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Abstract
Quantum reinforcement learning is an emerging field at the intersection of quantum com-

puting and machine learning. While we intend to provide a broad overview of the literature
on quantum reinforcement learning – our interpretation of this term will be clarified below –
we put particular emphasis on recent developments. With a focus on already available noisy
intermediate-scale quantum devices, these include variational quantum circuits acting as func-
tion approximators in an otherwise classical reinforcement learning setting. In addition, we sur-
vey quantum reinforcement learning algorithms based on future fault-tolerant hardware, some
of which come with a provable quantum advantage. We provide both a birds-eye-view of the
field, as well as summaries and reviews for selected parts of the literature.
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1 Introduction and Overview

With recent advances in the fabrication and control of hardware for quantum information processing,
the possibilities of merging quantum computing (QC) with machine learning (ML) have received a
huge amount of attention within the growing research community. Hereby, reinforcement learning
(RL) is the third paradigm besides supervised and unsupervised learning. In this survey article,
we provide an overview over so-called quantum reinforcement learning (QRL) algorithms. We
understand these as quantum-assisted approaches, that solve a particular task (be they classical or
quantum in nature) by employing quantum resources (either in simulation and/or in experiment).

In order to keep this contribution as self-contained as possible, we provide the necessary back-
grounds before venturing into the QRL literature. We start out with a brief recap of the essentials
of the RL paradigm in the fully classical setting in Sec. 2. Further, in Sec. 3 we provide a quick
introduction to QC and variational quantum circuits (VQCs). Readers familiar with either of the
topics may safely skip these sections.

In Sec. 4 we turn our attention to the emerging field of QRL, starting out with a quick overview
of the literature. Then we delve into summaries of the most prominent contributions. This se-
lection is necessarily subjective and reflects our own research interests – overall we identified 177
relevant manuscripts, of which we reviewed 120 explicitly. For a detailed overview on paper counts
see Tab. 1. We organized our summaries into several blocks, that are ordered by what one could call
an increasing degree of ‘quantiziation’. The first of these blocks in Sec. 4.1 covers what we refer to as
‘quantum-inspired’ RL algorithms. The second block in Sec. 4.2 takes a rather detailed look at QRL
algorithms that employ so-called VQCs as function approximators. In many cases, the correspond-
ing algorithms are obtained by simply replacing a standard neural network function approximator
(or any other sort) by an appropriate VQC. We provide detailed summaries for most papers in this

Figure 1: A possible classification matrix for QRL algorithms, where we took into account only
those variants of QRL which we focus on in Sec. 4. The algorithm classes are ordered according to
their degree of quantum-classical hybridization, ranging from purely classical to purely quantum. A
more detailed review of the 22 selected works on quantum-inspired reinforcement learning (QiRL)-
algorithms can be found in Sec. 4.1. VQC-based approaches are summarized in quite some detail
in Sec. 4.2 – comprising of 68 papers. QRL-algorithms employing post-noisy intermediate-scale
quantum (NISQ) quantum algorithms as subroutines or even fully quantum approaches to QRL are
described in Sec. 4.3, Sec. 4.4, Sec. 4.5 and Sec. 4.6, based on 30 selected manuscripts. The dashed
vertical line between classical and NISQ compute resources indicates that presently it is unclear
whether QRL with NISQ-compatible algorithms offers robust quantum advantage on a broad range
of learning problems. The solid vertical line distinguishes post-NISQ algorithms from both classical
and NISQ-compatible algorithms, as they typically come with guaranteed quantum advantage (at
least relative to their classical counterparts).
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≤ 2018 2019 2020 2021 2022 2023 Σ

Quantum-inspired QRL 12 1 2 5 2 0 22
VQC-based QRL 0 2 2 9 21 34 68
QRL applicationa 0 0 0 1 7 18 26
Post-NISQ QRL 12 2 2 6 4 4 30

aThe QRL application papers are VQC-based and also counted towards that category.

Table 1: The year-wise paper count for the different classes of QRL. The data not necessarily reflects
publication, but rather the first public availability, e.g. via preprint servers.

category, as variational quantum algorithms are believed to offer the potential to obtain quantum
advantage despite the limitations of present day NISQ hardware. In Secs. 4.3 and 4.4, we take a look
at realizations of QRL based on so-called projective simulation and the use of Boltzmann machines
as function approximators, respectively. In Sec. 4.5 we move to a class of approaches that employ
quantum algorithms as subroutines. The corresponding hardware requirements will likely be com-
patible only with universal, fault-tolerant and error-corrected quantum processing units (QPUs).
Finally, Sec. 4.6 provides a summary for a formal approach to QRL, which treats all components of
RL ‘quantumly’. From our point of view, the highest degree of quantization can thus be found in
these approaches. Fig. 1 gives an overview of the QRL literature as understood in this survey.

Finally, in Sec. 5 we state our concluding thoughts on the current state-of-the-art of QRL. Before
moving to more technical content, we would like to express our hope that this literature survey on
QRL will be of use to colleagues and collaborators and the wider QC research community. It
represents our effort to familiarize ourselves with QRL and its main research directions.

2 Classical Reinforcement Learning

Compared to the methods of supervised and unsupervised learning, which are typically implemented
as passive learning, RL falls into the class of interaction-based learning [SB18]. On an abstract level,
the learner interacts with its environment, the state of which it can either fully or only partially
observe through a corresponding observation obtained after executing an action according to an
underlying policy. In the RL paradigm, the learner is therefore appropriately referred to as an
agent: it can - be it in simulation or in the real world - interact with its environment according
to its abilities. The aim of RL is to learn a policy through the interaction of the agent with
the environment, which is optimal with regard to a reward adapted to the problem. In other
words, the agent should find an optimal policy during the learning process in the abstract space
of all policies, which maximizes the expected cumulative reward. The theoretical basis for RL
is formed by so-called Markov decision processes (MDPs) and the associated Bellman equation,
which represents a consistency equation for the so-called value function. In turn, an optimal policy
can be extracted from the optimal value function. Alternatively, the optimal policy can also be
learned directly. Under certain conditions, the elements of RL can be mapped to their respective
equivalents in control theory, where typically a dynamic optimization problem is solved by gradient-
based methods with simulation of the corresponding model dynamics. On the RL side, there are
both model-based and model-free approaches. The model-free approach in particular is one of the
strengths of the RL method, since in many cases state and action spaces are too high-dimensional
to design realistic dynamical models and simulate them to efficiently find optimal control strategies.
The large dimensions of the spaces that occur in realistic problems make the use of approximation
methods for the value function necessary. Driven by the breakthroughs in deep learning (DL),
artificial neural networks (NNs) have established themselves as function approximators for both
value function and policy (understood as a deterministic or probabilistic mapping of states to
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actions), thus establishing the field of deep reinforcement learning (DRL).
In the following, we will introduce the various notions pertaining to RL in a more formal way

and provide the background necessary to understand the basic RL terminology. In an RL scenario,
the algorithm, also referred to as agent, generates its own data by interacting with an environment.
This interaction happens over some discrete timesteps t, which are accumulated to episodes with
either finite or infinite horizon. In each timestep, the agent is able to make an observation st ∈ S
of the environment. Based on this state information, an action at ∈ A acting on the environment
is selected according to a policy. Based on the (usually unknown) environment dynamics, the next
state st+1 ∈ S is observed from the environment and the agent receives a reward rt ∈ R for its
choice. The agent should select the actions in such a way that some objective is optimized, usually
related to the long term reward. A sketch of this pipeline can be found in Fig. 2. In this survey
article, we follow the formalism and notation of Sutton et al. [SB18], with small adaptions wherever
we feel that it eases comprehension.

Figure 2: Interaction between agent and environment for one timestep of a RL task.

Reinforcement Learning as a Markov Decision Process More formally, this setup is usually
described as an MDP. A finite MDP is a 5-tuple (S,A,R, p, γ), where the sets S, A and R are
finite. It is defined by the following components:

• A set of states S the agent can observe from the environment

• A set of actions A the agent can execute in the environment

• A set of rewards R ⊂ R the agent can receive from the environment

• The environment dynamics p : S × R × A × S → [0, 1]; The value p(s′, r|s, a) := Pr{st+1 =
s′, rt = r|st = s, at = a} gives the probability that the environment transitions to state st+1

and the agent receives reward rt, if the agents executes action at in state st at time t.

• The discount factor 0 ≤ γ ≤ 1, more on this below;

The dynamics of the environment are often not accessible to the agent, otherwise the task collapses
to (not necessarily trivial) dynamic programming. The function p satisfies the properties of a
probability density function (PDF), i.e., it holds

∑
s′∈S,r∈R p(s

′, r|s, a) = 1, for all choices of s ∈ S
and a ∈ A. According to the Markov property, the dynamics are completely described by p, i.e., the
consecutive state st+1 and reward rt depend solely on the directly preceding state st and action at.

With this framework in mind, the interaction between agent and environment can be described
as a trajectory τ . For a finite or infinite horizon H, one episode is therefore given by the sequence

τ = [s0, a0, r0, s1, a1, r1, s2, · · · , sH−1, aH−1, rH−1] , (1)

with st ∈ S, at ∈ A, and rt sampled following the environment dynamics for each timestep t.
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Long Term Reward as Objective The agent gets feedback from the environment through the
immediate rewards rt. However, instead of maximizing these short-term rewards, it is much more
appropriate to use some long term measure as objective. A natural choice is to go for the cumulative
reward, also referred to as the expected return

Gt := rt + rt+1 + rt+2 + · · ·+ rH−1. (2)

For episodic tasks (H < ∞) it is often desirable and for continuous tasks (H = ∞) it is necessary
to use a discount factor γ. This leads to the discounted (expected) return

Gt :=

H−1∑
t′=t

γt
′−t · rt′ , (3)

where each choice of γ defines a different MDP. For γ < 1 the value of Gt is guaranteed to be finite
and emphasis on individual rewards decreases with distance from the current time-step. For γ = 0
the sum reduces to just the immediate reward, so an appropriate choice of this hyperparameter is
crucial for the potential success of the RL agent.

Policy, Value Functions and Optimality In order to describe a meaningful RL setup, there
are still some concepts missing. As described above, the agent needs to decide for an action in every
timestep, depending on the state information that is observed. This decision making process can
be understood as a (stochastic) policy

π (a|s) := Pr{at = a|st = s}, (4)

where
∑

a∈A π (a|s) = 1 holds for all s ∈ A. The overall task of RL is to derive an optimal policy
π∗ w.r.t. some metric.

A suitable tool to define optimality and also to simplify updates is the notion of value functions.
The state value function of state s under the current policy π is defined as

Vπ(s) := Eπ [Gt|st = s] . (5)

It describes the expected returns when starting in state s and following policy π from there on,
with the value for a terminal state always zero by definition. It can be interpreted as a measure of
how good it is to be in a certain state, where quality is measured w.r.t. expected return. Explicitly
separating the first step in the definition above gives rise to the Bellman (expectation) equation

Vπ(s) =
∑
a∈A

π (a|s)
∑

s′∈S,r∈R
p
(
s′, r|s, a

) [
r + γ · Vπ(s′)

]
, (6)

for all s ∈ S. Consequently, the value function Vπ can be viewed as the unique solution to this
Bellman equation. Alternatively, one can define the state-action value function as the expected
return when starting in state s, executing action a, and following policy π from there on. It is
defined as

Qπ(s, a) := Eπ [Gt|st = s, at = a] , (7)

for all s ∈ S and a ∈ A. It is straightforward to see that it holds Vπ(s) =
∑

a∈A π (a|s)Qπ(s, a) for
all s ∈ S. This identity can be used to give the Bellman equation for the state-action value function
as Qπ(s, a) =

∑
s′∈S,r∈R p(s

′, r|s, a)
[
r + γ ·

∑
a′∈A π(a

′|s′)Qπ(s′, a′)
]
.

The value function allows to explicitly define and evaluate the quality of policies, i.e., the policy
π is better or equal to another policy π′, iff Vπ(s) ≥ Vπ′(s) for all s ∈ S. If a policy is better or
equal to all others, it is considered an optimal policy π∗. All optimal policies share the same optimal
state-value function

Vπ∗(s) := V ∗(s) := max
π

Vπ(s), (8)
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for all s ∈ S. A similar notion of optimality for the action-value function is given by

Q∗(s, a) := max
π

Qπ(s, a), (9)

for all s ∈ S and a ∈ A. It is straightforward to formulate the connection of both quantities
as V ∗(s) = max

π

(∑
a∈A π (a|s)Qπ(s, a)

)
= max

a∈A
Q∗(s, a). With this it is possible to derive the

Bellman optimality equation for the value function as

V ∗(s) = max
a∈A

∑
s′∈S,r∈R

p
(
s′, r|s, a

) [
r + γ · V ∗(s′)

]
, (10)

for all s ∈ S. Using the stated connection this can be reformulated to extend to the state-action

value function as Q∗(s, a) =
∑

s′∈S,r∈R p(s
′, r|s, a)

[
r + γ ·max

a′∈A
Q∗(s′, a′)

]
for all s ∈ S and a ∈ A.

Solving and Approximating the Bellman Equation One topic that has to be addressed
is the actual representation of the policy and value functions. The most intuitive approach is to
just store the values for all state-action pairs in a table, also referred to as the tabular approach.
While this formulation offers nice convergence and optimality guarantees for several scenarios, it
has some serious drawbacks. Most prominently, it is intractable once the state-action space gets to
large, which is the case for most real-world problems. A workaround is to use parametric function
approximators, which results in the parameterized functions πθ, Vθ, or Qθ, respectively. The typical
choice is a NN [HSW89], in Sec. 4.2 the usage of VQCs for this task is considered from several
angles. As there now is an approximation in the defining quantities, also convergence guarantees
are much less straightforward than for the tabular case. The remaining parts of this section can be
understood both for the tabular and parameterized case, although details might vary a bit.

The Bellman optimality equation offers a tool to derive an optimal policy. It has to be noted
that the given formulation makes use of the environment dynamics p. Therefore, solution methods
solving the equation with dynamic programming are referred to as model-based. The two most
prominent examples include value iteration [Bel57] and policy iteration [RN94; PRD96].

There is also a whole range of model-free approaches, where the agent does not make use of any
model that represents the environment dynamics. Instead, all information is directly acquired by
interaction with the environment. One prominent representative is theQ-learning approach [WD92],
which basically is an approximation of Q-value iteration using samples. Starting with a random
initialization, the update rule

Q(s, a)← Q(s, a) + α

(
rt + γ ·max

a′∈A
Q(s′, a′)−Q(s, a)

)
(11)

directly derives from the Bellman equation, where α is a learning rate hyperparameter. The policy
is usually defined to act epsilon-greedily w.r.t. the current action-value function, i.e.

π(s) :=

argmax
a∈A

Q(s, a) with probability 1− ε,

uniformly at random from A with probability ε.
(12)

An alternative approach is the policy gradient idea [Sut+99], which directly aims to learn the policy.
Based on an parameterized policy πθ, it performs updates

θ ← θ + α∇θJ(θ) (13)

via gradient ascent, where J(θ) is a performance measure, usually J(θ) = Vπθ(s0). Unfortunately
the desired gradient likely depends on some environment dynamics, which are not known. The policy
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gradient theorem [Sut+99] describes a quantity proportional to ∇θVπθ , which is easier to obtain. It
is given by

∇θVπθ(s0) ∝
∑
s∈S

µ(s)
∑
a∈A

Qπθ(s, a)∇θπθ (a|s) , (14)

where µ(s) is a function that expresses the fraction of time that is spend in state s. An concrete
instance of this idea is the REINFORCE algorithm [Wil92], where a Monte Carlo method is used
to estimate the quantity described in the equation above. Furthermore, the training procedure can
be stabilized by introducing a suitable baseline function that reduces the variance of the expected
return [Zha+11].

Overall, there are several extensions and modifications of the described concepts. One method
worth mentioning is the actor-critic approach [KT03], which combines ideas form policy gradient
and value functions. As for smaller modifications, there is double Q-learning, which introduces
an additional target action-value function to reduce some bias caused by the standard Q-learning
procedure [Has10]. Similarly, the introduction of an experience replay buffer [Lin92] should improve
stability and sample efficiency. This finally leads to offline or batch RL [EGW05], where the agent
is not allowed to directly interact with the environment. Instead, it only has access to a set of
previously collected experiences. This formulation is especially relevant in practice, as generating
data is sometimes quite expensive. There is still a wide range of topics this summary did not touch.
Where necessary, additional details will also be introduced in the upcoming chapters. For a more
broad introduction to the topic one can refer to Ref. [SB18], more recent developments are e.g.
reviewed in Refs. [Aru+17; NLH20].

3 The Quantum Computing Paradigm

The foundations of QC were established at the beginning 20th century when the modern theory
of quantum physics was developed. Benioff and Feynman proposed the idea of taking advantage
of quantum mechanical systems for computing in the early 1980s [Ben80; Fey82]. QC challenges
the strong Church-Turing hypothesis, as it potentially provides efficient solutions to classically
intractable problems [NL16]. This section gives a pragmatic introduction to the basics of QC, and
also provides an extension to quantum machine learning (QML) (here understood as ML with VQCs
as a new class of models) with a focus on QRL.

Single and Multi-Qubit Systems Similar to RL, notation and conventions regarding quantum
computing vary quite a bit throughout the literature. Regarding notation, we closely follow the
textbook by Nielsen and Chuang [NL16].

For the moment, let us consider the basic unit of information for classical information processing.
A single bit is either in state 0 or state 1, consequently, a sequence of n bits can represent 2n unique
values. Obviously, the bit register can only be in one of these 2n states at any point in time.

