
An exact expression of three-body system for the com-
plex shear modulus of frictional granular materials

Michio Otsukia and Hisao Hayakawab

We propose a simple model comprising three particles to study the nonlinear mechanical response
of jammed frictional granular materials under oscillatory shear. Owing to the introduction of the
simple model, we obtain an exact analytical expression of the complex shear modulus for a system
including many monodispersed disks, which satisfies a scaling law in the vicinity of the jamming point.
These expressions perfectly reproduce the shear modulus of the many-body system with low strain
amplitudes and friction coefficients. Even for disordered many-body systems, the model reproduces
results by introducing a single fitting parameter.

1 Introduction
The rheological property of densely dispersed grains, e.g., granu-
lar materials, colloidal suspensions, and emulsions, plays an im-
portant role in physics and engineering. This rheological property
mainly depends on the packing fraction φ of the grains. The ma-
terials behave like fluids for φ < φJ with jamming fraction φJ and
exhibit a solid-like elastic response above φJ

1,2. In the linear re-
sponse regime (i.e., for small strains), the shear modulus is char-
acterized by the density of states3–5 and satisfies scaling laws6–9.
However, the linear response region becomes narrower as φ ap-
proaches φJ

10,11, and the nonlinear response becomes relevant
due to the plastic deformation associated with the yielding12–20.

If we are interested in a nonlinear response to an applied os-
cillatory shear strain, it exhibits a complicated stress-strain curve.
Although the storage and loss moduli G′ and G′′ were originally
introduced to characterize the linear viscoelasticity of materials,
they can use to characterize nonlinear viscoelasticity or visco-
elastoplastic responses to applied strains21. In this case, G’ and
G" are no longer constants but strongly depend on the strain am-
plitude γ0. In particular, we have recognized that G′ decreases
with γ0

11,22–25 and G” remains non-zero in the low frequency
limit24,25 for densely dispersed grains.

The theoretical analysis of densely dispersed grains is challeng-
ing as a typical many-body problem in non-equilibrium systems.
To date, a few theoretical approaches have been proposed for sys-
tems related to frictionless particles. The scaling laws for the lin-
ear elastic response were derived in terms of the vibrational den-
sity of states7,8. The Fourier analysis of particle trajectories helps
to generate semi-analytical expressions for G′ and G′′ 25. Unfortu-
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nately, these theories can not apply to frictional particles because
of the history-dependent contact force9,24.

It is helpful to analyze a simple model with small degrees of
freedom to understand the behavior of many-body systems, in-
cluding densely dispersed grains. This approach has been used
in statistical mechanics. The mean-field approximation of the
Ising model is a typical example in which the system contains
only one Ising spin under the influence of a self-consistently de-
termined mean field26. For atomic liquids, a cell model, in which
a single atom exists in a cage, was used to derive the equation of
state27,28. The coherent potential approximation for disordered
solids has been used to understand electronic band structures29.
The effective medium theory reveals the elastic response of ran-
dom spring networks30. In addition, a simple model consisting
of two particles was proposed to reproduce the liquid-solid phase
transition31. The advantage of such few-body models is that we
can obtain exact solutions. The qualitative behavior of the cor-
responding many-body systems can be determined based on the
solutions of the few-body models. Thus, we adopt this approach
to determine the nonlinear responses of the frictional dispersed
grains.

This study proposes a model consisting of three identical par-
ticles to describe the mechanical response of jammed frictional
granular materials under oscillatory shear. In Section 2, we intro-
duce the three-body system (TBS). This model can be analytically
solved for low-strain amplitudes and friction coefficients near the
jamming point in Section 3. In Section 4, we demonstrate that
the analytical solution reproduces the storage and loss moduli of
many-body systems (MBSs) without any fitting parameter if there
is no disorder in the particle configuration. Even if disorder ex-
ists, a scaling law for the complex shear modulus for the TBS
semi-quantitatively agrees with the numerical simulations of the
MBS by introducing a fitting parameter. We discuss and conclude
our results in Section 5. In Appendix A, we show the details of the
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MBS when the particles are initially placed on a triangular lattice.
The effect of particle rotation is described in Appendix B. In Ap-
pendix C, we derive the analytical expressions for the shear stress
and pressure in the TBS. In Appendix D, we relate the complex
shear modulus with the hysteresis loop of the stress–strain curve.
The details of the disordered MBS are presented in Appendix E.
We present the numerical shear modulus for the TBS in Appendix
F.

2 Three-Body System
We consider two-dimensional granular materials consisting of
many grains under oscillatory shear (Fig. 1). Here, the grains
constituting granular materials are modeled as frictional spheri-
cal particles. Moreover, we introduce a system of three identical
particles to simply describe the MBS (Fig. 2). The MBS can con-
tain polydisperse particles, while we assume that the TBS is a
monodisperse system. In the TBS, the position rrri(t) = (xi(t),yi(t))
of particle i with diameter d at time t is given by

rrr1(t) =

(√
3γ(θ(t))`

4
,

√
3`
4

)
, (1)

rrr2(t) =

(
−
√

3γ(θ(t))`
4

− `

2
,−
√

3`
4

)
, (2)

rrr3(t) =

(
−
√

3γ(θ(t))`
4

+
`

2
,−
√

3`
4

)
, (3)

where ` is the initial distance between particles. We also intro-
duce ε := 1− `/d as the compressive strain. The compressive
strain ε in the TBS corresponds to φ − φJ in the MBS as shown
in Appendix A. We apply shear strain as

γ(θ) = γ0 sinθ (4)

with strain amplitude γ0, phase θ = ωt, and angular frequency
ω. Note that we need at least three particles to realize a stable
interlocking state.

