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The interplay between topology and criticality has been a recent interest of study in condensed
matter physics. A unique topological transition between certain critical phases has been observed as
a consequence of the edge modes living at criticalities. In this work, we generalize this phenomenon
by investigating possible transitions between critical phases which are non-high symmetry in nature.
We find the triviality and non-triviality of these critical phases in terms of the decay length of
the edge modes and also characterize them using the winding numbers. The distinct non-high
symmetry critical phases are separated by multicritical points with linear dispersion at which the
winding number exhibits the quantized jump, indicating a change in the topology (number of edge
modes) at the critical phases. Moreover, we reframe the scaling theory based on the curvature
function, i.e. curvature function renormalization group method to efficiently address the non-high
symmetry criticalities and multicriticalities. Using this we identify the conventional topological
transition between gapped phases through non-high symmetry critical points, and also the unique
topological transition between critical phases through multicritical points. The renormalization
group flow, critical exponents and correlation function of Wannier states enable the characterization
of non-high symmetry criticalities along with multicriticalities.

I. INTRODUCTION

Topological states of matter have recieved a huge at-
tention from both theoretical and experimental physicists
in recent years1–5. Non-trivial topology of the electronic
band structure dictates the formation of localized sta-
ble edge modes which are protected by the bulk gap6,7.
Number of edge modes are counted using topological in-
variant number, which is defined as the integral of the
curvature function (Berry connection, Berry curvature,
etc) over the Brillouin zone8–10. The topological invari-
ant shows quantized jump associated with the bulk gap
closing at a critical point. Therefore, a topological tran-
sition between distinct gapped phases is characterized by
the bulk gap closing and opening along with the quan-
tized jump in the values of invariant numbers11–14.

Moreover, the quantization signifies the divergence in
the curvature function at the critical point, which allows
one to frame a scaling theory and correlation factors us-
ing the curvature function15–26. A renormalization group
(RG) method developed by iteratively finding a parame-
ter space away from the critical point such as to reduce
the divergence in the curvature function by driving it to
its fixed point configuration. As this procedure does not
change the topology of the band structure, eventually, the
RG flow lines characterize the topological phase transi-
tion. The Lorentzian form of the curvature function near
a critical point allows one to obtain the decay length of
the edge modes at gapped topological phases20,27. The
decay length diverges on approaching a critical point, in-
dicating the edge modes decays into the bulk. Therefore,
the edge modes were believed to exist only with a finite
bulk gap.

Recently, this conventional understanding has been re-
investigated and the edge modes are observed to be local-

ized and stable even at certain critical points28–40. There-
fore, similar to the gapped topological phases, certain
critical phases also possess localized stable edge modes.
The critical phases with topological and non-topological
characters are identified as the high symmetry (HS) in
nature since the gap closing occurs at the HS points in
momentum space40. The distinct HS critical phases are
separated by the multicritical points and favor an un-
usual topological transition between them. This tran-
sition occurs without gap closing and opening at HS
points in contrast to the conventional topological tran-
sition26,31,32,40. The multicritical points which favor the
transition are found to have quadratic dispersion. In gen-
eral, they are the intersection points of the distinct crit-
icalities and are studied in different contexts41–43. The
scaling theory developed to identify the topological tran-
sition between gapped phases, are reframed to identify
the topological transition between HS critical phases26,40.
The RG flow lines, correlation factors and decay length
of edge modes at criticality, effectively characterized the
topological transition40.

In the topological systems, increasing the nearest-
neighbor couplings leads to prominent behavior of non-
high symmetry (non-HS) critical points apart from the
HS ones44,45. The existence of stable localized edge
modes at non-HS critical phases has not been explored
previously. Furthermore, the possibility of unique topo-
logical transition between distinct non-HS critical phases
is an interesting open question and require a detailed
investigation. On the other hand, scaling theory based
on the curvature function fails to capture the topologi-
cal transition at a non-HS critical point between gapped
phases23,24. Therefore, the generalization of this method
to identify the possible topological transition between
non-HS critical phases is not straightforward.
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Therefore, in the present work, our motivation is three-
fold. (i) We generalize the curvature function renormal-
ization group (CRG) theory to characterize the non-HS
quantum criticality. We develop and perform the CRG
to identify the topological transition, at a non-HS critical
point, between gapped phases. (ii) We identify the topo-
logical and trivial non-HS critical phases by investigating
the existence of edge modes both analytically and numer-
ically. (iii) We identify and explore the unique topolog-
ical phase transition between non-HS critical phases via
multicritical points. We reframe the CRGmethod to cap-
ture the topological transition, at a multicritical point,
between non-HS critical phases.

The article is laid out as follows: In Section.II we intro-
duce the model and the topological phase diagrams. Sec-
tion.III describes the CRG method for topological tran-
sition at non-HS critical point between gapped phases.
The diverging property, critical exponents and correla-
tion factors using curvature functions are discussed. In
Section.IV we demonstrate the existence of trivial and
topological non-HS critical phases and the edge mode
localizations. These results are supported by the wind-
ing number calculations and numerical analysis carried
at non-HS criticality. In Section.V, the CRG method
for topological transition at multicritical point between
non-HS critical phases is discussed. We also discuss the
behavior of curvature function, its exponents and the cor-
relation factors at non-HS criticalities. We discuss the
results and its experimental observabilities in Section.VI
and finally conclude.

II. MODEL AND TOPOLOGICAL PHASE
DIAGRAM

We consider one dimensional lattice chain of spin-
less fermions in momentum space with onsite potential
(Γ0), nearest neighbor (Γ1), next-nearest neighbor (Γ2),
and next-next-nearest neighbor (Γ3) couplings. The two-
band Bloch Hamiltonian can be written in the pseudospin
basis as

H(k,Γ) = χ(k).σ = χx(k)σx + χy(k)σy + χz(k)σz, (1)

where Γ = {Γ0,Γ1,Γ2,Γ3}, χx(k) = Γ0 + Γ1 cos k +
Γ2 cos 2k + Γ3 cos 3k, χy(k) = Γ1 sin k + Γ2 sin 2k +
Γ3 sin 3k, χz(k) = 0 and σ = (σx, σy, σz) are the Pauli
matrices. The model represents the 1D topological insu-
lator and superconductor with extended nearest neighbor
couplings6,40,44–46. Topological distinct gapped phases of
the model can be identified with the winding number

w =
1

2π

∮
BZ

χx∂kχy − χy∂kχx

χ2
x + χ2

y

dk, (2)

where w ∈ Z (integer), as shown in Fig.1. Topological
phase transitions between distinct gapped phases are as-

sociated with the gap closing, Ek = ±
√
χ2
x + χ2

y = 0.

