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First-principles computations are the driving force behind numerous discoveries of hydride-based
superconductors, mostly at high pressures, during the last decade. Machine-learning (ML) ap-
proaches can further accelerate the future discoveries if their reliability can be improved. The main
challenge of current ML approaches, typically aiming at predicting the critical temperature Tc of a
solid from its chemical composition and target pressure, is that the correlations to be learned are
deeply hidden, indirect, and uncertain. In this work, we showed that predicting superconductivity at
any pressure from the atomic structure is sustainable and reliable. For a demonstration, we curated
a diverse dataset of 584 atomic structures for which λ and ωlog, two parameters of the electron-
phonon interactions, were computed. We then trained some ML models to predict λ and ωlog, from
which Tc can be computed in a post-processing manner. The models were validated and used to
identify two possible superconductors whose Tc ' 10 − 15K at zero pressure. Interestingly, these
materials have been synthesized and studied in some other contexts. In summary, the proposed
ML approach enables a pathway to directly transfer what can be learned from the high-pressure
atomic-level details that correlate with high-Tc superconductivity to zero pressure. Going forward,
this strategy will be improved to better contribute to the discoveries of new superconductors.

I. INTRODUCTION

In the search for high critical temperature (Tc) super-
conductors, significant progress has been made during
the last decade [1–3]. Among thousands of hydride-based
superconducting materials computationally predicted [4–
12], mostly at very high pressures, e.g., P & 100 GPa,
dozens of them, e.g., H3S [1], LaH10 [2], and CSH [3],
were synthesized and tested. This active research area
is presumably motivated by Ashcroft, who, in 2004, pre-
dicted [13] that high-Tc superconductivity may be found
in hydrogen dominant metallic alloys, probably at high
P . Another driving force is the development of first-
principles computational methods to predict material
structures at any P [14–20] and to calculate the electron-
phonon (EP) interactions [21, 22], the atomic mechanism
behind the conventional superconductivity, according to
the Bardeen-Cooper-Schrieffer (BCS) theory [23]. While
critical debates on some discoveries [24–29] are on-going,
it seems that the one-day-realized dream of superconduc-
tors at ambient conditions may be possible. Readers are
referred to some reviews [5, 6, 8, 30] and a recent roadmap
[9] for progresses, challenges, and future pathways of this
research area.

The central role of first-principles computations in the
recent discoveries of conventional superconductors stems
from Éliashberg theory [31–34], of which the spectral
function α2F (ω) characterizing the EP interactions could
be evaluated numerically. The first inverse moment λ
and logarithmic moment ωlog of α2F (ω), together with
an empirical Coulomb pseudopotential µ∗, are the inputs
to estimate Tc by either solving the Éliashberg equations
[31–34] or using the McMillan formula [35–37] (see Sec.
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II A for more details). In a typical workflow (Fig. 1),
a search for stable atomic structures across multiple re-
lated chemical compositions is performed at a given pres-
sure, usually with first-principles computations. Then,
α2F (ω), λ, ωlog, and finally Tc are evaluated, identifying
candidates with high estimated Tc for possible new su-
perconducting materials. Although structure prediction
[14–17] and α2F (ω) computations [21, 22] are extremely
expensive and technically non-trivial, significant research
efforts have been devoted to and shaped by this workflow.

Machine-learning (ML) methods have recently
emerged in the discoveries of superconductors [9, 10]. As
sketched in Fig. 1, existing ML efforts can be categorized
into four lines, including (i) using some ML potentials
to accelerate the structure prediction step [38], (ii) using
some symbolic ML techniques to derive new empirical
expressions for Tc [39, 40], (iii) developing some ML
models to predict Tc from a chemical composition at a
given pressure P [41–50], and (iv) developing some ML
models to predict λ, ωlog, and α2F (ω) from the atomic
structures [51]. While line (iii) is predominant, its role
remains limited, presumably because the connections

Chemical comp., 
pressure

Atomic 
structures

EP interactions 
(α2F ω , λ, ω!"#)

Critical 
temperature T$

Structure 
prediction

DFPT for electron-
phonon scattering

!Eliashberg eq., 
McMillan formula(i) (ii)

(iii)

(iv), this work

FIG. 1. A typical workflow to compute Tc. Existing ML
efforts are devoted to (i) using ML potentials to accelerate
the structure prediction step, (ii) deriving new formulas of
Tc, and (iii) predicting Tc from chemical composition. This
work is in (iv), predicting λ and ωlog from atomic structures.
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from the chemical composition and the target P to
Tc are deeply hidden. In fact, there are at least two
“missing links” between the two ends of this approach.
One of them is the atomic-level information while the
other is the microscopic mechanism of the supercon-
ductivity, e.g., the EP interactions in conventional
superconductors. The former is critical because for
a given chemical composition, the properties of ther-
modynamically competing atomic structures can often
be fundamentally different, e.g., one is insulating and
another is conducting [18, 52]. Therefore, ignoring the
atomic structure is equivalent to adding an irreducible
uncertainty into the ML predictions [53]. Likewise, the
latter cannot be overemphasized. In fact, bypassing
α2F (ω), λ, and ωlog, and using an empirical value of µ∗

are intractable assumptions, and thus, uncontrollable
approximations. In line (iv), initialized recently by Ref.
51 during the (independent) preparation of this work,
these missing links are addressed in some ways.