��� ���

Fig. 1 Schematics of the ordered MBS (a) and the disordered MBS (b).

We adopt the interaction force fff i j between particles i and j
given by

fff i j =
(

f (n)i j nnni j + f (t)i j ttt i j

)
H(ri j−d), (5)

where f (n)i j and f (t)i j denote the normal and tangential forces be-
tween the particles i and j 32. The distance between the particles
i and j is ri j = |rrri j| with rrri j := rrri − rrr j = (xi j,yi j). Here, H(x) is

�

� �

Fig. 2 A schematic of the TBS.

Heviside’s step function satisfying H(x) = 1 for x > 0 and H(x) = 0
otherwise. The normal and tangential unit vectors are denoted
by nnni j := rrri j/ri j = (ni j,x,ni j,y) and ttt i j := (−ni j,y,ni j,x), respectively.
For simplicity, we do not consider the torque balance and, thus,
the rotation of the particles. See Appendix B for the effect of the
rotation.

The normal force is assumed to be

f (n)i j =−knu(n)i j (6)

with the normal elastic constant kn and normal relative displace-
ment u(n)i j := ri j−d. Moreover, the tangential force is assumed to
be

f (t)i j = min
(
| f̃ (t)i j |,µ f (n)i j

)
sgn( f̃ (t)i j ), (7)

where f̃ (t)i j = −ktu
(t)
i j ; kt denotes the tangential elastic constant,

and µ denotes the friction coefficient. Here, min(a,b) selects
the smaller value between a and b, sgn(x) = 1 for x ≥ 0, and
sgn(x) = −1 for x < 0. The tangential displacement u(t)i j sat-

isfies d
dt u(t)i j = v(t)i j for | f̃ (t)i j | < µ f (n)i j with the tangential veloc-

ity v(t)i j = ( d
dt rrri − d

dt rrr j) · ttt i j, whereas u(t)i j remains unchanged for

| f̃ (t)i j | ≥ µ f (n)i j . We refer to the contact with | f̃ (t)i j | < µ f (n)i j as the

stick contact and the contact with | f̃ (t)i j | ≥ µ f (n)i j as the slip con-

tact. The tangential displacement, u(t)i j , is initially set to zero.
The (symmetric contact) shear stress is given by

σ(θ ;γ0,µ) = σ
(n)(θ ;γ0,µ)+σ

(t)(θ ;γ0,µ) (8)

with the normal component of σ

σ
(n)(θ ;γ0,µ) =−

1
A ∑

i
∑
j>i

xi jyi j

ri j
f (n)i j (9)

and tangential component of σ

σ
(t)(θ ;γ0,µ) =−

1
2A ∑

i
∑
j>i

x2
i j− y2

i j

ri j
f (t)i j . (10)

Here, A corresponds to the area of the system, and we choose
A =
√

3`2/2 as shown in Appendix A. The pressure is given by

P(θ ;γ0,µ) =
1

2A ∑
i

∑
j>i

(xi j fi j,x + yi j fi j,y). (11)

In the right-hand sides of eqns. (9)-(11), we have omitted the
arguments θ , γ0, and µ. Similar abbreviations are used below. As
we are interested in quasistatic processes, we do not consider the
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kinetic parts of σ and P and the dependence on ω. After several
cycles of oscillatory shear, σ(θ) becomes periodic. The storage
and loss moduli are given by33

G′(γ0,µ) =
1
π

∫ 2π

0
dθ σ(θ ;γ0,µ)sinθ/γ0, (12)

G′′(γ0,µ) =
1
π

∫ 2π

0
dθ σ(θ ;γ0,µ)cosθ/γ0. (13)

3 Theoretical analysis

Assuming γ0 � ε � 1, we analytically obtain G′ and G′′ for the
TBS. The derivation of the analytical results can be found in Ap-
pendix C.

First, the normal component of the shear stress is given by

σ
(n)(θ) =

√
3knγ(θ)

4
. (14)

The tangential component of the shear stress is given by

σ
(t)(θ) =

√
3ktγ(θ)

4
(15)

for γ0 < γc(µ) with a critical amplitude

γc(µ) =
4µknε

3kt
, (16)

which characterizes the transition from stick to slip states in the
contact between the particles. For γ0 ≥ γc(µ), the tangential com-
ponent of the shear stress is given by

σ (t)(θ) =



µknε√
3

, 0≤ θ <
π

2
µknε√

3
+

√
3kt(γ(θ)− γ0)

4
,

π

2
≤ θ <

π

2
+Θ

−µknε√
3

,
π

2
+Θ≤ θ <

3π

2

−µknε√
3

+

√
3kt(γ(θ)+ γ0)

4
,

3π

2
≤ θ <

3π

2
+Θ

µknε√
3

,
3π

2
+Θ≤ θ < 2π,

(17)

where Θ = cos−1 (1−2γc(µ)/γ0). Regions with π

2 ≤ θ < π

2 +Θ and
3π

2 ≤ θ < 3π

2 +Θ correspond to the stick state, and the other re-
gions correspond to the slip state. Owing to this transition in the
contact, the stress–strain curve given by eqns. (14)–(17) exhibits
a hysteresis loop. Equation (17) does not exhibit a viscoelastic re-
sponse but a typical elastoplastic response without viscous effect.

