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Understanding the spread of diseases through complex networks is of great interest where realistic,
heterogeneous contact patterns play a crucial role in the spread. Most works have focused on mean-
field behavior – quantifying how contact patterns affect the emergence and stability of (meta)stable
endemic states in networks. On the other hand, much less is known about longer time scale dynamics,
such as disease extinction, whereby inherent process stochasticity and contact heterogeneity interact
to produce large fluctuations that result in the spontaneous clearance of infection. Here we show that
heterogeneity in both susceptibility and infectiousness (incoming and outgoing degree, respectively)
has a non-trivial effect on extinction in directed contact networks, both speeding-up and slowing-
down extinction rates depending on the relative proportion of such edges in a network, and on
whether the heterogeneities in the incoming and outgoing degrees are correlated or anticorrelated.
In particular, we show that weak anticorrelated heterogeneity can increase the disease stability,
whereas strong heterogeneity gives rise to markedly different results for correlated and anticorrelated
heterogeneous networks. All analytical results are corroborated through various numerical schemes
including network Monte-Carlo simulations.

I. INTRODUCTION

Understanding the dynamics of infectious processes is
important both for public health and for basic science
[1, 2]. For the former, epidemic models can provide con-
trol strategies for minimizing disease spread within pop-
ulations [3, 4]. For the latter, general insight can be
gained on, e.g., contagion dynamics, which can be ap-
plied to other areas from election dynamics to the spread
of computer viruses [5, 6]. A common approach for mod-
eling epidemic dynamics is to partition a population into
different compartments and describe the contagious pro-
cesses using flux terms between various compartments.

A wide range of compartmental models have been stud-
ied in the literature [1], all of which are designed to cap-
ture a particular aspect of disease dynamics. In this
work, we are interested in endemic dynamics, where in-
fection lingers within a population, past the point of an
initial outbreak [7, 8]. The simplest model for endemic
disease dynamics is described by the SIS model [2, 4],
where the population is divided into susceptible (S) and
infected (I) individuals; an infected individual that in-
teracts with a susceptible has a chance to transmit the
disease, making the susceptible infected; conversely the
infected individual can recover and become susceptible
once again, according to some prescribed probability.

At the deterministic (mean-field) level, the SIS model
has two equilibrium points: an endemic (stable) state
and an absorbing (unstable) extinct state [3]. Due to
demographic noise emanating from the discreteness of
individuals and stochasticity of the reactions, it is pos-
sible that a large fluctuation will bring the system from
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the stable endemic state to the absorbing extinct state
[4, 7, 9, 10]. This noise-driven rare event is only one
manifestation of the so-called noise-driven escape, which
also includes switching between metastable states (see,
e.g., Refs. [11, 12]), stochastic fade-out [13] and unusu-
ally small or large (extreme) outbreaks [14].

In most cases, such rare events in population dynam-
ics models are considered within a well-mixed or ho-
mogeneous setting, where individuals interact with an
equal number of neighbors with uniform transition rates.
Here, analytical treatment is possible using standard
techniques [10, 15], or, for higher-dimensional systems,
by exploiting timescale separation [16] or various conser-
vation laws [14]. However, it is known that in hetero-
geneous networks, in which nodes have varying incoming
and outgoing degrees or transition rates, the emergence of
an endemic state can be dramatically affected [3, 17, 18].
This is evident in world trade, health care, and social net-
works, where heterogeneity in the network connectivity
was shown to strongly influence disease spread [19–21].

Rigorously dealing with rare events in heterogeneous
networks is highly challenging. Recently, progress has
been made in analyzing rare events in networks close to
bifurcation, where the dimensionality is reduced [3]. In
other works, disease extinction in the realm of the SIS
model was studied on simplified network topologies [22],
or on small networks using exact calculations [23]. More
recently, the mean time to extinction (MTE) was analyt-
ically studied on directed networks with partial hetero-
geneity, either in the incoming or outgoing degree [18, 24].
Here, it was also suggested that, in the context of extinc-
tion in the SIS model, topologically homogeneous net-
works with heterogeneous transition rates (susceptibility
and infectiousness) are equivalent to topologically hetero-
geneous directed networks with homogeneous transition
rates. Furthermore, in Ref. [17] the MTE in the SIS
model was studied on undirected degree-heterogeneous
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networks with weak degree dispersion, within an an-
nealed network approximation. Here, the authors have
shown that the degree dispersion suffices to determine
the MTE in the leading order. Yet, rigorously dealing
with the full extent of heterogeneity, both in the incom-
ing and outgoing degree, and computing the MTE in this
case, has not been carried out in the literature so far.

In this work we extend the formalism developed in
Refs. [17, 18] and use a semi-classical approach to com-
pute the MTE in the SIS model, for fully heterogeneous,
directed networks with arbitrary dispersion. We show
that correlation between the population network’s incom-
ing and outgoing degrees can greatly affect the MTE:
correlation in the degrees brings about a decrease in the
MTE, while weak anticorrelation can dramatically in-
crease the MTE. We also compute perturbatively the
effect of strong heterogeneity, and show that here too,
correlation and anticorrelation in the incoming and out-
going degrees gives rise to markedly different behaviors.