A qubit is the quantum version of a bit. We use the Dirac notation [NL16] to define |0⟩ and
|1⟩ as two distinct, orthogonal states of the qubit system. These basis states span a 2-dimensional
Hilbert space H ∼= C2, which contains all 1-qubit (pure) quantum states. The qubits are subject to
the laws of quantum mechanics and can be realized with, e.g., spin systems of subatomic particles
[PMV02], ion traps [BBA14], neutral atoms [SWM10], or superconducting circuits [YN06]. This
gives rise to some interesting properties. In fact, a qubit can not only be in either state |0⟩ or |1⟩,
but in a superposition of both. An arbitrary 1-qubit state is given as

|ψ⟩ = α |0⟩+ β |1⟩ . (15)

The amplitudes α and β are complex numbers, which must satisfy |α|2+ |β|2 = 1. To get a nice
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Figure 3: Bloch sphere representation of a 1-qubit state.

visual representation, Eq. (15) can be reformulated as

|ψ⟩ = eiγ
(
cos

θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩
)
, (16)

with γ, θ, ϕ ∈ R. As any global phase has no observable effect [NL16], the prefactor eiγ in Eq. (16)
can be omitted. This representation makes it possible to visualize the state of a 1-qubit system on
the surface of the Bloch sphere, see Fig. 3. The north and south poles w.r.t. the z-axis correspond to
the basis states |0⟩ and |1⟩, which are also referred to as computational basis states of a single qubit.
Another, less commonly used basis is given by the poles w.r.t. the x-axis, the elements are related
by |+⟩ = |0⟩+|1⟩√

2
and |−⟩ = |0⟩−|1⟩√

2
. Similarly, one could also use |R⟩ = |0⟩+i|1⟩√

2
and |L⟩ = |0⟩−i|1⟩√

2
.

An alternative representation associates quantum states with amplitude vectors:

|0⟩ →
[
1
0

]
and |1⟩ →

[
0
1

]
(17)

Multiple-qubit systems are the point where things get interesting. An n-qubit system gives
access to the 2n-dimensional Hilbert space, in which an arbitrary pure quantum state is defined as

|ψ⟩ = c0 |00 · · · 00⟩+ c1 |00 · · · 01⟩+ · · ·+ c2n−1 |11 · · · 11⟩ , (18)

with ci ∈ C and
∑2n−1

i=0 |ci|
2 = 1. The basis states, e.g. |00 · · · 01⟩ = |0⟩⊗ |0⟩⊗ · · ·⊗ |0⟩⊗ |1⟩, consist

of tensor products of the individual qubits. The state |ψ⟩ → [c0, c1, · · · , cN−1]
t possesses N = 2n

complex amplitudes, whose absolute squared values must sum up to one. Due to the principle of
superposition, an n-qubit system is able to encode and process information scaling in O (2n), while
for a classical setting, it is limited to O (n).

Evolution of Closed Quantum Systems In order for computation to be possible, there must
be some method to manipulate quantum states. Exactly this is achieved by operators acting on the
Hilbert space H. By definition, all operators, which describe the time evolution of a closed quantum
system are reversible. Hence, they can be represented as unitary matrices, i.e., for an operator U it
must hold that U †U = I. This constraint also conveys length preserving properties, i.e., applying a
unitary operator to a quantum state will again yield a valid quantum state satisfying Eq. (18).

In the following, explicit matrix representations of operators are specified in the computational
basis. Starting simple, consider the bit-flip operator σx. This operator just flips the amplitudes
of the |0⟩ and |1⟩ basis state, on the Bloch sphere this is equivalent to a rotation by π about the
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x-axis. The corresponding operators also exist for y-axis and z-axis, in matrix notation those are
given as

X := σx =

[
0 1
1 0

]
, Y := σy =

[
0 −i
i 0

]
, Z := σz =

[
1 0
0 −1

]
. (19)

Figure 4: Circuit symbols of various quantum operators (gates).

Allowing an additional degree of freedom, one can define an operator for arbitrary rotation with
θ about axis i as

Ri(θ) = e−i
θ
2
σi , for i ∈ {x, y, z}. (20)

The last 1-qubit operator we introduce is the Hadamard matrix:

H =
1√
2

[
1 1
1 −1

]
, (21)

which basically performs a change of basis with H |0⟩ = |+⟩ and H |1⟩ = |−⟩. By employing the
tensor product for operators, we can extend 1-qubit operators to act on single qubits comprising a
multi-qubit system. We now move to genuine multi-qubit operators, acting non-trivially on two or
more qubits. For our purposes, the most relevant 2-qubit operators are the controlled X (CX) and
controlled Z (CZ), where one qubit acts as the control and the other as the target. More concretely,
the CX-gate flips the amplitudes of the target qubit, iff the control is in state |1⟩. Similar to this,
the CZ operator performs a conditional phase flip. The matrix notations are given by

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 and CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (22)

Quantum circuit diagrams are a nice way to visualize what is going on in a quantum algorithm.
The individual qubits are represented as wires, where the order of operators, also called gates, is
defined by their relative position. To be more precise, the top wire gets associated with the leftmost
qubit. A few common circuit symbols for the operators introduced so far are depicted in Fig. 4.

Extracting Classical Information via Measurements In classical computing, it is trivial to
observe the exact states of all bits. For quantum systems, in order to extract information, an ob-
servable quantity has to be measured. To build the bridge to quantum computing, for each physical
observable there exists a Hermitian operator O [NL16], i.e., it holds O† = O. The eigenstates of O
define a basis of the quantum system’s Hilbert space.
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Figure 5: Variational quantum circuit consisting of feature map, variational layer, and measurement.

Once an observable O is measured, the corresponding measurement device outputs an eigen-
value of O. The post-measurement state of the system is given by the eigenstate corresponding
to the eigenvalue that is measured. The most commonly used observable might be Pauli-Z, which
corresponds to a measurement in the computational basis for a single qubit, see also Eq. (19). It
has eigenvalues λ1 = +1, λ2 = −1 and corresponding eigenstates v1 = [1 0]t, v2 = [0 1]t.

The consequences for quantum computing are quite sobering, as observing superpositions w.r.t.
the basis defined by the observable is impossible. Rather, one of the postulates of quantum mechan-
ics states the Born rule, which defines a probabilistic relationship between quantum state and mea-
surement output. Let |0⟩ , |1⟩ , ..., |N − 1⟩ be the basis defined by observable O and c0, c1, ..., cN
the corresponding amplitudes of state |ψ⟩ expressed in this basis. It holds, that measuring O will
result in the measurement outcome λi with probability |ci|2. Consequently, having obtained λi, the
post-measurement state of the system is |i⟩.

The first algorithm claiming provable quantum advantage, i.e., an improvement w.r.t. some
complexity metric compared to any classical approach, was published in 1992 by Deutsch and
Josza [DJ92] for a specially constructed problem. Most famous might be Shor’s algorithm [Sho97],
which provides an exponential speedup for tasks like prime factorization. Unfortunately, it requires
large-scale, fault-tolerant and error-corrected quantum computers. All current hardware can be
considered NISQ devices, which makes the execution of these algorithms infeasible. Despite this,
the first claim of experimental quantum advantage was published just two years ago [Aru+19].
Yet, the considered problem was quite far from general practical applicability. A demonstration
for achievable quantum supremacy on a practically relevant problem has still to be given. There
are some promising candidates like quantum chemistry and material science. Recently, ideas have
been put forward on combining quantum computing and machine learning [Ben+20; SP18]. These
algorithms are expected to bypass at least some of the problems with execution on presently available
NISQ hardware.

Quantum Machine Learning with Variational Quantum Circuits The research on QML
just really took off in the last two decades, yet there exists already a variety of approaches. As a
rough clue, the hoped-for benefit of QML relies, to a large extent, on the access to the high dimen-
sional Hilbert space granted by quantum systems. Here, we want to briefly collect the background
for the summaries of VQC-based QRL approaches in Sec. 4.2.

QML frequently deals with expectation values of quantum measurements. The expectation value
of an observable O w.r.t. the quantum state |ψ⟩ is denoted as

⟨O⟩ψ := ⟨ψ |O|ψ⟩ . (23)

While VQCs define a new class of ML models, one can make the case for the loose analogy to NNs,
where the relation of in- and output depends on a set of weights. An example for a parameterized
quantum operator is given in Eq. (20). The corresponding gate applies a rotation about a specific
axis by some angle θ0. Multiple rotation gates form a quantum circuit, where θ summarizes all free
parameters. Varying these values gives the possibility to determine the evolution of the quantum
system. Let Uθ denote the corresponding unitary. An schematic example of a VQC is displayed in
Fig. 5. Most RL tasks use the concept of states, based on which an informed decision should be
taken. This state information is encoded into the quantum system with an appropriate feature map.
In general, the inputs s are pre-processed with some mapping function Φ. The results Φ(s) can be
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neatly integrated into the quantum circuit via the unitary UΦ(s). To enhance the expressive power of
the VQC, one can use more sophisticated data encoding routines like data re-uploading [Pér+20] or
incremental data-uploading [Per+22]. Eventually, some observable has to be measured. A common
choice is the computational basis with O = Z⊗n. Overall, the output of the VQC-model can be
described as

⟨O⟩s,θ =
〈
0
∣∣∣(UθUΦ(s)

)†
OUθUΦ(s)

∣∣∣ 0〉
:=
〈
0
∣∣∣U †

s,θOUs,θ

∣∣∣ 0〉 . (24)

For most tasks, this value is post-processed using some function f . Keeping things as general as
possible, one can define a loss function L on f

(
⟨O⟩s,θ

)
(based on the concrete problem at hand).

The update of the parameters can be performed using, e.g., gradient-based techniques:

θ ← θ + α · ∇θL
(
f(⟨O⟩s,θ)

)
(25)

The required gradient can be obtained using the parameter-shift rule [Cro19; Wie+22b], or SPSA-
based approximations [Wie+23].

4 Quantum Reinforcement Learning Algorithms

In QML, there are approaches that either aim to stabilize the coherent function of the QPU using
ML methods, or use the structure of a hybrid variational algorithm for ML purposes. Very often,
RL is used to generate a solution for a quantum control problem, e.g., to learn quantum error cor-
rection strategies [Fös+18] or to generate control policies at a lower level [Zha+19; Dal+20]. Other
work considers RL as the optimizer of a variational quantum algorithm (VQA) [Kha+19; Kha+20].
While this represents a fascinating research topic in itself, here we will focus on the application of
QRL algorithms for solving specific tasks, be they classical or quantum. Research in the field of
QML has so far mostly focused on supervised and unsupervised learning. However, the literature
already proposes quite a few theoretical concepts and even some small-scale experimental realiza-
tions for QRL. Recent developments mostly focus on employing VQCs as function approximators.
When transferring from RL to QRL, i.e., the ‘quantization’ of the RL paradigm, there are various
possibilities of how quantum computing enters the game. This has led to the development of differ-
ent QRL variants. A few works exist, that review current progress in QRL [KSG21; ML22; Kun22;
Lam23; NHP23] and the more general correspondence of RL and QC [ML21]. There is also recent
work towards a fair comparison of RL and QRL in restricted settings [MK21; Fra+22].

Quantum-Inspired Approaches. The earliest idea for combining RL with a quantum routine relies
on the method of amplitude amplification, as it is used in Grover-type search algorithms [CDC06;
Don+08b; Don+06b; Che+06; Don+06a; CD08; Don+08a; CD10; CFD12; Fak+13; NGC15;
Li+20a; Nir+21; LAD21; Yin+21; Hu+21; Ren+22; Cho+23]. Several qubit registers embed
the states and actions relevant for the RL system in a suitable Hilbert space. Starting from a
uniform superposition, amplitudes favored by the reward or the value function are selectively am-
plified. The action selection is based on Born’s rule, i.e., a measurement is carried out on the qubit
register with regard to the ‘action-basis’. The algorithm was also investigated independently of
QPUs [Don+12] and recently further developed [GH19]. An introduction to this concept is also
provided in Ref. [Raj+21]. As it turns out, these early variants should rather be considered a set
of QiRL algorithms, that do not offer an intrinsic potential for quantum advantage. Recently, the
technique was transferred to sampling from the experience replay buffer in Q-learning [Wei+21]. A
summary and review of this type of QiRL can be found in Sec. 4.1.

VQC-Based Function Approximation. In DRL, deep neural networks (DNNs) are employed as pow-
erful function approximators. Typically, the approximation either happens in policy space (actor),
in value space (critic), or both, resulting in so-called actor-critic approaches. Recently, VQCs were
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proposed and analyzed in their role as function approximators in the RL setting – an extensive
overview is provided in Sec. 4.2. On the one hand, this approach basically replaces a more or less
well understood heuristic with a poorly understood heuristic. For the quantum heuristic many open
questions regarding computational power, scalability and trainability remain. On the other hand,
VQCs nonetheless have spurred the hope for quantum advantage already with NISQ devices. The
earliest work in this direction proposed VQC-based approximation in value space, which is covered
in Sec. 4.2.1. This so-called VQC-based Q-learning was introduced in Ref. [Che+20], and extended
in Refs. [LS20; LS21; Lok+22; Che23c; CCC23; FP+23; SJD22; Sko+23; LXJ23]. A method to
efficiently evaluate the Q-function is discussed in Ref. [San+23], which is however not entirely NISQ-
feasible. The complimentary approach of approximation in policy space is discussed in Sec. 4.2.2.
Originally proposed in Ref. [Jer+21a], several extensions have bee discussed in Refs. [Kun22; BAQ23;
SSB23; Jer+23; Mey21; Mey+23b; Mey+23a]. Combinations of value and policy approximation
are covered in Sec. 4.2.3, with (soft) actor-critic approaches in Refs. [Wu+23; Kwa+21; Ree23;
Che23a; Lan21], and multi-agent formulations in Refs. [Yun+22; YPK23]. The setting of offline
quantum reinforcement learning is considered in Sec. 4.2.4 by Refs.[Per+23; Che+23a]. A collection
of algorithmic and conceptual extensions that are relevant for a wide range of approaches is com-
posed in Sec. 4.2.5, based on Refs. [Che23d; Che23b; Kim+21; Hsi+22; Dră+22; Kru+23; SMT23;
ACN23; PPR20; Che+22; DS23; Köl+23]. A collection of application-focused work is summa-
rized in Sec. 4.2.6, comprising Refs. [Acu+22; Hei+22; Cob23; BYK22; SMK23; Hic+23; KCP23;
Cor+23; San+22; ACN22; Liu+23; Kum+23; Rai+23; SH23; RKM22; Yan+22; Par+23a; NS+23;
Par+23b; PK23; Yun+23; Ans+23; Che+23c; Yan23; CRC23; Che23e].

Projective Simulation. Another QRL method is based on projective simulation (PS), which in
the broadest sense is a particular learning paradigm and similar in spirit to RL [BD12]. Based
on experiences made through interaction with the environment, a memory network is created by
the agent. The network has a directed structure with adaptive weights between the nodes of the
network. The learning process and action selection are based on a random process (more precisely,
a random walk) on the graph of the network, with the transition probabilities between nodes being
given by the respective adaptive weights. PS can be ‘quantized’ by replacing the random walk
with a so-called quantum random walk [Pap+14; Tei21; TRC21; Mel+17]. A formal analysis
of convergence properties was given in Ref. [Boy+20]. In fact, there is already work on a proof-
of-principle implementation in the laboratory [DFB15; Sri+18] and proposals for quantum-optics
implementations [Fla+23]. Possible quantum advantages over classical PS lie in the acceleration of
the process of action selection, also referred to as deliberation in the literature. A more detailed
summary is provided in Sec. 4.3.

Quantum Boltzmann Machines. Another line of research proposes to use Boltzmann machines as
function approximators. These models are assumed to be advantageous compared to typical NNs
in environments with large action spaces. Ref. [Jer+21b] demonstrates, that Boltzmann machines
are closely related to energy-based models. For specific instances, those allow for a quantum rep-
resentation, which enables potential quantum speed-up for post-NISQ devices. A similar concept
is also proposed for the annealing-based QC paradigm [Cra+18; Sch+22; Lev+17]. A summary of
these ideas can be found in Sec. 4.4.

Quantum Subroutines. Another approach to go from RL to QRL replaces certain subroutines in
existing RL approaches. One idea is to replace policy or value iteration with some quantum-
enhanced analogues. While this approach is limited to universal, fault-tolerant and error-corrected
quantum hardware, several such algorithms have been proposed and analyzed [Wie21; Wie+22a;
Wan+21a; CKP23; Gan+23; Zho+23; GA23]. Most importantly, these algorithms come with
guarantees regarding speed-up, compared to their classical counterparts. QRL in these settings
is often limited to the tabular case and assumes a quantum version of the RL environment, i.e.,
oracle access. Our summaries and reviews can be found in Sec. 4.5.

Full-Quantum Formulation. An approach which not only ‘quantizes’ certain subroutines, but all
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components of the pipeline, is considered in Refs. [DTB15; DTB16; DTB17; Dun+18]. Exten-
sions [HDW21; HW22], applied to specific problems [Wan+21b; Wan+23], and small-scale exper-
imental realizations [Sag+21a] were presented. An alternative route to fully quantized QRL was
taken in [Cor18]. For our review of this line of research, see Sec. 4.6.