Figure 3 shows the scaled shear stress σ/γ0 against the scaled
strain γ/γ0 using eqns. (4), (8), and (14)-(17) for various val-
ues of γ0 with kt/kn = 1.0 and µ = 0.01. The shape of the scaled
stress–strain curve is characterized by a parallelogram as a typ-
ical elastoplastic response. As γ0 increases, the maximum value
σ̃max = (σ/γ0)|γ/γ0=1 decreases from a larger value

√
3(kn + kt)/4

to a smaller value
√

3kn/4. As shown in Appendix D, the storage
modulus G′ is approximately given by σ̃max. Hence, the decrease
of σ̃max in Fig. 3 indicates the decrease of G′. For γ0 = 0.00003
and 0.0001, the hysteresis loop exists, but the area of the loop is
negligible for γ0 = 0.00001 and 0.001. The loss modulus G′′ is pro-

portional to the area of the loop as shown in Appendix D. Hence,
the dependence of the area on γ0 indicates that there is a peak in
G′′ as γ0 increases.
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Fig. 3 Scaled shear stress σ/γ0 against γ/γ0 using eqns. (4), (8), and
(14)-(17) for various values of γ0 with kt/kn = 1.0, ε = 0.001, and µ = 0.01.

Substituting eqns. (8) and (14)-(17) into eqn. (12), we obtain
the storage modulus as

G′ =


√

3(kn + kt)

4
, γ0 ≤ γc(µ)√

3
4

{
kn +

kt

π
(Θ− sinΘcosΘ)

}
, γ0 > γc(µ).

(18)

As γ0 increases beyond γc(µ), G′ decreases from a higher value to
a lower value. The corresponding behavior has been observed in
the MBS in previous studies9,24.

Substituting eqns. (8) and (14)-(17) into eqn. (13), the loss
modulus is given by

G′′ =

 0, γ0 ≤ γc(µ)√
3kt

4π

(
1− cos2 Θ

)
, γ0 > γc(µ).

(19)

The loss modulus G′′ is zero for γ0 < γc(µ), whereas G′′ sharply
increases with γ0 when γ0 exceeds γc(µ) and decreases to 0 after
a peak. The behavior of G′′ for the TBS qualitatively reproduces
that of the MBS in previous studies24.

We adopt the abbreviation for the pressure at γ = 0 as

P0 := P(θ = 0;γ0,µ), (20)

which is also obtained as

P0 =
√

3knε. (21)

From eqns. (16), (18), (19), and (21), we derive scaling laws for
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a given ε as

G′(µ,γ0) = G′M(µ)G ′
(

ktγ0

µP0(γ0,µ)

)
, (22)

G′′(µ,γ0) = G′′M(µ)G ′′
(

ktγ0

µP0(γ0,µ)

)
, (23)

where G ′(x) and G ′′(x) denote scaling functions. The maximum
values of G′ and G′′ are denoted as G′M and G′′M, respectively. In
the TBS, they are given as

G′M =
√

3(kn + kt)/4, G′′M =
√

3kt/(4π), (24)

G ′(x) =

 1, x≤ xc,(
1+

kt

kn

T (x)−S(x)
π

)
/

(
1+

kt

kn

)
, x > xc,

(25)

G ′′(x) =

{
0, x≤ xc,

1− cos2 T (x), x > xc
(26)

with T (x) = cos−1(1 − 2xc/x), S(x) = sin(2T (x))/2, and xc =

4/(3
√

3).

4 Comparison with the MBS
We demonstrate the relevance of the TBS analysis based on the
simulation of a two-dimensional MBS consisting of N frictional
grains. First, we consider a system corresponding to the TBS,
where all the particles are identical and initially placed on the
triangular lattice with a unit length ` (Fig. 1(a)). The details
are shown in Appendix A. Next, we consider a bidisperse system
where the number of particles with diameter d is equal to that
of particles with diameter d/1.4, and the particles are randomly
placed with packing fraction φ (Fig. 1(b)). The mass densities of
the particles are identical. The details of the disordered MBS are
shown in Appendix E. In both systems, the shear strain given by
eqn. (4) is applied for Nc cycles using the SLLOD equation under
the Lees–Edwards boundary condition34. In the MBS, we replace
the normal force as

f (n)i j →−
(

knu(n)i j +ηnv(n)i j

)
(27)

with the normal viscous constant ηn and the normal velocity
v(n)i j = ( d

dt rrri− d
dt rrr j) ·nnni j to include the viscous force depending on

the relative velocity. The tangential force is replaced by

f (t)i j →min
(
| f̃ (t)i j |,µ f (n,el)

i j

)
sgn( f̃ (t)i j ), (28)

with
f̃ (t)i j →−

(
ktu

(t)
i j +ηtv

(t)
i j

)
, (29)

where f (n,el)
i j =−knu(n)i j denotes the elastic part of the normal force

with a tangential viscous constant ηt. We measure G′, G′′, and P0

in the last cycle using eqns. (11)-(13). For the ordered MBS,
we use N = 64, kt/kn = 1.0, and ε = 0.001, whereas N = 1000,
kt/kn = 0.2, and φ = 0.87 are used for the disordered MBS. In both
systems, the other parameters are identical: Nc = 20, ηt = ηn =√

mkn, and ω = 0.0001
√

m/kn with a mass m of larger particles.
As shown in Fig. 4, we plot G′ for the ordered MBS against γ0
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Fig. 4 Storage modulus G′ against γ0 with kt/kn = 1.0 and ε = 0.001 for
various values of µ. The points represent the results of the ordered MBS.
The thin solid lines represent the analytical result given by eqn. (18).
The vertical dashed lines represent the critical amplitude γc(µ) given by
eqn. (16) for µ = 10−4,10−3,10−2,10−1, and 1 from left to right.