Our paper is organized as follows. In Sec. II we in-
troduce a model employing a topologically homogeneous
network with heterogeneous transition rates, and es-
tablish its equivalence to degree-heterogeneous networks
with homogeneous rates, under the annealed network ap-
proximation. We then analyze homogeneous networks
with bimodal transition rates and explore such networks
numerically in Sec. III, and analytically in Sec. IV, for
both weak and strong heterogeneity. Finally, in Sec. V
we conclude our results and discuss possible generaliza-
tions.

II. THEORETICAL FORMULATION

A. Model

We begin by formulating the SIS model on a topolog-
ically homogeneous network with heterogeneous transi-
tion rates. Following the notation of Refs. [18, 25], we
assume an isolated population of N individuals that is
divided into k groups, with group i (i = 1, 2, ..., k) con-
sisting of Ni individuals. We denote fi = Ni/N the pro-
portion of the population in group i, where

∑
i fi = 1.

Each group is comprised of susceptible individuals, S,
and infected individuals, I. The tendency of an infected
individual from group i to infect its neighbors is referred
to as its infectiousness, λi, whereas susceptibility, µi,
measures the tendency of an individual from group i to
become infected due to an infected neighbor. Thus, the
individual’s infection and recovery rates of group i are

Ii
W+(Ii)−−−−−→ Ii + 1, Ii

W−(Ii)−−−−−→ Ii − 1, (1)

where W+(Ii) = (β/N)
(∑k

j=1 λjIj

)
µi(Ni−Ii) is the in-

fection rate, which depends on the susceptibility of group
i and the collective infectiousness, while W−(Ii) = γIi is
the recovery rate. In addition, β and γ are overall mea-
sures of infectiousness and recovery rates, N is the num-

ber of nodes (individuals) in the network and Ii is the
number of infected individuals in group i [18, 25].

Without loss of generality we can scale λi and µi
such that the average infectiousness 〈λ〉 and average sus-
ceptibility 〈µ〉 satisfy: 〈λ〉 =

∑
i λifi = 1 and 〈µ〉 =∑

i µjfj = 1. Defining the fraction of infected in group i
by yi = Ii/N , using rates (1), and ignoring demographic
fluctuations, the corresponding mean-field rate equations
for the average fractions of infected read:

ẏi = β

 k∑
j=1

λjyj

µi(fi − yi)− γyi. (2)

Equation (2) has an unstable extinction state, yi = 0,
and a stable endemic state, y∗i , which depends on the
transition rates. Notably, the endemic state exists when
the basic reproduction number, R0, defined by [18, 26, 27]

R0 = (β/γ)

k∑
i=1

λiµifi, (3)

is greater than 1.
Yet, demographic noise and the fact that the ex-

tinct state is absorbing renders the stable fixed point
metastable [4, 7]. Accounting for such noise, the mas-
ter equation for P (I, t): the probability to find at time t
infected groups I = {I1, ..., Ik} reads

∂P (I, t)

∂t
=

k∑
j=1

[W−(Ij + 1)P (I + 1j , t)−W−(Ij)P (I, t)

+W+(Ij − 1)P (I− 1j , t)−W+(Ij)P (I, t)] , (4)

where an increase and decrease by one of group Ij is de-
noted by I → I ± 1j [9]. Solving this master equation
is, in general, analytically impossible, due to the high di-
mensionality and complex coupling between the degrees
of freedom. Below, we show how to treat this master
equation for a homogeneous network with bimodal rates
(or bimodal degree distributions). Notably, a generaliza-
tion to arbitrary symmetric networks, and also weakly-
asymmetric networks (with small skewness) is possible,
using a similar derivation that appears in Ref. [17].

The above formalism holds for well-mixed populations,
where the contagion process is assumed to occur between
groups with different transition rates. We now show that
the latter is equivalent to networks with heterogeneous
topology of the incoming and outgoing degrees, under
the annealed network approximation. Here, the topol-
ogy is assumed to vary much faster than the transition
rates. This results in a contagion process which is es-
tablished on an average network, where connections are
formed according to degree-dependent probability distri-
butions [2]. In such topologically-heterogeneous networks
nodes are categorized into groups, where each group i
has a well-defined incoming degree din(i) and outgoing
degree dout(i), resulting in k < N different groups of
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nodes. Here, we can denote ν as the rate at which infec-

tion transmits along each edge and by k
(in)
0 and k

(out)
0

the average incoming and outgoing degrees such that

k
(in)
0 =k

(out)
0 ≡ k0 (with no excess edges). As a result,

the infection rate of a susceptible node i satisfies

ν

Nk0

 k∑
j=1

dout(j)Ij

 din(i)(Ni − Ii), (5)

which coincides with W+(Ii) in Eq. (1) upon choosing
β = νk0, µi = din(i)/k0 and λi = dout(i)/k0 [18].