In this paper, we present an initial step to bring the
atomic-level information into the ML-driven pathways
toward new conventional (or BCS) superconductors, es-
pecially at ambient pressure. For this goal, we curated
a dataset of 584 atomic structures for which more than
1,100 values of λ and ωlog were computed at different val-
ues of P and reported, mostly in the last decade. The
obtained dataset was visualized, validated, and standard-
ized before being used to develop ML models for λ and
ωlog. Then, they were used to screen over 80, 000 en-
tries of Materials Project database [54], identifying and
confirming (by first-principles computations) two ther-
modynamically and dynamically stable materials whose
superconductivity may exist at Tc ' 10−15K and P = 0.
We also proposed a procedure to compute λ and ωlog, for
which convergence are generally hard to attain [51].

This scheme relies on the direct connection between
the atomic structures and λ and ωlog, quantitatively de-
scribed in Sec. II A. Pressure is an implicit input, i.e., P
determines the atomic structures for which λ and ωlog are
computed/predicted. The design of this scheme has some
implications. First, the ML models are trained on the
atomic structures realized at high P and (computation-
ally) proved to correlate with high-Tc superconductiv-
ity. These structures can be considered “unusual” in the
sense that their high-P atomic-level details, e.g., short
bond lengths and distorted bond angles, are not usually
realized at zero pressure. Therefore, we hope that the
ML models can identify the atomic structures realized at
P = 0 with relevant unusual atomic-level features, and
thus, they may exhibit possible high-Tc superconductiv-
ity. Second, massive material databases [55] like Materi-
als Project [54], OQMD [56] and NOMAD with millions
of atomic structures can now be screened directly with
robust and reliable ML models. Given that only a small
search space was explored in this demonstrative work, we
expect more superconducting materials to be discovered
in the next steps of our effort.

II. METHODS

A. Éliashberg theory and McMillan formula

In Éliashberg theory [31–34], α2F (ω) is a spectral func-
tion characterizing the EP scattering, which is defined as

α2F (ω) =
1

N0

∑
kk′ijν

|gij,νk,k′ |2δ(εik)δ(εjk′)δ(ω−ωνk−k′). (1)

Here, N0 is the density of states at the Fermi level, gij,νk,k′

the electron-phonon matrix elements, ν the polarization
index of the phonon with frequency ω, δ the delta-Dirac
function, and (k and k′)/(εik and εjk′) the (electron wave
vectors)/(band energies) corresponding to the band in-
dices (i and j), respectively.

The standard method to compute α2F (ω) is density
functional perturbation theory (DFPT) [21, 22], as im-
plemented in major codes like Quantum ESPRESSO
[57, 58] and ABINIT [59–61]. Having α2F (ω), Tc can
be evaluated by numerically solving a set of (unfortu-

nately, quite complicated) Éliashberg equations using,
for example, Electron-Phonon Wannier (EPW) [62–64].
The much more frequent method to estimate Tc is us-
ing some empirical formulas derived from the Éliashberg
equations. Perhaps the most extensively used formula is

Tc =
ωlog

1.2
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
, (2)

which was developed by McMillan [35] and latter im-
proved by Allen and Dynes [36, 37]. Here,

λ = 2

∫ ∞
0

dω
α2F (ω)

ω
(3)

is the (averaged) isotropic EP coupling while

ωlog = exp

[
2

λ

∫ ∞
0

dω ln(ω)
α2F (ω)

ω

]
. (4)

Following Ashcroft [13], the Coulomb pseudopotential
µ∗, which appears in Eq. 2 and connects with N0, was
empirically chosen in the range between 0.10 and 0.15.
Eq. (2) indicates that in general, high values of λ and/or
ωlog are needed for a high value of Tc. Some new empiri-
cal formulas of Tc were developed recently [39, 40] using
some symbolic ML techniques. Moving forward, develop-
ing a truly ab-initio framework for computing Tc [65–67]
is desirable and currently active.

The McMillan formula (2) is believed to be good for
λ ≤ 1.5 while additional empirical parameters are needed
for larger λ [37]. Nevertheless, the exponential factor of
Eq. 2 has a singular point at λ = µ∗/(1− 0.62µ∗), which
could lead to unwanted/unphysical divergence. If we se-
lect µ∗ = 0.1 (or 0.15), Tc → ∞ when λ approaches
0.1066 (or 0.1654) from below. Such values of λ have
been realized in many computational works [68–71], al-
though much larger values, e.g., λ ≥ 0.7, are generally



3

needed for high-Tc superconductors. Given these obser-
vations, we believe that a ML approach for discovering
conventional superconductor should focus on λ, ωlog, and
perhaps α2F (ω), from which Tc can easily be estimated
using, for examples, Eq. (2).

