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of jammed frictional granular materials under oscillatory shear. Owing to the introduction of the

simple model, we obtain an exact analytical expression of the complex shear modulus for a system

including many monodispersed disks, which satisfies a scaling law in the vicinity of the jamming point.

These expressions perfectly reproduce the shear modulus of the many-body system with low strain

amplitudes and friction coefficients. Even for disordered many-body systems, the model reproduces

results by introducing a single fitting parameter.

1 Introduction

The rheological property of densely dispersed grains, e.g., granu-
lar materials, colloidal suspensions, and emulsions, plays an im-
portant role in physics and engineering. This rheological property
mainly depends on the packing fraction ¢ of the grains. The ma-
terials behave like fluids for ¢ < ¢y with jamming fraction ¢; and
exhibit a solid-like elastic response above ¢; 2. In the linear re-
sponse regime (i.e., for small strains), the shear modulus is char-
acterized by the density of states3 and satisfies scaling laws®.
However, the linear response region becomes narrower as ¢ ap-
proaches ¢;2011 and the nonlinear response becomes relevant
due to the plastic deformation associated with the yieldingT220,

If we are interested in a nonlinear response to an applied os-
cillatory shear strain, it exhibits a complicated stress-strain curve.
Although the storage and loss moduli G’ and G” were originally
introduced to characterize the linear viscoelasticity of materials,
they can use to characterize nonlinear viscoelasticity or visco-
elastoplastic responses to applied strains?L. In this case, G’ and
G" are no longer constants but strongly depend on the strain am-
plitude y. In particular, we have recognized that G’ decreases
with 1,1122°25 and G” remains non-zero in the low frequency
limit2425 for densely dispersed grains.

The theoretical analysis of densely dispersed grains is challeng-
ing as a typical many-body problem in non-equilibrium systems.
To date, a few theoretical approaches have been proposed for sys-
tems related to frictionless particles. The scaling laws for the lin-
ear elastic response were derived in terms of the vibrational den-
sity of statesZ8. The Fourier analysis of particle trajectories helps
to generate semi-analytical expressions for G’ and G”23. Unfortu-
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nately, these theories can not apply to frictional particles because
of the history-dependent contact force124,

It is helpful to analyze a simple model with small degrees of
freedom to understand the behavior of many-body systems, in-
cluding densely dispersed grains. This approach has been used
in statistical mechanics. The mean-field approximation of the
Ising model is a typical example in which the system contains
only one Ising spin under the influence of a self-consistently de-
termined mean field28. For atomic liquids, a cell model, in which
a single atom exists in a cage, was used to derive the equation of
state2728, The coherent potential approximation for disordered
solids has been used to understand electronic band structures22.
The effective medium theory reveals the elastic response of ran-
dom spring networks®?. In addition, a simple model consisting
of two particles was proposed to reproduce the liquid-solid phase
transition®L. The advantage of such few-body models is that we
can obtain exact solutions. The qualitative behavior of the cor-
responding many-body systems can be determined based on the
solutions of the few-body models. Thus, we adopt this approach
to determine the nonlinear responses of the frictional dispersed
grains.

This study proposes a model consisting of three identical par-
ticles to describe the mechanical response of jammed frictional
granular materials under oscillatory shear. In Section[2] we intro-
duce the three-body system (TBS). This model can be analytically
solved for low-strain amplitudes and friction coefficients near the
jamming point in Section [3] In Section E we demonstrate that
the analytical solution reproduces the storage and loss moduli of
many-body systems (MBSs) without any fitting parameter if there
is no disorder in the particle configuration. Even if disorder ex-
ists, a scaling law for the complex shear modulus for the TBS
semi-quantitatively agrees with the numerical simulations of the
MBS by introducing a fitting parameter. We discuss and conclude
our results in Section[5] In Appendix A, we show the details of the
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MBS when the particles are initially placed on a triangular lattice.
The effect of particle rotation is described in Appendix B. In Ap-
pendix C, we derive the analytical expressions for the shear stress
and pressure in the TBS. In Appendix D, we relate the complex
shear modulus with the hysteresis loop of the stress—strain curve.
The details of the disordered MBS are presented in Appendix E.
We present the numerical shear modulus for the TBS in Appendix
F.

2 Three-Body System

We consider two-dimensional granular materials consisting of
many grains under oscillatory shear (Fig. [I). Here, the grains
constituting granular materials are modeled as frictional spheri-
cal particles. Moreover, we introduce a system of three identical
particles to simply describe the MBS (Fig. [2). The MBS can con-
tain polydisperse particles, while we assume that the TBS is a
monodisperse system. In the TBS, the position r;(t) = (x;(¢),yi(¢))
of particle i with diameter d at time ¢ is given by

i - (f7<4<>>f {e) N
i) = (—W—Q—{fﬁ), N
) = (w<4<>) 2«4@) "

where / is the initial distance between particles. We also intro-
duce € :=1—/¢/d as the compressive strain. The compressive
strain € in the TBS corresponds to ¢ — ¢; in the MBS as shown
in Appendix A. We apply shear strain as

¥(0) = Ysin® )

with strain amplitude ), phase 6 = wt, and angular frequency
®. Note that we need at least three particles to realize a stable
interlocking state.