B. The case of bimodal networks

We now use a toy model of heterogeneity in the form of
bimodal networks. We first numerically corroborate the
equivalence between heterogeneity in degree and hetero-
geneity in rates (for bimodal as well as other networks),
and then, rigorously study master equation (4) and the
MTE for bimodal susceptibility and infectiousness.

Our starting point is a homogeneous network with het-
erogeneous rates. Here, for bimodal rates there are two
well-mixed interacting populations I1,2 with infectious-
ness λ1,2, susceptibility µ1,2, and transition rates given
by Eq. (1), with k = 2. We now define εµ, ελ ∈ [−1, 1]
as the coefficients of variation (CV) of the infectiousness
and susceptibility, respectively, which equal the distribu-
tions’ standard deviation divided by its mean. In the
bimodal case, using the CVs the rates can be rewritten
as: λ1 = 1 − ελ, λ2 = 1 + ελ, µ1 = 1 − εµ, µ2 = 1 + εµ.
Comparing Eqs. (1) and (5), one immediately obtains an
equivalence with a network of bimodal incoming and out-
going degree distributions with CVs, εin, εout ∈ [−1, 1],
upon choosing εµ = εin and ελ = εout. This can be seen in
Fig. 1, where we compare the predictions of the master
equation for the MTE with Monte-Carlo (MC) simula-
tions, and show the equivalence between degree and rate
heterogeneity, for bimodal and other types of networks.
The numerical scheme used to obtain Fig. 1 is presented
in Sec. III. Note that, this figure demonstrates that the
MTE is equivalent for networks with different degree (or
rate) distributions, as long as their CV is kept fixed.

Notably, in all our comparisons between different net-
works and different sources of heterogeneity, we keep the
distance from the threshold R0 constant, thereby insur-
ing that the stability of the disease-free (extinct) state
remains the same. Using Eq. (3), keeping a constant R0

requires adjusting the ratio β/γ for varying susceptibili-
ties and infectiousness; for bimodal networks, this implies
maintaining the equality: β/γ = R0/(1 + ελεµ).

We now analyze the stochastic dynamics and find the
MTE in the bimodal case. Here, rate equations (2) for
the two infected populations, y1(t) and y2(t), satisfy:

dyi
dt

=
R0

1 + ελεµ
(λ1y1 + λ2y2)µi

(
1

2
− yi

)
− yi, (6)

FIG. 1. The logarithm of the MTE versus ελ for N = 300,
R0 = 1.3, k0 = 100 and εµ = 0.1. Symbols are MC simula-
tions; for each point the MTE and error bar are computed by
averaging over 10 networks and 100 realizations according to
the scheme presented in Sec. III. Results are shown for net-
works with bimodal (circle) and Gaussian (square) rate dis-
tributions, and bimodal (triangle), Gaussian (asterisk) and
Gamma (X) degree distributions. Here and henceforth, the
size of the error bars is limited by the symbol sizes. The solid
line is the numerical solution of master equation (4), while
the dashed line is the solution to Eq. (14), see Sec. IV.

where i = 1, 2. To account for stochasticity, we use mas-
ter equation (4) with k=2. Notably, even in this simple
case an exact solution to the master equation cannot be
found in general. Yet, one can use accurate approxima-
tion schemes such as the WKB (after Wentzel Kramers
and Brillouin) method [9] to study large deviations and
the MTE. The WKB method utilizes a small parameter
(in our case 1/N � 1) in order to approximately solve
the master equation in a singular limit, see below. No-
tably, as we will show, the results greatly simplify when
heterogeneity is either weak or strong.

To study large deviation in such systems, we assume
that after a short time transient the system enters into a
long-lived metastable endemic state, and stays there for
very long times, on the order of the MTE. This means
that, stochasticity causes the metastable probability dis-
tribution to slowly ’leak’ into the absorbing state. Thus
we write P (I) = Q (I) e−t/T where T is the MTE and
Q (I) is the quasi-stationary distribution (QSD) – the
shape of the metastable state. Here the metastable state
slowly decays in time at a rate 1/T , while simultane-
ously the extinction probability grows and reaches the
value of one at t → ∞ [7, 9]. We now assume that
N � 1, plug the metastable ansatz into the master equa-
tion [Eq. (4)], and employ the WKB approximation for
the QSD, Q (I) ≡ Q (y) ∼ e−NS(y). This results in a
stationary Hamiltion-Jacobi equation H(y, ∂yS) = 0 [9],
where S(y) is the action, and the Hamiltonian satisfies

H=
β

γ

 k∑
j=1

λjyj

 k∑
i=1

µi(fi−yi)(epi−1) +

k∑
i=1

yi(e
−pi−1),

(7)
with pi=∂yiS being the momentum of group i, and k = 2
for the bimodal case [28]. As a result, the Hamilton’s
equations, ẏi = ∂piH and ṗi = −∂yiH, read
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ẏi =
β