with kt/kn = 1.0 and ε = 0.001 for various values of µ as points.
Moreover, we plot the analytical results of the TBS obtained using
eqn. (18) as thin solid lines. Surprisingly, the results of the TBS
agree with those of the MBS for γ0 < 0.003 without any fitting
parameters. As γ0 increases beyond γc(µ) shown by the vertical
dashed lines, G′ for µ > 0 decreases and converges to a constant,
which is equal to G′ for µ = 0. For larger γ0, G′ for the MBS de-
creases again, whereas the theoretical G′ for the TBS is constant.
This discrepancy results from the violation of condition γ0 � ε

for the analytical calculation. If we numerically solve the TBS
to obtain G′ without the assumption γ0� ε, G′ decreases after a
plateau again as in the case of MBS, although its value in the TBS
for γ0 → 0.1 slightly deviates from that of the MBS, as shown in
Appendix F.

As shown in Fig. 5, we plot G′′ for the MBS on the triangular
lattice against γ0 with kt/kn = 1.0 and ε = 0.001 for various values
of µ as points. Moreover, we plot the analytical results of the TBS
obtained using eqn. (19) as thin solid lines. The analytical result
agrees perfectly with the MBS for γ0 < 0.003 without any fitting
parameters. As γ0 increases beyond γc(µ) shown by the vertical
dashed lines, G′′ for µ > 0 increases from 0 and decreases after
reaching a peak. The peak position of G′′ against γ0 increases with
µ. Thus, our analytical results fail to capture the behavior of G′′

for µ = 1.
Consider the disordered MBS shown in Fig. 1(b). Figure 6

shows the scaled shear stress σ/γ0 against the scaled strain γ/γ0

in the disordered MBS with µ = 0.0001. The maximum value σ̃max

decreases as γ0 increases. The area S of the curve is the largest
for γ0 = 0.00003. It is interesting that stress-strain curves are not
characterized by parallelograms in this case in contrast to Fig. 3.
This means that the disordered configuration of particles creates
an effective viscosity, and thus, the response to an applied strain
becomes visco-elastoplastic.

The behaviors of G′ and G′′ in the disordered MBS are similar to
those of the TBS as shown in Appendix E. Therefore, it is expected
that the scaling laws in eqns. (22) and (23) for a given ε in the
TBS can be used even in this system with corresponding φ . This
expectation is verified by Fig. 7, in which we plot the scaled mod-
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Fig. 5 Loss modulus G′′ against γ0 with kt/kn = 1.0 and ε = 0.001 for
various values of µ. The points represent the results of the ordered MBS.
The thin solid lines represent the analytical results obtained using eqn.
(19). The vertical dashed lines represent the critical amplitude γc(µ)

given by eqn. (16) for µ = 10−4,10−3,10−2,10−1, and 1 from left to
right.
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Fig. 6 Scaled shear stress σ/γ0 against γ/γ0 in the disordered MBS for
various values of γ0 with µ = 0.01 and φ = 0.870.

uli G′/G′M and G′′/G′′M against the scaled strain ktγ0/(µP0(γ0,µ))

for various values of µ in the disordered MBS. Moreover, we plot
the analytical results for the TBS obtained using eqns. (25) and
(26) as solid lines, which qualitatively reproduce the MBS results
for small scaled strain, while the scaling is apparently violated for
large scaled strain. Here, we choose kt/kn = 1.5 for the TBS to
fit the second plateau to that of the MBS. At present, we do not
know the relationship between φ and the fitting parameter.
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Fig. 7 (a) Scaled storage modulus G′/G′M against the scaled strain
ktγ0/(µP0(γ0,µ)) with φ = 0.87 and kt/kn = 0.2 for various values of µ in
the disordered MBS. The solid line represents the analytical result of the
TBS given by eqn. (25) with kt/kn = 1.5. (b) Scaled loss modulus G′′/G′′M
against the scaled strain ktγ0/(µP0(γ0,µ)) with φ = 0.87 and kt/kn = 0.2
for various values of µ in the disordered MBS. The solid line represents
the analytical result of the TBS given by eqn. (26) with kt/kn = 1.5.

5 Conclusions
We demonstrated the relevancy of a model of the TBS to describe
the complex modulus of jammed frictional granular materials un-
der oscillatory shear. We obtained the analytical expressions for
the γ0-dependence of G′ and G′′ as shown in eqns. (16), (18),
and (19), which predict the µ-dependence of the critical ampli-
tude γc, the decrease of G′, and the peak of G′′ above γc for crys-
talline solids. The analytical expressions lead to the scaling laws
given by eqns. (22) and (23). Although we have ignored the non-
affine motion for crystalline solids, these analytical results quan-
titatively agree with those of the ordered MBS. Surprisingly, some
characteristic features of disordered solids for low strain (or high
pressure) can be captured. These results indicate that the analy-
sis of the toy model gives a basis for understanding the nonlinear
rheology of frictional granular materials under small strain.

Although the values of the plateaus in G′ for disordered MBS
depended on φ − φJ

6,9, the corresponding values of the TBS are
independent of φ − φJ, as expressed in eqn. (18). In addition,
our analytical expressions cannot reproduce the second decrease
of G′ and increase of G′′ near γ0 = 10−2 in the MBS. The dis-
crepancy should result from the disorder because it leads to the
φ -dependence of G′ 7. To include the disorder effect, we regarded
kt/kn as a fitting parameter. In previous studies on models with
small degrees of freedom, e.g., the coherent potential approx-
imation26,29,30, the corresponding fitting parameters were self-
consistently determined. In future studies, we will discuss the
self-consistent determination of the parameter for the TBS.