Various Concepts. For the sake of completeness, we mention different approaches found in the
literature. We note, however, that we did not pursue a detailed review for those works, typically
because we focused on what we identified as the most considered lines of research. While some of
the works listed in the following simply do not fit directly with the learning-based QRL approach,
for others it might not seem obvious how to generalize their particular setting to a broader class
of problems. While quantum algorithms for dynamic programming have been discussed [Ron19;
Amb+19], it currently remains unclear how to move from dynamic programming to a learning-
based approach such as RL. Similarly, quantum algorithms have been employed to solve planning
tasks [NW05], but again the transfer to a learning-based approach is far from obvious. Closer related
to the typical RL setting is the task of imitation learning [Che+23b]. A series of papers discussed
QRL in the setting of photonic circuits, see and Refs. [HH19a; HH19c; HH19b; HH19d; SH20] and
Refs. [Fla+20; Lam21; Sag+21b; Nag+21; Shi+22], with the connection to superconducting qubits
established in Ref. [Lam17; Cár+18]. Another approach, which we did not review in detail, is given
by combining RL with the paradigm of quantum annealing [Neu+17; AHF20; Neu+20; Mül+21;
FH23; NY23]. Strategies have been developed to address the classical and quantum version of
contextual bandits [LHT22; LJW22; BLT23; BKS23]. Furthermore, a quantum version of the
classical RL benchmark environment CartPole has been formulated [WAU20; Mei+23]. Similarly,
various interpretations of QRL for specialized tasks in the quantum domain exist [Alv+16; Alv+18;
Bha+19; Alb+18; Alb+20; She+20; Oli+20; Liu+22; ÇY23]. Different approaches have been
proposed for combining RL with quantum walks [Che+19; Dal+22; MVB22]. Further work on
optimization tasks rather than RL, such as Ref. [Ram17; Jaš+19; Bel+20], have not been reviewed
in detail. An interesting interpretation of self-learning physical machines is discussed in [LM23],
which potentially could be brought into line with QRL.

4.1 Quantum-Inspired Reinforcement Learning based on Amplitude Amplifica-
tion

Quantum reinforcement learning, Dong et al. (2008) and related work
Summary. Ref. [Don+08b] discusses a new RL algorithm that is inspired by the superposition prin-
ciple of quantum mechanics. The authors propose an algorithm that modifies the action-selection
procedure and balances exploration and exploitation in a novel way. The authors present their ideas
in modified form in a sequence of papers, see Refs. [Don+08b; Don+06a; Don+06b; Che+06; CD08;
CDC06; Don+08a; CD10; Don+12; CFD12; Fak+13; NGC15; GH19; Li+20a; LAD21; Hu+21], for
an overview see also [Raj+21]. The original work [Don+08b] discusses how to execute the proposed
algorithm on actual quantum devices – which, however, did not exist at this time. As discussed
also below, it is not clear how to run the algorithm in quantum superposition, and if this is possible
in practice without taking away potential quantum advantage. Despite these doubts the proposed
concepts enhance classical RL with ideas from QC, which leads us to view this approach as QiRL.

Algorithmic Concepts and Extensions. Initially, the algorithm is formulated as merely quantum
inspired in Ref. [CD08] (i.e., it is developed for a classical computer that simulates a quantum
superposition). The motivation is to design an algorithm with better exploration-exploitation trade-
off compared to e.g. ϵ-greedy action selection. The underlying routine is a modification of temporal
difference (TD), more concretely TD(0) in the following way: For each state the set of possible
actions is in a ‘superposition’ and the agent (in state s) now selects an action with a given probability.
The action is taken and the new state s′ and reward r is observed. Afterwards, the probability of
the taken action is increased by k(r + V (s′)), where V (s′) is the value function of state s′, and k
is a hyperparameter. The term r + V (s′) samples a quantity similar to Q(s, a). Consequently, the
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Citation First Author Title

[Don+08b] D. Dong Quantum reinforcement learning

[Don+06a] D. Dong Quantum mechanics helps in learning for more intelligent
robots

[CDC06] C.-L. Chen Quantum computation for action selection using reinforcement
learning

[Don+06b] D. Dong Quantum Robot: Structure, Algorithms and Applications

[Che+06] C.-L. Chen Superposition-Inspired Reinforcement Learning and Quantum
Reinforcement Learning

[CD08] C.-L. Chen A Quantum Reinforcement Learning Method for Repeated
Game Theory

[Don+08a] D. Dong Incoherent Control of Quantum Systems With Wavefunction-
Controllable Subspaces via Quantum Reinforcement Learning

[CD10] C.-L. Chen Complexity analysis of Quantum reinforcement learning

[Don+12] D. Dong Robust Quantum-Inspired Reinforcement Learning for Robot
Navigation

[CFD12] C. Chunlin Hybrid control of uncertain quantum systems via fuzzy esti-
mation and quantum reinforcement learning

[Fak+13] P. Fakhari Quantum inspired reinforcement learning in changing environ-
ment

[NGC15] S. Nuuman A quantum inspired reinforcement learning technique for be-
yond next generation wireless networks

Table 2: [Part 1] Work considered for “QiRL based on amplitude Amplification” (Sec. 4.1)

update creates a probability distribution, where for a given state the probability to select an action
increases as the value of Q(s, a) increases. Therefore, this action selection process corresponds to
sampling from a stochastic policy dependent on the value of the state-action pairs.

Now the algorithm is translated to be run on a quantum computer. The stochastic policy is
replaced by a quantum superposition. That is, for each state s the possible actions are represented
by the eigenstates of some observable and a superposition of these states is created. If the observable
is measured, the state will collapse to an eigenstate associated with an action which will be taken
by the agent and therefore constitutes the selection process. After receiving the reward and the
new state, the Grover operator is applied L = min{k(r + V (s′)), Lmax} times to a copy of the
superposition state to enhance the amplitude corresponding to the previous selected action. The
variable Lmax guarantees that the Grover operator is not applied too many times. Note that repeated
application of the procedure requires a new copy of the state after each measurement. Due to the no
cloning theorem, this could be realized by many different independent copies of the initial memory,
or by a purely classical representation of the states. The latter realization reduces the algorithm to
the initial proposal of a quantum-inspired action selection process.

In Ref. [Don+12] the QiRL algorithm is applied to robot navigation. It is stated explicitly that
QiRL is a classical action-selection method that differs from the ideas of QRL, which in principle
could benefit from a quantum computer. In Ref. [GH19] the algorithms are generalized to Q-
learning and double- and multiple Q-learning. Also these approaches should be understood in the
context of QiRL. Finally, Refs. [Li+20a; Nir+21] apply QiRL to human decision making behavior,
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Citation First Author Title

[GH19] M. Ganger Quantum Multiple Q-Learning

[Li+20a] J.-A. Li Quantum reinforcement learning during human decision-
making

[LAD21] Y. Li Intelligent Trajectory Planning in UAV-Mounted Wireless
Networks: A Quantum-Inspired Reinforcement Learning Per-
spective

[Raj+21] K. Rajagopal Quantum Amplitude Amplification for Reinforcement Learn-
ing

[Nir+21] D. Niraula Quantum deep reinforcement learning for clinical decision sup-
port in oncology: application to adaptive radiotherapy

[Wei+21] Q. Wei Deep Reinforcement Learning With Quantum-Inspired Expe-
rience Replay

[Yin+21] L. Yin Quantum deep reinforcement learning for rotor side converter
control of double-fed induction generator-based wind turbines

[Hu+21] Y. Hu Quantum-enhanced reinforcement learning for control: a pre-
liminary study

[Ren+22] Y. Ren NFT-Based Intelligence Networking for Connected and Au-
tonomous Vehicles: A Quantum Reinforcement Learning Ap-
proach

[Cho+23] B. Cho Quantum bandit with amplitude amplification exploration in
an adversarial environment

Table 3: [Part 2] Work considered for “QiRL based on amplitude Amplification” (Sec. 4.1)

Ref. [Yin+21] to a complex control task, and Ref. [Ren+22] to autonomous vehicles. Recently, the
quantum-inspired approach to action selection in RL was transferred to experience replay buffer
sampling in Q-learning [Wei+21].

Remarks. Although it is mentioned in Ref. [Don+08b; Don+06a; CD08; CDC06] that the whole
algorithm could be run in quantum superposition on a quantum device, no details of such kind of
genuine QRL algorithm are given. Overall, it is unclear if such an algorithm might exist. Indeed,
subsequent work focuses on the QiRL paradigm.

The claims made in Refs. [Don+08b; Don+06a; Don+06b; CD08; CDC06; Don+08a; Don+12;
GH19; Li+20a; LAD21; Cho+23] can be summarized as follows: speed-up in learning by better
balancing exploration-exploitation; less GPU power needed on classical computer compared to al-
gorithms like classical Q-learning; more robust against changes of learning rate. More experiments
on larger environments for deeper insights into the scaling of the algorithm and a rigorous complexity
analysis would be an interesting topic for future work.

4.2 Quantum Reinforcement Learning with Variational Quantum Circuits

This section summarizes the state-of-the-art on VQC-based RL. Several ideas have been proposed
in this field, with extensions in different directions. Their common ground is the usage of a VQC
as parameterized function approximator.

The typical hybrid pipeline is summarized in Fig. 6. It was originally proposed for Q-function ap-
proximation by Chen et al. [Che+20] and extended to policy approximation by Jerbi et al. [Jer+21a].
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Other work proposes several modifications to this pipeline, which we will describe in the respec-
tive summaries. The algorithm must be understood as hybrid, as a lot of the work, especially
the optimization, is executed on classical hardware. The agent observes the current state of the
environment st, and applies some pre-processing ϕ. The result is encoded using the feature map
Uϕ(s). With the current variational parameters θt, a quantum state is prepared and a (potentially
action-dependent) observable Oa is measured. The expectation value ⟨Oa⟩s,θ can be post-processed
to represent, e.g., a state-action value function Qθ(s, a), or the policy πθ(a|s). Depending on the
instance, the agent employs this function to sample an action at and executes it in the environment.
The reward rt (and potentially also the consecutive state st+1) is observed by the classical optimizer.
To enable gradient-based parameter updates, an additional hybrid module uses the parameter-shift
rule [Cro19; Wie+22b] to compute the gradients of the VQC outputs w.r.t. the variational param-
eters θt. The classical optimizer determines the new parameter set θt+1 and instantiates the VQC
with these updated parameters. This overall iterative procedure of environment interaction, func-
tion approximation, and parameter update is repeated for several episodes, in the same way as for,
e.g., DRL.

Unfortunately, thus far there is no guaranteed quantum advantage for this approach, apart from
some cryptography inspired artificial datasets [Jer+21a; SJD22]. However, several of the papers
and preprints summarized in this section demonstrate promising experimental results.

Figure 6: Hybrid quantum-classical agent in a typical VQC-based RL pipeline. This idea was
first proposed by Chen et al. [Che+20] for Q-function approximation and extended by Jerbi et
al. [Jer+21a] to policy approximation. The QPU is used to approximate the respective function,
while pre- and post-processing and optimization happens on classical hardware. The interaction with
the environment depends on the concrete problem instance (e.g. classical or quantum environment).

4.2.1 Value-Function Approximation

This section covers VQC-based approximations in value space, as described for the instance of
classical Q-learning in Eqs. (11) and (12). The work by Chen et al. [Che+20] was indeed the first
proposal of this type of approximation-based techniques, which was reproduced and extended in
Refs. [Lok+22; CCC23; Che23c; FP+23]. A modification of the state encoding procedure has been
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Citation First Author Title

[Che+20] S. Y.-C. Chen Variational Quantum Circuits for Deep Reinforcement Learn-
ing

[Lok+22] S. Lokes Implementation of Quantum Deep Reinforcement Learning
Using Variational Quantum Circuits

[Che23c] S. Y.-C. Chen Quantum deep Q learning with distributed prioritized experi-
ence replay

[CCC23] H.-Y. Chen Deep-Q Learning with Hybrid Quantum Neural Network on
Solving Maze Problems

[FP+23] G. Fikadu Tilaye Investigating the Effects of Hyperparameters in Quantum-
Enhanced Deep Reinforcement Learning

[LS20] O. Lockwood Reinforcement Learning with Quantum Variational Circuits

[LS21] O. Lockwood Playing Atari with Hybrid Quantum-Classical Reinforcement
Learning

[SJD22] A. Skolik Quantum agents in the Gym: a variational quantum algorithm
for deep Q-learning

[Sko+23] A. Skolik Robustness of quantum reinforcement learning under hardware
errors

[LXJ23] Y. Liu Reinforcement Learning for Continuous Control: A Quantum
Normalized Advantage Function Approach

Table 4: Work considered for “QRL with VQCs – Value-Function Approximation” (Sec. 4.2.1)

discussed in Lockwood and Si [LS20], and was up-scaled in another work by the same authors [LS21].
A slight reformulation of the technique – which comes with a provable advantage for very specific
scenarios – can be found in Skolik et al. [SJD22]. An analysis of noise influence for this framework is
discussed in Ref. [Sko+23]. An extension to environments with continuous action spaces is proposed
in Ref. [LXJ23]. Ideas based on amplitude amplification to efficiently evaluate the approximated
Q-function have been introduced in Ref. [San+23], which however can not be realized given the
current hardware restrictions.

Variational Quantum Circuits for Deep Reinforcement Learning, Chen et al. (2020)
and related work
Summary. This paper by Chen et al. [Che+20] represents the first attempt to utilize VQCs for
RL. This is done in the context of using VQCs as function approximators for the state-action value
function. The authors perform simulations on simple benchmark environments and report.

Hybrid Algorithm. The algorithm is inspired by deep Q-learning (DQL) [Mni+15], where a DNN
represents the Q-function. The authors replace the DNN by a VQC. The update is performed w.r.t.
the mean square error (MSE) loss function L(θ) = E[

(
rt + γ ·maxa′ Qθ′ (st+1, a

′)−Qθ(st, at)
)2
]

using, e.g., gradient descent. Additionally, experience replay and target networks (second set of
parameters θ′) are employed to address the instabilities stemming from bootstrapping the value
function, forming a double deep Q-learning (DDQL) algorithm. Fig. 7 gives the complete algorithm.

VQC Architecture. The feature map uses simple computational basis encoding on individual qubits.
More concretely, the RL state is interpreted as bitstring, which can be encoded using the identity
Rz(π)Rx(π) |0⟩ = |1⟩. The entanglement structure connects nearest neighbors with CZ gates.
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Figure 7: Hybrid algorithm proposed by and taken from Chen et al. [Che+20]; This algorithm uses
a VQC to approximate the state-action value function and follows the typical steps of DQL. Note,
that the authors notation for the Q-function slightly deviates from our conventions.

The variational parameters are incorporated in single qubit rotations about the x, y, and z axis.
The state-action value is decoded by measuring Pauli-Z observables on a number of qubits, that
corresponds to the number of actions in the environment. The full VQC is visualized in Fig. 8.

Figure 8: VQC proposed by and taken from Chen et al. [Che+20]; The Rx and Rz gates are used
for state encoding. Several parameterized layers (dashed box) are repeated to form the Q-function
approximator. The values of the function are decoded using 1-qubit Pauli-Z observables.

Experimental Results and Discussion. The proposed VQC-DQL algorithm is simulated for two
environments. The first one is FrozenLake, with 16 states and an 4 actions. The second one is
CognitiveRadio, which is adapted to VQCs sizes of 2 to 5 qubits. The authors report that their
VQC-based agent performs at least equally well as a NN. Moreover, they claim that this requires
fewer parameters (about one order of magnitude compared to DNNs), which points towards potential
quantum advantage. The model is tested on actual quantum hardware with competitive results.

Remarks. The employed encoding scheme (computational basis encoding) could be simplified by
omitting the RZ rotations, as these only introduce a global phase. The CognitiveRadio environ-
ment might be oversimplified. We also note that the claim on reduced parameter count should be
substantiated by experiments with environments of different scale.

Reproduction. A reproduction study by Lokes et al. [Lok+22] conducts an extended hyperparameter
search for the described setup. The results and claims are overall consistent with [Che+20], but no
novel findings could were reported.
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Extension. In the work by S. Y.-C. Chen [Che23c] the quantum Q-learning framework introduced
in [Che+20] is extended by incorporating prioritized experience replay. Additionally, an asyn-
chronous training routine is employed, similar to the one discussed in [Che23a]. Both techniques
reduce the overall sampling complexity and therefore allow for solving more complex tasks with the
same underlying quantum model. This is validated with numerical simulations on several versions
of the CartPole environment.

Hybrid Model. The work by Chen et al. [CCC23] extends the quantum models used in [Che+20] with
classical neural networks, to produce more expressive function approximators. With that extension,
the quantum agent is able to solve a 20× 20 gridworld maze, which should clearly be more complex
than the originally considered FrozenLake environment. However, with the provided analysis it in
unclear to which extend the performance can be contributed to the quantum part of the model.

Hyperparameter Analysis. A hyperparamter analysis is conducted by Fikadu Tilaye and Pandey [FP+23],
with a focus on the Q-learning framework introduced in [Che+20]. The authors conclude, that
deeper quantum circuits lead to a better overall performance, while a larger learning rate speeds up
the overall process. However, the analysis is superficial and quite small-scale, so further investiga-
tions are necessary to allow for more general statements.

Algorithmic Characteristics - Chen et al. [Che+20]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

FrozenLake DDQL Q-function discrete discrete
4

4× 2 (encoding)
(OpenAI Gym) 16 4 4× 4× 3 (weights)

CognitiveRadio DDQL Q-function discrete discrete
n

n× 2 (encoding)
(see [Che+20]) n2 n n× 4× 3 (weights)

a encoding gates: qubits× per_qubit; variational gates: qubits× layers× per_qubit_per_layer;

Reinforcement Learning with Quantum Variational Circuits, Lockwood and Si (2020)
Summary. The work by Lockwood and Si [LS20] modifies several aspects of the routine proposed
by Chen et al. [Che+20]. Most importantly, they introduce two new encoding schemes to deal with
a continuous state space.