γ

 k∑
j=1

λjyj

µi(fi − yi)epi − yie−pi ,

ṗi = −β
γ
λi

k∑
j=1

µj(fj − yj) (epj − 1)

+
β

γ

 k∑
j=1

λjyj

µi (epi − 1)−
(
e−pi − 1

)
. (8)

The fixed points in the extended phase space
({yi}, {pi}) can be found, for any degree or rate distribu-
tion, by equating Eqs. (8) to zero [18, 29]. In the bimodal
case, i = 1, 2, we find

y∗i =
µiD(ελ, εµ)

2 [1 + µiD(ελ, εµ)]
, p∗i = − ln [1 + λiD

′] , (9)

where D(ελ, εµ) = ζ +
[
ζ2 + (R0 − 1)/(1− ε2µ)

]1/2
, D′

is identical to D(ελ, εµ) upon replacing ελ and εµ, and
ζ = R0/[2(1 + ελεµ)] − 1/(1 − ε2µ). Denoting, X∗ =
y∗1 + y∗2 as the population fraction of the total number of
infected in the endemic state, Eq. (9) with ελ = εµ = 0,
agrees with the known homogeneous fixed point, X∗ =
x0 ≡ (R0 − 1)/R0. However, for populations where both
the susceptibility and infectiousness are heterogeneous,
the endemic population can be greater than x0 as can
be seen in Fig. 2. Indeed, denoting the CVs ratio by
α = εµ/ελ, for α > 0 the population’s infectiousness and
susceptibility are correlated, while for α < 0 they are
anticorrelated. Notably, the maximum of X∗ is obtained
for anticorrelated rates, which will have a strong impact
on the MTE in this regime, see below.

FIG. 2. The mean population fraction of infected individuals
in the endemic state, X∗, in the bimodal case, as a function
of the CVs ratio, α = εµ/ελ, for N = 2000, R0 = 1.5 and
ελ = 0.5. Symbols are numerical solutions to the master
equation, while the dashed curve is given by (9).

C. Mean time to extinction

In order to find the MTE, one has to find the action
function, S(y), by solving Hamilton’s equations (8) either

numerically or analytically. Below we show how these
equations can be solved numerically (Sec. III) and ana-
lytically (Sec. IV). Having found the action function, the
MTE in the leading order satisfies [7]

T ∼ eN∆S , ∆S =

∫ ∞
0

pẏdt = S(0)− S(y∗), (10)

where ∆S is the action barrier along the optimal path to
extinction [9] and y∗ is the endemic fixed point.

So far, Eq. (10) has been computed analytically in
three special cases. For homogeneous rates, ελ = εµ = 0,
one has ∆S0 = lnR0 + 1/R0 − 1 [4, 7]. In the case of
partial heterogeneity in the susceptibility, one finds [18]

∆S(0, εµ) =
1

2
ln [1 + (1− εµ)D(0, εµ)]

+
1

2
ln [1 + (1 + εµ)D(0, εµ)]− D(0, εµ)

R0
, (11)

where D(ελ, εµ) is defined below Eq. (9), and a similar re-
sult holds for partial heterogeneity in the infectiousness.
Finally, in the case of undirected networks, ελ = εµ = ε,
a general result has been found in the case of ε� 1 [17]:

∆S(ε) = S0 − h(R0)ε2

h(R0) =
(R0 − 1)(1− 12R0 + 3R2

0) + 8R2
0 ln(R0)

4R3
0

.
(12)

Below we generalize these results and solve the Hamil-
ton’s equations with heterogeneity present in both rates.

III. NUMERICAL SIMULATIONS

To corroborate our analytical findings, and to study di-
rected heterogeneous networks in parameter regimes that
are inaccessible to analytical treatment, we used three
numerical methods to compute the MTE [30]. Below,
we present these methods from the most accurate but
slowest, to the least accurate but fastest.

The first method included performing kinetic Monte
Carlo (MC) simulations on directed heterogeneous net-
works. Here, we generated a network satisfying the an-
nealed network approximation and employed Gillespie’s
algorithm to mimic the SIS dynamics [31–33]. For each
node in a network there is an exponentially distributed
time to make a transition to another state. When the
rates are heterogeneous and the topology is homoge-
neous, each node has a different rate of susceptibility
and infectiousness but the same number of neighbors.
On the other hand, when the degree distribution is het-
erogeneous, each node has a different incoming and out-
going degree but the same transition rates, and the an-
nealed network approximation is used. For correlated
networks, degrees (or rates) were paired with the same
ranking (the highest outgoing degree coupled with the
highest incoming degree) in contrast with anticorrelated
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networks, where degrees (or rates) were paired with oppo-
site ranking (highest outgoing degree coupled with low-
est incoming degree or vice versa). To account for the
variability across different networks, we generated sev-
eral different network realizations, computed the MTE
on each network realization, and then averaged over all
networks. For each particular network, the simulated ex-
tinction times were fitted to an exponential distribution,
where the resulting mean and confidence bounds were
treated as the MTE and its confidence bounds of the
network. The mean over all networks yielded the overall
MTE, whereas the standard deviation of the confidence
bounds provided the MTE’s error bars. Out of the three
methods, this method was the most time consuming with
runtime that grows exponentially with increasing repro-
ductive number and population size; yet it mimics the
stochastic dynamics in the most accurate way, and it is
applicable to any generic degree or rate distribution.