Some researchers are interested in contributions from higher
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harmonics characterizing the nonlinear response to oscillatory
shear21, but the nonlinear viscoelastic moduli characterizing the
higher harmonics are negligibly small for jammed frictionless par-
ticles25. However, the higher harmonics in the frictional granular
materials require further careful investigation.

Conflicts of interest
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Appendix A: Details of Ordered MBS
This section explains the details of the ordered MBS consisting
of monodispersed particles initially placed on a triangular lattice.
We consider a two-dimensional assembly of N frictional particles
in a periodic box with sizes along the x and y directions Lx and
Ly, respectively. Here, we initially place N = 2NxNy particles of
diameter d with integers nx and ny at rrri as

rrri =
(

nx`−Lx/2,
√

3ny`−Ly/2
)

(30)

for 0≤ i < NxNy with integers nx, ny, and i = nx +Nxny. For NxNy ≤
i < 2NxNy, rrri is defined as

rrri =
(
(nx +1/2)`−Lx/2,

√
3(ny +1/2)`−Ly/2

)
(31)

with i = nx +Nxny +NxNy. The initial configuration is illustrated
in Fig. 8. We choose Lx = Nx` and Ly =

√
3Ny` with `= d(1− ε).

Fig. 8 Initial configuration of mono-dispersed particles on a triangular
lattice. The red rectangle, including interactions represented by the blue
lines, corresponds to the TBS.

The position rrri and peculiar momentum pppi of particle i with
mass mi and diameter di are driven by the SLLOD equation under
the Lees-Edwards boundary condition as34

d
dt

rrri = γ̇(t)yieeex +
pppi
mi

, (32)

d
dt

pppi = −γ̇(t)pi,yeeex + fff i, (33)

where γ̇(t) = γ0ω cosωt and eeex = (1,0) is the unit vector along the
x direction. The interaction force fff i is defined as

fff i = ∑
j 6=i

(
f (n)i j nnni j + f (t)i j ttt i j

)
H(di j− ri j) (34)

with di j = (di + d j)/2, nnni j = rrri j/ri j, ttt i j = (−ni j,y,ni j,x), and rrri j =

rrri− rrr j = (xi j,yi j). The normal force is given by

f (n)i j =−
(

knu(n)i j +ηnv(n)i j

)
(35)

with a normal viscous constant ηn and

v(n)i j =
(
vvvi− vvv j

)
·nnni j, (36)

where the velocity of particle i is given by vvvi =
d
dt rrri. The following

model is adopted for the tangential force:

f (t)i j = min
(
| f̃ (t)i j |,µ f (n,el)

i j

)
sgn( f̃ (t)i j ), (37)

where f (n,el)
i j = −knu(n)i j denotes the elastic part of the normal

force. Here, f̃ (t)i j is given by

f̃ (t)i j =−
(

ktu
(t)
i j +ηtv

(t)
i j

)
(38)

with a tangential viscous constant ηt. The tangential velocity v(t)i j
is given by

v(t)i j = (vvvi− vvv j) · ttt i j. (39)

The tangential displacement u(t)i j satisfies d
dt u(t)i j = v(t)i j for | f̃ (t)i j | <

µ f (n,el)
i j , whereas u(t)i j remains unchanged for | f̃ (t)i j | ≥ µ f (n,el)

i j . The

tangential displacement u(t)i j is set to zero if i and j are detached.

If all the particles are separated, the packing fraction φ for the
ordered MBS is defined as

φ =
∑i πd2

i
4LxLy

. (40)

Even if contacts exist between the particles, we use eqn. (40) by
assuming that the contact length di j−ri j is sufficiently lower than
di j. Using eqn. (40), φ is defined as

φ =
π

2
√

3(1− ε)2
. (41)

The jamming point of this system is

φJ =
π

2
√

3
(42)

with ε = 0. The distance from the jamming point is proportional
to ε.

φ −φJ '
π√
3

ε (43)

for ε � 1.

The shear stress σ is defined by eqn. (8) in the main article
with the normal component

σ
(n) =− 1

LxLy
∑

i
∑
j>i

xi jyi j

ri j
f (n)i j (44)

and tangential component

σ
(t) =− 1

2LxLy
∑

i
∑
j>i

x2
i j− y2

i j

ri j
f (t)i j . (45)
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The pressure is defined as

P =
1

2LxLy
∑

i
∑
j>i

(xi j fi j,x + yi j fi j,y). (46)

We use Nx = 8, Ny = 4, Nc = 20, kt = kn, and ηn = ηt = kn
√

m/kn,
where m denotes the mass of a particle with diameter d. This
model corresponds to a restitution coefficient e = 0.043. We adopt
the leapfrog algorithm considering a time step of ∆t = 0.05t0. We
choose ω = 1.0×10−4

√
kn/m as the quasistatic shear deformation

because G′ and G′′ are almost independent of ω for ω ≤ 1.0×
10−3

√
kn/m.

As shown in Figs. 4 and 5, the behaviors of G′ and G′′ of the
TBS agree with that of the MBS. We explain the theoretical back-
ground of the TBS. The initial configuration is shown in Fig. 8; it
contains the unit cell represented by the red rectangle with length
` and height

√
3`/2. It contains interactions between the three

particles represented by blue lines. Here, we assume that the par-
ticles move affinely as

rrri(t) = rrri(0)+ γ(θ(t))yi(0)eeex. (47)

In this case, the corresponding relative distances between the par-
ticles in any unit cell are identical.