B. Basic idea and approach

The ML approach used in this work focuses on pre-
dicting λ and ωlog from the atomic structure of the con-
sidered materials. As visualized in Fig. 1, the role of P
is embedded in the main input of this scheme, i.e., the
atomic structure, which is determined from P . The ra-
tionale of this design is two fold. First, what this ML
approach will learn is a direct and physics-inspired corre-
lation from an atomic structure to λ and ωlog through
α2F (ω), as quantitatively described in Eqs. (1), (3),
and (4). Second, the training data, which include the
atomic environments/structures realized at multiple val-
ues of (sometimes very high) pressure P that could lead
to very high values of λ and ωlog, will be highly diverse
and comprehensive. Consequently, the resulted ML mod-
els will thus be robust, reliable, and, more importantly,
they can be used to recognize new high-Tc superconduc-
tors that resemble unusual atomic-level details at any
pressure, specifically P = 0 GPa. This approach in-
volves some challenges, one of them is how to obtain
good datasets for the learning scheme. Our solution is
described below.

C. Data curation

This work requires a dataset of the atomic structures
for which λ, ωlog, and α2F (ω) were computed and re-
ported. The curation of such a dataset is painstaking.
Scientific articles published during the last 10−15 years,
reporting computed superconducting properties of new or
known materials, were collected. In majority of the arti-
cles, the atomic structures were reported in some Tables
while electronic files of standard formats, e.g., crystal-
lographic information file (CIF), were given in very few
cases. In some cases, important information, e.g., angle
β in a monoclinic structure, was missing from the Tables.
When the provided information is sufficient, we used the
obtained crystal symmetry/space group, lattice param-
eters, Wyckoff positions, and the coordinates of the in-
equivalent atoms, to manually reconstruct the reported
structures. All the atomic structures obtained from elec-
tronic files and/or reconstructed from data Tables were
inspected visually. During this step, a good number
of them were found to be clearly incorrect, largely be-
cause of typos, number overrounding, and other possible
unidentified reasons, when reporting the data. Incorrect
structures were discarded.

Superconducting-related properties, e.g., λ, ωlog, and
Tc, which were computed and reported for the atomic

(a)

0 200 400 600 800
Pressure (GPa)

0

100

200

300

400

Co
m

pu
te

d 
T c

 (K
)

(c)

H B Li Mg Si Ca Y C Ce Pt0

100

200

300

400

500

600

Fr
eq

ue
nc

y

(b)

0 1 2 3 4 5 6
Computed 

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

(d)

0 500 1000 1500 2000
Computed log (K)

0

10

20

30

40

50

Fr
eq

ue
nc

y

(e)

FIG. 2. A summary of computed λ, ωlog, and Tc dataset
of 584 superconducting materials reported and curated, in-
cluding (a) the Periodic Table coverage, (b) 10 most-frequent
species in the dataset, (c) 567 values of Tc computed and ar-
ranged at different pressures, and the distribution of (d) 584
computed values of λ, and (e) 567 values of ωlog, are given.
Among 53 species found in our dataset, 47 of them are shown
in (a) and the other 6 species are Ac, Ce, La, Nd, Pm, and
Pr. In (b), each solid circle represents a combination of a
chemical composition and a pressure while errorbars are for
cases Tc was computed for different atomic structures, using
different methods, e.g., using McMillan formula and solving
Éliashberg equations, and/or different values of µ∗.

structures at pressure P up to 800 GPa, were collected.
These properties were mainly computed by some major
workhorses like Quantum ESPRESSO [57, 58], ABINIT
[59–61], and EPW codes [62–64], employing different
pseudopotentials, XC functionals, energy cutoffs, smear-
ing width needed to compute the δ functions appearing
in the expression (1) of α2F (ω), and more. We recognize
that data of λ and ωlog curated from scientific literature
are not entirely uniform; they rather contain a certain
level of uncertainty that will inevitably be translated into
the (aleatoric) uncertainty of the predictions [53]. How-
ever, the demonstrated reproducibility of advanced first-
principles computations [72] suggests that data carefully
produced by major codes should still be consistent and
reliable.
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To further improve the uniformity of the data, we
used density functional theory (DFT) [73, 74] calcula-
tions to optimize the obtained atomic structures at the
pressures reported, employing the same technical details
used for Materials Project database. The rationale be-
hind this step is that the predictive ML models trained
on the dataset will then be used to predict λ and ωlog for
the atomic structures obtained from Materials Project
database. Therefore, the training data should be pre-
pared at the same level of computations with the input
data for predictions. In fact, a vast majority of our DFT
optimizations were terminated after about a dozen steps
or below, indicating that they were already optimized
very well. Details of the optimizations are given in Sec.
II E. Compared with the DFPT calculations for λ and
ωlog, the optimization step is computationally negligible.