FIG. 1. Topological phase diagram. Plotted in the plane Γ1−
Γ3 with Γ0 = 1, Γ2 = 0.5. The gapped phases are identified
with integer winding number. These phases are separated by
the four critical lines. The HS critical lines are represented in
red (for k0 = 0) and blue (for k0 = ±π). The non-HS critical
lines are represented in magenta (for ±k0 in Eq.3) and green
(for ±k0 in Eq.4). Among the four multicritical points two are
identified with quadratic dispersion (purple dots) and other
two are identified with linear dispersion (orange dots) which
are labeled M1,2.

This dictates the critical lines across which the winding
number changes.

The gap closing momenta k0 (critical momenta) in
the Brillouin zone can be either HS or non-HS in nature.
The momenta with k0 = −k0, (up to a reciprocal lattice
vector) are referred to as the HS points and are associated
with space-group symmetries19,47,48. In our model, there
are two HS points at k0 = 0,±π, as shown in Fig.2(a)
and (b). The distinct gapped phases (i.e. w = 0 ↔ 1,
w = 1 ↔ 2, and w = 2 ↔ 3) are separated by HS critical
points at which the gap closes at HS momenta in the
Brillouin zone. The critical points in the parameter space
can be traced with a line on which every point closes the
gap at HS momenta and is referred to as a critical line.
In our model, the critical momenta k0 = 0 yields the
critical line Γ3 = −(Γ0+Γ1+Γ2) (red line in Fig.1), and
k0 = ±π yields the critical line Γ3 = (Γ0−Γ1+Γ2) (blue
line in Fig.1).

As the nearest-neighbor couplings are increased the
gap closing can also occur at arbitrary points in the Bril-
louin zone, which are referred to as non-HS points20,47,48.
The distinct gapped phases (i.e. w = 0 ↔ 2, and
w = 1 ↔ 3) are also separated by non-HS critical
points/lines at which the gap closes at non-HS momenta
in the Brillouin zone. Moreover, at each point on the
non-HS critical lines, the gap closing occurs at a pair of
non-HS momenta, as shown in Fig.2(c) and (d). In our
model, these points can be obtained for

k0 = ± arccos((−2Γ2 +
√
4Γ2

2 − 16Γ3(Γ1 − Γ3))/8Γ3)

(3)
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FIG. 2. Energy dispersion for HS and non-HS critical points.
(a) HS point at k0 = 0 which can be obtained for the values
of the parameters satisfying the relation Γ3 = −(Γ0+Γ1+Γ2)
(red critical line in Fig.1). (b) HS point at k0 = ±π which
can be obtained for the values of the parameters satisfying the
relation Γ3 = (Γ0 − Γ1 + Γ2) (blue critical line in Fig.1). (c)
Non-HS point at k0 in Eq.3 where the values of the parameters
satisfy Γ3 = (Γ1 +

√
Γ2
1 + 4Γ0(Γ0 − Γ2))/2 (magenta critical

line in Fig.1). (d) Non-HS point at k0 in Eq.4 where the values

of the parameters satisfy Γ3 = (Γ1 −
√

Γ2
1 + 4Γ0(Γ0 − Γ2))/2

(green critical line in Fig.1).

which yield the critical line Γ3 = (Γ1 +√
Γ2
1 + 4Γ0(Γ0 − Γ2))/2 (magenta line in Fig.1),

and

k0 = ± arccos((−2Γ2 −
√
4Γ2

2 − 16Γ3(Γ1 − Γ3))/8Γ3)

(4)
which yield the critical line Γ3 = (Γ1 −√

Γ2
1 + 4Γ0(Γ0 − Γ2))/2 (green line in Fig.1). Therefore,

HS and non-HS critical lines together distinguish the
gapped phases with w = 0, 1, 2, 3 as shown in Fig.1.
Note that, the pair of non-HS gap closing points have
identical critical properties. Therefore, we address only
one point throughout the discussion.

Moreover, the model possess four multicritical points
at the intersections of HS and non-HS critical lines.
Two of them are identified with quadratic dispersion
(purple dots in Fig.1) whilst the other two are with
linear dispersion (orange dots, named M1 and M2 in
Fig.1). The quadratic multicriticalities are obtained for
Γ1 = ±(3Γ0 + Γ2)/2 and linear multicriticalities are ob-
tained for Γ1 = ±Γ2 (here the sign ′±′ represents M1

and M2 respectively). In our model, each non-HS criti-
cal line is separated by the multicritical points into two
segments. These two segments can be identified with dis-
tinct topologies (discussed later). Moreover, the critical
lines manifest as critical regions or critical surfaces in the
three-dimensional parameter space. Every point on this
critical surface is a gap-closing critical point. Therefore,
we refer to the different segments of critical lines as crit-
ical phases.

Localized edge modes living at certain criticalities,

lead to a unique topological transition along the critical
lines between distinct critical phases26,40. In this work,
we aim to identify topological distinct nature among the
non-HS critical phases and the topological transition be-
tween them. We achieve this in three steps. At first,
we develop CRG method to address the non-HS crit-
icality and show that it works in identifying the con-
ventional topological transition between gapped phases
(Section.III). Later, we construct the model at non-HS
criticality and show topological distinct non-HS critical
phases and its edge mode solutions both analytically and
numerically (Section.IV). Finally, we reframe the CRG
method to work at non-HS criticality in order to capture
the unique topological transition between non-HS critical
phases (Section.V).

III. CRG FOR TOPOLOGICAL TRANSITION
BETWEEN GAPPED PHASES THROUGH

NON-HS QUANTUM CRITICALITY

The critical behavior of the system can be captured
by a scaling scheme based on the divergence of curvature
function at a critical point15. The curvature function can
be defined as

F (k,Γ) =
χx∂kχy − χy∂kχx

χ2
x + χ2

y

, (5)

whose integral over the Brillouin zone gives the winding
number in Eq.2. The scaling involves finding a Γ′ for
every Γ such that F (k0,Γ

′) = F (k0 + δk,Γ), where δk is
small deviation from a HS point k0. This procedure grad-
ually reduces the deviation in the curvature function from
its fixed point configuration while preserving the topolog-
ical property15. Eventually, the scaling scheme yields RG
flow in parameter space which enable the identification of
critical points, at which the topological transition occurs,
along with fixed points.

However, the same scaling scheme does not capture the
non-HS critical points, where the peak in the curvature
function occur away from HS points and the correspond-
ing k0 changes with every Γ′. Nevertheless, in some cases,
the scaling at HS points can reveal the non-HS critical
behavior in terms of RG flow lines23,24. Although, this
advantage is not universal and is lost when certain con-
ditions to the parameters are imposed in the model26.
Therefore, in general, the CRG for HS points fails to
capture the non-HS criticalities.