Fig. 1 Schematics of the ordered MBS (a) and the disordered MBS (b).

We adopt the interaction force f;; between particles i and j
given by

e (W O N H (e —d 5

fij=\fij mij+ fijtij ) H(rij = d), ©)

where fgj) and ffj) denote the normal and tangential forces be-
tween the particles i and j22. The distance between the particles

i and jis rij = |r,-j| with riji=ri—r;= (xij,yij). Here, H(x) is
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Fig. 2 A schematic of the TBS.

Heviside’s step function satisfying H(x) = 1 forx >0 and H(x) =0
otherwise. The normal and tangential unit vectors are denoted
by nij = rij/rij = (nij,mnij,y) and tjj = (_nij.,yvnij.x)5 respectively.
For simplicity, we do not consider the torque balance and, thus,
the rotation of the particles. See Appendix B for the effect of the
rotation.

The normal force is assumed to be

£ = ) ©)

with the normal elastic constant &, and normal relative displace-
ment ul(;l) :=r;j —d. Moreover, the tangential force is assumed to
be

£ = min (1751175 ) sen (7). %

where ff fklul( j>, k¢ denotes the tangential elastic constant,
and u denotes the friction coefficient. Here, min(a,b) selects
the smaller value between a and b, sgn(x) =1 for x > 0, and
sgn(x) = —1 for x < 0. l(;)
isfies %ug.) = vg.) for | fij | <nu fl.j with the tangential veloc-
ity vl(;) = (%ri - %rj) -t;j, whereas ul(;)
751w

stick contact and the contact with |f; (t)| > uf;; (m)

tact. The tangential displacement, u< ) , is initially set to zero.
The (symmetric contact) shear stress is given by

The tangentlal displacement u;; sat-
remains unchanged for
We refer to the contact with | fl.(;)\ < U fl.(;) as the

as the slip con-

(6%, 1) = 6™ (8%, 1)+ (670, 1) (8)

with the normal component of ¢

o™ (87, 1t Z Y, S gl ©)

i j>i Tij

and tangential component of &

1 yl
HLL ™ e (10)

i j>i

o (017,

Here, A corresponds to the area of the system, and we choose
= /302 /2 as shown in Appendix A. The pressure is given by

P(G;YOa *722 xl]fljx"'yljfl]y) 1mn

i j>i
In the right-hand sides of eqns. (9)-(T1)), we have omitted the
arguments 6, ¥, and u. Similar abbreviations are used below. As
we are interested in quasistatic processes, we do not consider the



kinetic parts of ¢ and P and the dependence on ®. After several
cycles of oscillatory shear, 6(0) becomes periodic. The storage
and loss moduli are given by=3

1

21
ey A o(6;%,4)sin 0/, (12)
0

G (10, 1)

1

27
G"(.m) = - [ 6 0(8:30,1)cos6 /0. (13)

3 Theoretical analysis

Assuming ¥ < € < 1, we analytically obtain G’ and G” for the
TBS. The derivation of the analytical results can be found in Ap-
pendix C.

First, the normal component of the shear stress is given by

G(ﬂ)(g) - M (14)

The tangential component of the shear stress is given by

G(t)(g) _ % (15)

for 1 < %.(u) with a critical amplitude

_ Akne
Ye(u) = % (16)

which characterizes the transition from stick to slip states in the
contact between the particles. For 9 > 7.(u), the tangential com-
ponent of the shear stress is given by

&\/n;, oge<g
u\l;%er\ﬁkt(Y(f)_Yo)’ gse<g+@

o0 (0) = _&\/? g+®§9<37” 17)
_u\/;%8+\/§kt(7(‘|-9)+'}/0)7 37ﬂ§9<37”+@
u\/%e’ 37”+®<9<27r,

where ® =cos ™! (1 —27:(1)/%). Regions with £ <6 < £+ and
37” <0< 37” + @ correspond to the stick state, and the other re-
gions correspond to the slip state. Owing to this transition in the
contact, the stress—strain curve given by eqns. (I4)—(17) exhibits
a hysteresis loop. Equation does not exhibit a viscoelastic re-
sponse but a typical elastoplastic response without viscous effect.

Figure [3| shows the scaled shear stress ¢/} against the scaled
strain y/yp using eqns. (@), @), and ([@4)-([I7) for various val-
ues of yy with k¢/kn, = 1.0 and u = 0.01. The shape of the scaled
stress—strain curve is characterized by a parallelogram as a typ-
ical elastoplastic response. As 7y increases, the maximum value
Gmax = (6/)ly/y,—1 decreases from a larger value V3 (kg + k) /4
to a smaller value v/3k,/4. As shown in Appendix D, the storage
modulus G’ is approximately given by &, Hence, the decrease
of Gmax in Fig. [3|indicates the decrease of G'. For y = 0.00003
and 0.0001, the hysteresis loop exists, but the area of the loop is
negligible for 1y = 0.00001 and 0.001. The loss modulus G” is pro-

portional to the area of the loop as shown in Appendix D. Hence,
the dependence of the area on 7 indicates that there is a peak in
G" as ¥ increases.