The second method included a numerical solution of
the master equation, by finding the largest eigenvalue
of the matrix in Eq. (4), the inverse of which is the
MTE, whereas the corresponding eigenvector represents
the QSD [34]. This method was only used for the bi-
modal case (k=2); here each population has anywhere
between zero and N/2 infected individuals, thus the ma-
trix dimensionality in Eq. (4) is (N/2 + 1)2 for k = 2.
As shown in Figs. 1 and 3, this method provides highly
accurate results for the MTE, including preexponential
corrections, unlike the solution to the Hamilton’s equa-
tions, see below. Furthermore, this method is highly ad-
vantageous in terms of running time compared to the MC
simulations, as long as k ≤ 2. For k > 2, however, this
method becomes less feasible when N is large, as one has
to deal with a matrix of O(Nk) dimensions, and thus,
the runtime grows exponentially with increasing k.

To demonstrate that the master equation description,
which effectively assumes the annealed network approx-
imation [2], can be used to accurately compute the
MTE [34], we compare in Fig. 3 its predictions with MC
simulations (see also Fig. 1). We do so for bimodal net-
works, and plot the MTE as a function of ελ for two
distinct values of εµ. Here, the prediction of the master
equation for the MTE excellently agrees with that of MC
simulations, as long as the average number of neighbors
of each node is large [35]. One can clearly see in Fig. 3
the asymmetry of the curves with respect to the transi-
tion point between correlated and anticorrelated degree
distributions (i.e., ελ = 0). Importantly, the maximal
MTE is not obtained in the homogeneous scenario, but
rather, when the infectiousness and susceptibility are an-
ticorrelated, see subsection IV A.

The third method we have used included solving the
Hamilton’s equations [Eqs. (8)] numerically. To do so, we
used the iterative action minimization method [3, 36, 37],
which allows finding the path p(y) along the hetero-
clinic (or zero energy) trajectory, connecting the endemic
fixed point (y,p) = (y∗,0) with the extinction state
(y,p) = (0,p∗) [18]. Once y(t) and p(t) are found along

FIG. 3. The logarithm of the MTE versus ελ. Lines are solu-
tions of the master equation, while symbols are MC simula-
tions; for each point the MTE is computed by averaging over
100 stochastic realizations for a fully connected network with
a given rate distribution, and then averaging over 10 differ-
ent network realizations with the same rate distribution. The
errors were found to be smaller than the symbol size. Pa-
rameters are N = 400, R0 = 1.25, εµ = 0.3 (triangles) and
N = 200 R0 = 1.5 and εµ = 0.8 (circles). The maximum
MTE was obtained at ελ = −0.13 and ελ = −0.25, for net-
works with εµ = 0.3 and εµ = 0.8, respectively.

the optimal path, we use Eq. (10) to calculate the ac-
tion. Notably, unlike the MC simulations and numerical
solution of the master equation, this method provides
the MTE up to exponential accuracy and misses the pre-
exponential factor. Yet, it is highly advantageous time-
wise, as it includes finding solutions to only 2k ordinary
differential equations for each time-step along the zero-
energy path. Typically, a quasi-Newton method can be
used to solve the equations, with quadratic time com-
plexity in the number of time-steps and k. Thus, while
we have focused on the bimodal case, this method can be
used to deal with any degree (or rate) distribution, with
arbitrary k (see details in Ref. [3]).

Figure 4 shows numerical solutions of the master equa-
tion for the entire phase space in the bimodal case. We
notice that, the figure is symmetrical to reflection along
either horizontal or vertical axis. This is due to the du-
ality property, which states that for any generic network
with SIS dynamics denoted by T, where Tij indicates
the rate at which individual j infects individual i, the
action barrier remains unchanged under the transposi-
tion of matrix T. For our model, Tij = βλjµi/N , which
suggests that the action remains the same under the ex-
change of µ and λ and that, ∆S(ελ, εµ) = ∆S(εµ, ελ)
[18, 38–40]. The rest of the paper will be devoted to
finding analytical expressions for ∆S(ελ, εµ) in two main
regions: weak heterogeneity and strong heterogeneity.

IV. RESULTS

We now use perturbation theory to analyze two impor-
tant parameter regions: weak and strong heterogeneity.
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FIG. 4. A heatmap of the logarithm of the MTE, ln(T ), ob-
tained by solving the master equation in the bimodal case vs
ελ and εµ. Here N = 400 and R0 = 1.5. The x’s mark the
value of εµ which maximizes the MTE for a given ελ, while the
dashed line denotes the theoretical prediction for this maxi-
mum, see Sec. IV A, formally valid for weak heterogeneity.