Here we reframe the scaling procedure to obtain an ef-
fective scheme which can directly capture the topological
transition at non-HS criticality between gapped phases.
Similar to the case of HS criticalities, the curvature func-
tion shows diverging property by tuning the parameter
towards non-HS criticalities as well, i.e. Γ → Γc. The
momenta at which the diverging peak occurs (k0) is a
set of non-HS points k0 =

{
±kc0,±k10,±k20, ...

}
where kc0

is the momentum for Γ = Γc and the other points are
for the parameter values away from the criticality (i.e.
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FIG. 3. Curvature function in the vicinity of non-HS critical
point. As one tune the parameter Γ to Γ′ away from the
critical point, peak of the curvature function F (k,Γ) decreases
and shits from k1

0 to k2
0. This enable one to realize the scaling

of the form F (k2
0,Γ

′) = F (k1
0 + δk,Γ).

Γ ̸= Γc). The diverging peak of the curvature function
increases as Γ → Γc leading to complete divergence at
Γ = Γc and k0 = ±kc0.
Moreover, the curvature function flips the sign as the

parameters passes through the non-HS critical point

lim
Γ→Γ+

c

F (k0,Γ) = − lim
Γ→Γ−

c

F (k0,Γ) = ±∞. (6)

The curvature function is symmetric around a non-HS
point, F (k0+δk,Γ) = F (k0−δk,Γ), where δk is small de-
viation from non-HS point k0, and by choosing a proper
gauge it can be written in terms Ornstein-Zernike form

F (k0 + δk,Γ) =
F (k0,Γ)

1 + ξ2δk2
, (7)

where ξ is characteristic length scale (inverse of the width
of curvature function). This length scale also shows the
diverging property on approaching the non-HS critical
point. Therefore, one can define the critical exponents
for the divergence of curvature function as

F (k0,Γ) ∝ |Γ− Γc|−γ , ξ ∝ |Γ− Γc|−ν , (8)

where the exponents γ and ν dictates the universality
class of non-HS criticalities. For one dimensional sys-
tems, these exponents obeys the scaling law γ = ν, which
is imposed by the conservation of topological invariant17.

The striking similarities in the behavior of curvature
function between HS and non-HS criticalities, allows one
to reframe the scaling theory purely in terms of non-HS
points. Let us consider that as Γ is tuned to Γ′ the peak
develops at k10 and then shifts to k20 respectively, as shown
in Fig.3. For this property the scaling can be written as

F (k20,Γ
′) = F (k10 + δk,Γ). (9)

Expansion of this equation to the leading orders in Γ′

and k10 gives

F (k10,Γ)− F (k20,Γ) + δk∂kF (k,Γ)|k=k1
0

= (Γ′ − Γ)∂ΓF (k
2
0,Γ) (10)

To obtain the RG equation, without loss of generality,
one can choose the parameter values (Γ and Γ′) in such
a way that the non-HS points k10 and k20 have the closest
values i.e. k10 ≊ k20, for which the curvature functions
are negligibly different i.e. F (k10,Γ) ≊ F (k20,Γ). This
approximation yields the generic CRG equation

dΓ

dl
≈ ∂kF (k,Γ)|k=k0

∂ΓF (k0,Γ)
, (11)

where dΓ = Γ′ − Γ and dl = δk. The RG flow direction
together with the flow rate determines the critical and
fixed points in the parameters space18 as

Critical point:

∣∣∣∣dΓdl
∣∣∣∣ → ∞,flow directs away,

Stable fixed point:

∣∣∣∣dΓdl
∣∣∣∣ → 0,flow directs into,

Unstable fixed point:

∣∣∣∣dΓdl
∣∣∣∣ → 0,flow directs away. (12)

Interestingly, the Wannier-state correlation function,
obtained from the charge-polarization correlation be-
tween Wannier states at different positions17, can be
extended to identify the topological transition through
non-HS criticality. It can be obtained from the Fourier
transform of the curvature function and the substitution
of Ornstein-Zernike form. The correlation function can
be written as

λR = ⟨R|r̂|0⟩ = eik0R
F (k0,Γ)

2ξ
e−

R
ξ , (13)

where r̂ is the position operator for the Wannier states
at a distance R from the origin |0⟩, defined as |R⟩ =∫
dkeik(r̂−R) |uk⟩ with |uk⟩ being a Bloch state. In Eq.13,

k0 is the non-HS point and the ξ cab be regarded as cor-
relation length, which coincides with the decay length of
the edge modes in topological non-trivial phase17. The
correlation function λR decays exponentially near the
non-HS critical point and the decay gets slower as we
tune towards the criticality with the diverging correlation
length ξ. This clearly indicate the topological transition
through non-HS criticality between gapped phases.

A. Curvature function and critical exponents

The curvature function of the model in Eq.1 can be ob-
tained using the pseudo-spin vectors as

F (k,Γ) =
χy∂kχx − χx∂kχy

χ2
x + χ2

y

(14)

=
A+B cos(k) + C cos(2k) +D cos(3k)

A′ +B′ cos(k) + C ′ cos(2k) +D′ cos(3k)
,

where A = Γ2
1 +2Γ2

2 +3Γ2
3, A

′ = Γ2
0 +Γ2

1 +Γ2
2 +Γ2

3, B =
Γ0Γ1+3Γ1Γ2+5Γ2Γ3, B

′ = 2(Γ0Γ1+Γ1Γ2+Γ2Γ3), C =
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FIG. 4. Nature of curvature function in the vicinity of non-
HS criticalities i.e. magenta and green critical lines in Fig.1.
Fixing the values Γ0, Γ2 and Γ3, the parameter Γ1 is varied
around the critical value Γc

1. For all the plots Γ0 = 1 and
Γ2 = 0.5. (a) For Γ3 = 2.2 and Γc

1 = 2. It is a critical point
on the magenta line between the phases w = 3 and w = 1.
(b) For Γ3 = 0.7 and Γc

1 = 0. It is a critical point on the
magenta line between the phases w = 2 and w = 0. (c) For
Γ3 = −2.2 and Γc

1 = −2. It is a critical point on the green line
between the phases w = 3 and w = 1. (d) For Γ3 = −0.36
and Γc

1 = 1. It is a critical point on the green line between
the phases w = 2 and w = 0.

2Γ0Γ2 + 4Γ1Γ3, C
′ = 2(Γ0Γ2 + Γ1Γ3), D = 3Γ0Γ3 and

D′ = 2Γ0Γ3. In Fig.4, we show the nature of curvature
function in the vicinity of the non-HS criticalities, Γ3 =
(Γ1 ±

√
Γ2
1 + 4Γ0(Γ0 − Γ2))/2 (i.e. magenta and green

lines in Fig.1). Setting Γ0 = 1 and Γ2 = 0.5 we tune Γ1

towards its critical values (say Γc
1) for a fixed value of Γ3.