Modification of Architecture. The first proposed encoding is denoted as scaled encoding. It scales
the RL state values to the range [0, 2π), which are then encoded using some 1-qubit parameterized
rotations. The second on (so-called directional encoding) only encodes the sign of the value. More
concretely, if a state variable is positive, Rx and Rz rotations by π are applied to the encoding qubit
(following a similar idea as the computational state encoding [Che+20]).

The architecture for the variational layer consists of an entangling block (nearest-neighbor CX
gates) and parameterized 1-qubit rotations about x, y, and z axis. This block is repeated three
times. For decoding the state-action value, the authors employ two different strategies. The first
one feeds the measurement result into a classical fully-connected layer where the number of outputs
corresponds to the number of possible actions. In the other case, a so-called quantum pooling
operation, condenses the information of the quantum state into a subset of the qubits [CCL19]. This
allows for a more flexible architecture, independent of the number of actions in the environment.

Experimental Results. The proposed algorithm and the encoding schemes are benchmarked on the
CartPole and Blackjack environment. While the former one uses a combination of scaled and
directional encoding, the second one only employs scaled encoding. Their findings agree with those
reported previously in the literature, namely that VQC-based models achieve similar performance
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to NN-based function approximators. As also stated by Chen et al. [Che+20], the usage of VQCs
reduces the required parameter complexity.

Remarks. While the scaled encoding should be a sound choice, the directional encoding could be
inappropriate for most environments. Usually, not only the sign of a specific state is relevant, but
the concrete state contains relevant information. With this encoding, this information is lost, which
should lead to a drop in performance for more complex environments. As stated previously, the
reduced parameter complexity should be investigated for larger problem instances.

Algorithmic Characteristics - Lockwood and Si [LS20]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

CartPole DDQL Q-function continuous discrete
4

4× 2 (encoding)
(OpenAI Gym) 4-dim 2 4× 3× 3 (weights)

Blackjack DDQL Q-function discrete discrete
3

3× 2 (encoding)
(OpenAI Gym) 31×11×2 2 3× 3× 3 (weights)

a encoding gates: qubits× per_qubit; variational gates: qubits× layers× per_qubit_per_layer;

Playing Atari with Hybrid Quantum-Classical Reinforcement Learning, Lockwood and
Si (2021)
Summary. This work by Lockwood and Si [LS21] extends their previous paper [LS20], which, in
turn, was based on Chen et al. [Che+20], where Q-learning with VQC function approximation has
been introduced. The paper considers the Atari environments Pong and Breakout, with continuous
state space of dimensionality 28.224 (the observations are cropped and converted to images with
84×84×4 pixels). This environment complexity is not tractable with previously introduced encoding
schemes, which require one qubit for each dimension. The proposed workaround uses a classical NN
to reduce the state dimensionality before encoding it into the VQC.

Underlying Algorithm and Simulation. Similar to Refs. [Che+20; LS20], the concept of DDQL is
used. The pipeline is modified by replacing the pure VQC function approximator with a hybrid
model. Several different choices are considered, the most important details are highlighted below.
The training is performed in an end-to-end manner, i.e., the gradients w.r.t. the VQC parameters
are propagated back through the classical encoding network.

Model Architecture. The VQC architecture is, as usually, composed of three parts (i.e. state encod-
ing, variational layers, and action decoding). To encode the state, the raw data is first fed through
a classical NN. This outputs a number of values equal to the number of parameters in the feature
map, which itself consists of 1-qubit parameterized rotations. The authors compare the performance
of a densely connected and a convolutional neural network (CNN) for this task (the concrete archi-
tecture of these networks are not specified). Apart from that, encoding layers of different sizes (and
therefore different number of parameters) from 5 to 15 qubits are compared.

The variational layers itself consists of two parts, where the first one is a quantum convolutional
neural network (QCNN) [CCL19]. The authors state two motivations for this choice: First, it should
help capture the spatial structure of the input images (but it is unclear, whether the encoding part
retains the spatial structure). Second, QCNNs help to avoid barren plateaus [Pes+21] (while the
experiments show no sign of barren plateaus, it is not clear if this is due to this choice, or the limited
size of the employed circuits). After this QCNN there are three repetitions of entanglement gates
and parameterized rotations, similar to those also used for state encoding.

The paper proposes two methods to deal with the problem of measurement for unequal num-
ber of qubits and actions. The first method performs Pauli-Z measurements on all qubits and
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uses an appended dense NN. Alternatively, quantum pooling operations [CCL19] are used, which
subsequently compress the measurement of two qubits into one.

Experimental Results and Discussion. To demonstrate the basic functionality of the model, initial
experiments are conducted on the CartPole environment. The results demonstrate a similar perfor-
mance to Lockwood and Si [LS20]. On the two Atari environments, the paper considers 12 different
hybrid architectures (dense vs. convolutional encoding, 5 vs. 10 vs. 15 qubits, dense vs. pooling
decoding), which are compared to a well-established classical architecture.

It turns out, that the hybrid models are not able to learn at all. The authors state, that
this is down to the lack of expressibility of the hybrid models, which only make use of about 104

parameters, while the classical model uses about 106. It is expected, that for more expressive models
the performance improves, as learning on the much simpler CartPole environment was successful.

Remarks. The experiments are conducted with a restricted set of hybrid models. Consequently,
the claim that these results do not demonstrate the inapplicability of QRL to more complex envi-
ronments like Atari is reasonable. The assumption that this approach could be made to work on
complex environments, as it succeeds on e.g. CartPole, should be sustained with additional experi-
ments. For a modified architecture succeeding on the Atari environments, it is not completely clear,
which part of the work is done by the classical and quantum part of the model. This is a typical
caveat, whenever quantum and classical architectures are combined.

Algorithmic Characteristics - Lockwood and Si [LS21]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gates

CartPole
(OpenAI Gym) DDQL Q-function continuous

4-dim
discrete

2
5

N/A (classical)a

O
(
101
)

(encoding)
O
(
102
)

(weights)

Pong-v0
(OpenAI Gym) DDQL Q-function

continuous
discrete

6
5 to 15

O
(
106
)

(classical)
28224- O

(
102
)

(encoding)
dimb O

(
104
)

(weights)

Breakout-v0
(OpenAI Gym) DDQL Q-function

continuous
discrete

4
5 to 15

O
(
106
)

(classical)
28224- O

(
102
)

(encoding)
dimb O

(
104
)

(weights)

a potentially also uses a classical NN for pre-processing, details are not stated;
b dimensionality of feature space is reduced with a NN to fit size of feature map;

Quantum agents in the Gym: a variational quantum algorithm for deep Q-learning,
Skolik et al. (2022)
Summary. This work by Skolik et al. [SJD22] proposes another instance of Q-learning with VQCs
as function approximators. Being aware of preceding literature, the authors set out to analyze
the role of architecture design, RL state encoding schemes, and observables for action decoding.
With regard to the previous work, the authors remark that the CartPole environment cannot be
considered solved.

Importance of Architecture Design. In terms of architecture choices, the problem of barren plateaus
is emphasized: Architectures with many qubits and layers (which naively is required for high ex-
pressivity) are hard to train. Contrarily, over-parameterized architectures are easier to train, but
probably less expressive and therefore less effective on a given task.

The authors chose a hardware-efficient ansatz, despite being known to run into the barren
plateau problem for large circuits. For the small circuit sizes considered in the present work, the
barren-plateau problem does not appear to be relevant.
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Encoding Schemes. As for encoding schemes, discrete RL states are encoded in the computational
basis. Continuous states are scaled to the finite interval [−π/2,+π/2] by applying arctan to the
raw observations. The result serves as the rotation angle for an Rx rotation, which is very similar
to the scaled encoding proposed by Lockwood and Si [LS20]. In order to increase expressivity w.r.t.
to the input, the encoding layer can be repeated through the circuit, forming a data re-uploading
structure [Pér+20]. Effectively, this allows to learn and approximate a Fourier sum of a certain
order, where the order is tied to the number of repetitions of the encoding layer [SSM21]. The
encoding is further modified by introducing learnable re-scaling parameters, that are multiplied
with the raw states before computing the arctan.

Experimental Results and Discussion. The authors benchmark their architecture choices on the
FrozenLake and CartPole environment. The performance on CartPole is compared to a small NN
with the same number of parameters, which seems to be inferior. Further, the range of Q-values
that can be encountered in the two benchmark environments is investigated. For FrozenLake,
representing the Q-value with the expectation values of 1-qubit Z-operators is sufficient. For the
CartPole environment, this strategy is found not to be adaptable enough. Instead, they chose the
expectation values of the parities (of 2 non-overlapping pairs of qubits) and allow for additional
trainable classical weights that set the scale for the Q-value approximation.

Remarks. The authors emphasize the critical role of architectural choices at the outset of their
manuscript. While they offer valuable insights into this topic, also open questions remain for
future work in this direction. For the CartPole environment, several trainable classical weights are
incorporated in the algorithm. Therefore, it is not completely clear, what part of the training is
achieved by which part of the hybrid model.

Error Analysis. The work by Skolik et al. [Sko+23] analysis the influence of hardware noise on the
quantum Q-learning framework introduced in [SJD22], but also quantum policy gradient (QPG) ap-
proaches discussed in Sec. 4.2.2. The results are numerically validated on the CartPole environment
and a version of the Travelling Salesperson Problem. The results indicate, that the performance is
very much dependent on the inherent structure of the noise. For some instances, the robustness of
the learned policy is actually increased if noise is encountered during training. However, e.g. for
strong incoherent noise the performance decreases quite substantially. Interesting from a practical
point of view is especially the analysis of shot noise, which indicates that a low number of repetitions
is enough to get a reliable estimate of the Q-function – an explicit algorithm to exploit this property
is proposed in this work.

Continuous Action Spaces. A Q-learning approach based on [SJD22] that incorporates continuous
action spaces is discussed by Liu et al. [LXJ23]. They use normalized advantage functions which
allows for continuous action selection. An alternative would be to additionally use a policy function
approximator to form an actor-critic approach, as discussed in Sec. 4.2.3.

Algorithmic Characteristics - Skolik et al. [SJD22]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

CartPole
(OpenAI Gym) DDQL Q-function continuous

4-dim
discrete

2
4

4× 1 (encoding)
4× 15× 2 (weights)
N/A (classical)b

FrozenLake DDQL Q-function discrete discrete
4

4× 1 (encoding)
(OpenAI Gym) 16 4 4× 15× 2 (weights)

a encoding gates: qubits× per_qubit; variational gates: qubits× layers× per_qubit_per_layer;
b model incorporates classical weights after measurement, details are not stated;
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Citation First Author Title

[Jer+21a] S. Jerbi Parameterized Quantum Policies for Reinforcement Learning

[Kun22] L. Kunczik Reinforcement Learning with Hybrid Quantum Approxima-
tion in the NISQ Context

[BAQ23] Quafu Group Quafu-RL: The Cloud Quantum Computers based Quantum
Reinforcement Learning

[SSB23] A. Sequeira Policy gradients using variational quantum circuits

[Jer+23] S. Jerbi Quantum Policy Gradient Algorithms

[Mey+23b] N. Meyer Quantum Policy Gradient Algorithm with Optimized Action
Decoding

[Mey+23a] N. Meyer Quantum Natural Policy Gradients: Towards Sample-Efficient
Reinforcement Learning

Table 5: Work considered for “QRL with VQCs – Policy Approximation” (Sec. 4.2.2)

4.2.2 Policy Approximation

This section covers VQC-based approximations in policy space, as described for the instance of
classical policy gradients in Eqs. (13) and (14). The concept was introduced by Jerbi et al. [Jer+21a],
shortly followed by a slight reformulations in Ref. [Kun22], and an extension to allow for faster
computation in Ref. [BAQ23]. Several modifications, including formulating full-quantum interaction
with a quantum control environment, have been introduced in Sequeira et al. [SSB23] – with a closer
analysis of quantum-accessible environments revealing potential advantage compared to certain
classical routines in Ref. [Jer+23]. Algorithmic extensions to the QPG setup were proposed in
Ref. [Mey21]. Details on a therein introduced classical post-processing function to improve RL
performance are discussed in Meyer et al. [Mey+23b], and quantum natural gradients to enhance
trainability are covered by the same authors in [Mey+23a].

Parameterized Quantum Policies for Reinforcement Learning, Jerbi et al. (2021) and
related work
Summary. The paper by Jerbi et al. [Jer+21a] starts out with a small summary of VQC-based ML
models. They cite several reports of quantum advantage in the supervised and unsupervised QML.
This motivates their approach to go beyond the scope of Q-function approximation [Che+20; LS20;
LS21; SJD22], and use the VQC to directly approximated the policy.

Quantum Policy Gradient. After a brief recap of policy gradient methods for solving RL problems,
the authors extend those ideas to a QPG approach. More concretely, they quantize the REINFORCE
algorithm [Wil92] with value-function baselines by using VQCs as function approximators for the
(stochastic) policy. The define two families of VQC-based policies: (1) A RAW-VQC policy, where the
action selection follows Born’s rule. It is defined as πθ(a|s) = ⟨Pa⟩s,θ, where Pa are the projectors
on the elements of the computational basis. This allows action selection with only one evaluation of
the quantum circuit; (2) A SOFTMAX-VQC policy, defined as πθ(a|s) = eβ⟨Oa⟩s,θ/

∑
a′ e

β⟨Oa′ ⟩s,θ . The
measurement result of an action-dependent observable Oa is fed into a single-parameter softmax-
function, to form a PDF. The inverse-temperature parameter β allows to adjust the peak-width of
the distribution, i.e., the greediness of the policy.

Circuit Architecture. The ansatz for the VQC is chosen to be hardware-efficient, i.e., only single
and two-qubit gates. The RL state is encoded with 1-qubit rotations. To increase the expressivity
of the model, the authors introduce additional learnable state-scaling parameters λ. Those are
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multiplied to the rotational parameter denoting the state value, i.e., λi · si is the value of a 1-qubit
rotation. This also helps circumvent the problem of being restricted to a finite set of frequencies in
such an encoding scheme [SSM21]. The feature map is repeated several times, alternating with the
variational layer, which forms a data re-uploading structure [Pér+20]. A variational layer consists
of CZ-gates for creating entanglement in an circular structure. The learnable parameters are used
in 1-qubit parameterized rotation gates. Depending on the policy type, measurements are either
conducted in the computational basis, or more complex observables are measured.

Experimental Results. Overall, all agents are able to learn meaningful behavior in the OpenAI Gym
environments CartPole, MountainCar, and Acrobot. Further experiments are reported, which serve
the purpose of assessing the importance of the various design choices: (1) Circuit depth increases
performance and learning speed, where SOFTMAX-VQC policies outperform RAW-VQC policies in
all instances; (2) Incorporating learnable state scaling parameters increases learning performance,
trainable classical weights (in case of SOFTMAX-VQC) multiplied to expectation values leads to
increase in performance; (3) The performance gap between RAW-VQC and softmax-VQC policies
seems to stem from the ability to adjust greediness.

Provable and Empirical Quantum Advantage. To the best of our knowledge, this work is the first
to corroborate the idea quantum advantage with VQCs in the RL setting. Therefore, the authors
devise RL environments (based on the discrete logarithm problem (DLP)), which are supposed to
be classically intractable. Any classical algorithm would need a number of samples that scales
exponential in the problem size to achieve a low generalization error. A VQC-based algorithm with
a very specific architecture only requires a polynomial amount of data. This implies an exponential
advantage w.r.t. sample complexity, assuming it is infeasible to efficiently simulate the VQC on
classical hardware for large problem instances. The construction of the environment is inspired
by previous results from QML, where similar learning separations between classical and quantum
models have been demonstrated [LAT21].

Further, the authors report numerical evidence of potential quantum advantage for environ-
ments based on expectation values sampled from VQCs. The motivation lies in the (potential)
intractability of simulating the given VQC classically for large systems. More concretely, one uses
a VQC to define a labeling function (in the sense of a classification task) over the domain [0, 2π]2

(so-called SL-VQC). This synthetic classification dataset is then rephrased as a RL environment
by incorporating some temporal structure (denoted as Cliffwalk-VQC). Numerically, the authors
observe a performance separation of models with classical DNNs and VQC-based policies. They
claim, that this is likely due to the oscillatory structure in the labeling function.

Remarks. While the proposal of provable quantum advantage is obviously quite encouraging, the
practical realization is probably out of reach for the NISQ-era. The idea of solving the task efficiently
on quantum hardware is based on Shor’s algorithm. Formulated as a VQC-based RL problem, this
would require circuits of complexity far beyond current scope. We think it requires also some
more large-scale experiments, to support the empirical learning separation on the SL-VQC and
Cliffwalk-VQC environments. A comparison to other hybrid models [Che+20; LS20] shows, that
the proposed QPG approach is superior in terms of RL performance on various environments.

Alternative Formulation. In the PhD thesis by L. Kunczik [Kun22] a slightly different formulation
of the QPG framework is introduced, where the output of the quantum circuit is compounded with
a classical weight vector. However, the underlying routine is very similar to [Jer+21a]. Empirical re-
sults are reported to verify an desirable scaling of VQC-based (as opposed to NN-based) approaches.
However, experiments are to small-scale for reliable statements regarding this correlation.