Our dataset includes 584 atomic structures for which
at least λ was computed and reported. Among them,
567 atomic structures underwent ωlog and thus, Tc cal-
culations (there is a trend in the community that com-
puted λ is more likely to be reported than ωlog when
discussing the superconductivity). Our dataset, which is
summarized in Figs. 2 (a), (b), (c), (d), and (e), con-
tains 53 species and covers a substantial part of the Pe-
riodic Table. Five most frequently encountered species
are H, B, Li, Mg, and Si, which were found in 505, 83,
57, 53, and 48 entries, respectively. The dominance of
H in this dataset reflects the focus of the community on
super hydrides when searching for high-Tc superconduc-
tors. For λ, the smallest value is 0.089, reported in Ref.
68 for the P4/mbm structure of LiH2 at P = 150 GPa
while the largest value is 5.81 reported in Ref. 44 for
the Im3m structure of CaH6 at P = 100 GPa. Likewise,
the smallest value of ωlog is 71 K reported in Ref. 75 for
the I4/mmm structure of TiH at P = 50 GPa whereas
the largest value is 2,234 K reported in Ref. 44 for the
P62m structure of CaH15 at P = 500 GPa. Figs. 2 (d)
and (e) provide two histograms summarizing the λ and
ωlog datasets.

D. Data representation and machine-learning
approaches

Materials atomic structures are not naturally ready
for ML algorithms. The main reason is that they are
not invariant with respect to transformations that do
not change the materials in any physical and/or chemi-
cal ways, e.g., translations, rotations, and permutations
of alike atoms. Therefore, we used matminer [76], a
package that offers a rich variety of material features, to
convert (or featurize) the atomic structures into numer-
ical vectors, which meet the requirements of invariance
and can be used to train ML models. Starting from sev-
eral hundreds components, optimal sets of features (the
vector components) were determined using the recursive
feature elimination algorithm as implemented in scikit-
learn library [77]. The final version of the λ and ωlog

datasets have 40 and 38 features, respectively.
In principle, two featurized datasets of λ and ωlog can

be learned simultaneously using a multi-task learning
scheme so that the underlying correlations between λ
and ωlog may be exploited. However, the intrinsically
deep correlations in materials properties require a suffi-
ciently big volume of data to be revealed. We have tested
some multi-task learning schemes and found that with a
few hundreads data points, they are not significantly bet-
ter than learning λ and ωlog separately. In fact, similar
behaviors are commonly observed in the literature [53].
Therefore, we examined six typical ML algorithms, in-
cluding support vector regression, random forest regres-
sion, kernel ridge regression, Gaussian process regression,
gradient boosting regression, and artificial neural net-
works two develop ML models for λ and ωlog. For each
algorithm, we created a pair of learning curves and used
them to analyze the performance of the algorithm on the
data we have. By carefully tuning the possible model pa-
rameters and examining the training and the validation
curves, Gaussian process regression (GPR) [78, 79] was
selected. Details on the learning curves and the GPR
models used for predicting λ and ωlog are discussed in
Sec. III A.

E. First-principles calculations

First-principles calculations are needed for two pur-
poses, i.e., to uniformly optimize the curated atomic
structures and to compute α2F (ω), λ, and ωlog for those
identified by the ML models we developed. For the first
objective, we followed the technical details used for Ma-
terials Project database, employing vasp code [80, 81],
the standard PAW pseudopotentials, a basis set of plane
waves with kinetic energy up to 520 eV, and the gener-
alized gradient approximation Perdew-Burke-Ernzerhof
(PBE) exchange-correlation (XC) functional. [82] Con-
vergence in optimizing the structures was assumed when
the atomic forces become < 10−2 eV/Å after no more
than 3 iterations.

In the computations of α2F (ω), λ, and ωlog, we
used the version of DFPT implemented in ABINIT
package [59–61], which also offers a rich variety of
other DFT-based functionalities. Within this numeri-
cal scheme, we used the optimized norm-conserving Van-
derbilt pseudopotentials (ONCVPSP-PBE-PDv0.4) [83]
obtained from the PseudoDojo library [84] and the PBE
XC functional [82]. The kinetic energy cutoff we used
is 60 Hatree (' 1, 600eV), which is twice larger than the
value suggested [83] for these norm-conserving pseudopo-
tentials. The smearing width for computing α2F (ω) is
5 × 10−6 Ha, i.e., ' 0.032 THz. This value was selected
to be < 0.1% of the entire range of frequency while cov-
ering more than 4 (numerical) spacings of the frequency
grid.

Before entering the electron-phonon calculations with
DFPT, the material structures under consideration were



5

0.0

0.5

1.0

1.5

2.0
Co

m
pu

te
d 

(a) mp-24287
mp-24208

8 7 6 5 4 3
q

0.0 0.1 0.2 0.3 0.4
1/q

0.0

1.0

2.0

3.0

4.0

Co
m

pu
te

d 
lo

g (
10

0K
)

(b)
mp-24287
mp-24208

FIG. 3. Fitting procedure used to compute (a) λ and (b) ωlog

of mp-24287 and mp-24208, two atomic structures identified
from Materials Project database. Solid symbols show λ and
ωlog computed with some finite q-point grids while stars rep-
resent the extrapolated values of λ and ωlog at the limit of
infinite q-point grid, i.e., 1/q = 0.

repeatedly optimized until the maximum atomic force is
below 10−5 Hatree/bohr, which is ' 5.1 × 10−4 eV/Å,
after no more than 3 iterations. Because the optimiza-
tions need the simulation box to change its shape, such
a small number of iterations is required to minimize the
cell volume change, thereby limiting the Pulay stress, and
ultimately ensuring an absolute convergence of the force
calculations. This level of accuracy is generally needed
for phonon-related calculations.