0.2 : 0.2 :
o = 0.00001 Yo = 0.00003
£ 0 1 £ 0F 1
~ ~
<) <)
—0.2 ‘ —0.2 :
—1 0 1 -1 0 1
7/ 7/
0.2 0.2
~o = 0.0001 o = 0.001
£ 0F 1 < 07 1
~ ~
S (<)
—0.2 ‘ —0.2 ‘
1 0 1 -1 0 1
/% AI//A/O

Fig. 3 Scaled shear stress /¥ against 7/1 using eqns. (@), (8), and
(T4)-([T7) for various values of ¥ with k/ky, = 1.0, ¢ =0.001, and u =0.01.

Substituting eqns. and (14)-(17) into eqn. (12), we obtain
the storage modulus as

\/§ (kn + kl)

G = 4
3 k .
% {knJr;t(@fsm@cos@)}, Y > Ye([).

(18

As 1y increases beyond y.(u), G' decreases from a higher value to
a lower value. The corresponding behavior has been observed in
the MBS in previous studies224,

Substituting eqns. and (I4)-(17) into eqn. (I3), the loss

modulus is given by

M 07 YO S ’YC(:u) (1 )
G = 3k 9
o (1-cos?@), 90> Ye().

The loss modulus G” is zero for ¥ < 7.(u), whereas G’ sharply
increases with y when 7y exceeds y.(u) and decreases to 0 after
a peak. The behavior of G” for the TBS qualitatively reproduces
that of the MBS in previous studies24,

We adopt the abbreviation for the pressure at y=0 as
Py:=P(6 =0:%,u), (20)
which is also obtained as
Py =V3kne. (@3

From eqns. (16), (I8), (I9), and 1)), we derive scaling laws for
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a given € as
ko
G (1, ) = G (0¥’ (ti) , (22)
(1:70) = O Lm0
kYo
GII , — GN g/l ( t ) , (23)
(1, 7) = Gm(1) TRt D)

where ¢/(x) and ¢”(x) denote scaling functions. The maximum
values of G’ and G” are denoted as Gy, and G}, respectively. In
the TBS, they are given as

Gy = V3 (kn+k) /4, Gy =3k /(4m), @
l7 xgxw
' (x) = ke T(x) — S(x) ke (25)
fosrssy ey
" B 0, x < X,
g7 _{ 1—cos?T(x), x> xc 20

with T(x) = cos™'(1 — 2x./x), S(x) = sin(2T(x))/2, and x. =
4/(3V/3).

4 Comparison with the MBS

We demonstrate the relevance of the TBS analysis based on the
simulation of a two-dimensional MBS consisting of N frictional
grains. First, we consider a system corresponding to the TBS,
where all the particles are identical and initially placed on the
triangular lattice with a unit length ¢ (Fig. a)). The details
are shown in Appendix A. Next, we consider a bidisperse system
where the number of particles with diameter d is equal to that
of particles with diameter d/1.4, and the particles are randomly
placed with packing fraction ¢ (Fig. [[(b)). The mass densities of
the particles are identical. The details of the disordered MBS are
shown in Appendix E. In both systems, the shear strain given by
eqn. (@) is applied for N, cycles using the SLLOD equation under
the Lees—Edwards boundary condition¥, In the MBS, we replace
the normal force as

fi<.n> - — (knul(-;-l) + nnvg}l)) @27

with the normal viscous constant 7, and the normal velocity
(n) /4 d . . .
vi;> = (gri— g7j) nij to include the viscous force depending on

the relative velocity. The tangential force is replaced by

£ = min (17501 175 ) sen( 7). 28)

with
7= = (k) + o) ). 29)
where fi(p’el) = —knu@ denotes the elastic part of the normal force

j ij
with a tangential viscous constant 1,. We measure G’, G”, and P,

in the last cycle using eqns. (11)-(I3). For the ordered MBS,
we use N = 64, ki/ka = 1.0, and € = 0.001, whereas N = 1000,
ki/kn = 0.2, and ¢ = 0.87 are used for the disordered MBS. In both
systems, the other parameters are identical: N, =20, ¢ =1, =
Vmky, and ® = 0.0001+/m/k, with a mass m of larger particles.
As shown in Fig. 4] we plot G’ for the ordered MBS against },
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Fig. 4 Storage modulus G’ against Y with k/ky = 1.0 and € =0.001 for
various values of p1. The points represent the results of the ordered MBS.
The thin solid lines represent the analytical result given by eqn. (18).
The vertical dashed lines represent the critical amplitude y.(u) given by
eqn. for u=10"%,1073,1072,107', and 1 from left to right.