For the non-HS critical point between the gapped phases
w = 1 and w = 3, Γc

1 = ±2 and Γ3 = ±2.2 respectively
for magenta and green criticalities. For w = 0 and w =
2, Γc

1 = 0 and Γ3 = 0.7 for magenta and Γ1 = 1 and
Γ3 = −0.36 for green criticalities. Fixing Γ3, we vary Γ1

around the critical point, as shown in Fig.4.

As one tune the parameter Γ1 towards its critical
value Γc

1, diverging peak occurs at non-HS points k0,
which shifts each time the Γ1 is varied. The peak be-
comes prominent as we approach Γ1 = Γc

1 and flips the
sign as we tune further across the critical point. These
properties of curvature function can be observed for both
non-HS criticalities. Note that, the same nature of curva-
ture function can also be observed at the negative pair of
non-HS point. Therefore, the divergence and flipping of
curvature function can be considered as an efficient qual-
itative observation to identify the topological transition
through non-HS criticalities.

The behavior of the curvature function can be quan-
tified in terms of critical exponents γ and ν as defined
in Eq.8, which captures the divergences in the height
F (k0,Γ) and inverse of the width ξ of curvature func-
tion. The values of these exponents can be obtained by
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FIG. 5. Critical exponents for non-HS quantum criticalities.
For all the plots Γ0 = 1 and Γ2 = 0.5. (a) For Γ3 = 2.2 and
Γc
1 = 2. (b) For Γ3 = 0.7 and Γc

1 = 0. (c) For Γ3 = −2.2 and
Γc
1 = −2. (d) For Γ3 = −0.7 and Γc

1 = 0. For all the cases
exponents are found to be γ = γ+/− ≈ 1 and ν = ν+/− ≈ 1.
(e) Dynamical critical exponent for a critical point between
the gapped phases w = 1 and w = 3. (f) Dynamical critical
exponent for a critical point between the gapped phases w = 0
and w = 2.

numerical fitting of the curvature function with

Ffitting = c+
F (k0,Γ)

1 + ξ2(k − k0)2
(15)

where c is an arbitrary constant. The fitting is done by
varying Γ in the vicinity of the non-HS critical points
with corresponding k0 values. The data points collected
for |F (k0,Γ)| and ξ can then be fitted again with Eq.8 to
extract the exponents. Fig.5 demonstrates this process
and shows the exponent values on approaching the non-
HS critical points from either sides (represented as γ+/−
and ν+/−). The data points are collected by fixing the
parameters Γ0, Γ2 and Γ3 and varying Γ1 by δΓ1 (δΓ1 =
|Γ1 − Γc

1|) on either sides of the critical points.

The critical exponents can also be calculated an-
alytically by expanding the pseudo-spin vector χ(k)
around non-HS point k0 and recasting the curva-
ture function in the Ornstein-Zernike form. The
expansion upto first order, χ(k)|k=k0

≈ χ(k0) +
∂kχ(k0)δk, for the non-HS points k0 = arccos((−2Γ2 ±√
4Γ2

2 − 16Γ3(Γ1 − Γ3))/8Γ3) yields (the sign ‘±’ repre-
sents the magenta and green criticalities respectively)

χx ≈ δΓ+Aδk and χy ≈ Bδk, (16)
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where

δΓ = Γ0 − Γ2/2∓ (1/2)α

A =
(4Γ1Γ3 − Γ2

2 ± Γ2α)
√

2Γ3(Γ1 + 3Γ3 − Γ2
2 ± Γ2α)

4
√
2Γ2

3

B =
−Γ3

2 + 4Γ2Γ3(Γ1 − Γ3)± Γ2
2α∓ 2Γ3(Γ1 + 3Γ3α)

4Γ2
3

(17)

with α =
√
Γ2
2 + 4Γ3(Γ3 − Γ1). Therefore the curvature

function in Eq.14 can be recasted as

F (k, δΓ) =
−B/δΓ

1 +
(
2A
δΓ

)
δk +

(
A2+B2

δΓ2

)
δk2

=
F (k0, δΓ)

1 + ξδk + ξ2δk2
(18)

Note that, the term ξ2 is dominant as it diverges more
quickly than ξ, therefore, one can obtain the Ornstein-
Zernike form using only the leading term in the denomi-
nator. The critical exponents γ and ν are

F (k0, δΓ) = −BδΓ−1 =⇒ γ = 1 (19)

ξ =
√
(A2 +B2)δΓ−1 =⇒ ν = 1. (20)

This clearly demonstrate that, analytical and numerical
values of critical exponents agree each other. Therefore,
the exponents γ = ν = 1 for both the non-HS criticalities
and they obey the scaling law γ = ν for 1D systems.

Moreover, the vanishing energy scale of the gap func-
tion ∆, defines a gap exponent

∆ ∝ |Γ− Γc|y, (21)

where y = zν, which is dynamical scaling law49 with z
the dynamical critical exponent24,41. The z dictates the
nature of the spectra near the gap closing momenta k0,
i.e. Ek ∝ kz. It can be calculated numerically using
curve fitting method similar to the previous case. This
procedure results in the Fig.5(e) and (f), which yields
z = 1 for both the non-HS criticalities. The gap exponent
can be obtained as y = zν = 1. The critical exponents
defines the universality class of the topological transi-
tion through both non-HS quantum criticalities between
gapped phases. Therefore, both the non-HS criticalities
share the same universality class (γ, ν, z) = (1, 1, 1).

B. Curvature function renormalization group and
correlation function

In this section, we perform CRG to the model in Eq.1
and obtain RG equations which essentially captures the
topological transition between gapped phases through
non-HS criticalities. The RG equations in terms of the
parameters for the non-HS points can be constructed
from Eq.11. For the non-HS point k0 = arccos((−2Γ2 +

-6 -4 -2 0 2 4 6

-6
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-2

0

2

4

6

Γ1

Γ
3

(a)

-6 -4 -2 0 2 4 6
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0

2

4

6

Γ1

Γ
3

(b)

FIG. 6. CRG flow diagram. Plotted for Γ0 = 1 and Γ2 = 0.5.
(a) RG flow for magenta criticality. (b) RG flow for green
criticality. The magenta and green criticalities manifests as
stable and unstable fixed points respectively. These lines co-
incides with the fixed lines represented in orange and purple.
The HS lines, represented as red and blue lines, are partially
recognised by the RG flow as stable and unstable fixed lines
respectively.