Eq. 1 indicates that α2F (ω) is evaluated on a q-point
grid of q = k− k′, which must be a sub-grid of the full
k-point grid used to sample the Brillouin zone for regular
DFT calculations. Therefore, calculations of α2F (ω) are
extremely heavy while the convergence with respect to
the q-point grid is critical and must be examined [44, 51].
For this goal, we first computed α2F (ω), λ, and ωlog

using several q-point grids of q× q× q and k-point grids
of k×k×k where q is as large as possible depending on the
structure size and k ≥ 3× q. Then, the computed values
of λ and ωlog are fitted to a linear function of 1/q. The
values of the fitted functions at 1/q = 0, or, equivalently,
at the limit of q → ∞, are the values assumed for λ
and ωlog. This procedure is visualized in Fig. 3 when λ
and ωlog of two atomic structures reported in this work
were computed. Details on the q-point and k-point grids
and the corresponding computed data used for the fitting
procedure can be found in Supplemental Material [85]. A
technique of similar philosophy has been demonstrated
[86] in the computations of ring-opening enthalpy, the
thermodynamic quantity that controls the ring-opening
polymerizations.

Data from Materials Project
83,989

1

2

Energy above hull ≤ 30 
meV/atom

3

Computed band gap = 0 eV

4(1) All species covered by 
training set & (2) H included

142,848

15,915

8,731

35

Number of atoms ≤ 16

FIG. 4. Procedure to down select 35 atomic structures for
predicting λ and ωlog from 83,989 atomic structures of Mate-
rials Project database.

F. Candidates

We obtained the Materials Project database [54] of
83,989 atomic structures and several properties uniformly
computed at P = 0 using vasp [80, 81]. Starting from
this dataset, we selected a subset of 35 atomic structures
that have energy above hull Ehull < 0.03 eV/atom, zero
band gap (Eg = 0 eV), no more than 16 atoms in the
primitive cell, and only the species included in the train-
ing data, specifically H (see Fig. 2). The first criterion
“places” the selected atomic structures into the so-called
“amorphous limit”, a concept defined in an analysis of
Materials Project database [87] and used to label the
atomic structures that are (or nearly) thermodynamically
stable and thus, they may be synthesized. In fact, some
metastable ferroelectric phases of hafnia that are above
the ground state of ' 0.03 eV/atom [18, 88, 89] have
been stabilized and synthesized [90, 91]. Next, Eg = 0 eV
was used to remove non-conducting materials while the
third criterion aims at selecting small enough systems for
which computations of λ and ωlog are affordable. Finally,
by considering only those having the species included in
the training data, specifically H, we expect that the ML
models will only be used in their domain of applicability.
The procedure is summarized in Fig. 4.

The set of 35 candidates has no overlap with the train-
ing data. This set is small because the requirement of
having H is very strong. In fact, removing this require-
ment increases the candidate set size to 2,694. Given
that the ML models are extremely rapid, there is in
fact no time difference between predicting λ and ωlog for
35 atomic structures and predicting these properties for
2,694 atomic structures. However, the dominance of H
in the training dataset strongly suggests that the smaller
set of 35 candidates is more suitable for the demonstra-
tion purpose of this work. In the next step, the train-
ing dataset will be augmented with λ and ωlog computed



6

0.0 0.2 0.4 0.6 0.8 1.0
Training set size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
RM

SE
(a) Training

Validation

0.0 0.2 0.4 0.6 0.8 1.0
Training set size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RM
SE

 (1
00

0K
)

(b) Training
Validation

10 1 100 101

Computed 

10 1

100

101

Pr
ed

ict
ed

 

(c)
ntrain=525; nvalid=59
rmsetrain=0.14; rmsevalid=0.31
R2

train=0.96; R2
valid=0.77

Training data
Validation data

10 1 100 101

Computed 

10 1

100

101

Pr
ed

ict
ed

 

(e)
ntrain=584
rmsetrain=0.13
R2

train=0.96

Training data

0.0 0.5 1.0 1.5 2.0 2.5
Computed log (1000 K)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
ed

 
lo

g (
10

00
 K

)

(d)
ntrain=510; nvalid=57
rmsetrain=109.4 K; rmsevalid=189.9 K
R2

train=0.94; R2
valid=0.82

Training data
Validation data

0.0 0.5 1.0 1.5 2.0 2.5
Computed log (1000 K)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
ed

 
lo

g (
10

00
 K

)

(f)
ntrain=567
rmsetrain=105.1 (K)
R2

train=0.95

Training data

FIG. 5. Learning curves obtained by learning two datasets
of (a) λ and (b) ωlog, a typical model trained on 90% of the
data of (c) λ and (d) ωlog and validated on the remaining
unseen 10% data, and two ML models trained on 100% of the
data of (e) λ and (f) ωlog. In (a) and (b), each data point
is associated with an errorbar obtained from 100 models that
were independently trained.

for materials having underrepresented species, and larger
candidate sets will be examined.