Cloud Computing. The work by the BAQIS Quafu Group [BAQ23] realizes the framework introduced
in Sec. 4.2.2 and executed it on the quantum devices provided via the Quafu cloud services. The
results are ambiguous, as the agents trained on hardware are not really able to learn meaningful
behaviour – but are also only trained for a very limited number of timesteps, as also acknowledged
by the authors.
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Algorithmic Characteristics - Jerbi et al. [Jer+21a]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

CartPole
REINFORCE Policy continuous discrete

4 30(OpenAI Gym) 4-dim 2

MountainCar
REINFORCE Policy continuous discrete

2 36(OpenAI Gym) 2-dim 3

Acrobot
REINFORCE Policy continuous discrete

6 72(OpenAI Gym) 6-dim 3

SL-VQC
REINFORCE Policy continuous

2-dim
discrete

2
2 37Cliffwalk-VQC

(see [Jer+21a])

CognitiveRadio
REINFORCE Policy discrete discrete

n
30 to 75

(see [Che+20]) n2 n for n = 2 to 5

a this entails encoding, scaling, and variational parameters; the SOFTMAX-VQC also uses classical parameters;

Policy gradients using variational quantum circuits, Sequeira et al. (2023) and related
work
Summary. The article by Sequeira et al. [SSB23] proposes a quantum version of the REINFORCE
algorithm with a VQC-based function approximator, very similar to Jerbi et al. [Jer+21a]. The
methods are applied to the classical environments CartPole and Acrobot but also to a simple
quantum control problem. It proposes an initialization technique for the variational parameters of
a VQC. Following the experimental results, a quantum advantage w.r.t. the number of required
parameters and trainability of the models is claimed.

Underlying Reinforcement Learning Algorithm. As in Jerbi et al. [Jer+21a], the policy is defined as
πθ(a|s) = eβ·⟨Oa⟩θ/

∑
a′ e

β·⟨Oa′ ⟩θ , and REINFORCE updates are performed. Hereby, the expectation
values ⟨Oa⟩θ for action a is defined as the expectation ⟨σaz ⟩, i.e., the expectation value of 1-qubit
Pauli-Z observable measured on the a-th qubit.

VQC Architecture. The architecture follows the typical three-part structure. In the beginning, the
states are encoded with Rx rotations, with the state values normalized to the range [−π, π). Conse-
quently, the number of qubits has to correspond to max{|A|, |S|}. There are several parameterized
layers (see Fig. 9) which incorporate variational parameters in 1-qubit Ry and Rz rotations. The
entanglement structure can be described as CX[i, (i+ l) mod n], where n is the number of qubits,
and l the index of the layer. The measurement of 1-qubit Pauli-Z observables is a deviation to the
procedure proposed by Jerbi et al. [Jer+21a], where multi-qubit observables were used.

Complexity of Gradient Estimation. The paper gives an estimation of the required number of
samples to get an ϵ-approximation of the log-policy gradient. According to this consideration, for a
success probability of 1− δ, the number of required measurements is bounded by c · (1−ϵ)

2

ϵ2
· log

(
k
δ

)
.

Hereby, c is a constant depending on algorithmic hyperparameters and k is the number of variational
parameters. It is important to state, that this refers to the number of samples / data points required
to get a good approximation of the true policy gradient, but not the explicit estimation of the
gradients themself via e.g. the parameter-shift rule.

Initialization Technique. There is some work proposing a technique for parameter initialization to
avoid barren plateaus [Gra+19]. However, a technique to boost the overall performance has not yet
been proposed. Inspired by classical ML, the authors aim to break symmetries between different
neurons (as usually initialization with constant values is a bad choice). A typical strategy is to
select values uniformly at random from [−π, π], or drawn them following a Gaussian distribution.
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Figure 9: VQC architecture proposed by and taken from Sequeira et al. [SSB23]; It deviates from
the typical circular entanglement structure.

Inspired by the classical Glorot initialization scheme [GB10], the paper proposed to use a nor-
mal distribution N (0, std2) with std = g ·

√
2/ (fanin + fanout). Here, g is a constant multiplicative

factor, fanin is the number of embedded features, and fanout is the number of computational basis
measurements. This technique demonstrates some promising experimental results, but no theoreti-
cal justification is given.

Analysis of Fisher Information Spectrum. The paper analyzes the spectrum of the Fisher informa-
tion matrix (FIM), which serves as a tool to quantify the trainability of a model. The empirical
FIM is computed as F (θ) = 1

T

∑T
t=1∇θ log π(at|st, θ)∇θ log π(at|st, θ)t. A similar analysis has also

been proposed for QML [Abb+21].
The results show, that the spectrum of the FIM associated with the quantum model exhibits

significantly larger averaged eigenvalues. The compared NN was optimized over several architec-
tures, but not many details are provided in the paper. The authors conclude, that the quantum
models are beneficial in terms of trainability, and might be resilient to barren plateaus.

Experimental Results and Discussion of Potential Quantum Advantage. The proposed algorithm
is tested on the classical benchmark environments CartPole and Acrobot. The performance is
compared to the best classical NN (it is not clear, what best means in this case, and to what extend
this holds). The authors claim a significant advantage in terms of convergence speed.

Additional experiments are conducted with the proposed Quantum-Glorot initialization tech-
nique. In the two environments CartPole and Acrobot, this technique demonstrates to be beneficial
in terms of convergence speed and training stability.

Finally, the experiments are extended to a QuantumControl environment. It requires to learn
the mapping |0⟩ → |1⟩ via the time dependent Hamiltonian H(t) = 4J(t)σz+hσx. This is converted
to a set of unitary gates U(t), such that |ψt+1⟩ = U(t) |ψ⟩. The reward is defined as the overlap
between the prepared state and |1⟩, i.e. rt = |⟨ψt|1⟩|2. The agent has to decide between the two
actions 0 =̂ no pulse and 1 =̂ apply pulse. The usage of a quantum environment removes the
necessity of encoding classical states. Unfortunately, it is not described, how |ψt⟩ is incorporated in
the VQC (a 1-qubit parameterized circuit is apparently used to solve the task). The results on this
environment suggest, that the agent is able to learn the optimal pulses in a low number of epochs.

Summarizing the experiments, the authors claim an advantage in convergence speed compared
to classical approaches (questionable, as there should be NNs which perform much better). Addi-
tionally, there seems to be a clear advantage in terms of parameter complexity.

Remarks. The authors claim, that it is possible to estimate the log-policy gradient with only an
logarithmic amount of samples (in the number of variational parameters). While this certainly
holds for simulation, it is not clear, if such a technique can be applied on quantum hardware
(e.g., some kind of sparse or perturbed gradients). The introduced initialization strategy gives
some good experimental results, although some additional experiments and theoretical justifications
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would be desirable. The formulation of the empirical FIM drops the dependency on the prior state
distribution, which potentially renders the considered spectrum less representative of the model
than for a generic supervised learning problem. The claim of quantum advantage w.r.t. parameter
complexity and absence of barren plateaus should be supported with experiments on larger-scale
environments.

Quantum-Accessible Environments. An explicit analysis of quantum-accessible environments is con-
ducted in Jerbi et al. [Jer+23]. One instance of such an environment is considered in [SSB23], but
also [Wu+23] uses a related formulation. The paper derives explicit quadratic advantages in sam-
pling complexity, if the learned policy satisfies certain regularity conditions. We consider this to be a
very important step toward identifying the actual potential of QRL. Interestingly, the stated results
suggest that most of the scenarios studied in literature actually satisfy the smoothness conditions.
An open problem is the identification of practically relevant problems that can be formulated in the
described quantum-accessible setting.

Algorithmic Characteristics - Sequeira et al. [SSB23]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gates

CartPole
REINFORCE Policy continuous discrete

4
4 (encoding)

(OpenAI Gym) 4-dim 2 24 (weights)

Acrobot
REINFORCE Policy continuous discrete

6
6 (encoding)

(OpenAI Gym) 6-dim 3 36 (weights)

QuantumControl
REINFORCE

Policy,
quantum

discrete
N/A

0 (encoding)a
(see [SSB23]) Environment 2 N/A (weights)

a the RL state is a quantum state, i.e. no classical information has to be encoded;

Quantum Policy Gradient Algorithm with Optimized Action Decoding, Meyer et al.
(2023)
Summary. The work by Meyer et al. [Mey+23b] builds upon the QPG framework introduced
in [Jer+21a]. It takes a closer look at the introduced RAW-VQC policy and – based on measurements
in the computational basis – introduces a classical post-processing function for action selection. By
optimizing this function w.r.t. a novel quality measure, significant performance improvements can be
made. The introduced procedure is also suited for problems with large action spaces. Experiments
on a 5-qubit quantum device represent the first successful training of a VQC-based RL routine on
actual quantum hardware.

Classical Post-Processing. The work focuses on the RAW-VQC policy, i.e. πθ(a|s) = ⟨Pa⟩s,θ. For
measurements in the computational basis, this can be viewed as a partitioning of all possible
bitstrings C. This allows the definition of a classical post-processing function fC : {0, 1}n →
{0, 1, · · · , |A| − 1}, such that fC(b) = a, iff b ∈ Ca. The policy can therefore be expressed as
πθ(a|s) ≈ 1

K ·
∑K−1

k=0 δfC(b(k))=a where b(k) is the bitstring observed in the k-th shot.

Globality Measure. The formulation in terms of a classical post-processing function allows for the
definition of a quality measure on the explicitly used partitioning of C. The authors start out with the
extracted information EIfC(b), which denotes the number of bits necessary to get an unambiguous
assignment of the bitstring b to the set Ca it is contained in. This is extended to a globality measure
by averaging over all possible bitstrings, i.e. GfC := 1

2n
∑

b∈{0,1}n EIfC(b). This measure quantifies,
how much information is used on average to make an decision for an action. While this measure
is hard to compute in general, the authors discuss an explicit construction of a post-processing
function, that guarantees saturating the globality measure (which is trivially upper-bounded by
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the number of involved qubits). Based on that construction, an optimal post-processing function
is given by fC(b) =

[
b0 · · · bm−1

(⊕n−1
i=m bi

)]
10

, where [·]10 refers to the decimal representation and
m = log2(|A|)− 1.

Experimental Results. The claim that a high value of the globality measure correlates with a
good RL performance is experimentally demonstrated on several environments. Experiments on
the CartPole benchmark with globality values ranging from GfC = 1.0 to the maximum possible
GfC = 4.0 show a clear correlation between the measure and the actual performance of the resulting
algorithm. It is noted, that the construction of the post-processing function explicitly is detached
from the complexity of the actual quantum model, and therefore is a very efficient way to improve
the performance. The QRL agents with GfC > 3.0 also outperform the SOFTMAX-VQC policy,
which was originally conjectured to be superior in [Jer+21a]. These results are strengthened by
experiments on FrozenLake and ContextualBandits environments. Empirical results regarding
effective dimension and the Fisher information spectrum [Abb+21] also demonstrate an improved
expressivity and trainability of models with high globality measure.

Training on Quantum Hardware. Using this enhanced QPG algorithm, the authors execute a full
training routine on an 8-state and 2-action ContextualBandits environment on quantum hardware.
They employ a 3-qubit sub-topology of the 5-qubit IBM quantum device ibmq_manila [IBM23]. The
results confirm, that training VQC-based QRL algorithms on actual hardware is indeed possible.
However, there is still a deterioration of performance compared to the noise-free simulation, which
is explained by the currently inevitable hardware noise. Verification of the learned parameters
demonstrates, that the agent actually identifies the optimal action in all cases, only the certainty
of that decision is less pronounced compared to simulation.

Remarks. The described action decoding procedure is easy to extend to problems with large action
spaces. However, some additional engineering is necessary to account for action spaces of size
that cannot be expressed as a power of two. It is left open, at which point the benefit of using
a post-processing function with high globality is out-weighted by the likely occurrence of barren
plateaus [Cer+21]. Potentially the flexible definition of the post-processing function can be used
to balance those two objectives. While the demonstration of trainability on quantum hardware is
certainly pretty small-scale, it can be considered an important step towards the practical usability
of these type of algorithms.

Algorithmic Characteristics - Meyer et al. [Mey+23b]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

CartPole
REINFORCE Policy continuous discrete

4 24 to 40b
(OpenAI Gym) 4-dim 2

FrozenLake
REINFORCE Policy discrete discrete

4 24 to 40(OpenAI Gym) 16 4

ContextualBandits
REINFORCE Policy discrete discrete

5 70(see [SB18]) 32 8

ContextualBandits
REINFORCE Policy discrete discrete

3 30(see [SB18])c 8 2

a this entails encoding, scaling, and variational parameters;
b the SOFTMAX-VQC also uses additional classical parameters;
c hardware experiment: modified circuit structure to reduce transpilation overhead, details in [Mey+23b];
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Quantum Natural Policy Gradients: Towards Sample-Efficient Reinforcement Learn-
ing, Meyer et al. (2023)
Summary. The paper by Meyer et al. [Mey+23a] proposes an enhanced training routine for the
framework proposed in [Jer+21a] and extended in [Mey+23b]. A second-order extension – based on
so-called quantum natural gradients – is employed to define the quantum natural policy gradient
(QNPG) algorithm. The modified technique is experimentally demonstrated to have preferable
properties regarding trainability, and is also verified on actual quantum hardware.

Natural Gradients. The original QPG algorithm is trained based on first-order updates, i.e. ∆θ =
α∇θL(θ). This update structure has the shortcoming, that it is closely tied to the Euclidean geome-
try and does not take into account the actual curvature of the loss landscape. This can be mitigated
by using the FIM F (θ), which describes the local curvature of the parameter space around a given
point. This can be used to define a natural gradient update as ∆θ = αF−1(θ)∇θL(θ) [Ama98].

Figure 10: QNPG pipeline proposed by Meyer et al. [Mey+23a]; The pseudoinverse of the quantum
FIM is used to perform training in an undistorted neighborhood of the loss landscape.

Quantum Natural Policy Gradients. In order to employ this concept for training in the quantum
realm, the paper employs a generalization of the classical FIM. This quantum FIM (derived from the
Fubini-Study metric tensor [Che10]) g(θ) is hard to compute in general – however, a block-diagonal
approximation can be estimated efficiently in hardware [Sto+20]. Based on that the paper defines
the QNPG update rule as ∆θ = αg†(θ)∇θL(θ). Additionally, a regularized version of the QNPG
algorithm is introduced, to counter instabilities encountered during inverting the quantum FIM. It
has to be highlighted, that the overhead of incorporating these second-order update rule is almost
negligible compared to the anyways necessary computation of first-order gradients. The pipeline of
the overall algorithm is visualized in Fig. 10.

Experimental Results. The effectiveness of the training routine is demonstrated on different in-
stances of ContextualBandits. On a small-scale setting with only a single qubit and two trainable
parameters, it is shown that the (regularized) QNPG algorithm converges significantly faster for
random initializations compared to the original QPG formulation. For specific initializations it is
moreover validated, that the second-order extension does what it was designed for and helps to
traverse distorted regions of the loss landscape. An up-scaled experiment with a 12-qubit VQC
underlines the efficiency of the introduced routine.

Training on Quantum Hardware. To demonstrate the practical feasibility of the QPG approach
the authors train an medium-scale instance on actual quantum hardware. The experiment em-
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ploys a 12-qubit sub-topology of the 27-qubit system ibmq_ehningen [IBM23]. The results demon-
strate, that the quantum agent is actually able to learn meaningful behavior in the 4096-state
ContextualBandits environment. There is some deterioration of the performance compared to
noise-free simulation, which is not caused by the training routine itself, as demonstrated by ex-
periments with analytically optimal parameters. However, the learned policy identifies the correct
action in a majority of the cases, similar to the hardware results in [Mey+23b].

Remarks. The paper demonstrates the effectiveness of the QNPG routine for ContextualBandits
environment, the extension to more generic problems is however left for future work. A very inter-
esting consideration is the influence of quantum natural gradients on the barren plateau problem,
which is discussed with different results in Refs. [HK21; Tha+23]. The hardware experiment using
12 qubits is a big improvement upon the results in [Mey+23b] and can be considered as the currently
largest-scale practical demonstration of VQC-based QRL.

Algorithmic Characteristics - Meyer et al. [Mey+23a]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gates

ContextualBandits QNPG Policy discrete discrete
1

1 (encoding)
(see [SB18]) 2 2 2 (weights)

ContextualBandits QNPG Policy discrete discrete
12

12 (encoding)
(see [SB18])a 4096 2 36 (weights)

a hardware experiment: hardware-native circuit structure, details in [Mey+23a];

4.2.3 Combined Approximations

It is possible to combine the approach of approximation in value space from Sec. 4.2.1 and in policy
space from Sec. 4.2.2. This is formulated in an actor-critic approach in Wu et al. [Wu+23], which
is re-implemented and extended in Refs. [Kwa+21; Ree23]. An asynchronous training routine is
proposed by S. Y.-C. Chen [Che23a]. A soft actor-critic formulation is described by Q. Lan [Lan21].
An extension to multiple agents is proposed in Yun et al. [Yun+22] and extended in Ref. [YPK23].

An overview of progress in the field of quantum multi-agent RL can be found in Ref. [ZY23].