√
4Γ2

2 − 16Γ3(Γ1 − Γ3))/8Γ3) (corresponds to magenta
line in Fig.1), the RG equations for Γ1 and Γ3 (Γ0 = 1
and Γ2 = 0.5) can be obtained as

dΓ1

dl
=
α
√
α1Λ1(Γ0,Γ1,Γ2,Γ3)

2
√
2Λ2(Γ0,Γ1,Γ2,Γ3)

(22)

dΓ3

dl
=

Γ2
3α

√
α1Λ1(Γ0,Γ1,Γ2,Γ3)

2
√
2Λ′

2(Γ0,Γ1,Γ2,Γ3)
(23)

Similarly, for the non-HS point k0 = arccos((−2Γ2 −√
4Γ2

2 − 16Γ3(Γ1 − Γ3))/8Γ3) (corresponds to green line
in Fig.1) we obtain

dΓ1

dl
= −

α
√
α1Λ3(Γ0,Γ1,Γ2,Γ3)√

2Γ2
3Λ4(Γ0,Γ1,Γ2,Γ3)

(24)

dΓ3

dl
= −

α
√
α1Λ3(Γ0,Γ1,Γ2,Γ3)√
2Λ′

4(Γ0,Γ1,Γ2,Γ3)
(25)

where α =
√

Γ2
2 + 4Γ3(−Γ1 + Γ3) and α1 =√

(2Γ3(Γ1 + 3Γ3)− Γ2
2 + Γ2α)/Γ3 (see supplementary

material for detailed form of Λs). The non-HS critical-
ities can be identified from the RG flow in the Γ1 − Γ3

plane. In general, the RG flow rate and the direction en-
ables the identification the critical and fixed points (sta-
ble and unstable) in the parameter space18, as explained
in Eq.12. However, in this case, the RG flow exhibits an
anomalous behavior that both the non-HS criticalities si-
multaneously satisfy the fixed and critical line conditions.
In other words, the non-HS criticalities drives both nu-
merator and denominator of the RG equations to zero
individually. This is due to the overlap of critical and
fixed lines in the flow diagram.

The fixed lines can be obtained as Γ3 = 1/2(Γ1 +√
Γ2
1 − Γ2

2) which defines stable fixed points and Γ3 =
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FIG. 7. Wannier state correlation function. The parameter
values Γ0 = 1 and Γ2 = 0.5 are fixed. (a) Represents λR

in the vicinity of a critical point between the gapped phases
w = 1 and w = 3. For the magenta line we choose Γc

1 = 2
and Γ3 = 2.2 and for the green line Γc

1 = −2 and Γ3 = −2.2.
(b) Represents λR in the vicinity of a critical point between
w = 0 and w = 2. For the magenta line Γc

1 = 0 and Γ3 = 0.7
and green line Γc

1 = 0 and Γ3 = −0.7.

1/2(Γ1 −
√

Γ2
1 − Γ2

2) which defines unstable fixed points
(represented as purple and orange lines respectively in
Fig.6). These lines coincide with the non-HS critical lines
for higher values of parameters i.e. |Γ1| and |Γ2|. This
results in the manifestation of the magenta critical lines
as stable fixed line and green critical line as unstable
fixed line, as shown in Fig.6(a,b). The manifestation of
the critical lines as fixed lines can be found in agreement
with the observations made in Ref.23,24. Apart from this,
interestingly the CRG constructed for non-HS criticali-
ties partially captures the HS criticalities which are also
manifested as fixed lines in the flow diagram. As shown
in Fig.6 the HS criticalities Γ3 = ∓(Γ0 ± Γ1 + Γ2) (the
red and blue lines) appear as the stable and unstable
fixed points respectively. Therefore, the CRG developed
for non-HS criticalities is efficient in detecting the corre-
sponding topological transition between gapped phases
and also partially captures the HS topological transitions.

The Wannier state correlation function λR defined in
Eq.13, clearly identify the topological transitions at the
non-HS criticalities of the model. Fig.7 shows the pro-
file of the correlation function in the vicinity of both
the non-HS criticalities. For k0 = arccos((−2Γ2 ±√

4Γ2
2 − 16Γ3(Γ1 − Γ3))/8Γ3), Eq.13 yields highly oscil-

latory decay in λR in the vicinity of the critical points
Γc
1 = ±2 and Γc

1 = 0. As the parameter Γ1 is tuned to-
wards its critical value the decay in λR slow down leading
to the divergence in the length scale ξ. This is the typi-
cal behavior of the Wannier state correlation function for
the topological transitions.

IV. TOPOLOGICAL PHASE TRANSITION
BETWEEN NON-HS CRITICAL PHASES

THROUGH MULTICRITICALITY

In this section, we investigate the existence of edge
modes at non-HS critical phases and explore the possi-
ble topological transition between non-HS critical phases
through multicritical points. To achieve this, at first,

Trivial Non-HS

Critical Phase

Γ1<Γ2 Γ1>-Γ2

Topological Non-HS

Critical Phase

Γ1>Γ2 Γ1<-Γ2

M1,2

Γ1=Γ2 Γ1=-Γ2

FIG. 8. Schematic representation of non-HS criticalities i.e.
magenta and green lines in Fig.1. The trivial and non-trivial
phases are represented as dashed and solid lines respectively
and are separated by multicritical points M1,2. For the ma-
genta line Γ1 < Γ2 (Γ1 > Γ2) represents trivial (non-trivial)
critical phase. For the green line Γ1 > −Γ2 (Γ1 < −Γ2)
represents trivial (non-trivial) critical phase. The transition
between the trivial and non-trivial phases occur at Γ1 = ±Γ2

on the magenta and green lines respectively.

we construct the model at criticality using the near-
critical approach40 in which the Hamiltonian can be con-
sidered critical only in parameter space i.e. H(Γc, k) with
k = k0 + ∆k where ∆k << 2π, to avoid the singularity
at exact critical point. This method has been efficiently
used to study the HS criticalities40 and here we show that
it is also effective to address the non-HS criticalities.

To obtain H(Γc, k), we plug the non-HS critical line
expression for Γ3 into the pseudospin vectors in Eq.1.
This yields χx(k) = Γ0 + Γ1 cos k + Γ2 cos 2k + (Γ1 ±√
Γ2
1 + 4Γ0(Γ0 − Γ2))/2 cos 3k, and χy(k) = Γ1 sin k +

Γ2 sin 2k+(Γ1±
√
Γ2
1 + 4Γ0(Γ0 − Γ2))/2 sin 3k. The cor-

responding dispersion vanishes at multicritical points.
Among the four multicritical points only the points with
linear dispersion (M1,2 in Fig.1) separates the distinct
non-HS critical phases, as schematically shown in Fig.8.
Therefore, we study only M1,2, which can be obtained
for the momenta

kmc
0 = π,

±arccos[
−2Γ2 +

√
−8(Γ1 +

1
2 (−Γ1 − α))(Γ1 + α+ 4Γ2

2)

4(Γ1 + α)
]

(26)

for M1 (multicritical point on the magenta line) and

kmc
0 = 0,

±arccos[
−2Γ2 −

√
−8(Γ1 +

1
2 (−Γ1 + α))(Γ1 − α+ 4Γ2

2)