A. Weak heterogeneity

Here we analyze the case of weak heterogeneity, where
ελ, εµ�1. In this limit we can Taylor expand ∆S(ελ, εµ),
the action barrier to extinction, up to second order:

∆S(ελ, εµ) ' ∆S(0, 0) +

(
∂∆S
∂ελ

)
ελ +

(
∂∆S
∂εµ

)
εµ

+
1

2

(
∂2∆S
∂ε2λ

)
ε2λ +

(
∂2∆S
∂ελ∂εµ

)
ελεµ +

1

2

(
∂2∆S
∂ε2µ

)
ε2µ,

(13)
where all derivatives are evaluated at ελ = εµ = 0. Next,
we will show that these terms can be evaluated using
Eq. (11), Ref. [17], and the duality property.

First, the leading order term satisfies: ∆S(0, 0) =
∆S0 = lnR0 + 1/R0 − 1, since ελ = εµ = 0 and the
problem is reduced to one dimension [4, 7].

To evaluate the first-order terms with respect to ελ or
εµ, we notice that Eq. (11) provides the action when only
one of the rates includes heterogeneity. For example, to
find ∂εµ∆S at ελ = εµ = 0, we can differentiate Eq. (11)
with respect to εµ and substitute εµ = 0, which yields
∂εµ∆S(0, εµ) = 0. The same result is obtained for ∂ελ∆S
at ελ = εµ = 0, as S(0, ε) = S(ε, 0) (duality principle).
Therefore, both first-order terms vanish in Eq. (13).

We now proceed to computing the second order terms
in Eq. (13), where there are three such terms. The deriva-
tives ∂2

εµ∆S and ∂2
ελ

∆S can be computed at ελ = εµ = 0

in the same way as the first-order terms, using Eq. (11).
This yield ∂2

ελ
∆S = ∂2

εµ∆S = −x2
0 [41]. To compute the

mixed derivative in Eq. (13), we define ψ(R0) such that

ψ(R0)x2
0/2 = −∂ελ∂εµ∆S, evaluated at ελ = εµ = 0. As

a result, the action barrier becomes

∆S(ελ, εµ) ' ∆S0 −
x2

0

2
ε2λ
[
1 + ψ(R0)α+ α2

]
, (14)

where to remind the reader, α = εµ/ελ. To find ψ(R0),
we compare Eq. (14) with Eq. (12) in the case of undi-
rected networks. Putting α = 1, we find ψ(R0) =
2
[
h(R0)− x2

0

]
/x2

0, where h(R0) is given by Eq. (12).
Equation (14) is our first main result. It generalizes the

results of Refs. [17, 18] to directed heterogeneous net-
works, and predicts up to subleading-order corrections
the MTE, which only depends on the CV of both rates,
and the reproductive number. A comparison between
our analytical solution for the MTE, using Eqs. (10) and
(14) and a numerical solution of the Hamilton’s equa-
tions, can be seen in Fig. 5, and excellent agreement
is observed. Importantly, although our derivation has
been carried out for bimodal networks, Eq. (14) holds
for generic networks of arbitrary degree (or rate) distribu-
tions, with CVs, εµ and ελ, of the incoming (susceptibil-
ity) and outgoing (infectiousness) degrees, respectively.
This is demonstrated in Fig. 1 for various networks, with
bimodal, Gaussian and Gamma distributions.

How does ψ(R0) behave with R0? Close to the bifurca-
tion, at R0 − 1� 1, it can be shown that in the leading
order, h(R0) ' 3/2(R0 − 1)2 ' 3/2x2

0. As a result, at
R0 − 1 � 1, ψ(R0) ' 1. As R0 increase, the value of
ψ(R0) decreases monotonically. Thus, since ψ(R0) ≤ 1
for any R0, the action barrier in the presence of het-
erogeneous rates is always smaller than that in the fully
homogeneous case. However, given heterogeneity in, say,
only the incoming degrees, with homogeneous outgoing
degree, the MTE can be increased by adding heterogene-
ity in the outgoing degree as well. This result is counter-
intuitive, as in most cases adding heterogeneity increases
overall fluctuations, which decrease the stability of the
metastable state, and thus, decrease the MTE.