III. RESULTS

A. Machine-learning models

Given a learning algorithm and a dataset that has
been represented appropriately, learning curves can be
created using an established procedure. In this work,
each dataset was randomly split into a training set and
a (holdout) validation set. Next, a ML model was
trained on the training set using standard 5-fold cross-
validation procedure [92] to regulate the potential over-
fitting. Then, the ML model was tested on the valida-
tion set, which is entirely unseen to the trained model.
By repeating this procedure 100 times and varying the
training set size, a training curve and a validation curve
were produced from the mean and the standard devia-
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FIG. 6. Computed superconducting properties of mp-24287
and mp-24208, whose atomic structures are visualized in (a)
and (b) and spectral function α2F (ω) and the accumulative
λ(ω) are shown in (c) and (d). The k-point and q-point grids
used for (c) are 24× 24× 24 and 8× 8× 8, respectively, while
those used for (d) are 21 × 21 × 21 and 7 × 7 × 7, respec-
tively. In (e) and (f), solid and dashed lines are used to show
the computed (using the extrapolation procedure described in
Sec. II E) and the predicted values λ, ωlog, and Tc (computed
from λ and ωlog using McMillan formula with µ∗ = 0.1) at
P = 0, 50, and 100 GPa.

tion of the root-mean-square error (RMSE) of the pre-
dictions of the training sets and the validation sets. Dur-
ing the training/validating processes, randomness stems
from the training/validation data splitting and the 5-
fold training data splitting for internal cross validation.
As such random fluctuations are suppressed statistically
by averaging over 100 independent models, the learning
curves could provide some useful and unbiased insights
into the performance of the data, the featurize procedure,
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TABLE I. Six hydrogen-containing materials that have highest predicted Tc among 35 materials in the candidate set, given in
the top part. For each of them, the ID and the energy above hull Ehull obtained from Materials Project are given (the pressure
P and computed band gap are all zero). Predicted λ, ωlog, and Tc were obtained from the ML models and computed using
McMillan formula with µ∗ = 0.1. Among the 6 materials, computations were performed for 4 materials, two of them (mp-24287
and mp-24208) are dynamically stable, thus computed λ, ωlog, and Tc are available. In the bottom part of the Table, predicted
and computed values of λ, ωlog, and Tc are reported for two dynamically stable materials, i.e., mp-24287 and mp-24208, at 50
GPa and 100 GPa.

MP ID
Chemical Space P Ehull Predicted Computation Computed
formula group (GPa) (eV/atom) λ ωlog (K) Tc (K) performed Dyn. stable λ ωlog (K) Tc (K)

mp-24289 PdH Fm3m 0 0.02 0.88 377.2 21.3 Yes No − − −
mp-1018133 LiHPd P4/mmm 0 0 0.79 321.0 14.5 Yes No − − −
mp-24081 ScClH R3m 0 0 0.65 445.9 13.0 No − − − −
mp-24287 CrH Fm3m 0 0 0.63 446.6 11.9 Yes Yes 0.89 276.2 15.7
mp-1008376 CeH3 Fm3m 0 0 0.60 418.5 9.5 No − − − −
mp-24208 CrH2 Fm3m 0 0 0.60 352.5 8.0 Yes Yes 0.75 264.4 10.7

mp-24287 CrH Fm3m 50 − 0.57 540.3 10.6 Yes Yes 0.67 362.8 11.3
CrH Fm3m 100 − 0.54 601.4 9.6 Yes Yes 0.61 413.7 10.1

mp-24208 CrH2 Fm3m 50 − 0.52 477.6 6.9 Yes Yes 0.65 323.2 9.4
CrH2 Fm3m 100 − 0.53 561.6 8.4 Yes Yes 0.64 348.0 9.7

the learning algorithm, and ultimately the ML models
that are developed.

Two learning curves obtained by using GPR to learn
the (featurized) λ and ωlog datasets are shown in Figs. 5
(a) and (b). In both cases, the training curves saturate
at ' 0.15 (for λ) and 110 K (for ωlog). These values are
small, i.e., they are ' 3−5% of the data range, implying
that GPR can successfully capture the behaviors of the
data. On the other hand, the validation curves of λ and
ωlog data do not saturate and keep decreasing. This be-
havior strongly suggests that if more data are available,
the gap between the learning and the validation curves
can further be reduced and the performance of the target
ML models can readily be elevated.

Figs. 5 (a) and (b) reveal that an error of ' 0.4 and
' 200 K can be expected for the predictions of λ and ωlog,
respectively. The expected errors are roughly 7 % of the
whole range of λ and ωlog data, which are significantly
small compared to the results reported in Ref. 51. Figs.
5 (c) and (d) visualize two typical ML models trained
on 90% of the λ and ωlog datasets and validated on the
remaining 10% of the datasets. Likewise, Figs. 5 (e)
and (f) visualize two typical ML models, each of them
was trained on the entire λ or ωlog dataset using the
exactly same procedure. In fact, each of them is one of
100 ML models that were trained independently and used
to predict λ and ωlog of the candidate set.

B. Discovered superconductors and validations

We used the developed ML models to predict λ and
ωlog of 35 atomic structures in the candidate set, and then
to compute the critical temperature Tc using the McMil-
lan formula with µ∗ = 0.1. The predicted λ ranges from
0.31 to 0.88, and consequently, the predicted Tc ranges

from 0.16 K to 21.3 K. Six candidates with highest pre-
dicted Tc are those with Materials Project ID of mp-
24289, mp-1018133, mp-24081, mp-24287, mp-1008376,
and mp-24208. Details of these candidates are summa-
rized in Table I while comprehensive information of all 35
candidates can be found in Supplemental Material [85].