4(Γ1 + α)
]

(27)

for M2 (multicritical point on the green line). Here α =√
Γ2
1 + 4Γ0(Γ0 − Γ2). At M1,2 the gap closing occurs at

three points in the Brillouin zone. One of them is HS
point and the other two are non-HS points. This is due
to the fact that M1,2 are the intersection points of non-
HS and HS critical lines (see Fig.1). Now driving the
parameters towards the multicritical point involves both
Γc → Γmc and k → kmc

0 . In the following subsections we
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FIG. 9. Decay length of edge modes at non-HS criticalities.
The parameters Γ0 = 1 and Γ2 = 0.5 are fixed. (a) On
the magenta line. The decay length λ−1

+ can be found to
be positive (negative) at non-trivial (trivial) critical phase
Γ1 > 0.5 (Γ1 < 0.5). (b) On the green line. The decay length
λ−1
+ can be found positive (negative) at non-trivial (trivial)

critical phase Γ1 < −0.5 (Γ1 > −0.5).

show topological trivial and non-trivial characters of the
non-HS critical phases.

A. Decay length of edge modes at non-HS
criticalities

To enable the identification of the trivial and topolog-
ical non-HS critical phases, we calculate the edge mode
decay length using the Dirac equation31,40,50–52 at non-
HS criticalities. The multicritical points are the phase
boundaries, between distinct non-HS critical phases, at
which the gap closes for kmc

0 . We expand the Hamilto-
nian defined at criticality around kmc

0 = π, 0 (for magenta
and green criticalities respectively) to obtain

H(k) = (m+ ϵ1k
2)σx + (ϵ2k)σy (28)

wherem = Γ0∓3Γ1/2−(1/2)α+Γ2, ϵ1 = ±Γ1+9/2(Γ1+
α) − 4Γ2 and ϵ2 = ∓5Γ1/2 − (3/2)α + 2Γ2 with α =√

Γ2
1 + 4Γ0(Γ0 − Γ2) (the sign ‘±’ are for magenta and

green lines respectively). The zero energy solution in real
space H(−i∂x)ψ(x) = 0 (with ℏ = 1) can be obtained by
multiplying σy from right hand side. This implies the
wavefunction ψ(x) = ρηϕ(x) is an eigenstate of σzρη =
ηρη. Using the trial wavefunction ϕ(x) ∝ e−xλ we get

−ηϵ1λ2 + ϵ2λ+ ηm = 0 (29)

where λ is the inverse of the decay length which can be
obtained as

λ+ =
m

ηϵ2
(30)

with η = sign(ϵ2). The decay length remain positive for
Γ1 > Γ2 and negative for Γ1 < Γ2 on the magenta line.
This means that the critical phase Γ1 > Γ2 is the topo-
logical phase with the edge modes and Γ1 < Γ2 is the
trivial critical phase with no edge modes. Similarly, on
the green line, Γ1 < −Γ2 has positive decay length and is
non-trivial critical phase with edge mode while Γ1 > −Γ2

is trivial critical phase with no edge modes. The term m
plays the role of mass and is zero at the multicritical

-4 -2 0 2 4
0.0
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3.0
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w
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c
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FIG. 10. Winding number at non-HS criticalities. The pa-
rameters Γ0 = 1 and Γ2 = 0.5 are fixed. (a) On the magenta
line. For trivial phase, Γ1 < 0.5, winding number wc = 1 and
for non-trivial phase Γ1 > 0.5 the winding number wc = 2.
Transition occurs at the multicritical point M1 at Γ1 = 0.5.
(b) On the green line. For trivial phase, Γ1 > −0.5, wind-
ing number wc = 1 and for non-trivial phase Γ1 < −0.5 the
winding number wc = 2. Transition occurs at the multicriti-
cal point M2 at Γ1 = −0.5.

points Γ1 = ±Γ2. Therefore, as m→ 0 the decay length
diverges, as shown in Fig.9, implying the delocalization of
the edge modes into the bulk. This clearly indicates that
the multicritical points are the topological phase transi-
tion points between the distinct non-HS critical phases.

B. Winding number at non-HS criticalities

Topological trivial and non-trivial characters of non-
HS critical phase can also be identified using winding
numbers. The winding number is a topological invari-
ant number which quantify the edge excitations with
gapped bulk, i.e. the bulk-boundary correspondence6,7.
As shown in Eq.2, it is defined as the integral of the curva-
ture function over the Brillouin zone which yields integer
values Z, and it features a quantized jump at the topo-
logical phase transition point2. However, the definition
in Eq.2 fails at the transition point due to the divergence
of the integrand (curvature function). Therefore, in or-
der to quantify the edge modes at criticality one has to
exclude the singular point and can write31,40

wc =
1

2π
lim
δ→0

∮
|k−k0|>δ

F (k,Γc)dk. (31)

This defines the winding number at criticality and dic-
tates the fractional values (Z/2) for HS critical phases31.
The quantized jump of the fractional winding number at
the transition points indicate the topological transition
between HS critical phases. The winding number at non-
HS criticalities can also be obtained from Eq.31. In this
case, one has to avoid two singular point in the set k0,
which yields wc integer values, as shown in Fig.10. As
each gap closing point can contribute a factor of (1/2),
the winding number at the trivial non-HS critical phase
is wc = 1. The non-trivial critical phase with one edge
mode is assigned with winding number wc = 2. Fig.10
shows the topological transition between non-HS critical
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phases through multicritical point at magenta and green
lines.
Based on these observations one can argue that the

bulk-boundary correspondence can be realised by iden-
tifying the difference between the winding numbers of
topological non-trivial and trivial phases (either gapped
or critical).

δw = wnon−trivial − wtrivial, (32)

where δw will be non-zero integer and counts the number
of edge modes in the corresponding non-trivial phase.
In the case of gapped phases, Eq.32 looks trivial as the
winding number for a trivial phase wtrivial = 0. However,
for the critical phases it provides proper physical picture
as it correctly counts the edge modes at the non-trivial
critical phase. In case of HS criticality the trivial winding
number is wtrivial

c = 1/2 and non-trivial winding number
is wnon−trivial

c = Z/2 (where Z is non-zero integer)31,40.
Therefore, the number of edge modes at the non-trivial
HS critical phase is δwc = wnon−trivial

c − wtrivial
c = Z,

this can be found in agreement with Ref40.
In the case of non-HS criticalities, there exists two gap

closing points in the momentum space. Therefore, the
trivial winding number itself turns out to be an integer
(as each gap closing point contributes a factor of 1/2).
The trivial non-HS critical phase is now identified with
wc = 1 and a non-trivial non-HS critical phase is with
wc = Z (where Z ≥ 2). In order to obtain correct number
of edge modes at the non-trivial critical phase, one has
to identify the difference δwc = wnon−trivial

c − wtrivial
c =

Z−1. In our model the non-trivial non-HS critical phases
are identified with wnon−trivial

c = 2 (see Fig.10) for both
the criticalities. Therefore, the proper number of edge
modes at these phases can be obtained to be δwc = 1.