Indeed, having found the dependence of the action bar-
rier on α for weakly heterogeneous networks, we can find
the value of α for which the MTE is maximized. Doing so,
we find αmax = −ψ(R0)/2, or εµ = −[ψ(R0)/2]ελ [42].
For R0 close to 1, the maximum is obtained at α = −1/2,
and as R0 increases, the maximum decreases in its abso-
lute value. This behavior can be seen in Figs. 4 and 6.
Notably, the maximum of the MTE is obtained at a neg-
ative value of α, namely, when the heterogeneity in the
incoming degree is anticorrelated with that of the out-
going degree. This is evident also by looking at Fig. 6b.
On the one hand, the mean fraction of total infected is
maximized at α = −1/2 regardless of the value of R0,
which is the dominant factor for the fact that the MTE
is maximized at this value of α or close to it. On the
other hand, the minimum of the relative width of the
QSD (or relative fluctuations), obtained at α ' −1/2 for
R0 − 1� 1, shifts towards 0 as R0 increases. These two
effects cause the maximum of the MTE to also shift from
α = −1/2 towards α = 0 as R0 is increased. This also
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FIG. 5. The correction to the action for weak heterogeneity.
Panel (a): ∆S0 −∆S versus α. Symbols are solutions to the
Hamilton’s equations for ελ = 0.05, with R0 = 1.6 (circles)
and R0 = 2.4 (triangles). Solid curves are the theoretical pre-
dictions [Eq. (14)]. Panel (b): ∆S0−∆S versus R0. Symbols
are solutions to the Hamilton’s equations for ελ = 0.08, with
α = 0.5 (triangles) and α = −0.5 (circles). Solid curves are
the theoretical predictions [Eq. (14)].

indicates that anticorrelation between the incoming and
outgoing degrees decreases (for any R0) the typical fluc-
tuations, which brings about an increase in the disease
stability and MTE, see Figs. 4, 5 and 6.

FIG. 6. Panel (a): The value of εµ for which the MTE is maxi-
mized versus ελ. The solid line shows the numerical solution of
the master equation, the circles are numerical solutions of the
Hamilton’s equations, while the dashed line shows Eq. (14),
valid at ελ � 1. Parameters areN = 300 and R0 = 1.5. Panel
(b): the values of α at which: (i) X∗ receives its maximum
(triangles), (ii) the QSD’s relative width receives its minimum
(circles), and (iii) ∆S receives its maximum (squares), versus
R0. The mean and relative width were obtained by numeri-
cally solving the master equation with N = 2000, while the
action was obtained by solving the Hamilton’s equations.

B. Strong heterogeneity

Here we analyze the case of strong heterogeneity in
either the infectiousness or susceptibility. We denote by
δ = 1 − ε the distance from maximal heterogeneity, and
assume δ is small. Without loss of generality we study
the case of strong heterogeneity in infectiousness, δλ =

1− ελ � 1. Our aim is to compute ∆S, given by

∆S =

∫ 0

y∗1

p1(y1)dy1 +

∫ 0

y∗2

p2(y2)dy2. (15)

In the correlated case, α > 0, it can be shown that the
leading O(δ0

λ) order of Hamiltonian (7) satisfies

H=y2

[
e−p2 − 1 + (ep2 − 1)(2y2 − 1)R0

]
+O(δλ). (16)

Here, we have assumed that p1 ∼ O(δλ), see below.

Putting H = 0 we find that p
(0)
2 (y2) = − ln [R0(1− 2y2)].

Integrating over the momentum p2(y2) along the extinc-
tion path, see Eq. (15), yields ∆S = ∆S0/2. This is the
action obtained for a well-mixed population of size N/2,
since half of the population has zero infectiousness, thus
only half of the population participates in the dynamics.

To obtain the δλ-dependent correction to this result,
we compute the fixed points of the Hamilton’s equations
[Eq. (8)], given by Eq. (9), for δλ � 1, which read:

p∗1 = −1

2
(R0 − 1)δλ

p∗2 = − ln(R0)− (R0 − 1)(1− εµ)

2(1 + εµ)
δλ

y∗1 =
x0R0(1− εµ)

2ξ

[
1− R0(1− εµ)εµ

ξ2
δλ

]
y∗2 =

x0

2

[
1 +

(1− εµ)εµ
(1 + εµ)ξ

δλ

]
,

(17)

where ξ = R0− (R0− 2)εµ. We now proceed in the same
spirit as Ref. [17], and assume the following scaling for the
momenta, valid for α > 0: p1(y1) = p∗1(y∗1−y1)/y∗1 [which

scales as O(δλ)], and p2(y2) = p
(0)
2 [y2(1 + θδλ)] + [p∗2 +

ln(R0)](y∗2−y2)/y∗2 , where p
(0)
2 is given below (16). In this

way, it is guaranteed that p1(0) = p∗1 and p1(y∗1) = 0. In

addition, p2(0) = p∗2, as p
(0)
2 (0) = − ln(R0), and the free

parameter θ is chosen such that p2(y∗2) = O(δ2
λ), which

yields θ = (1 − εµ)εµ/[ξ(1 + εµ]. Using these momenta,
and keeping terms up to O(δλ), Eq. (15) yields

∆S =
∆S0

2
+ δλ

1− εµ
4R0(1 + εµ)ξ

×
[
(R0−1)2R0 + (3−4R0+R2

0 + 2R0 lnR0)εµ
]
,(18)

where the δλ-dependent correction is positive for εµ > 0.
Note that, the case where susceptibility is large and cor-
related, resulting in small δµ = 1−εµ � 1, can be treated
using the duality property. In Fig. 7 we show that the
analytical formula (18) excellently agrees with a numer-
ical solution of the master equation for various values of
R0 and δλ. Similarly as for weak heterogeneity, Eq. (18)
also holds for generic networks with CVs, εµ and ελ, of
the incoming and outgoing distributions, respectively.