with k/kn = 1.0 and € = 0.001 for various values of u as points.
Moreover, we plot the analytical results of the TBS obtained using
eqn. as thin solid lines. Surprisingly, the results of the TBS
agree with those of the MBS for ¥ < 0.003 without any fitting
parameters. As 7 increases beyond ¥.(¢) shown by the vertical
dashed lines, G’ for p > 0 decreases and converges to a constant,
which is equal to G’ for u = 0. For larger y, G’ for the MBS de-
creases again, whereas the theoretical G’ for the TBS is constant.
This discrepancy results from the violation of condition ¥ < €
for the analytical calculation. If we numerically solve the TBS
to obtain G’ without the assumption y < €, G’ decreases after a
plateau again as in the case of MBS, although its value in the TBS
for 9 — 0.1 slightly deviates from that of the MBS, as shown in
Appendix F.

As shown in Fig. [5] we plot G” for the MBS on the triangular
lattice against y with k/k, = 1.0 and € = 0.001 for various values
of u as points. Moreover, we plot the analytical results of the TBS
obtained using eqn. as thin solid lines. The analytical result
agrees perfectly with the MBS for 9 < 0.003 without any fitting
parameters. As 7 increases beyond ¥.(¢) shown by the vertical
dashed lines, G” for u > 0 increases from 0 and decreases after
reaching a peak. The peak position of G” against y, increases with
u. Thus, our analytical results fail to capture the behavior of G”
foru=1.

Consider the disordered MBS shown in Fig. [1j(b). Figure [6]
shows the scaled shear stress o/}, against the scaled strain /vy
in the disordered MBS with y = 0.0001. The maximum value Gpax
decreases as Y increases. The area S of the curve is the largest
for v = 0.00003. It is interesting that stress-strain curves are not
characterized by parallelograms in this case in contrast to Fig.
This means that the disordered configuration of particles creates
an effective viscosity, and thus, the response to an applied strain
becomes visco-elastoplastic.

The behaviors of G’ and G” in the disordered MBS are similar to
those of the TBS as shown in Appendix E. Therefore, it is expected
that the scaling laws in eqns. and for a given € in the
TBS can be used even in this system with corresponding ¢. This
expectation is verified by Fig. [7, in which we plot the scaled mod-
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Fig. 5 Loss modulus G” against ¥ with k/k, = 1.0 and &€ = 0.001 for
various values of t. The points represent the results of the ordered MBS.
The thin solid lines represent the analytical results obtained using eqn.
(19). The vertical dashed lines represent the critical amplitude y.(u)
given by eqn. for u=10"%1073,10"2,10~", and 1 from left to
right.
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Fig. 6 Scaled shear stress 6/y against ¥/% in the disordered MBS for
various values of y with ¢ =0.01 and ¢ = 0.870.

uli G'/G}, and G /Gy, against the scaled strain kY /(1P (Y0, 1))
for various values of u in the disordered MBS. Moreover, we plot
the analytical results for the TBS obtained using eqns. and
as solid lines, which qualitatively reproduce the MBS results
for small scaled strain, while the scaling is apparently violated for
large scaled strain. Here, we choose k;/k, = 1.5 for the TBS to
fit the second plateau to that of the MBS. At present, we do not
know the relationship between ¢ and the fitting parameter.

1o @) T 1.2

1 = 102 1

=08 = 0.8
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0.2 | Shu e 02
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Fig. 7 (a) Scaled storage modulus G'/Gy; against the scaled strain
kivo/ (WP (Y0, 1)) with ¢ =0.87 and k/k, = 0.2 for various values of y in
the disordered MBS. The solid line represents the analytical result of the
TBS given by eqn. with k¢/k, = 1.5. (b) Scaled loss modulus G” /Gy,
against the scaled strain kyo/(UPo(Y, 1)) with ¢ =0.87 and ki /k, = 0.2
for various values of p in the disordered MBS. The solid line represents
the analytical result of the TBS given by eqn. (28) with k /k, = 1.5.

5 Conclusions

We demonstrated the relevancy of a model of the TBS to describe
the complex modulus of jammed frictional granular materials un-
der oscillatory shear. We obtained the analytical expressions for
the 1p-dependence of G’ and G” as shown in eqns. (T6), (8],
and (T9), which predict the u-dependence of the critical ampli-
tude v, the decrease of G’, and the peak of G” above ¥, for crys-
talline solids. The analytical expressions lead to the scaling laws
given by eqns. and [23). Although we have ignored the non-
affine motion for crystalline solids, these analytical results quan-
titatively agree with those of the ordered MBS. Surprisingly, some
characteristic features of disordered solids for low strain (or high
pressure) can be captured. These results indicate that the analy-
sis of the toy model gives a basis for understanding the nonlinear
rheology of frictional granular materials under small strain.