Examining the top six candidates, we found that mp-
24081 is a trigonal structure of ScClH, whose primi-
tive cell has 6 atoms and three very small lattice angles
(α = β = γ = 21.38◦). Computations of the EP interac-
tions in such a structure are prohibitively expensive be-
cause the required k-point and q-point grids must be ex-
tremely large. In addition, Ce, the species showing up in
mp-1008376, a cubic structure of CeH3, is not supported
by ONCVPSP-PBE-PDv0.4 norm-conserving pseudopo-
tential set [83]. Therefore, computations were performed
for the remaining four candidates. Among them, mp-
24289, a cubic structure of PdH and mp-1018133, a
tetragonal structure of LiHPd, are dynamically unstable.
In principles, each of them can be stabilized by following
the imaginary phonon modes to end up at a dynamically
stable structure with lower energy and symmetry [93].
Such heavy and cumbersome technical procedure was re-
served for the next steps. The last two candidates are
mp-24287, which is a cubic structure of CrH and mp-
24208, which is also a cubic structure of CrH2. Both of
them, visualized in Figs. 6 (a) and (b), are dynamically
stable and thus, their λ and ωlog were computed using the
procedure described in Sec. II E. The phonon band struc-
tures, which prove the dynamical stability of mp-24289,
mp-1018133, mp-24287, and mp-24208, can be found in
the Supplemental Material [85].

Predicted and computed α2F (ω), λ, ωlog, and Tc (us-
ing the McMillan formula with µ∗ = 0.1) of mp-24287
and mp-24208 at P = 0 are given in Table I and Figs.
6 (c) and (d). Considering the expected errors of the
ML models, it is obvious that the computed λ and ωlog
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FIG. 7. Distribution of the zero-pressure superconduct-
ing gap function ∆0(T ) computed by numerically solving

the Éliashberg equations for mp-24287 and mp-24208. The
dashed curves, joining the middle point of the distributions,
serve as the guide to the eyes. The critical temperature Tc is
estimated to be at the middle point of the downward-sloping
segment of the ∆0(T ) curves.

agree remarkably well with the ML predicted values.
Given that magnesium diboride MgB2 in its hexagonal
P6/mmm phase is the highest-Tc conventional supercon-
ductor with Tc ' 39 K [94], the examined materials
have respectable (computed) critical temperature, i.e.,
Tc = 15.7 K for mp-24287 and Tc = 10.7 for mp-24208.
By examining the electronic structures of mp-24287 and
mp-24208 reported in Materials Project database, we
confirmed that both of them are metallic in nature with
a large density of states at the Fermi level.

We extended our validation to the high-P domain by
predicting and then computing λ and ωlog of mp-24287
and mp-24208 after optimizing them at P = 50 GPa and
P = 100 GPa. Both of them were found to be dynam-
ically stable at these pressures while the computed su-
perconducting properties are shown in Table I and Figs.
6 (e) and (f). We also found that the computed and
the predicted values of λ and ωlog at P = 50 GPa and
P = 100 GPa are remarkably consistent. For both ma-
terials, computed λ and Tc decrease while ωlog increases
from 0 to 100 GPa, and the ML models capture correctly
these behaviors within the expected errors given from
the analysis of the learning curves in Sec. III A. Specifi-
cally, predictions of λ at P = 50 GPa and P = 100 GPa
are within 0.1 from the computed results, leading to a
remarkably small error of ' 3 K in predicting Tc.

C. Further assessments on the predictions

We attempted to verify our predictions in a few ways.
First, additional calculations for λ and ωlog of mp-

24287 and mp-24208 using the local-density approxima-
tion (LDA) XC functional were performed at all the pres-
sure values examined (see Sec. III B). The obtained re-
sults, as given in the Supplemental Material [85], are
highly consistent with, i.e., within 2−3% of, the reported
results using the PBE XC functional.

Next, we used EPW code [62–64] to numerically solve

the Éliashberg equations on the imaginary axis and then
approximated the real-axis superconducting gap ∆0 of
mp-24287 and mp-24208 using Páde continuation [95].
Within this scheme, the electron-phonon interactions
were computed by Quantum ESPRESSO [57, 58], using
the ultra-soft pseudopotentials from PS Library [96], an
energy cutoff of 120 Ry (which is 60 Ha, ' 1, 600 eV), a
k-point grid of 24×24×24 and a q-point grid of 6×6×6.
During the EPW calculations, we used a fine q-point grid
of 12 × 12 × 12 and µ∗ = 0.1. The superconducting gap
∆0(T ) computed for mp-24287 and mp-24208 and shown
in Fig. 7 projects a Tc ' 22 − 24 K for mp-24287 and
a Tc ' 7 − 8 K for mp-24208. These values are in good
agreement with that reported in Fig. 6, providing a con-
firmation of the predicted superconductivity of mp-24287
and mp-24208 at P = 0 GPa.