Citation First Author Title

[Wu+23] S. Wu Quantum reinforcement learning in continuous action space

[Kwa+21] Y. Kwak Introduction to Quantum Reinforcement Learning: Theory
and PennyLane-based Implementation

[Ree23] V. Reers Towards Performance Benchmarking for Quantum Reinforce-
ment Learning

[Che23a] S. Y.-C. Chen Asynchronous training of quantum reinforcement learning

[Lan21] Q. Lan Variational Quantum Soft Actor-Critic

[Yun+22] W. J. Yun Quantum Multi-Agent Reinforcement Learning via Variational
Quantum Circuit Design

[YPK23] W. J. Yun Quantum Multi-Agent Meta Reinforcement Learning

Table 6: Work considered for “QRL with VQCs – Combined Approximations” (Sec. 4.2.3)
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Quantum reinforcement learning in continuous action space, Wu et al. (2023)
Summary. This paper by Wu et al. [Wu+23] extends the concept of VQC-based RL to continuous
action spaces. The authors choose a quantum control environment, more concretely one that encodes
an eigenvalue problem. This allows to interpret the action as a (parameterized) unitary. The
experimental results suggest an exponential reduction in model complexity compared to classical
approaches.

Eigenvalue Problem as RL Environment. The RL agent has to solve an eigenvalue problem, i.e., find
the eigenvalue of a given Hamiltonian. This should be done in the following iterative procedure: Let
H be the Hamiltonian of an n-qubit quantum system E and |s0⟩ an initial state from E. The system
should be driven towards the eigenstate of H, denoted as |u0⟩. Also the corresponding eigenvalue
λ0 should be returned. Although not explicitly stated in the paper, we assume the agent should
search for the eigenstate with the associated smallest eigenvalue, as this corresponds to the ground
state.

The observation for this environment is the current quantum state |st⟩, which is provided to the
agent via some quantum channel. The actions the agent can execute correspond to parameterized
unitaries U(θt), where θt are classical parameters sampled from the VQC via measurements. Once
instantiated, this unitary is applied to |st⟩ to evolve the state U(θt) |st⟩ = |st+1⟩. The agent receives
a classical reward, which describes the closeness of the current state to the searched eigenstate of
the Hamiltonian.

The authors state, that their proposed technique has some parallels to Grover’s search. More
concretely, the trained agent provides an alternative to the amplitude amplification procedure, which
could alternatively be used to solve the task at hand.

Model Architecture and Underlying RL Algorithm. The overall approach can be considered hybrid,
as the optimization of the VQC parameters is still conducted on classical hardware. A schematic
description of the approach is given in Fig. 11. The agent observes a quantum state from the
environment, which is used as the initial state |st⟩ of the VQC function approximator. Measurements
on the prepared quantum state determine the parameters |θt⟩. Those are then fed into the unitary
operator |U(θt)⟩ and applied to the environment state. The new state |st+1⟩, combined with an
ancilla reward qubit initialized to |0⟩, is then evolved using some user-defined reward unitary Ur.
Measurements are performed on this state to determine the reward produced by the executed action.
This procedure repeats several timesteps, with the objective to approximate the eigenstate |u0⟩.

The VQC architecture does not incorporate a feature map, as the observation |st⟩ is used as the
initial state |Φ⟩. Each parameterized layer consists of 1-qubit rotations and a circular entanglement
structure. For every element of the action parameters θj , there is an associated observable Bj , which
is measured on the prepared quantum state. (The paper does not mention, how the action unitary
U(θ) is explicitly constructed.) Following this step, a phase estimation circuit implements the
reward unitary Ur = UPE . This transforms the state to the basis of eigenstates, i.e., UPE |0⟩ |st+1⟩ =∑n

k=1 αt+1,k |λk⟩ |uk⟩. With a measurement of the eigenvalue phase register, the desired eigenvalue
λ0 is observed with a probability of pt+1 = |αt+1,0|2 = | ⟨st+1|u0⟩ |2. The reward can then be defined
as e.g. rt+1 = pt+1 − pt. Obviously, for pt+1 → 1, the state |st+1⟩ converges to |u0⟩.

The underlying RL routine is an actor-critic method. Therefore, the paper combines a policy-
VQC as actor and a Q-function-VQC as critic to a so-called quantum deep deterministic policy
gradient (QDDPG) algorithm. The experience of the agent, i.e., tuples (|st⟩ , θt, rt, |st+1⟩), are
stored in a replay buffer to prevent overfitting. Additionally, target networks are employed for
both, the actor and the critic.

Experimental Results and Model Complexity. All experimental results in the paper are based on
classical simulations. For training, the Hamiltonian H = 1

4(sxσx + syσy + szσz + I) is instantiated
with the coefficients (sx, sy, sz) = (0.13, 0.28, 0.95). Concrete details on the training procedure,
e.g., the number of episodes, are not stated. The trained model is applied to 1000 random initial
states. The overlap with the respective |u0⟩ is approaching one, consequently the agent is able to
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(a) The QRL model. Each iterative step can be
described by the following loop: (1) at step t, the

agent receives |st⟩ and generates the action
parameter θt according to the current policy; (2)

the agent generates |st+1⟩ = U(θt) |st⟩ (3) based on
|st⟩ and |st+1⟩, a reward rt+1 is calculated and fed
back to the agent, together with |st+1⟩; (4) based
on st+1 and rt+1, the policy is updated and then

used to generate θt+1.

(b) The quantum circuit for our QRL framework at
each iteration. The entire QRL process includes two
stages, so we give the circuit separately. In stage 1,

the circuit includes two registers: the reward
register, initialized |0⟩, and the environment register
|st⟩. Upolicy is generated by the quantum neural

network, and determines the action unitary U(θt).
Ur and M are designed to generate the reward rt+1.
In stage 2, the circuit has only environment register
and does not need to feedback the reward value and

update the policy.

Figure 11: Hybrid model for quantum environment proposed by and taken from Wu et al. [Wu+23]
(including subcaptions); We note an ambiguity in notation, as the parameters θt,i must not be
confused with the parameters of the action unitary U(θ). The first set are the ones updated by the
RL algorithm, the other ones are extracted via measurements from the quantum state prepared by
the VQC.

get quite close to the desired eigenstate in all cases. The trained model shows good generalization
capabilities, i.e., it can be applied to various initial states. This is in contrast to e.g. a variational
quantum eigensolver (VQE), where the control pulse for one initial state is meaningless for other
ones.

The overall gate complexity for one RL episode is stated as O(m · polylog(N)). Here, m is
the number of shots for sampling expectation values and N denotes the number of qubits. This
statement assumes that H can be efficiently simulated as otherwise the complexity of UPE would
exceed O(polylog(N)). Additionally, all VQCs in the method are also assumed to have a gate
complexity of at most O(polylog(N)). With this perquisites, the authors claims an exponential
advantage in model complexity compared to classical approaches.

Generalization to Discrete Action Spaces. The paper also generalizes the presented concept to
discrete action spaces, with the FrozenLake environment as an example. The observations are
encoded as basis states into the VQC via computational encoding, similar to Chen et al. [Che+20].
The movements applied by the actions are formulated as unitaries acting on the VQC state. A
slight generalization of Chen et al. [Che+20] is used for this, which allows to perform the transforms
|0⟩ → |1⟩ and |1⟩ → |0⟩ in a parameterized manner. The reward unitary is formulated in a similar
fashion. It is stated that experiments with this configuration were successful, but no concrete results
are provided.

Remarks. There are some caveats and ambiguities we identified regarding the proposed approach.
First, the algorithm requires knowledge of and ability to prepare the desired eigenstate |u0⟩ for
the training procedure. With this state already known, the whole procedure of reproducing it is a
somewhat circular task. However, as the learned model seems to generalize to different input states,
the technique offers clear advantage over approaches like quantum phase estimation. Second, the
model requires repeated preparation of the environment state |st⟩, as it is disturbed by measurements
to extract the reward information. This should be doable, as one knows the state preparation
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routine |st⟩ = U(θt−1) · · ·U(θ0) |s0⟩. The influence of this additional overhead is unfortunately
not considered in the complexity considerations discussed above. Third, the claim of exponential
quantum advantage w.r.t. model complexity (i.e. O(polylog(N)) for all VQCs) should be supported
by larger-scale experiments.

Algorithmic Characteristics - Wu et al. [Wu+23]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gates

Quantum Actor-Critic
“QDDPG”

Q-function,
quantum

conti-
nuousa

n
0 (encoding)b

n× d× 3 (weights)cEigenvalues Policy,
(see [Wu+23]) Environment

FrozenLake Actor-Critic Q-function, discreted discreted
n

0 (encoding)b
(OpenAI Gym) “QDDPG” Policy 16 4 N/A (weights)

a output is interpreted as parameters of a unitary, i.e. a quantum operation applied to the environment;
b the RL state is a quantum state, i.e. no classical information has to be encoded;
c variational gates: qubits× layers× per_qubit_per_layer; details are not specified;
d state and action space are encoded into the quantum realm for a neat integration into the pipeline;

Introduction to Quantum Reinforcement Learning: Theory and PennyLane-based Im-
plementation, Kwak et al. (2021)
Summary. The paper by Kwak et al. [Kwa+21] gives a short introduction to both RL and (varia-
tional) QC. This is followed up by a tutorial on how to implement a VQC-enhanced RL algorithm
with PennyLane to solve the CartPole environment.

Hybrid RL Agent. The paper employs the typical hybrid structure, with the VQC as a function ap-
proximator. The optimization of the parameters and the interaction with the CartPole environment
is executed on classical hardware. The underlying algorithm uses an actor-critic approach, where
the actor is quantum and the critic is classical. A set of 1-qubit rotations is used to encode the state
of the CartPole environment into the four-qubit system. This encoding layer is followed by 4 layers
with learnable 1-qubit rotations and an unspecified entanglement structure. The result is extracted
from the measurement of 2 qubits in the computational basis and the respective expectation values
are interpreted as the action-value function.

Remarks. The agent is able to surpass random behavior, but lacks behind other hybrid ap-
proaches [LS20; Jer+21a]. To the best of our understanding, the implemented quantum actor-critic
approach deviates in some details from previously considered approaches. Most importantly, a hy-
brid approach is used, where the actor is represented with a VQC and the critic employs a classical
DNN. A benchmark analysis of the described setup is proposed and conducted by V. Reers [Ree23].

Algorithmic Characteristics - Kwak et al. [Kwa+21]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

CartPole
Actor-Criticb Q-function continuous discrete

4
4× 1 (encoding)

(OpenAI Gym) 4-dim 2 4× 4× 3 (weights)

a encoding gates: qubits× per_qubit; variational gates: qubits× layers× per_qubit_per_layer;
b only the actor employs a VQC, the critic uses a classical DNN;
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Asynchronous training of quantum reinforcement learning, S. Y.-C. Chen (2023)
Summary. This work by S. Y.-C. Chen [Che23a] introduces an actor-critic approach, that is trainable
in an asynchronous fashion. This yields the big advantage, that training could be spread out
over several classical simulators or quantum hardware devices. The efficiency of the introduced
quantum asynchronous advantage actor critic (QA3C) algorithm compared to previous formulations
is demonstrated on several benchmark environments.

Quantum A3C. The underlying concept is based on the classical A3C algorithm [Mni+16]. This
framework makes use of a global shared memory and a process-specific memory for each individual
agent. Each agent interacts with the environment independently, and only once certain criteria are
met the global model is updated using the information provided by the local agents. This enables
a distributed and therefore easy parallelizable training routine. The approximator for Q-function
and policy both are realized using VQCs with classical neural networks pre- and appended to form
a hybrid model.

Experimental Results. The proposed QA3C algorithm is executed on the environments Acrobot,
CartPole, and MiniGrid-SimpleCrossing. It is observed over all instances, that the hybrid quan-
tum model is competitive with a much larger classical model. Moreover it is demonstrated, that
QA3C outperforms classical A3C employing classical models of comparable complexity.

Remarks. The distribution of the training among several workers is certainly an important consid-
eration taking the current access modalities of quantum hardware providers into account. However,
it is not clear if training practically can be distributed considering the long queue waiting times.
Moreover, it has to be taken into account, that it is not clear what actually is the role of the VQC,
due to the appended neural networks. However, the comparison to full-classical agents of similar
size is an interesting consideration. As usually it has to be highlighted that the experiments were
to small-scale to make meaningful statements on potential quantum advantage.

Algorithmic Characteristics - S. Y.-C. Chen et al. [Che23a]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

Acrobot
(OpenAI Gym)

Actor-critic
”QA3C“

Q-function,
Policy

continuous

6-dimc
discrete

3c 8
N/A (encoding)
48 (weights)b
148 (classical)

CartPole
(OpenAI Gym)

Actor-critic
”QA3C“

Q-function,
Policy

continuous

4-dimc
discrete

2c 8
N/A (encoding)
48 (weights)b
107 (classical)

SimpleCrossing
(OpenAI Gym)

Actor-critic
”QA3C“

Q-function,
Policy

continuous

127-dimc
discrete

6c 8
N/A (encoding)
48 (weights)b
2431 (classical)

a the training process is distributed over 80 workers, which incorporate a local copy of the parameters;
b actor and the critic are composed of an individual hybrid model, i.e. the number of weights are doubled;
c action and state-spaces are mapped to the required dimensionality by using classical neural networks;

Variational Quantum Soft Actor-Critic, Q. Lan (2021)
Summary. The paper by Q. Lan [Lan21] introduces a quantum version of a soft actor-critic (SAC)
approach. The advantage of this algorithm, compared to previous suggestions, is the possibility to
work with a continuous action space. The algorithm is tested on the Pendulum environment.

Soft Actor-Critic for Continuous Control. The term continuous control refers to a setup, in which the
agent acts in a continuous action space. Most publications in the context of QRL deal with discrete
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action spaces, while a few others discuss continuous control for quantum environments [Wu+23;
SSB23]. This work focuses on classical environments, which requires some kind of action decoding
based on measurements of the quantum state. Instead of directly selecting the actions based on
measurement results, the parameterized hybrid model learns the parameters of a distribution, from
which the action is sampled. The VQC, and a downstream NN, are used to represent mean µ and
variance σ of a Gaussian distribution. This allows the agent to act in a continuous action space in
a straightforward manner.

In contrast to the standard RL setup, SAC [Haa+18] not only aims to optimize the expected
return, but also the policy entropy [Zie+08; Haa+17]. Therefore, the expected return is defined as
Gt =

∑∞
i=t γ

i−t(r(si, ai)+αH[πθ(·|si)]), whereH[p] = −
∫
R p(x) log p(x)dx is the differential entropy

for the probability density function p(x). Among other advantages, this entropy normalization
potentially enhances exploration by encouraging more stochastic policies [Haa+17].

VQC Architecture. The paper considers two different VQC architectures. The first one uses the
typical three-part structure of rotational encoding, variational layers, and measurements. The
second architecture is more complex, as it uses data re-uploading [Pér+20], and a more complex
encoding structure [SJD22; Jer+21a]. It can be expected, that the second choice gives rise to more
expressive models, which usually correlates with RL performance.

Experimental Results. The experimental section of the paper compares the performance of the two
resulting quantum SAC approaches to a classical NN on the Pendulum environment. On the one
hand, the quantum model with the simple VQC architecture is inferior to the other two approaches.
On the other hand, the quantum model with data re-uploading performs similar to the classical
model, and both are able to learn near-optimal behavior. The quantum model incorporates only 41
parameters, while the classical one uses 1250. This is interpreted as an quantum advantage w.r.t.
parameter complexity.

Some additional architecture experiments are conducted, mainly focusing one the depth of the
underlying VQCs. It is observed, that a certain number of variational layers is required to enable
training. Overall, the performance is strongly correlated with the concrete architecture choice,
which is in line with the results known from literature [Fra+22].

Remarks. To substantiate the claim of quantum advances w.r.t. parameter complexity, more ex-
periments with increasing environment size should be performed. By using NNs in combination
with VQCs, it is not completely clear, which part of the learning is actually conducted by the
quantum part. The differing performance of the two architecture choices highlight the importance
of designing a sophisticated data encoding scheme.

Algorithmic Characteristics - Q. Lan [Lan21]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

Pendulum Quantum-
Q-function continuous conti-

nuous
3

3 to 12 (encoding)
(OpenAI Gym) SAC 3-dim 36 (weights)

a the hybrid model also incorporates additional classical parameters in an appended NN;

Quantum Multi-Agent Reinforcement Learning via Variational Quantum Circuit De-
sign, Yun et al. (2022)
Summary. This paper by Yun et al. [Yun+22] introduces a quantum multi-agent reinforcement
learning (QMARL) approach. It is applied to an environment inspired by wireless communica-
tion. The authors achieve results that are competitive with classical NNs with higher parameter
complexity.
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QMARL Framework and VQC Architecture. The approach is inspired by the classical method of cen-
tralized training with decentralized execution (CTDE). This approach deals with the problems intro-
duced by a non-stationary reward structure, caused by the interaction of multiple agents [Low+17].

The actor-critic structure employs only a single critic (i.e. represented by a single VQC), which
receives the rewards. A naive implementation would would increase the qubit count with the number
of agents. To resolve this problem, the state encoding routine is modified, such that only one qubit
is required for each agent.

The general VQC architecture follows the typical three-part structure. The states are encoded
using a feature map with 1-qubit rotations. The state space of the environment is four-dimensional.
Consequently, four qubits are used to represent the actor associated to each of the four agents. For
the critic, all rotations for the state of one agent are applied to a single qubit. This implies a qubit
count equal to the number of agents (i.e. implemented for 4 qubits in the article). The following
learnable layer(s) consist of 1-qubit rotations and some unspecified entanglement structure. The
choice of the measured observables M are not explicitly stated.