Although the values of the plateaus in G’ for disordered MBS
depended on ¢ — ¢;99, the corresponding values of the TBS are
independent of ¢ — ¢y, as expressed in eqn. (18). In addition,
our analytical expressions cannot reproduce the second decrease
of G’ and increase of G” near ¥ = 1072 in the MBS. The dis-
crepancy should result from the disorder because it leads to the
¢-dependence of G2, To include the disorder effect, we regarded
ki/kn as a fitting parameter. In previous studies on models with
small degrees of freedom, e.g., the coherent potential approx-
imation202230 the corresponding fitting parameters were self-
consistently determined. In future studies, we will discuss the
self-consistent determination of the parameter for the TBS.

Some researchers are interested in contributions from higher
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harmonics characterizing the nonlinear response to oscillatory
shear?l, but the nonlinear viscoelastic moduli characterizing the
higher harmonics are negligibly small for jammed frictionless par-
ticles’?, However, the higher harmonics in the frictional granular
materials require further careful investigation.
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Appendix A: Details of Ordered MBS

This section explains the details of the ordered MBS consisting
of monodispersed particles initially placed on a triangular lattice.
We consider a two-dimensional assembly of N frictional particles
in a periodic box with sizes along the x and y directions L, and
L,, respectively. Here, we initially place N = 2N;N, particles of
diameter d with integers n, and ny at r; as

ri—= (nxg - Lx/27 \/gn_\’g - Ly/2> (30)

for 0 <i < NyNy with integers ny, ny, and i = ny + Nyny. For NyNy <
i < 2NNy, r; is defined as

ri= ((n+1/2)0-L/2,V3n+1/2)0-L,/2)  GD)

with i = ny 4+ Nyny + NeNy. The initial configuration is illustrated
in Fig. |8} We choose L, = Ny¢ and Ly = v/3N,¢ with £ = d(1 —¢).

Fig. 8 Initial configuration of mono-dispersed particles on a triangular
lattice. The red rectangle, including interactions represented by the blue
lines, corresponds to the TBS.

The position r; and peculiar momentum p; of particle i with
mass m; and diameter d; are driven by the SLLOD equation under

the Lees-Edwards boundary condition as=3#
d . i
ohi = Tviect %, (32)
d .
aPi = —Y(1)piyex+ fi, (33)

where 7(t) = yywcos or and e, = (1,0) is the unit vector along the
x direction. The interaction force f; is defined as

Fi= X (0 i+ 15137 H iy = i) 34
i

with dij = (d[+dj)/2, nj; = r,'j/r,‘j, t,‘j = (fn,-j,y,n,-j_x), and rij =
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ri—r; = (xij,yij). The normal force is given by

£ == (k) + o)) (35)
with a normal viscous constant 1, and

(m)

vij = (vifvj)-n,-j, (36)

where the velocity of particle i is given by v; = %r;. The following
model is adopted for the tangential force:

fi(.t) = min (\fl(]o |,/,Lfl.<jn’el>> sgn(ﬁ?), 37
where fi(;‘el) = —knul(;-]) denotes the elastic part of the normal

force. Here, fi@ is given by

7)== (k) + o)) (38)

with a tangential viscous constant 1. The tangential velocity vg.)

is given by

vl(;) :(v,'fvj)-t,'j. (39)
(1)

ij

The tangential displacement u; satisfies %ug) = vl(-;) for | ff]t>| <
U fl(/n ) whereas uS)

tangential displacement u

remains unchanged for | fi(;)| >u fl.(;’el). The
® '

i is set to zero if i and j are detached.
If all the particles are separated, the packing fraction ¢ for the

ordered MBS is defined as

¥ md}

¢= ALL, (40)

Even if contacts exist between the particles, we use eqn. ([40) by
assuming that the contact length d;; — r;; is sufficiently lower than
d;;. Using eqn. (40), ¢ is defined as

T

= 41

¢ 2v/3(1 —¢)? “1
The jamming point of this system is
T

== 42

s 3 (42)

with € = 0. The distance from the jamming point is proportional
to €.

¢ (43)

T
— @y~ —¢

=7
for e < 1.

The shear stress ¢ is defined by eqn. in the main article
with the normal component

l XiiVii
(m_ _ ijYij ¢(n)
o = ; 44)
LiLy ;,Z;, iy
and tangential component
2 _\2
1 Xis—Yis
®_ _ i i ()
o — (©). (45)
ZLXL)V ZZ’JZ’N Tij f”



The pressure is defined as

P=

ZLIL YN (ijfijx+yiifijy)- (46)
wby T j>i

We use Ny =8, Ny =4, N. =20, ky = kn, and 1, = 0y = kn/m/kn,
where m denotes the mass of a particle with diameter 4. This
model corresponds to a restitution coefficient e = 0.043. We adopt
the leapfrog algorithm considering a time step of At = 0.05¢y. We
choose ®=1.0x 1074\ /k, /m as the quasistatic shear deformation
because G' and G” are almost independent of @ for @ < 1.0 x
1073 /ky /m.

