 m−3, (d) Friedel oscillations disappear in the
electron density. (e) Distribution of first 10 transverse energy eigenstates in the Fermi function. Fermi surface loses its meaning
(smoothening) and thermal behavior of electrons can be approximated by Boltzmann statistics. (f) Energy versus number of
states plot for the first 10 energy eigenstates in the transverse direction. Degenerate ground states of transverse modes are
enough to determine the shape-dependent thermodynamic behaviors in the least degenerate case.

effects, the occupancies of the states do not just shift but
fluctuate [36], because of the irregular shape of the effec-
tive domain as a result of oscillatory behavior of QBL in
a degenerate and confined Fermi gas [13]. This compli-
cated behavior of the occupancies causes the oscillatory
changes in the chemical potential as well as the quan-
tities depending on it. Hence, there are two types of
oscillations, one is the usual quantum oscillations due to
the fluctuations of the states near Fermi surface and a
second type of oscillation related to the fluctuations of
Fermi level itself as a result of fluctuating effective vol-
ume induced by QShE.

To make the discussions more clear and explain the
underlying physics in detail, we compare the two most
distinct cases that are considered here: the most degen-
erate (T = 20K and n = 2 × 1024 m−3) and the least
degenerate (T = 50K and n = 1023 m−3) cases. We
pick the θ = 25◦ configuration as an example. In Fig.

3(a) we plot the cross-sectional view of the local density
of electrons in the shell structure at thermal equilibrium
(quantum thermal density). The normalized quantum
thermal density is given by

ñq(r) =
nq(r)

n
=

∑
ε fε |Ψε(r)|2

1
V

∑
ε fε

, (5)

where nq denotes the ensemble averaged local probabil-
ity density, n is the classical density, Ψε(r) denotes the
position eigenfunctions of electrons. Due to their wave
nature, electrons tend to stay away from the boundaries
and accumulate into more free regions inside their con-
finement domain. As a result, the local electron density
is almost zero near to the boundaries of the shell struc-
ture, whereas it is higher in the regions distant from the
boundaries. Blue strips that are formed near to bound-
aries are called the QBLs and they have a thickness (δ)
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in the order of thermal wavelength of electrons, δ ∝ λth
[41]. When Fermi statistics is considered, QBL thickness
has also inverse square root dependence on the degen-
eracy, δ ∝ λth/

√
Λ(T ). The region outside of QBLs is

called the effective volume. QBLs of inner (core) and
outer (material) boundaries can overlap which changes
the effective volume. The amount of QBL overlap de-
pends on the configuration angle θ, which makes the ef-
fective volume shape-dependent. As a direct consequence
of Fermi statistics, electron density exhibits Friedel oscil-
lations which are at their strongest in the most degener-
ate case.

Due to the strong confinement effect, in all cases,
few transverse energy eigenstates determine the shape-
dependent thermodynamic properties of the system. In
Fig. 3(b), we show the Fermi distribution (red curve)
by denoting the first 50 energy eigenstates (black dots)
for the most degenerate condition. Fermi energy (in the
units of kBT ) is as high as 74. There are several states
lying directly on the Fermi surface and variations in the
distributions of those states are the direct causes of en-
tropy and heat capacity oscillations. In addition to this,
effective volume and Fermi level also fluctuate up and
down with changing θ, which generates additional quan-
tum oscillations to the all thermodynamic properties as
they all depend on the chemical potential µ.

Another important feature of the transverse energy
states is their level degeneracy. Ground state and excited
low-lying states are four-fold degenerate (except for small
θ), as dictated by the characteristic geometry of the con-
finement domain. This can clearly be seen in Fig. 3(c),
where we plot the number of states (NOS) with respect
to energy (in reverse axes). Red line denotes the Fermi
level. There are 28 states below the Fermi level and all
of them have four-fold degeneracy. Therefore, we would
expect 7 number of Friedel oscillation peaks in each quar-
ter slice of the confinement domain and this is exactly

FIG. 4. The ratio of specific heats for θ = 0◦ and θ = 45◦

configurations varying with temperature and electron density.
Grey plane denotes the zero change as a reference. Oscilla-
tory behavior exists in every region while the amplitude of
deviation grows with decreasing density and temperature in
general.

what is observed in Fig. 3(a). Each triangular region
has 7 density peaks, which makes in total 28 peaks for 28
states. This observation is consistent in other cases and
angular configurations as well.