The analytical results of winding number and decay
length of edge modes at criticality are found to be in
agreement with the edge mode solutions obtained nu-
merically under open boundary condition (we refer to
supplementary material for the detailed discussion).

V. CRG FOR TOPOLOGICAL TRANSITION
BETWEEN NON-HS CRITICAL PHASES

Scaling theory for the topological transition at non-HS
critical point between gapped phases is developed in Sec-
tion.III. Here we reframe this scaling scheme in order to
capture the topological transition between non-HS criti-
cal phases. This is possible based on the fact that the cur-
vature function defined at criticality using near-critical
approach inherits the diverging property. Divergence oc-
curs at the momentum kmc

0 as one tunes the parameter
Γc → Γmc. The diverging peak flips sign as the parame-
ters tuned across the multicritical points

lim
Γc→Γ+

mc

F (kmc
0 ,Γc) = − lim

Γc→Γ−
mc

F (kmc
0 ,Γc) = ±∞.

(33)

The curvature function at criticality is also symmetric
and acquires the Ornstein-Zernike form

F (kmc
0 + δk,Γc) =

F (kmc
0 ,Γc)

1 + ξ2c δk
2
, (34)

where ξc is the characteristic length scale at criticality.
Corresponding critical exponents can be obtained as

F (kmc
0 ,Γc) ∝ |Γc−Γmc|−γ , ξc ∝ |Γc−Γmc|−ν . (35)

In order to construct a scaling scheme similar to the
gapped case, we consider the non-HS points of kmc

0 , which
effectively captures the scaling at multicritical points (a
reverse technique is used in Ref 24, where scaling at HS
points identify the non-HS criticalities). The scaling now
can be recasted as

F (kmc
02 ,Γ

′
c) = F (kmc

01 + δk,Γc). (36)

Considering the same approximation employed in the
case of gapped phases (Section.III), the generic RG equa-
tion at non-HS criticality can be obtained as

dΓc

dl
≈
∂kF (k,Γc)|k=kmc

0

∂Γc
F (kmc

0 ,Γc)
, (37)

where dΓc = Γ′
c − Γc and dl = δk (with δk being small

deviation away from kmc
0 ). The RG flow lines identify the

topological transition between non-HS critical phases.
The correlation function in terms of Wannier state rep-

resentation can also be written at non-HS criticalities to
characterize the topological transition. At criticality one
can write

λcR =
eik

mc
0 R

2ξc
F (kmc

0 ,Γc)e
R/ξc , (38)

where ξc is the correlation length. The correlation func-
tion λcR decays as the parameters tune towards the mul-
ticritical point. The decay rate decreases near the point
and gets sharper as we tune away from the point. This
typical behavior of λcR confirms the topological transition
at multicritical points between non-HS critical phases.

A. Curvature function and critical exponents

Curvature function at non-HS criticalities can be written
using the components χx(k) = Γ0+Γ1 cos k+Γ2 cos 2k+

(Γ1 ±
√
Γ2
1 + 4Γ0(Γ0 − Γ2))/2 cos 3k, and χy(k) =

Γ1 sin k+Γ2 sin 2k+(Γ1±
√
Γ2
1 + 4Γ0(Γ0 − Γ2))/2 sin 3k.

F (k,Γc) =
A+B cos(k) + C cos(2k)

2D2 + E2
, (39)

where A = 6Γ2
0 + Γ1(3Γ1 ± α) − 8Γ0Γ2 + 4Γ2

2, B =
−2Γ0Γ1 + Γ2(±7Γ1 + α), C = 6Γ0(Γ2 − Γ0), D =
(Γ1 + Γ2 cos(k))

2 and E = (Γ2 − 2Γ0)
2 sin(k)2 with

α =
√

Γ2
1 + 4Γ0(Γ0 − Γ2). The diverging peak of the



10

Γ1=0.55

Γ1=0.6

Γ1=0.45

Γ1=0.4

0.58 2.09

-20

0

20

k

F
(k
,Γ
c
)

(a)

Γ1=-0.55

Γ1=-0.6

Γ1=-0.45

Γ1=-0.4

0.9 2.85

-20

0

20

k

F
(k
,Γ
c
)

(b)

FIG. 11. Curvature function at non-HS criticalities. Plotted
for Γ0 = 1 and Γ2 = 0.5. (a) Curvature function at magenta
line in the vicinity of the multicritical point Γ1 = 0.5 (M1)
for one of the non-HS kmc

0 . (b) Curvature function at green
line in the vicinity of the multicritical point Γ1 = −0.5 (M2)
for one of the non-HS kmc
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FIG. 12. Critical exponents for multicritical points. Plotted
for Γ0 = 1 and Γ2 = 0.5. (a) For Γ1 = 0.5 (M1). (b) For
Γ1 = −0.5 (M2). The exponents are found to be γ ≈ ν ≈ 1
for both the multicritical points.

curvature function can be observed at kmc
0 , as one tune

the parameters Γc towards Γmc. The peaks at non-HS
kmc
0 points are shown in Fig.11. The diverging peak flips

the sign (similar to the case of gapped phases) as we
tune across the multicritical points (M1,2) signaling the
topological transition between non-HS critical phases.
In Fig.11(a), curvature function in the vicinity of the
multicritical point M1, i.e. Γ1 = 0.5 on the magenta
line is shown. In Fig.11(b), multicritical point M2, i.e.
Γ1 = −0.5 on the green line is shown. Therefore, both the
non-HS criticalities shows the similar behavior of curva-
ture function at criticality. The multicritical points M1,2

are the topological phase transition points between non-
HS critical phases.
The critical exponents of the curvature function at crit-

icality near the multicritical points can be obtained from
Eq.35. The Ornstein-Zernike form of the curvature func-
tion in the vicinity of the multicritical points allows one
to extract the exponent values numerically using the fit-
ting equation

Ffitting = c+
F (kmc

0 ,Γc)

1 + ξ2c (k − kmc
0 )2

(40)

Fig.12 shows that, one can extract the exponents values
as γ ≈ ν ≈ 1 for both the multicritical points M1,2.
The exponents can also be evaluated analytically simi-

lar to the case of gapped phases. Expansion of the com-
ponents χx,y around kmc

0 yields

χx ≈ δΓc +Aδk2 and χy ≈ Bδk, (41)
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FIG. 13. CRG at non-HS criticalities. (a) On the magenta
line which capture the transition at M1 (Γ1 = Γ2). The tran-
sition line is characterized with the outward RG flow. (b) On
the green line to capture the transition at M2 (Γ1 = −Γ2).
The transition line is characterized with the inward RG flow.
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FIG. 14. Wannier state correlation function at criticality.
The parameter values Γ0 = 1 and Γ2 = 0.5 are fixed. (a)
Represents λc