As shown in Figs. [4] and [5] the behaviors of G’ and G” of the
TBS agree with that of the MBS. We explain the theoretical back-
ground of the TBS. The initial configuration is shown in Fig. |8} it
contains the unit cell represented by the red rectangle with length
¢ and height /3¢ /2. It contains interactions between the three
particles represented by blue lines. Here, we assume that the par-
ticles move affinely as

ri(t) = ri(0) +v(6(1))yi(0)ex. 47)
In this case, the corresponding relative distances between the par-

ticles in any unit cell are identical.

In particular, in a unit cell containing particles i = ij,i», and i3
with ij = NNy, i =0, and i3 = 1, the positions of the particles are
given by

ri (1) = (yw(z)) (ﬁﬁ‘“) 12k, m‘”) L@

2
) = (~r00) % - 5.-%). 49)
) = (1005 +e- 5= 5 ). 50

The relative distances between these particles are identical to
those of the TBS, given by eqns. (I)-(B], which indicates that
the TBS provides the interaction forces among the three particles.
This system includes 2N,N, unit cells with identical interaction
forces. Hence, the normal and tangential components of ¢ are
given by

2NNy XiYij o (n)

o =-T Y L S 6D
Y i=iyiniy | j=is0,0 )
(j>i)

() NN, x.zl—y,z. ©
) _ XY Z Z ij Ufn - (52)

Lily i {50 | =idoie i 7Y

(7>i)
The pressure is also given by:
NNy
P= LXL) > Y, Gijfijatyiifiy) ¢ - (53)
B iminin,dy | =i

(j>1)

Using the relation LcLy/(2NcN,) = v/3¢?/2 corresponding to A =
V3022, 6™, ¢ and P coincide with eqns. (8)-(II). Hence,
if the assumptions of the affine motion, i.e., eqns. (48)-(50), are
satisfied, G’ and G” in the ordered MBS coincide with those in the
TBS.

Appendix B: Effect of particle rotation

In this section, we illustrate the effect of particle rotation, which
was not described in Appendix A. In the model with rotation, the
tangential velocity VS-) is given by

Vz(;) =(vi— V_,‘) tij— (d,w,- +d_,‘(l)j)/2 (54)
instead of eqn. (39), where w; denotes the angular velocity of
particle i. The time evolution of @ is given by

d

1-7
'dt

w;=T; (55)

with the moment of inertia I; = midi2 /8and torque T; = Y ; %FS;) .
tjj.

As shown in Fig. [9] we plot G’ in the ordered MBS with and
without rotation with k/k, = 1.0 and € = 0.001 for various values
of u =0.01. The values of other parameters are the same as those
in Appendix A. The effect of particle rotation is negligible, except

for the region near ..

! =1
e pu=10""
=102
p=10"3
= p=10"*
S o4l
0.2 +

0 . . . . )Y
10771071075 107*107* 1072 10!
Yo
Fig. 9 Storage modulus G’ against 7y for the ordered MBS with u = 0.01

and € =0.001. The open and filled symbols represent the results of the
particles with and without rotation, respectively.

As shown in Fig. we plot G” in the ordered MBS with
and without rotation with k/k, = 1.0 and & = 0.001 for u =
1072,1073,1074,107> and 0.00001. The values of other param-
eters are the same as those in Appendix A. There are slight de-
viations in the peak position near y. between particles with and
without rotation.

In Fig. we plot G” in the ordered MBS with and without
rotation with k/k, = 1.0 and € = 0.001 for 4 = 1.0 and 0.1. There
are slight deviations in the peak position near 7. between particles
with and without rotation even for these higher u. In addition,
the second increase in G” around y = 0.1 for particles without
rotation disappears for those with rotation.
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Appendix C: Analytical calculation of shear
stress and pressure

0.15 . : . . . . . s
A =102 This section briefly explains the derivation of the normal and tan-
Ady H= 1073 gential components of shear stress and pressure for a small value
01 A p=10 of 1. From egns. (I)-(@), the relative distance r;;(¢) is given by
- A Ap
’\.{\ A
N a 3y(6(¢ 1 3¢
& an ro(8(t)) = M& V3t 7 (56)
0.05 | ™ 2 2
a
A
V3y(0(1) -1, /3¢
I E—— A%..“M,‘ ri3(0()) = <2€, - | (57
1077107101010 10210~*
Yo
’ r23(60(t)) = (=£,0). (58)
Fig. 10 Loss modulus G” against y for the ordered MBS with u =
1072,1073,1074,107° and £ = 0.001. The open and filled symbols repre-
sent the results of the particles with and without rotation, respectively.