In Fig. 3(d), quantum thermal density of electrons is
plotted for the least degenerate case. At first, the result
looks surprising because the density distribution looks
pretty much like the ground state distribution. This is
because only ground states of transverse modes substan-
tially contribute to the physical properties for the cho-
sen temperature and density parameters. As is seen in
Fig. 3(f), only four-fold degenerate ground states lie be-
low the Fermi level. The system is so weakly degener-
ate that it can be described by just a few states in the
transverse direction. The distribution of the first 10 en-
ergy eigenstates is given in Fig. 3(e). Because of very
weak degeneracy, the thermal distribution of states no
longer looks like Fermi statistics but resembles more to
the Boltzmann statistics. Indeed, under these conditions,
statistical properties of the system almost obey the Boltz-
mann statistics. As expected, we do not observe any sign
of density oscillations in the least degenerate case. Here
we should also note that, despite the shape dependence
being determined by a few transverse eigenstates, the
longitudinal modes are abundant so that the system has
a large number of particles in all cases.

The reason for the stronger magnitude of QShE in
weakly degenerate systems can also directly be seen by
comparing Fig. 3(a) and (d). In the least degenerate
case, QBLs are much thicker than the most degenerate
case. The thicker the QBLs, the larger their overlaps and
stronger the QShE. The variations in thermodynamic
quantities are smooth in weakly degenerate cases, be-
cause overlaps of QBLs do not exhibit oscillations with
shape. In the degenerate cases, however, because of the
oscillatory variations in the overlaps of QBLs (due to
Friedel oscillations), effective volume (and effective den-
sity) also oscillates, which is the direct reason of the os-
cillatory changes in chemical potential and Fermi energy.

In Ref. [20], the authors discuss the importance of in-
teractions in comparison to the boundary effects. Their
analysis constitutes a base also for QShE. They compare
the corrections for the chemical potential of a confined
Fermi gas due to both boundary effects and interactions.
It has been shown that the interactions remain negligi-
ble as long as the average system size (double volume
over the surface area) Lg = 2V/S and particle density

n are small enough such that Lgn
2/3 << 1/a (the con-

dition in Eq. (65) of Ref. [20] is reexpressed) where a
is the scattering length for the interactions. An approx-
imate and simple calculation shows that a is in the or-
der of 0.6-1 nm for electron-electron (e-e) interactions in
GaAs for the density and temperature values we consider.
Therefore, the worst-case occurs for the highest electron
density n = 2 × 1024 m−3 which gives the condition of
Lg << 105 nm. If we calculate (in our case Lg = 2A/P
for a 2D core-shell plane) Lg = (Ls − Lc)/2, we obtain
Lg = 11.5 nm << 105 nm. In other words, interac-
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FIG. 5. Oscillatory violation of entropy-heat capacity equivalence due to the changes in shape and electron density at (a) 20K
and (b) 50K temperatures. Violation is stronger at the peaks denoted by darker shades of orange. Grey plane represents the
entropy-heat capacity equivalence as a reference.

tions do not cause a considerable change in the results.
This is an expected result due to low electron densities.
A similar calculation shows that the effect of electron-
phonon (e-ph) interactions is also negligible both because
of low electron density and low temperatures causing low
phonon densities. Furthermore, boundary modifications,
induced by the change in orientation angle of the core
structure, directly affect the energy spectrum of confined
electrons and thus the total kinetic energy determining
the Fermi level while these changes in energy spectrum
indirectly and slightly effects the total interaction energy
due to e-e and e-ph interactions which are already small
in comparison to total kinetic energy.