Finally, we turn our attention to the synthesizability
of mp-24287 and mp-24208 by tracing their origin. In-
formation from Materials Project database allows us to
track them down to two entries numbered 191080 and
26630 of the Inorganic Crystalline Structure Database
(ICSD), and finally to Refs. 97 and 98, respectively.
In short, mp-24287 and mp-24208 were experimentally
synthesized and resolved [97, 98] sometimes in the past.
Afterwards, some experimental [99, 100] and computa-
tional [101, 102] efforts followed, examining their mag-
netic, electronic, and mechanical properties. Perhaps be-
cause preparing them experimentally is challenging, little
more is known about these materials. Given the docu-
mented evidence of the synthesizability of both mp-24287
and mp-24208 at 0 GPa, which is in contrast with the
enormous challenges of performing experiments at hun-
dreds of GPa, we hope that these materials will be resyn-
thesized and tested for the predicted superconductivity
in the near future.

IV. REMARKS AND GOING FORWARD

Predicting λ and ωlog from the atomic structures has
some advantages. First, the correlation between the
atomic structures and λ and ωlog, which will be learned,
is direct, physics-inspired, and intuitive, while computing
Tc from λ and ωlog is trivial. Second, the obtained ML
models, which are accurate and robust, can be directly
used not only for extant massive material databases with
millions of atomic structures but also for any struc-
ture searches in an on-the-fly manner. Finally, by us-
ing pressure as an implicit input, the training data can
be highly diverse and comprehensive, ultimately allowing
the ML models to be able to handle unusual atomic envi-
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ronments, frequently encountered during unconstrained
structure searches for new materials.

The accuracy demonstrated in Sec. III B for the ML
models of λ and ωlog is rooted from a series of factors.
The list includes at least a reliable training dataset, a
featurizing procedure that can capture the essential in-
formation encoded in the atomic structures, a ML al-
gorithm that can learn the featurized data efficiently, a
careful justification of the domain of applicability of the
ML models, and a good candidate set. On the other
hand, these stringent factors limit the number of can-
didates used in this work, although the ML models are
already very fast to make millions of predictions.

In the next steps, we will improve the whole scheme
in several ways. First, by enlarging and diversifying the
dataset while maintaining its quality, the domain of ap-
plicability of the ML models will be systematically ex-
panded. For examples, the candidate set obtained from
the selection procedure described in Fig. 4 will jump to
2,694 atomic structures when we can remove the require-
ment of having H in the chemical composition. Coming
that point, we believe that many more new supercon-
ductors can be identified and validated, at least by first-
principles computations. Second, modern deep learning
techniques will be used to improve and possibly to unify
the featurizing and the learning steps. Third, the ML
models will be integrated in an inverse design strategy to
explore the practically infinite materials space in an ef-
ficient manner. Currently, (inverse) design of functional
materials with targeted properties is a very active re-
search area with many success stories [103–110]. We hope
that superconducting materials discoveries can be added
to this list in the near future. Finally, we will work with
experimental experts to synthesize and test the supercon-
ducting materials discovered computationally, closing the
loop of materials design.

V. CONCLUSIONS

We have demonstrated a ML approach for the discov-
ery of conventional superconductors at any pressure. By
exploring and learning the direct and physics-inspired
correlation between the atomic structures and their pos-
sible superconducting properties, specifically λ and ωlog,
highly accurate and reliable ML models were developed.
These models were validated against the standard first-
principles calculations of λ and ωlog, identifying two po-
tential superconducting materials with respectable criti-
cal temperature Tc at zero pressure. Interestingly, these
materials have been synthesized and studied in some
other contexts. The main implication of this approach
is that by learning the high-P atomic-level details that
are connected to high-Tc superconductivity, the obtained
ML models can be used to identify the atomic structures
realized at zero pressure with possible high-Tc supercon-
ductivity. Given that the models can be used directly
for massive materials databases with millions of atomic
configurations, more superconductors can be expected in
near future. We plan to improve this strategy in multiple
ways, hoping that it can better contribute to the search
of high-Tc superconductors that has been highly active
during the last decade.
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U. Böttger, Appl. Phys. Lett. 99, 102903 (2011).

[92] G. James, D. Witten, T. Hastie, and R. Tibshirani, An
introduction to statistical learning, Vol. 112 (Springer,
2013).

[93] H. D. Tran, M. Amsler, S. Botti, M. A. L. Marques,
and S. Goedecker, J. Chem. Phys. 140, 124708 (2014).

[94] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani,
and J. Akimitsu, Nature 410, 63 (2001).

[95] F. Marsiglio, M. Schossmann, and J. Carbotte, Phys.
Rev. B 37, 4965 (1988).

[96] A. Dal Corso, Comput. Mater. Sci. 95, 337 (2014).
[97] V. Antonov, A. Beskrovnyy, V. Fedotov, A. Ivanov,

S. Khasanov, A. Kolesnikov, M. Sakharov, I. Sashin,
and M. Tkacz, J. Alloys Compd. 430, 22 (2007).

[98] C. A. Snavely and D. A. Vaughan, J. Am. Chem. Soc.
71, 313 (1949).
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