Substituting these equations into uf;) = r;j —d, the normal dis-
placements are given by

n 3
o) 0) = —ed+ Leriow) + 00, (59)
3
uf)0) = —ed— Levo)+ o). (60
u§“> (1) = —&d. 61)
Substituting these equations into eqn. (6), we obtain the normal
force as
n 3
112 =k (ed - {Wﬂé) , (62)
() _ V3
0.15 : A f13’ = kn <£d 7 y(6)£> , (63)
o =101
0.1 5 = kned (64)
N up to 0(x):
0.05

0

..
10771071075107*1073 1072 107"

By differentiating eqns. (G&)-(58) with time ¢, we obtain the
relative velocity as
Fig. 11 Loss modulus G” against ¥ for the ordered MBS with u =1.0,0.1
and € =0.001. The open and filled symbols represent the results of the
particles with and without rotation, respectively.

via(t) = (Wﬁ),

5 (65)
nslt) = (Wo) , (66)
v23(t) = (0,0) (67)
with the strain rate y(6(z)) = %
8| Journal Name, [year], [vol.], 1

y(6(z)). The tangential unit vector



is given by
t(t) = (\/237’57\5}’(92(1))—?—1[)/”2'7 (68)
t13(t) = (_\/547\/57/(92(t))—lg>/r13|7 (69)
t23(l‘)=(0,71). (70)

By considering the inner product of v;; and ¢;;, the tangential
velocity is given by

W0 =~ er60) + 009, 7D
W0 =~ en6) + 003 72)
v<2t3) (r)=0. (73)

If the transition from the stick state to the slip state does not
occur under oscillatory shear, the tangential displacement is ob-
tained by integrating Vg') (¢) as

a6 =) = 2 ex(0(0) + 0, 74)
ug (r)=0. (75)
Substituting these equations into fl.(jl) = fktug) yields
13 = 1 =3kn0 )/ (76)
Ay =0 77)

up to O(y). The condition that the transition does not occur is
satisfied when f@ < ,ufl(;) for y = y. Using eqns. and
with the assumption yy < €, the condition is replaced by ¥ < 7.
with 7. given by eqn. (I6).

(®)

For y > 7, there exist regions where u; ;s unchanged in the
slip state as

_“’28{ 0<6() < g
t
pkagd  3d(y(0)—%) T
< it
K 4 » 350<3 +§)
u) = EoEE Zie<e<  (78)
t
wkned  3d(y(0)+ 1) 3n 3w
< -
ko 4 2 S0<5+6
HKnE T
2 ile<o<2
[ > +0<60<2m,
uf = ul), 79)
) =0, (80)

where O satisfies

kaed 2+0) - koed
_u;; WiE 4) Yozﬂl:l . 1)
This equation provides ® = cos~! (1 —27%./y). Substituting these
equations into fi<jt> = —ktug.) yields
~pikned, 0<6(6) g
—uknsd—w, gge<g+®
1Y ={ pkeed, §+® <6< 37” (82)
,uknsd—w, 37”§6<37n+®
—ukped, 37%+®§ 6 <2m,
A3 =113 (83)
Y=o 84

The normal component of ¢ in eqn. (9) is given by

o™ =68 +oF (85)
with
1 x2y12
oy =~ - £ (86)
(n) 1L x13y13
off = . o, (87)

Substituting eqns. and with eqns. and into
eqns. (86) and and using eqn. (85), we obtain ¢(™ as eqn.
(14).

The tangential component of ¢ in eqn. (10) is given by

o = Gl(tz) + G](l3> (88)
with
2 2
© _ 1 Xp=Yh ()
%)= T2A gy 12 (89)
2 2
© _ 1 X3-Y3 .
Oty =55 s (90)

Substituting eqns. and with eqn. into eqns. (88),
(89), and (90), we obtain ¢ as eqn. for y < 7. Using
eqns. ([82) and (83) instead of eqn. (76), we obtain (V) as eqn.
for 1 > ¥e.

The pressure, i.e., P, in eqn. (11)) is defined as

P=P+P;3+P3 91
with
1
Bij= 5Ty ,-(jn)- (92)

Substituting eqns. (G6)-(58) with eqns. (62)-(64) into eqns. (@)
and ([©2) with y = 0, we obtain Py(y, 1) as eqn. ZI).
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Appendix D: Relation between shear modulus
and stress—strain curve
In this section, we relate the shape of the stress—strain curve to

the complex shear modulus. The shear stress ¢(0) is expanded
using the Fourier series as

c(0)=mn i G),sin(n8) + 7y i Gl cos(nb), (93)

where G, and G/ with n > 1 denote the higher harmonics, G’ =

G|, and G” = G}. By neglecting G, and G, forn > 1,
c(0=m/2 c
G ~ o6=m/2) o = Gmaxs (94)
Y 10 ly/p=1

which is the maximum value of the scaled stress—strain curve il-
lustrated in Fig. [3((b). This expression and the scaled stress—strain
curve in Fig. [3|(b) explain the decrease of G’ defined by eqn. (T8).

The area S of the curve for 6(0)/y against y(6)/y is given by

2" g L dv(0) o(6)
S = e 5
fy @05 o % %)

Substituting eqn. (@) into eqn. with eqn. (I2), we obtain
27
S:/ d6c(0)cos /1 =nG", (96)
0

which results in G” = S/x. As y increases, the area S of the scaled
stress—strain curve in Fig. b) increases first and decreases later,
which explains the yy-dependence of G” provided by eqn. (19).