B. Masking of the temperature effect

In non-degenerate cases, stronger quantum shape de-
pendence occurs at lower temperatures due to the longer
de Broglie wavelength of particles. However, this is not
always the case in degenerate conditions. As seen in Ta-
ble I, the Fermi wavelengths are even slightly longer at
high temperatures for a constant density. This is be-
cause the increment of the temperature in a degenerate
Fermi gas causes the decrease of degeneracy and, hence,
indirectly contributes to lower the average energy of the
particles. At the same time, however, the rise of tem-
perature directly contributes to increasing the particles’
energy. Therefore, the magnitude of QShE non-trivially
depends on the changes in temperature. For the ranges
in Table I, the indirect mechanism is dominant and the
particles have longer Fermi wavelengths for higher tem-
peratures. This explains why we obtain larger QShE at
higher temperatures corresponding to the same electron
density for some quantities; compare the blue and red
solid curves in Fig. 2(a). On the other hand, the os-
cillation magnitudes are sensitive to the changes in the
electron density, so that the density has a more domi-
nant control on oscillations in comparison with that of

the temperature. To examine this behavior in detail, we
compare the relative change of QShE in the specific heat
with respect to the electron density and temperature in
Fig. 4. The larger the deviations from the gray plane (de-
noting the zero QShE), the larger the QShE. The trend
behavior of larger QShE at lower temperatures and den-
sities is clearly seen in Fig. 4. However, at the same time,
this behavior does not strictly take place at all places of
the density-temperature space, because the magnitude of
the oscillations may locally violate this trend. For exam-
ple, around n = 15 × 1023 m−3, the magnitude of the
QShE rises locally with increasing temperature. Essen-
tially, the magnitude of QShE is not always at its max-
imum in case of the ratio for θ = 0◦ and θ = 45◦, due
to the oscillations. Nonetheless, Fig. 4 provides a conve-
nient way to understand the reason for the occurrence of
larger QShE at higher temperatures in some regions of
density-temperature space.

C. Breaking of entropy-heat capacity equivalence

Entropy and heat capacity of non-interacting, uncon-
fined Fermi gases are equal to each other in the com-
pletely degenerate limit (Λ −→ ∞) [58] and almost equal
in degenerate case. This equivalence can be broken due
to quantum size effects [34]. Here, we investigate the
fate of this equivalence under QShE and find that the
entropy-heat capacity ratio of degenerate electrons de-
viates from unity in an oscillatory fashion. In Fig. 5,
S/CW ratio is plotted for the θ ranging between 0◦ and
45◦, and density ranging from 1023 m−3 to 2×1024 m−3.
The gray plane denotes unity for the sake of easy com-
parison. The oscillations are denser at 20K (Fig. 5a)
compared to 50K (Fig. 5b) due to the stronger degener-
acy in the former. The violation of the entropy-heat ca-
pacity equivalence is quite strong (changes up to 40%) in
the considered ranges of shape-density-temperature val-
ues. In fact, the violation becomes more substantial with
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increasing degeneracy. Quantum shape dependence dis-
tinctively affects entropy and heat capacity. As a result,
the breaking of their equivalence exhibits irregular oscil-
lations.