R in the vicinity of M1 i.e. Γ1 = 0.5. (b) Repre-
sents λc

R in the vicinity of M2 i.e. Γ1 = −0.5.

where

δΓc = Γ0 ∓ 3Γ1/2− (1/2)α+ Γ2

A = ±Γ1 + 9/2(Γ1 + α)− 4Γ2 (42)

B = ∓5Γ1/2− (3/2)α+ 2Γ2

with α =
√

Γ2
1 + 4Γ0(Γ0 − Γ2). This allows one to write

the curvature function at criticality in Ornstein-Zernike
form as

F (k, δΓc) =
F (kmc

0 , δΓc)

1 + ξ2c δk
2

(43)

where F (kmc
0 , δΓc) = BδΓ−1

c =⇒ γ = 1 and ξc =
BδΓ−1

c =⇒ ν = 1. Therefore, both numerical and
analytical values of the exponents are found to be same
and they obey the scaling law γ = ν.

B. Curvature function renormalization group and
correlation function

We perform the scaling scheme at non-HS criticality
and obtain RG equations of the model which essentially
captures the topological transition between non-HS crit-
ical phases. From Eq.37, the RG equations for the ma-
genta line can be obtained for the parameters Γ1 and Γ2
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with Γ0 = 1 as

dΓ1

dl
=

(Γ1 + α)4αΛ5(Γ0,Γ1,Γ2)

Λ6(Γ0,Γ1,Γ2)
(44)

dΓ2

dl
= − (Γ1 + α)4αα′

1Λ5(Γ0,Γ1,Γ2)

Λ′
6(Γ0,Γ1,Γ2)

(45)

Similarly, for the green line we get

dΓ1

dl
= − (Γ1 − α)4αΛ7(Γ0,Γ1,Γ2)

Λ8(Γ0,Γ1,Γ2)
(46)

dΓ2

dl
= − (Γ1 − α)4αα′

1Λ7(Γ0,Γ1,Γ2)

Λ′
8(Γ0,Γ1,Γ2)

(47)

where α =
√
Γ2
1 + 4Γ0(Γ0 − Γ2) and α′

1 = (Γ2 − 2Γ0)
(see supplementary material for the detailed form of Λs).
The multicritical points Γ1 = ±Γ2 (M1,2) are identified
using the RG flow directions in Γ1 −Γ2 plane. As shown
in Fig.13, M1 (Γ1 = Γ2) manifest as a critical line with
the flow lines flowing away. Similarly, M2 (Γ1 = −Γ2)
manifest as a fixed line with flow lines flowing into, as
explained in Eq.12. This clearly demonstrates that the
multicritical points are indeed the topological phase tran-
sition points between non-HS critical phases at both the
non-HS criticalities.
Apart from CRG, the correlation function defined at

criticality in Eq.38 can be obtained to identify the topo-
logical transition between non-HS critical phases. The
profile of the λcR, for the non-HS kmc

0 , in the vicinity of
multicritical points are shown in Fig.14. The correlation
function decay slowly near M1,2, i.e. Γ1 = ±0.5. The
decay gets sharper as the parameters are tuned away the
multicritical points. Therefore, this clearly shows that
the multicritical points are the transition points between
the non-HS critical phases.

VI. CONCLUSIONS

In summary, we have identified a unique topological
phase transition between non-HS critical phases through
multicritical points. A generic model of topological insu-
lators and superconductors have been constructed at crit-
icality using the near-critical approach40, which provides
an effective platform to study the edge mode solutions
and topological transitions at non-HS criticalities.

The decay length of edge modes and winding num-
ber associated to the non-HS critical phases enables the
characterization of trivial and topological non-HS criti-
cal phases both qualitatively and quantitatively. The de-
cay length remains positive for non-trivial critical phases
and negative for trivial critical phases. The multicriti-
cal point is associated with the divergence of the decay
length, which indicate the delocalization of edge modes
into the bulk. On the other hand, the winding number,

which count the number of edge modes, acquires non-zero
integer values at non-HS criticalities. This gives wc = 2
to a topological non-HS critical phase where only one
edge mode is localized. Therefore, we have suggested
to consider the difference in the winding numbers be-
tween trivial and non-trivial critical phases which yields
the correct count of the edge modes localized at the non-
trivial critical phase. The numerical solutions in the open
boundary condition are found to be in agreement with
these results.

We have also generalized the scaling theory to capture
the topological transition at non-HS critical points. The
scaling theory based on the divergence of curvature func-
tion, characterize both the conventional and the unique
topological transition in terms of RG flow, critical expo-
nents and correlation functions. Investigating the con-
ventional topological transition between gapped phases,
we have found that the CRG method is efficient to cap-
ture the non-HS critical points. Reframing the CRG
method to work at criticality, we have identified the topo-
logical transition between non-HS critical phases through
multicritical points. The critical and fixed line behaviors
of the CRG equations in the parameter space is identified
with RG flow rate and directions. In addition, the expo-
nential decay of the correlation function near the mul-
ticritical points clearly evidence the unique topological
transition between non-HS critical phases. Moreover, the
divergence in curvature function along with the flipping
of its sign across the transition points, locate the non-HS
critical and multicritical points. The critical exponents
of curvature function, calculated both analytically and
numerically yields γ = ν = 1, which establish the uni-
versality class of non-HS critical points and multicritical
points.

The model discussed in this work can be efficiently
simulated using the superconducting circuit of a single
qubit driven by the microwave pulses53,54 and the ul-
tracold atoms in optical lattices4,55–59. Therefore, using
the good control over the nearest neighbors provided by
these platforms one can study the results discussed in
this work. As the non-HS criticality becomes prominent
with increasing nearest-neighbor couplings14,44,45, an in-
teresting question is whether the unique topological tran-
sition survive in truly long-range models. Moreover, the
study of this interesting phenomena in non-Hermitian
systems60, spin systems45 and driven systems20,61 sets
the future direction of the work. In addition, the fate
of the edge modes and topological transition at non-HS
criticality in the presence of interactions is an intrigu-
ing open problem. Therefore, we hope that our work
will provide a step forward towards the understanding
of the interesting interplay between topology and crit-
icality. Moreover, the model considered in this study
is not a true long-range model with decaying coupling
strengths62,63. Nevertheless, the results discussed in this
work will remain effective even with power-law decay-
ing nearest-neighbor coupling strengths14. However, a
detailed study, specifically, the topological transition be-
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tween non-HS critical phases in truly long-range models
remains a future scope of our work.
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