In particular, in a unit cell containing particles i = i1, i2, and i3
with i1 = NxNy, i2 = 0, and i3 = 1, the positions of the particles are
given by

rrri1(t) =

(
γ(θ(t))

(√
3`−Ly

2

)
+

`−Lx

2
,

√
3`−Ly

2

)
, (48)

rrri2(t) =
(
−γ(θ(t))

Ly

2
− Lx

2
,−

Ly

2

)
, (49)

rrri3(t) =
(
−γ(θ(t))

Ly

2
+ `− Lx

2
,−

Ly

2

)
. (50)

The relative distances between these particles are identical to
those of the TBS, given by eqns. (1)-(3), which indicates that
the TBS provides the interaction forces among the three particles.
This system includes 2NxNy unit cells with identical interaction
forces. Hence, the normal and tangential components of σ are
given by

σ
(n) =−

2NxNy

LxLy
∑

i=i1,i2,i3

 ∑
j=i1,i2,i2
( j>i)

xi jyi j

ri j
f (n)i j

 , (51)

σ
(t) =−

NxNy

LxLy
∑

i=i1,i2,i3

 ∑
j=i1,i2,i2
( j>i)

x2
i j− y2

i j

ri j
f (t)i j

 . (52)

The pressure is also given by:

P =
NxNy

LxLy
∑

i=i1,i2,i3

 ∑
j=i1,i2,i2
( j>i)

(xi j fi j,x + yi j fi j,y)

 . (53)

Using the relation LxLy/(2NxNy) =
√

3`2/2 corresponding to A =√
3`2/2, σ (n), σ (t), and P coincide with eqns. (8)-(11). Hence,

if the assumptions of the affine motion, i.e., eqns. (48)–(50), are
satisfied, G′ and G′′ in the ordered MBS coincide with those in the
TBS.

Appendix B: Effect of particle rotation

In this section, we illustrate the effect of particle rotation, which
was not described in Appendix A. In the model with rotation, the
tangential velocity v(t)i j is given by

v(t)i j = (vvvi− vvv j) · ttt i j− (diωi +d jω j)/2 (54)

instead of eqn. (39), where ωi denotes the angular velocity of
particle i. The time evolution of ωi is given by

Ii
d
dt

ωi = Ti (55)

with the moment of inertia Ii =mid2
i /8 and torque Ti =−∑ j

di
2 FFF(t)

i j ·
ttt i j.

As shown in Fig. 9, we plot G′ in the ordered MBS with and
without rotation with kt/kn = 1.0 and ε = 0.001 for various values
of µ = 0.01. The values of other parameters are the same as those
in Appendix A. The effect of particle rotation is negligible, except
for the region near γc.
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Fig. 9 Storage modulus G′ against γ0 for the ordered MBS with µ = 0.01
and ε = 0.001. The open and filled symbols represent the results of the
particles with and without rotation, respectively.

As shown in Fig. 10, we plot G′′ in the ordered MBS with
and without rotation with kt/kn = 1.0 and ε = 0.001 for µ =

10−2,10−3,10−4,10−5 and 0.00001. The values of other param-
eters are the same as those in Appendix A. There are slight de-
viations in the peak position near γc between particles with and
without rotation.

In Fig. 11, we plot G′′ in the ordered MBS with and without
rotation with kt/kn = 1.0 and ε = 0.001 for µ = 1.0 and 0.1. There
are slight deviations in the peak position near γc between particles
with and without rotation even for these higher µ. In addition,
the second increase in G′′ around γ0 = 0.1 for particles without
rotation disappears for those with rotation.

Journal Name, [year], [vol.],1–12 | 7



�

����

���

����

���� ���� ���� ���� ���	 ���
 ����

�
 �
�
�

��

� � ���


� � ���	

� � ����

Fig. 10 Loss modulus G′′ against γ0 for the ordered MBS with µ =

10−2,10−3,10−4,10−5 and ε = 0.001. The open and filled symbols repre-
sent the results of the particles with and without rotation, respectively.
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Fig. 11 Loss modulus G′′ against γ0 for the ordered MBS with µ = 1.0,0.1
and ε = 0.001. The open and filled symbols represent the results of the
particles with and without rotation, respectively.

Appendix C: Analytical calculation of shear
stress and pressure

This section briefly explains the derivation of the normal and tan-
gential components of shear stress and pressure for a small value
of γ0. From eqns. (1)–(3), the relative distance rrri j(t) is given by

rrr12(θ(t)) =

(√
3γ(θ(t))+1

2
`,

√
3`
2

)
, (56)

rrr13(θ(t)) =

(√
3γ(θ(t))−1

2
`,

√
3`
2

)
, (57)

rrr23(θ(t)) = (−`,0) . (58)

Substituting these equations into u(n)i j = ri j − d, the normal dis-
placements are given by

u(n)12 (t) =−εd +

√
3

4
`γ(θ(t))+O(γ2

0 ), (59)

u(n)13 (t) =−εd−
√

3
4

`γ(θ(t))+O(γ2
0 ), (60)

u(n)23 (t) =−εd. (61)

Substituting these equations into eqn. (6), we obtain the normal
force as

f (n)12 = kn

(
εd−

√
3

4
γ(θ)`

)
, (62)

f (n)13 = kn

(
εd−

√
3

4
γ(θ)`

)
, (63)

f (n)23 = knεd (64)

up to O(γ0).