D. Controlling Fermi energy by shape

Tuning the energy levels and controlling the Fermi level
via doping, gating and size effects provide rich ways of
diversification of the material properties [65–72]. Here
we provide the existence of the possibility of tuning the
Fermi level by shape alone, without the size effects to
be engaged in. Quantum shape effect exists not only at
finite temperatures, but also at the zero temperature. In
Fig. 6, we examine the shape dependence of the Fermi
energy of electrons at various densities. We show the
relative difference of the Fermi energy from its reference
value of zero degree angular configuration. It is clearly
seen that changing the configuration angle of the core
structure changes the Fermi energy, making it an ex-
plicit function of θ. The oscillatory behavior appears
in the relative variation of the Fermi energy for higher
electron densities while the changes become smooth vari-
ations for lower densities with a larger magnitude. The
shift in Fermi energy due to shape change is always neg-
ative for weakly degenerate densities while it oscillates
around zero and takes both positive and negative val-
ues for a higher density (2×1024 m−3). For intermediate
density (1024 m−3), however, it becomes strictly positive.
These behaviors are directly related with the character-
istic oscillations of the chemical potential, as Fig. 6 can
be compared to Fig. 2(a) and (b) for obvious similarities.
Variation of the effective volume with shape changes the
system’s Fermi level accordingly because of the fixed con-
straints of electron density and temperature. The shape
control on the Fermi energy may provide a novel mech-
anism for a fine tuning of the position of Fermi level in
band structure and changing the polarity of semiconduc-
tors. In other words, QShE causes shape-induced doping
and we can finely adjust the Fermi level just by chang-
ing the configuration angle of the core structure without
additional material doping. In this way, for example,
we can change the polarity of the semiconductor. This
may allow us to design and produce shape-induced and
finely tuned junctions for solar cells, LEDs and other na-
noelectronic devices. By using a twisted core structure,
we can change the Fermi level and the polarity of the
shell semiconductor continuously through the longitudi-
nal direction of the structure and create a junction just
by changing the orientation angle of the core.

IV. CONCLUSION

In this work, we have shown the existence of shape
dependent quantum oscillations in thermodynamic prop-
erties of strongly confined degenerate electrons due to
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FIG. 6. Shape dependence of Fermi energy for different elec-
tron densities. Fermi energy is plotted relative to the reference
EF at θ = 0◦ angular configuration.

QShE. QShE can arise when electrons are confined in
nested nanostructures like the core-shell nanowires con-
sidered here. Unlike the quantum size oscillations, we ob-
serve oscillations in the chemical potential and internal
energy due to changes in shape for moderately degen-
erate electron densities. As expected, the entropy and
heat capacity also show oscillating behaviors. However,
the origins of these two types of oscillations are not the
same. While the chemical potential and internal energy
oscillations depend on the fluctuations of the Fermi level
and hence the occupancy function itself, the entropy and
heat capacity oscillations result from the fluctuations of
both the occupancy variance and the Fermi level. The
former shape oscillations directly depend on the changes
in effective volume. The latter ones depend both on effec-
tive volume and fluctuations of states around the Fermi
surface. QBL concept and transverse energy eigenvalue
analyses provide even deeper physical insights on the ex-
istence and explanation of quantum shape oscillations.
The frequency of Friedel oscillations can also be deter-
mined from the number of degenerate ground and low-
lying transverse eigenstates.

We notice that QShE causes appreciable changes
in thermodynamic properties of confined electrons and
changes can rise up to 60% for the considered ranges of
parameters. Our results suggest QShE are not negligible
and should be taken into account when appropriate, e.g.
under strong confinements leading QBLs to overlap. It
is also seen that the Fermi energy can be finely tuned
by shape effects providing a mechanism to control the
Fermi energy and the polarity of semiconductors. This
work constitutes to be the first study on shape dependent
oscillations in the thermodynamic properties of particles
obeying Fermi-Dirac statistics.

Further studies based on more complicated models
for QShE on the band structure of semiconductors are
needed as an extension of the proposed idea and its re-
sults. Differences in longitudinal electronic properties
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of 2D structures due to the difference in configuration
angle of the core region may be a useful extension of
the study. Another interesting extension can be the con-
sideration of twisted core-shell semiconductor structures
and examining the changes in their electronic properties
through the longitudinal direction. Such a kind of twisted
semiconductor core-shell structure is expected to exhibit
Peltier effect due to the shape-induced changes in polar-
ity along the longitudinal direction, if we try to keep it at
a constant temperature while an electric current passes
through.

The results represent the maximum possible quantum
shape oscillations on thermodynamic properties of con-
fined electrons in ideal core-shell GaAs structures. There-
fore, consideration of the effects of defects in shell struc-

ture and boundary roughness as well as the interactions
on quantum shape oscillations can be other extensions of
the study.
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