Experimental Results and Discussion. The QMARL algorithm is applied to a communication task
referred to as Single-Hop Offloading environment. It simulates two clouds, between which pack-
ages have to be distributed along four edges. Each cloud and edge has a queue with a certain
capacity. One agent is used to learn the actions of its associated edge. The objective is to minimize
the overflow and underflow of queues.

The paper compares four different multi-agent reinforcement learning (MARL) and QMARL
frameworks: (1) The described version, where actor and critic are represented with a VQC; (2) A
modified pipeline, where the critic is represented with a classical NN; (3) A small-scale classical
MARL approach; All three setups contain 50 trainable parameters each. (4) A large-scale classical
MARL algorithm with over 40000 trainable parameters.

The results demonstrate, that the QMARL approach (1) is competitive with the large-scale
MARL algorithm (4). In contrast, the hybrid QMARL method (2) and also the small-scale classical
MARL seem to lack expressivity to solve this task. The authors conclude, that QMARL yields some
quantum advantage, as the parameter complexity is drastically reduced.

Remarks. Potentially, compressing all observations of one agent into one qubit is not sufficient
to represent the information in a lossless manner. Therefore, larger-scale experiments should be
conducted to get more insights into the proposed quantum multi-agent architecture. The same
holds for the reduced parameter complexity compared to classical models.

Algorithmic Characteristics - Yun et al. [Yun+22]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gates

Single-Hop Multi-Agent
Q-function

Policy
continuous

4-dim
discrete

4
4

4 or 16 (encoding)a
N/A (weights)Offloading Actor-Critic

(see [Yun+22]) “QMARL”

a the 4 quantum actors use 4 encoding parameters each; the quantum centralized critic contains 16;

Quantum Multi-Agent Meta Reinforcement Learning, Yun et al. (2023)
Summary. The second paper by Yun et al. [YPK23] extends their previous approach [Yun+22]
with various new techniques for QMARL. It proposes to use meta-learning by pre-training only one
individual agent. This is followed by a fine-tuning the multi-agent scenario. Therefore, two different
types of trainable parameters are used, i.e. trainable measurements are introduced to complement
the typical variational parameters. The approach is also extended to continual learning, where
meta-learning is performed on multiple environments at once.
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VQC Architecture and meta-QMARL. The underlying RL algorithm employs an SAC approach
with the VQC as function approximator for the action-value function. The quantum circuit uses
the three-layer structure of 1-qubit rotation data encoding, variational layers with entanglement
gates, and measurement. The paper applies QRL to multi-agent problems and extends the original
proposal on quantum CTDE by Yun et al. [Yun+22]. An additional step is introduced for the
training procedure, resulting in a meta-learning approach.

In order to realize these concepts, the authors define two different sets of parameters. First,
there are the typical variational parameters ϕ, usually parameterizing 1-qubit rotations. Second,
it is also possible to parameterize and train the measurement observables. The paper proposes to
use M

θ
(m)
1,2

= R†
x(θ1) ·R†

y(θ2) · Z ·Ry(θ2) ·Rx(θ1) as observable on the m-th qubit, i.e. two trainable
parameters for each 1-qubit observable. Basically, this trainable observable introduces a change of
basis, as final measurements are always performed in the computational basis. The instantiated
observable can be visualized on the Bloch sphere as the angle w.r.t. which the measurement is
performed.

Both parameter sets are trained in alternating steps, where the first one is referred to as meta
quantum neural network (QNN) angle training, and focuses exclusively on the variational parameters
ϕ. This step trains only a single quantum agent, which interacts with several other agents in the
multi-agent environment. Unfortunately, the authors do not state how this interaction is actually
realized. We assume, that the quantum agent interacts with other classical agents in this initial
training phase. During training, the pole parameters θ are not updated, but they can be varied with
some randomly selected value to form a kind of angle-to-pole regularization. The second phase, the
local QNN pole training, focuses on the parameterized observables. Those are fine-tuned individually
for each copy of the meta-trained QNN, corresponding to the all-quantum agents interacting in the
multi-agent environment. The authors propose, that by meta-training the network, it is more
efficient to fine-tune the individual agents. This is justified with the lower parameter complexity, as
the variational parameters remain constant in the second training phase. The loss function is the
sum of all Q-learning losses of the individual agents.

Additionally, the paper introduces the concept of pole memory, which refers to storing the trained
pole parameters for the individual agents. As these sets are much smaller than the set of variational
parameters, it is more efficient to store the full configuration.

Experimental Results. The introduced training routing is executed on a two-step two-agent environ-
ment. It is observed, that the meta-training convergence is slower than direct training of a QMARL
agent. However, once this training has converged, finetuning is much more efficient. Overall, the
authors conclude, that the additional step of meta-training enhances convergence in a multi-agent
environment.

Extension to Continual Learning. The above setting is also extended to continual learning, i.e.
training in more than one environment (or typically the same environment with slightly altered
dynamics).

The investigation focuses on the difference in performance with and without the use of pole
memory. The results suggest that resetting the poles to the initial state (i.e. the parameter setting
with which meta training was conducted) benefits convergence speed and stability in an environment
with alternating dynamics. Meta training with a higher degree of angle-to-pole regularization seems
to enhance the generalization performance of the meta-QNN.

Remarks. The paper does not state explicitly how exactly the initial meta training is conducted.
Considering the results, the VQCs seem to have some capability w.r.t. transfer learning, as which
the meta-learning and continual training can be interpreted. The idea of employing trainable
observables has also potential for other approaches, as it partially avoids the necessity to explicitly
pre-select an action decoding scheme. Practically, these trainable observables are introduced by
adding an additional layer to the VQC which learns a specific measurement. A significant difference
to pre-existing procedures is that these parameters are not trained simultaneously with the typical
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variational parameters. It is not completely clear, whether this two-step training procedure is
beneficial in a general setup.

Algorithmic Characteristics - Yun et al. [YPK23]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

Single-Hop Meta-Multi-
Q-function continuous

4-dim
discrete

4
4

4 (encoding)
N/A (weights)Offloading Agent SAC

(see [Yun+22]) “Meta-QMARL”

Two-Step Meta-Multi-
Q-function continuous

4-dim
discrete

2
2

2 (encoding)
N/A (weights)Game Agent SAC

(see [YPK23]) “Meta-QMARL”

a the parameter counts are denoted for a single agent;

4.2.4 Offline Methods

Offline reinforcement learning [Lev+20] deals with the setting, when no direct interaction with the
environment is possible. Instead, the agent is trained on a set of pre-acquired data. Two alternative
formulations for the quantum realm have been proposed in Periyasamy et al. [Per+23] and Cheng
et al. [Che+23a].

Citation First Author Title

[Per+23] M. Periyasamy Batch Quantum Reinforcement Learning

[Che+23a] Z. Cheng Offline Quantum Reinforcement Learning in a Conservative
Manner

Table 7: Work considered for “QRL with VQCs – Offline Methods” (Sec. 4.2.4)

Batch Quantum Reinforcement Learning, Periyasamy et al. (2023)
Summary. In this work, Periyasamy et al. [Per+23] propose batch-constrained quantum Q-learning
(BCQQ), a offline QRL algorithm based on the classical discrete batch-constrained deep Q-learning
(BCQ) algorithm by Fujimoto et al. [Fuj+19]. Furthermore, the authors introduce a novel data
re-uploading (DRU) scheme, which they call cyclic DRU. Experiments are executed in the OpenAI
CartPole environment.

Algorithm. The key idea in BCQ is that in order to avoid a distributional shift from training to
testing, a trained policy should induce at test time a similar state-action visitation to that observed
in the the offline training data, the so-called batch. Hence, the name batch-constrained.

To achieve this, BCQ trains a generative modelGω to pre-select likely actions based on the batch.
Through this selection, the policy is constrained to only choose from a subset of actions. In the case
of a discrete action space, the generative model can be understood as a map Gω : S → ∆(A) that
takes the current environment state as input and outputs the probability with which each action
would occur in the batch. In particular, if the batch is filled using transitions from a policy πb then
the generative model should imitated this policy, i.e. Gω(a|s) ≈ πb(a|s). Therefore, Gω is called
imitator.
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Through using this imitator, actions can be pre-selected by discarding actions whose probability
relative to the most likely one is below a threshold τ

Ã(s) =

{
a ∈ A

∣∣∣∣∣ Gω(a|s)
maxâ∈AGω(â|s)

> τ

}
. (26)

The actions selected by the imitator are then evaluated by a Q-network, which is trained by only
considering the selected actions in the loss computation. The imitator itself is trained with a
standard cross-entropy loss

l(ω) = −
∑

(s,a)∈B

log (Gω(a|s)) .

Additionally, to address the overestimation bias of Q-learning towards state transitions that are
underrepresented in the batch, double DQN [VGS16] is employed.

Finally, the BCQQ algorithm is obtained by applying the variational quantum deep Q-networks
(VQ-DQN) proposed by Franz et al. [Fra+22] as function approximators for both the imitator and
Q-network. Moreover, for the model training the authors use the AMSgrad optimizer in combination
with gradients approximated via SPSA. Wiedmann et al. [Wie+23] demonstrated that SPSA can
be used to efficiently train medium-sized VQCs with a reduced number of circuit runs, compared
to the commonly used parameter-shift rule.

Model Architecture. The VQC used as the function approximator for the imitator and Q-network
is shown in Fig. 12. Each entry of the four-dimensional state vector returned by the CartPole
environment is encoded using a single qubit Rx gate on an individual qubit. The variational block
comprises five layers containing four parameterized Ry, and four parameterized Rz gates each. In
addition to the parameterized rotational gates, each layer also includes two-qubit CZ entanglement
gates with nearest-neighbor connectivity. The CartPole environment has two discrete actions.
Therefore, the expectation value of the Pauli-ZZ observable on qubits 1 and 2 and Pauli-ZZ
observable on qubits 3 and 4 are used to decode the Q-values from the VQC. Furthermore, trainable
classical weights are applied on both expectation values to increase the range of possible Q-values.

Periyasamy et al. [Per+22] established that spreading encoding gates for the feature vector of a
given data point throughout the quantum circuit results in an improved representation of the data
when the expectation values are measured for observables containing all Pauli strings. Following
this, the authors use a re-uploading scheme, which exposes each qubit to all the entries of the
current input state vector. Contrary to the standard data re-uploading, where the encoding scheme
is re-introduced after each variational layer as such, the encoding scheme is re-introduced with the
input state vector shifted by one step in a round-robin fashion. The structure of a VQC with this
cyclic DRU is shown on the right of Fig. 12.

Figure 12: Left: VQC that is used as function approximator in the discrete BCQQ algorithm. Right:
VQC with cyclic DRU. Note: Each θ⃗ block represents the repetition of the variational layer ansatz
with different trainable parameters. Both taken from [Per+23].

Experimental Results and Discussion. In order to evaluate the performance of BCQQ, the authors
train policies on buffers with varying sizes, filled with randomly sampled environment interactions.
As a classical benchmark the authors train neural networks instead of VQCs on the same buffers.
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For this benchmark, they first use a fully connected neural network with a total number of 67270
parameters and second a smaller network with just 55 parameters. The number of parameters in
the smaller network is much more comparable to the VQC. The authors find that the BCQQ agent
is able to learn an optimal policy, achieving the maximum reward of 500, from a buffer of just 100
random environment interactions. Interestingly, the classical agents fail to learn a policy in this low
data regime, suggesting a potential quantum advantage in terms of the sample efficiency.

Moreover, the cumulative reward these models can achieve beyond 500 is tested, which shows
that the VQC with cyclic DRU out-performs the VQC with standard DRU. All these experiments
were performed using an early stopping criteria, where during training the current policy is evaluated
in the actual environment to save computational resources. Strictly speaking, this makes the training
not fully offline. In a second experiment however, the authors train the VQC with cyclic DRU on
a buffer filled with 100 interactions obtained from an optimal policy with noise. From this, the
authors show that without early stopping the BCQQ agent can learn an optimal policy from this
noisy buffer.

Remarks. It remains to be shown that the observed sample efficiency scales to more complex
environments. Furthermore, a more elaborate analysis of the effectiveness of cyclic DRU could give
insights for future VQC design.

Algorithmic Characteristics - Periyasamy et al. [Per+23]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

CartPole
(OpenAI Gym) BCQ Imitator,

Q-function
continuous

4-dim
discrete

2
4

4× 1 (encoding)
4× 15× 2 (weights)
N/A (classical)b

a encoding gates: qubits× per_qubit; variational gates: qubits× layers× per_qubit_per_layer;
b model incorporates classical weights after measurement, details are not stated;

Offline Quantum Reinforcement Learning in a Conservative Manner, Cheng et al. (2023)

Summary. This work by Cheng et al. [Che+23a] introduces the offline QRL algorithm, conservative
quantum Q-learning (CQ2L). In contrast to online RL, offline RL is used in scenarios where the
agent cannot interact with the environment during training and is hence trained purely data-driven
from a set of previously collected data. The proposed algorithm is based on the classical conservative
Q-learning (CQL) algorithm by Kumar et al. [Kum+20]. Experiments are conducted in the OpenAI
CartPole, Acrobot and MountainCar environments.

Algorithm. The objective of offline RL is to learn a near-optimal policy from a fixed dataset D
sampled with a behavior policy πb, without further environment interactions. A major challenge in
this setting is that the fundamental assumption that agents can sample data online is violated. This
means that agents have to learn a policy or value function from out-of-distribution (OOD) data,
which is nontrivial. This distributional shift makes it hard to evaluate and consequently improve
current Q-value functions, leading to an extrapolation error [Kos+21].

Under the online setting, agents obtain corrective feedback through environment interactions.
However, for offline training, the extrapolation error means that agents could overestimate Q-values
for unseen state-action pairs, which could lead to poor performance. Hence, CQL suppresses the
overestimation problem in offline RL by learning a conservative Q-value function. In particular,
this is achieved via double Q-learning [VGS16] and a penalty term to update the Q-values in a
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conservative manner. The resulting conservative update target is obtained as

argmin
Q

α · E
s∼D

(
log
∑
a∈A

exp
(
Q(s, a; θAk )

)
− E
a∼πb

Q(s, a; θAk ))

)
+ E

(s,a,r,s′)∼D

(
Y DoubleQ
k −Q(s, a)

)2
,

(27)
with the double Q-learning target update

Y DoubleQ
k := r + γ ·Q(s′, argmax

a∈A
Q(s′, a; θAk ); θ

B
k ). (28)

Here, θAk and θBk denote two independent sets of parameters, which are updated similarly to the
target network in the deep Q-network (DQN) algorithm, by symmetrically exchanging the roles
of θAk and θBk in Eq. (28). Having these independent parameters helps to compute unbiased Q-
value estimates. CQ2L is then obtained by implementing the Q-value function via the variational
VQ-DQN proposed by Franz et al. [Fra+22].

Model Architecture. VQCs with 5 layers to represent Q-value functions are used. For CartPole,
Acrobot and MountainCar 4, 6 and 2 qubit systems are used, respectively. According to the feasible
actions in these environments, quantum observables [Z0Z1, Z2Z3], [Z0, Z1, Z2], and [Z0, Z0Z1, Z1]
are chosen, where Zi denotes the readout of a Pauli Z gate on the ith qubit. Input data are encoded
with X rotation gates, while the variational part includes X, Y, and Z rotation gates. Moreover,
qubits are entangled in a circular topology. The variational part, entanglement, and data encoding
are repeated several times, which is then measured by Pauli Z gates to determine the Q-values.

Experimental Results and Discussion. To evaluate the offline QRL algorithm, the authors create
offline data sampled by a DQN agent with epsilon-greedy policy, interacting with the corresponding
environment. The sampled data are recorded in a replay buffer with length 1× 106 and then saved
for offline QRL. The logged data contain tuples of (st, at, rt, st+1, d), where d indicates whether an
episode terminates. For training, a single trajectory from the collected buffer is selected.

The authors compare the performance of CQ2L with the off-policy VQ-DQN trained offline on
the same data. These experiments show that CQ2L is able to solve all given environments and
outperform offline VQ-DQN. The latter indicates that it is not feasible to directly extend off-policy
QRL algorithms like VQ-DQN to the offline setting. Furthermore, the authors find that CQ2L
performs only marginally worse than online VQ-DQN in CartPole. Interestingly, online VQ-DQN
fails to solve Acrobot and MountainCar and is clearly outperformed by CQ2L.

Finally, the performance is compared to classical CQL, where a fully connected neural network
with a similar number of parameters as the VQC is used. The results indicate that CQ2L could
achieve comparable performance to the classical one. Besides, no significant advantages in the
sample efficiency or the parameter size are observed. The authors hypothesize that this may indicate
that the current structure of VQCs or the limited number of qubits is not sufficient to exhibit
quantum advantages for QRL.