By differentiating eqns. (56)–(58) with time t, we obtain the
relative velocity as

vvv12(t) =

(√
3γ̇(θ(t))`

2
,0

)
, (65)

vvv13(t) =

(√
3γ̇(θ(t))`

2
,0

)
, (66)

vvv23(t) = (0,0) (67)

with the strain rate γ̇(θ(t)) = d
dt γ(θ(t)). The tangential unit vector
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is given by

ttt12(t) =

(
−
√

3`
2

,

√
3γ(θ(t))+1

2
`

)
/ |rrr12| , (68)

ttt13(t) =

(
−
√

3`
2

,

√
3γ(θ(t))−1

2
`

)
/ |rrr13| , (69)

ttt23(t) = (0,−1) . (70)

By considering the inner product of vvvi j and ttt i j, the tangential
velocity is given by

v(t)12(t) =−
3
4
`γ̇(θ(t))+O(γ2

0 ), (71)

v(t)13(t) =−
3
4
`γ̇(θ(t))+O(γ2

0 ), (72)

v(t)23(t) = 0. (73)

If the transition from the stick state to the slip state does not
occur under oscillatory shear, the tangential displacement is ob-
tained by integrating v(t)i j (t) as

u(t)12(t) = u(t)13(t) =−
3
4
`γ(θ(t))+O(γ2

0 ), (74)

u(t)23(t) = 0. (75)

Substituting these equations into f (t)i j =−ktu
(t)
i j yields

f (t)12 = f (t)13 = 3ktγ(θ(t))`/4, (76)

f (t)23 = 0 (77)

up to O(γ0). The condition that the transition does not occur is
satisfied when f (t)12 < µ f (n)12 for γ = γ0. Using eqns. (62) and (76)
with the assumption γ0 � ε, the condition is replaced by γ0 < γc

with γc given by eqn. (16).

For γ0 > γc, there exist regions where u(t)i j is unchanged in the
slip state as

u(t)12 =



−µknεd
kt

, 0≤ θ(θ)<
π

2

−µknεd
kt
− 3d(γ(θ)− γ0)

4
,

π

2
≤ θ <

π

2
+Θ

µknεd
kt

,
π

2
+Θ≤ θ <

3π

2
µknεd

kt
− 3d(γ(θ)+ γ0)

4
,

3π

2
≤ θ <

3π

2
+Θ

−µknεd
kt

,
3π

2
+Θ≤ θ < 2π,

(78)

u(t)13 = u(t)12 , (79)

u(t)23 = 0, (80)

where Θ satisfies

−µknεd
kt
−3d

γ
(

π

2 +Θ
)
− γ0

4
=

µknεd
kt

. (81)

This equation provides Θ = cos−1 (1−2γc/γ0). Substituting these
equations into f (t)i j =−ktu

(t)
i j yields

f (t)12 =



−µknεd, 0≤ θ(θ)<
π

2
−µknεd− 3ktd(γ(θ)− γ0)

4
,

π

2
≤ θ <

π

2
+Θ

µknεd,
π

2
+Θ≤ θ <

3π

2
µknεd− 3ktd(γ(θ)+ γ0)

4
,

3π

2
≤ θ <

3π

2
+Θ

−µknεd,
3π

2
+Θ≤ θ < 2π,

(82)

f (t)13 = f (t)12 , (83)

f (t)23 = 0. (84)

The normal component of σ in eqn. (9) is given by

σ
(n) = σ

(n)
12 +σ

(n)
13 (85)

with

σ
(n)
12 =− 1

A
x12y12

r12
f (n)12 (86)

σ
(n)
13 =− 1

A
x13y13

r13
f (n)12 . (87)

Substituting eqns. (56) and (57) with eqns. (62) and (63) into
eqns. (86) and (87) and using eqn. (85), we obtain σ (n) as eqn.
(14).

The tangential component of σ in eqn. (10) is given by

σ
(t) = σ

(t)
12 +σ

(t)
13 (88)

with

σ
(t)
(12) =−

1
2A

x2
12− y2

12
r12

f (t)12 (89)

σ
(t)
(13) =−

1
2A

x2
13− y2

13
r13

f (t)12 . (90)

Substituting eqns. (56) and (57) with eqn. (76) into eqns. (88),
(89), and (90), we obtain σ (t) as eqn. (15) for γ0 < γc. Using
eqns. (82) and (83) instead of eqn. (76), we obtain σ (t) as eqn.
(17) for γ0 ≥ γc.

The pressure, i.e., P, in eqn. (11) is defined as

P = P12 +P13 +P23 (91)

with

Pi j =
1

2A
ri j f (n)i j . (92)

Substituting eqns. (56)-(58) with eqns. (62)-(64) into eqns. (91)
and (92) with γ = 0, we obtain P0(γ0,µ) as eqn. (21).
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Appendix D: Relation between shear modulus
and stress–strain curve
In this section, we relate the shape of the stress–strain curve to
the complex shear modulus. The shear stress σ(θ) is expanded
using the Fourier series as

σ(θ) = γ0

∞

∑
n=1

G′n sin(nθ)+ γ0

∞

∑
n=1

G′′n cos(nθ), (93)

where G′n and G′′n with n > 1 denote the higher harmonics, G′ =
G′1, and G′′ = G′′1 . By neglecting G′n and G′′n for n > 1,

G′ ' σ (θ = π/2)
γ0

=
σ

γ0

∣∣∣∣
γ/γ0=1

= σ̃max, (94)

which is the maximum value of the scaled stress–strain curve il-
lustrated in Fig. 3(b). This expression and the scaled stress–strain
curve in Fig. 3(b) explain the decrease of G′ defined by eqn. (18).