Appendix E: Details of Disordered MBS

In this section, we present the details of the disordered MBS. This
model is an extension of the monodisperse model used in Ap-
pendix A, including the dispersion of the particles and disordered
initial configuration.

The system is bidisperse and includes an equal number of par-
ticles with diameters d and d/1.4. To simulate the disordered
MBS, we randomly place the particles in a rectangular box with
an initial packing fraction of ¢; = 0.75. The system is slowly com-
pressed until the packing fraction reaches ¢4, In each compres-
sion step, the packing fraction is increased by A¢ = 1.0 x 10~
with an affine transformation. Thereafter, the particles are re-
laxed to a mechanical equilibrium state with the kinetic tempera-
ture Tx = Y, p?/(mN) < Ty. Here, we choose Ty, = 1.0 x 10~ 8k,d>.
After compression, the oscillatory shear strain given by eqn. (@)
is applied for N, cycles. In the last cycle, we measure G' and
G" using eqns. (I2) and (I3) with eqns. (@B)-(0). The pres-
sure, Py(1o,u) is obtained using eqn. after the last cycle.
We use ¢ =0.87, N = 1000, N; =20, L,/L, =1, k = 0.2k,, and
Mo = N = kn/m/ky.

Figure [12] shows the storage modulus G’ against ¥, in the dis-
ordered MBS for various values of u. The storage modulus G’
is almost independent of jy for a small % and decreases as ¥
increases. The endpoint of the first plateau increases with u ex-
cept for u = 0. A second plateau of G’ exists for u = 10~* and
107>, The behavior of G’ for relatively small y, is similar to that

10 | Journal Name, [year], [vol.], 1

of crystalline solids as depicted in Fig. @ On the other hand, the
decrease of G’ for larger yy cannot be captured by the analytical
results of the TBS. Note that G’ for u = 0.1 in the limit ¥ — 0 is
different from that for u < 0.01, which results from the pu depen-
dence of the jamming point ¢;.

my=10"
e =102
pu=10"3
p=10"*
p=107°
e =0

U L L L L L
10771076 107° 1074 1073 1072
7o

Fig. 12 Storage modulus G’ in the disordered MBS against ¥ with
¢ = 0.870 for various values of u.

Figure [13] shows the loss modulus G” in the disordered MBS
against 7y for various values of p. For sufficiently small ¥, G” is
zero, while G” becomes non-zero as ¥, increases. The loss modu-
lus G” starts to increase for smaller ¥ as u decreases. Similar to
the case of G/, TBS captures only the behavior of relatively small

Y (see Figs. [5]and [13).

my=10"
o =102
0.02 - =10
u=10"*
= -
:’f\ * =107

O 001 ¢

»
0 = ;

10~ ’10010)10 41073 1072

Fig. 13 Loss modulus G” in the disordered MBS against y with ¢ =0.870
for various values of 1.

Appendix F: Numerical shear modulus for
TBS

In this section, we show the behaviors of G’ and G” in the TBS
without the assumption used to obtain the analytical solution.
Here, we numerically obtain G’ and G” under quasistatic oscilla-
tion using eqns. and based on the left Riemann sum,
where the integration of ¥(0), i.e.,

2
A de ¥(e), o7
is approximated as
27T M
do W(6) ~ ) W(6,)A6 (98)



with A =2n/M and 6, = (n—1)A6. We use € = 0.001 and A6 =
5.0 x 1073 in our simulation.

As shown in Fig. we plot the storage modulus G’ numeri-
cally obtained from the TBS against yy with k/k, = 1.0 for various
values of u as points. Moreover, we plot the analytical results de-
rived from eqn. (I8) as thin solid lines. The numerical results
agree with the analytical results for 9y < 0.003 and reproduce the
second plateau of the MBS shown in Fig. [4

1077107%107°10*1073107210"!
Yo

Fig. 14 Storage modulus G’ against ¥ with k/k, = 1.0 and & = 0.001
for various values of u. The points represent the numerical results of
the TBS, while the thin solid lines represent the analytical result given
by eqn. (18). The vertical dashed lines represent the critical amplitude
Ye(1t) given by eqn. for w=10"%,1073,10"2,107",10° from left to
right.

Figure shows the loss modulus G” numerically obtained
from the TBS against yy with k/k, = 1.0 for various values of u as
points. We also plot the analytical results given by eqn. as
thin solid lines. The numerical results agree with the analytical
results for 1 < 0.003.

0.15 ; ;

= 10°
o pn=10"
=102
) 0.1 pw=10"3
N’i "= 10—
<) o =00
0.05 H

0 .
1077107107107 10=3 1072 10~*

/0

Fig. 15 Loss modulus G” against %y with ki/k, = 1.0 and € = 0.001 for
various values of . The points represent the numerical results of the
TBS, while the thin solid lines represent the analytical results obtained
from eqn. (I9). The vertical dashed lines represent the critical amplitude
Ye(1t) obtained from eqn. for u=10"*,10"3,10"2,10~",10° from left
to right.
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