The case of strong anticorrelation, where one of the ε’s
is close to 1 and the other is arbitrary and negative, such
that α < 0, is more intricate. Here, the above method is
invalid and the result can only be found numerically.
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FIG. 7. Shown is the correction to the action, [ln(T ) −
N∆S0/2]/(Nδλ) as a function of εµ for N = 700. Sym-
bols are numerical solutions to the master equation for
R0 = 1.2, 1.35, 1.5 (bottom to top), and for each R0, δλ =
0.05, 0.1, 0.15. Lines are the theoretical prediction (18).

An interesting example is the case of extreme anticor-
relation, with ελ = 1− δ = −εµ and δ � 1. In this case,
in the leading order of δ � 1, determinstic rate equa-
tions (6) yields an unstable extinct state, y∗1 = y∗2 = 0,
and a stable endemic state y∗1 = (R0 − 2)/(2R0) and
y∗2 = 1/2. This endemic state ceases to exist when
R0 ≤ 2, where only the extinct state exists and becomes
stable. That is, bifurcation in this extreme anticorrela-
tion case occurs at R0 = 2. This is because the first
infected group y1 has almost zero infectiousness but high
susceptibility, while the second infected group y2 has al-
most zero susceptibility but high infectiousness. Thus,
dynamically, the second group is almost autonomous in
the leading order, and becomes established (i.e., reaches
an endemic fixed point y∗2) only when the rescaled repro-
duction number R0 exceeds 2. Once this occurs, the first
infected group can also be established at y∗1 = 1/2. Only
for R0 →∞ the groups become equivalent.

FIG. 8. The logarithm of the MTE, ln(T ), versus ελ where
εµ = |ελ|. The solid line is the solution to the master equation
for N = 300 and R0 = 1.3, while symbols are MC simulations
obtained for a fully connected network with bimodal rates
averaged over 10 networks and 100 iterations, see Sec. III.

The MTE in the case of extreme anticorrelation can
be numerically computed. In Fig. 4 this regime can be
seen in the top left and bottom right corners when the
MTE is minimal, as for R0 < 2, the endemic state ceases
to exist as ελ = −εµ → 1 (or vice versa). This can

also be observed in Fig. 8, where we choose the same CV
magnitude for both rates, but with a different sign. Here,
the extreme antircorrelation case can be seen on the left
side where the MTE goes to zero (as the endemic fixed
point ceases to exist), whereas extreme correlation can
be seen on the right side, where the action approximately
converges to half of its maximal value, see Eq. (18).

V. DISCUSSION

Most studies of disease spread through complex net-
works focused on short time scales related to the emer-
gence of the endemic state and its relaxation dynamics.
On the other hand, the study of longer time scales, rele-
vant for disease extinction, was impeded by the complex
topology of these networks. Here we have generalized
several recent studies, and investigated, in the realm of
the SIS model, disease extinction on heterogeneous and
directed population networks. To do so we have used
various numerical methods with varying efficiency and
accuracy, as well as a semi-classical WKB approximation
to the master equation. The latter provides, in the lead-
ing order in the population size, an alternative Hamilto-
nian formulation of the problem, which can be dealt with
rigorously in various parameter regimes.

We initially showed that under the annealed network
approximation, heterogeneity in the network topology,
i.e, in the individual’s incoming and outgoing degrees,
is equivalent to heterogeneity in its susceptibility and
infectiousness. In particular, the mean time to extinc-
tion (MTE) was shown to be identical for degree and
rate heterogeneity, by employing Monte-Carlo simula-
tions, as well as numerically solving the master equation
and the corresponding Hamilton’s equations. The numer-
ical schemes were then used to corroborate our analytical
findings, mainly in two regimes: weak and strong hetero-
geneity. While our analytical derivation was carried out
on a toy model of bimodal networks with dichotomous
heterogeneity, it can be generalized to networks with ar-
bitrary (weakly skewed) incoming and outgoing degree
distributions [17]. Importantly, we have shown that cor-
relation or anticorrelation between an individual’s incom-
ing (susceptibility) and outgoing (infectiousness) degrees,
has a dramatic impact on the disease lifetime. It was
shown that for strong heterogeneity, anticorrelation tends
to always decrease the MTE. On the other hand, for weak
heterogeneity, anticorrelation between the incoming and
outgoing degrees can increase disease stability and the
MTE, which is counter-intuitive, as in most cases het-
erogeneity tends to decrease stability.

Although it is beyond the scope of this paper, it would
be interesting to explore how asymmetry in the degree
(or rate) distribution, and in particular, strongly-skewed
distributions such as those with power-law tails, affect
the mean time to disease clearance and its statistics.
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