The area S of the curve for σ(θ)/γ0 against γ(θ)/γ0 is given by

S =
∫ 2π

0
dθ

1
γ0

dγ(θ)

dθ

σ(θ)

γ0
. (95)

Substituting eqn. (4) into eqn. (95) with eqn. (12), we obtain

S =
∫ 2π

0
dθσ(θ)cosθ/γ0 = πG′′, (96)

which results in G′′ = S/π. As γ0 increases, the area S of the scaled
stress–strain curve in Fig. 3(b) increases first and decreases later,
which explains the γ0-dependence of G′′ provided by eqn. (19).

Appendix E: Details of Disordered MBS
In this section, we present the details of the disordered MBS. This
model is an extension of the monodisperse model used in Ap-
pendix A, including the dispersion of the particles and disordered
initial configuration.

The system is bidisperse and includes an equal number of par-
ticles with diameters d and d/1.4. To simulate the disordered
MBS, we randomly place the particles in a rectangular box with
an initial packing fraction of φI = 0.75. The system is slowly com-
pressed until the packing fraction reaches φ 24. In each compres-
sion step, the packing fraction is increased by ∆φ = 1.0× 10−4

with an affine transformation. Thereafter, the particles are re-
laxed to a mechanical equilibrium state with the kinetic tempera-
ture TK = ∑i p2

i /(mN)< Tth. Here, we choose Tth = 1.0×10−8knd2.
After compression, the oscillatory shear strain given by eqn. (4)
is applied for Nc cycles. In the last cycle, we measure G′ and
G′′ using eqns. (12) and (13) with eqns. (8)–(10). The pres-
sure, P0(γ0,µ) is obtained using eqn. (11) after the last cycle.
We use φ = 0.87, N = 1000, Nc = 20, Ly/Lx = 1, kt = 0.2kn, and
ηn = ηt = kn

√
m/kn.

Figure 12 shows the storage modulus G′ against γ0 in the dis-
ordered MBS for various values of µ. The storage modulus G′

is almost independent of γ0 for a small γ0 and decreases as γ0

increases. The endpoint of the first plateau increases with µ ex-
cept for µ = 0. A second plateau of G′ exists for µ = 10−4 and
10−5. The behavior of G′ for relatively small γ0 is similar to that

of crystalline solids as depicted in Fig. 4. On the other hand, the
decrease of G′ for larger γ0 cannot be captured by the analytical
results of the TBS. Note that G′ for µ = 0.1 in the limit γ0→ 0 is
different from that for µ ≤ 0.01, which results from the µ depen-
dence of the jamming point φJ

9.
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Fig. 12 Storage modulus G′ in the disordered MBS against γ0 with
φ = 0.870 for various values of µ.

Figure 13 shows the loss modulus G′′ in the disordered MBS
against γ0 for various values of µ. For sufficiently small γ0, G′′ is
zero, while G′′ becomes non-zero as γ0 increases. The loss modu-
lus G′′ starts to increase for smaller γ0 as µ decreases. Similar to
the case of G′, TBS captures only the behavior of relatively small
γ0 (see Figs. 5 and 13).
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Fig. 13 Loss modulus G′′ in the disordered MBS against γ0 with φ = 0.870
for various values of µ.

Appendix F: Numerical shear modulus for
TBS
In this section, we show the behaviors of G′ and G′′ in the TBS
without the assumption used to obtain the analytical solution.
Here, we numerically obtain G′ and G′′ under quasistatic oscilla-
tion using eqns. (12) and (13) based on the left Riemann sum,
where the integration of Ψ(θ), i.e.,∫ 2π

0
dθ Ψ(θ), (97)

is approximated as

∫ 2π

0
dθ Ψ(θ)'

M

∑
n=1

Ψ(θn)∆θ (98)
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with ∆θ = 2π/M and θn = (n−1)∆θ . We use ε = 0.001 and ∆θ =

5.0×10−5 in our simulation.
As shown in Fig. 14, we plot the storage modulus G′ numeri-

cally obtained from the TBS against γ0 with kt/kn = 1.0 for various
values of µ as points. Moreover, we plot the analytical results de-
rived from eqn. (18) as thin solid lines. The numerical results
agree with the analytical results for γ0 < 0.003 and reproduce the
second plateau of the MBS shown in Fig. 4.
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Fig. 14 Storage modulus G′ against γ0 with kt/kn = 1.0 and ε = 0.001
for various values of µ. The points represent the numerical results of
the TBS, while the thin solid lines represent the analytical result given
by eqn. (18). The vertical dashed lines represent the critical amplitude
γc(µ) given by eqn. (16) for µ = 10−4,10−3,10−2,10−1,100 from left to
right.

Figure 15 shows the loss modulus G′′ numerically obtained
from the TBS against γ0 with kt/kn = 1.0 for various values of µ as
points. We also plot the analytical results given by eqn. (19) as
thin solid lines. The numerical results agree with the analytical
results for γ0 < 0.003.
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Fig. 15 Loss modulus G′′ against γ0 with kt/kn = 1.0 and ε = 0.001 for
various values of µ. The points represent the numerical results of the
TBS, while the thin solid lines represent the analytical results obtained
from eqn. (19). The vertical dashed lines represent the critical amplitude
γc(µ) obtained from eqn. (16) for µ = 10−4,10−3,10−2,10−1,100 from left
to right.
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