Remarks. The performance is compared to classical CQL, where a fully connected neural network
with a similar number of parameters as the VQC is used. The results indicate that CQ2L could
achieve comparable performance to the classical one. Besides, no significant advantages in the
sample efficiency or the parameter size are observed. The authors hypothesize that this may indicate
that the current structure of VQCs or the limited number of qubits is not sufficient to exhibit
quantum advantages for QRL. This result contradicts other observations in the literature, where at
least for small system sizes some improvement w.r.t. parameter complexity was observed. However,
we agree with the statement, that such performance improvements might strongly depend on the
specific VQC architecture.
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Algorithmic Characteristics - Cheng et al. [Che+23a]

Environment Algorithm Quantum State Action Qubits Parameterized
Type Component Space Space Gatesa

CartPole
(OpenAI Gym) CQL Q-function continuous

4-dim
discrete

2
4

4× 1 (encoding)
4× 15× 2 (weights)
N/A (classical)b

Acrobot
(OpenAI Gym) CQL Q-function continuous

6-dim
discrete

3
6

4× 1 (encoding)
4× 15× 2 (weights)
N/A (classical)b

MountainCar
(OpenAI Gym) CQL Q-function continuous

2-dim
discrete

3
2

4× 1 (encoding)
4× 15× 2 (weights)
N/A (classical) b

a encoding gates: qubits× per_qubit; variational gates: qubits× layers× per_qubit_per_layer;
b model incorporates classical weights after measurement, details are not stated;

4.2.5 Algorithmic and Conceptual Extensions

This section describes extensions to the VQC-based QRL framework, that have relevance for multiple
of the previously classified methods. This entails tools to deal with partially observable (quantum)
environments discussed in Kimura et al. [Kim+21]. A big emphasis is put on the explicit design
of model architectures. Work by Hsiao et al. [Hsi+22; Tru+23] demonstrates that this is indeed
an important topic, as otherwise everything could be easily emulated with classical architectures.
Different approaches to this design task are discussed in Refs. [Che23d; Che23b; Dră+22; Kru+23;
SMT23; ACN23; PPR20]. Avoiding the typical gradient-based training routines, a evolutionary
approach is proposed by Chen et al. [Che+22] and also discussed in Refs. [DS23; Köl+23].

Variational Quantum Circuit-Based Reinforcement Learning for POMDP and Experi-
mental Implementation, Kimura et al. (2021)
Summary. The paper by Kimura et al. [Kim+21] extends the concept of VQC-based RL to par-
tially observable environments. The approach is inspired by classical model-free, complex-valued
RL [HSS06]. Additionally, a novel VQC architecture (novel with regard to measurement procedure)
is proposed. A detailed description of the gradient computation with backpropagation techniques
is provided (it is not quite clear how this method generalizes to quantum hardware).

Partially Observable MDP. A partially observable Markov decision process (POMDP) is described
as a tuple (S,A, T,R,Ω, O) and is a generalization of a MDP. The variable S denotes a discrete
state space, A is a discrete set of actions, T (s′|s, a) describes the state transition probabilities and
R(s, a) is a reward function. Extending the fully-observable case, Ω is a discrete set of observations
and O(o|s, a) is an observation probability matrix with o ∈ Ω.

One caveat of partially observable environments is the perceptual aliasing problem. This refers to
the property, that the agent cannot distinguish two different states due to the limited observation
ability. An example of such an environment is the partially observable maze used in Kimura et
al. [Kim+21]. Similar to most gridworld environments, the task is to navigate from the start state
to the goal state on the shortest path possible. However, the observations provided to the agent are
ambiguous as several cells return the same state indicator.

Solving POMDPs with Complex Valued RL. One way to bypass this state ambiguity is to introduce
a belief distribution over possible states. Unfortunately, this is computationally expensive. An
alternative approach is complex-valued RL [HSS06; MNM17]. It incorporates time series information
into the action-value function, which represented as complex numbers. More concretely, the complex
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Citation First Author Title

[Kim+21] T. Kimura Variational Quantum Circuit-Based Reinforcement Learning
for POMDP and Experimental Implementation

[Hsi+22] J.-Y. Hsiao Unentangled quantum reinforcement learning agents in the
OpenAI Gym

[Tru+23] N. Truong Investigating Quantum Reinforcement Learning structure to
the CartPole control task

[Che23d] S. Y.-C. Chen Quantum deep recurrent reinforcement learning

[Che23b] S. Y.-C. Chen Efficient quantum recurrent reinforcement learning via quan-
tum reservoir computing

[Dră+22] T.-A. Drăgan Quantum Reinforcement Learning for Solving a Stochastic
Frozen Lake Environment and the Impact of Quantum Ar-
chitecture Choices

[Kru+23] G. Kruse Variational Quantum Circuit Design for Quantum Reinforce-
ment Learning on Continuous Environments

[SMT23] Y. Sun Differentiable Quantum Architecture Search for Quantum Re-
inforcement Learning

[ACN23] E. Andrés Efficient Dimensionality Reduction Strategies for Quantum
Reinforcement Learning

[Che+22] S. Y.-C. Chen Variational quantum reinforcement learning via evolutionary
optimization

[DS23] L. Ding Multi-objective evolutionary search for parameterized quan-
tum cirucits

[Köl+23] M. Kölle Multi-Agent Quantum Reinforcement Learning using Evolu-
tionary Optimization

Table 8: Work considered for “QRL with VQCs – Algorithmic and Conceptual Extensions”
(Sec. 4.2.5)

Q̇-function (ẋ denotes complex values) encodes the history of the agent, i.e. the previously visited
states. The cumulative reward value is expressed by the absolute value of Q̇-function, while the
path length of the propagated reward is represented by the phase of the Q̇-function on the complex
plane. Therefore, Q̇-function-Learning keeps continuity w.r.t. the described internal reference value.
This helps distinguish states which are affected by the perceptual aliasing problem. Formally, this
is achieved by updating the complex values in the opposite phase direction. The complex-valued Q̇-
function can be represented with tabular methods [HSS06], or with complex-valued NNs [MNM17].

The update mechanism represents a generalized Q-learning approach, i.e. the objective is to
optimize the loss function Lθ = 1

2 · |Q̇(ot−k, at−k)− (rt+1+ γ · Q̇max(t))u̇t(k)|. Here, u̇t(k) = β̇k+1 is
a complex hyperparameter and k is the trace length. The NN is replaced with a VQC as action-value
function approximator in the following.

VQC Architecture and Gradient Computation. The paper deviates in several design choices from
the standard method. Most importantly, the Q̇-values for the different actions are not extracted
from the same circuit (e.g. measurement on different qubits corresponding to different actions).
Instead, the actions are encoded into the VQC with a feature map similar to the one used for state
encoding. Consequently, different circuits have to be evaluated for each action. This encoding can
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happen either directly in the feature map, or alternatively into the decoding unitary. However, the
three-part structure of the circuit is preserved.

Figure 13: Encoding and decoding architectures proposed by and taken from [Kim+21];

The encoding unitary Uencoder consists of simple parameterized 1-qubit rotations, where three
different concrete encodings are considered as shown in Fig. 13. The Type 1 feature map encodes
the observations directly with an arcsin function. Type 2 uses a computational encoding for the
observations, basically equivalent to the one proposed by Chen et al. [Che+20]. Type 3 also uses
an arcsin transform, but directly encodes the action information into the feature map.

The variational part repeats several layers of parameterized 1-qubit rotations, followed by a
circular entanglement structure. In the experimental part, the authors consider different circuit
depths.

The output of the circuit is evaluated with the Hadamard Test, which measures the prepared
state against an output unitary Uout. This introduces an overhead since a controlled version of the
unitary Uout needs to be implemented (details in Fig. 13). Additionally, an ancilla qubit, and three
1-qubit gates are required. The output unitary itself consists also of learnable 1-qubit rotations. If
encoding unitaries of Type 1 or Type 2 are used, it additionally encodes the action information.
The real and imaginary output of the Hadamard test are used to construct the complex-valued
Q̇-function.

The evaluation of the circuits is straightforward on quantum hardware. However, this does not
apply to evaluating gradients w.r.t. the parameters, which is necessary for training. The paper gives
a detailed derivation on how to compute the gradients via simulation on classical hardware. The
idea is inspired by classical backpropagation and somewhat looks like the adjoint method [Luo+20].
This makes it infeasible, at least in the given form, for actual quantum hardware.

Experimental Results and Discussion. The paper compares the training results (on the described
maze environment) for the three types of quantum agents to different classical agents. The classical
tabular approach outperforms all other methods, as the underlying algorithm guarantees an optimal
solution. The authors argue, that there seems to be some intrinsic advantage of the Type 2 quantum
circuits, as these perform better then the other approximate algorithms.

Remarks. We think there needs to be some further investigation regarding the applicability of the
algorithm to actual quantum hardware. Currently, we propose to consider the approach as QiRL.
We agree, that QC offers great potential for complex-valued RL, as QC itself deals with complex
numbers. However, there are still open questions regarding the most promising way to exploit this
connection. A quantum version of a POMDP is discussed in Ref. [BBA14], which might provide for
an interesting extension of this paper.
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Unentangled quantum reinforcement learning agents in the OpenAI Gym, Hsiao et
al. (2022)
Summary. The paper by Hsiao et al. [Hsi+22] uses an hybrid proximal policy optimization (PPO)
algorithm, with a combination of VQC and NN as policy function approximator. The quantum
circuit architecture is untypical, as it only uses 1-qubit rotations. Consequently, no entanglement
is created, and all qubits can be considered as independent systems. Still, the resulting RL agent is
able to learn good policies on some standard environments (CartPole, Acrobot, and LunarLander).
The learned parameters are ported to quantum hardware and tested with sophisticating results.

Underlying RL Algorithm and Model Architecture. The classical RL algorithm is PPO, i.e. an policy-
based approach. It follows the typical hybrid setup, as the VQC is used as function approximator,
and parameter updates are computed on classical hardware. To enhance the expressivity of the
model, a classical NN is appended. It uses the measured expectation values as inputs. The outputs
of the network are post-processed using a softmax function.

The structure of the hybrid model is displayed in Fig. 14. The feature map consists of 1-qubit
rotations, which is a common choice in the literature. The variational (‘parameter’ in Fig. 14) layer
incorporates 1-qubit parameterized rotations. It is important to highlight that the circuit does not
contain any multi-qubit gates. Consequently, no entanglement between the qubits is created. As
efficient classical simulation of the circuit is possible, the approach should be counted towards QiRL.
Despite this, the authors demonstrate, that a good RL training performance can be achieved with
this model.

Figure 14: Hybrid quantum-classical model proposed by and taken from Hsiao et al. [Hsi+22];

Experimental Results. The described hybrid agent is trained on three tasks from the OpenAI
Gym, i.e. CartPole, Acrobot, and LunarLander. The quantum agents outperforms several classical
architectures. As this is achieved with much fewer parameters, the authors claim that the approach
points towards potential advantage.

The results on LunarLander are remarkable in that regard, that it might be the most complex
environment solved with VQC-based RL thus far. While the classical simulability prohibits any
intrinsic quantum advantage, the models still are able to achieve a good performance. This gives
rise to the questions, whether one can draw inspiration from quantum mechanics for purely classical
approaches.

Testing on Quantum Hardware. Once the models are trained, they are tested with the learned
parameters on IBMQ hardware (with up to 8 qubits, depending on the environment). The models
are able to replicate the learned near-optimal behavior.

Remarks. As without entanglement the VQCs can be simulated classically, we agree with the authors
that the proposed algorithm should be considered as a QiRL approach. As the proposed model
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incorporates also a classical network, it is nor clear, what part of the learning is conducted with the
VQC. The simple circuit structure might also explain, that the results for testing on hardware are
stable. Usually, a big portion of the noise is caused by two-qubit gates, which are not present in
the used VQC. A partial re-implementation of this work can also be found in Ref. [Tru+23].

Compendium of Architecture Discussions
As demonstrated by the previously discussed work of Hsiao et al. [Hsi+22], it is important to
put careful consideration into the design of the employed quantum model architecture. In the
following, we briefly summarize several works that make contributions in that direction. The idea
of incorporating the information of multiple timesteps via recurrent networks is discussed by S. Y.-C.
Chen [Che23d] and extended in Ref. [Che23b]. Several explicit VQC architectures are compared and
analyzed by Drǎgan et al. [Dră+22]. An automated approach for architecture generation is proposed
in Sun et al. [SMT23]. Different encoding techniques are discussed by Andrés et al. [ACN23].
Drawing a connection to a different context, the work by Park et al. [PPR20] proposes to vary the
architecture itself, by dynamically in- and excluding two-qubit gates.

Recurrent Quantum Neural Networks. The work by S. Y.-C. Chen [Che23d] proposes the use of
quantum recurrent neural networks (QRNNs) in the Q-learning setting (see Sec. 4.2.1), specifically
quantum long short-term memory (QLSTM) [CYF22]. This enables the agent to also incorporate
information from previous timesteps into the decision process. In is experimentally demonstrated
on the CartPole environment, that the QRNN is at least least competitive – if not superior – to
purely classical models of similar size. It is also discussed that the method might be well suited
for partially observable environments, establishing a connection to [Kim+21]. A continuation of
this line of research in Ref. [Che23b] proposes a more efficient training routine for QRNN, based on
reservoir computing [LJ09] and the QA3C approach discussed in Ref. [Che23a].

Explicit Architecture Comparison. A study by Drǎgan et al. [Dră+22] compares various circuit
architectures for a modified version of the FrozenLake environment. The underlying algorithm is
a quantum version of PPO (see Sec. 4.2.2) and the VQCs are combined with classical NNs to a
hybrid model. The results suggest that the performance is strongly dependent on the choice of VQC
architecture. Measures like expressibility [SJA19], entanglement capability [SJA19], and effective
dimension [Abb+21] provide an a priori indicator for the potential suitability of the architecture.
However, there seems to be no clear correlation between the concrete value of these measures and
the RL performance.

Continuous Environments and Encoding. The work by Kruse et al. [Kru+23] extends the actor-critic
paradigm (discussed e.g. in Ref. [Dră+22]) to continuous action spaces. The authors demonstrate
that the quantum agent is able to learn in the environments Pendulum-v1 and LunarLander-v2. It
is conjectured, that applying an arctan function to data points – as often done in literature – is
indeed counter-productive for the overall performance. Moreover, a stacked encoding is proposed,
which uses angle encoding on multiple qubits for a single data point. This allows to avoid pre-
processing with a classical neural network, ensuring potential performance improvements can really
be attributed to the quantum agent. On both benchmarks a reduction in parameter complexity
compared to classical agents is reported. However, this only holds true for certain design choices,
which again highlights the importance of architecture selection.

Automatic Generation of Architectures. Sun et al. [SMT23] propose an automated tool for the
generation of QRL-suitable circuit architectures. The method is based on differential quantum
architecture search (DQAS) [Zha+22], i.e. the architecture itself is trained using gradient-based
methods. The approach is studied within the framework of quantum Q-learning (see Sec. 4.2.1) on
the FrozenLake environment. Using DQAS, the authors are able to identify a VQC architecture that
seems to be very well-suited for the given problem and outperforms some typically used problem-
agnostic circuit designs.
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Encoding Considerations. The work by Andrés et al. [ACN23] compares different strategies for
encoding data into the VQC, all within the context of quantum Q-learning (see Sec. 4.2.1). Evalu-
ations are conducted on three environments within the energy-efficiency and management context.
The authors compare three different architecture layouts: (1) classical data is pre-processed and
reduced in dimensionality using a NN and encoded via rotational parameters; (2) similar, but
data re-uploading [Pér+20] is employed; (3) classical data is normalized and encoded via ampli-
tude encoding [SP18], output is post-processed with a NN; The authors claim superior performance
compared to classical models of similar size, especially using amplitude encoding. However, it has
to be noted, that the experiments were quite small-scale. The combination with NNs complicates
statements on the actual contribution of the quantum part. It also has to be noted, that amplitude
encoding might not be NISQ-compatible in the general case.

Variational quantum reinforcement learning via evolutionary optimization, Chen et
al. (2022)
Summary. The main focus of the paper by Chen er al. [Che+22] is the investigation of gradient-
free evolutionary optimization for Q-learning with VQCs. This routine is tested in two different
scenarios, for each of which also a state encoding scheme is proposed. More concretely, amplitude
encoding is applied to the CartPole environment. For the gridworld environment MiniGrid with
larger state space (147 dimensional), the paper proposes a hybrid model with an encoding mechanism
based on tensor network (TN) techniques.

Amplitude Encoding. The observation space of the CartPole environment is 4-dimensional. The
state values are continuous. This allows the use of amplitude encoding, i.e. two qubits can be used
to encode the (re-scaled) values into the four amplitudes of the system. The authors follow the
method described in Schuld and Petruccione [SP18]. This works fine for small systems, but requires
not NISQ-compatible operators for bigger instances.

TN-based Encoding. The MiniGrid environment is similar to FrozenLake, as the goal in both envi-
ronments is to navigate from a start to a goal state on the shortest way possible. The paper uses sim-
ple environment configurations, with state spaces of size 5×5, 6×6, and 8×8. The observation space
is of dimensionality 7×7×3. The agent has to decide between 6 actions, of which only 4 are relevant
in the simplified scenario. The reward is defined as 1 − 0.9 · number_steps/max_number_steps.
Apart from the larger observation space, we assume this environment to be about the same com-
plexity as FrozenLake.

The paper addresses the problem of encoding the 147-dimensional state into a quantum feature
map with just 8 variational parameters. Other work uses e.g. CNNs to reduce the dimensionality
of the feature space [LS21]. As the encoding networks have to be pre-trained, it is not quite clear,
what part of the work is really done by the VQC. The authors suggest to use a hybrid encoding
scheme based on TNs, similar to Chen et al. [Che+21]. The proposed TN technique encodes the
observation [v1, · · · , v147]t into the product state [1 − v1, v1]t ⊗ [1 − v2, v2]t ⊗ · · · ⊗ [1 − vN , vN ]t,
where the individual elements are normalized. Those encoded states represented by the red nodes
in Fig. 15a. The trainable part of the matrix product state (MPS) outputs an 8-dimensional
compressed feature vector. This is represented by the 147 + 1 blue nodes and the open leg (i.e.
outgoing edge) in Fig. 15a. The bond dimension is a hyperparameter of the MPS, which correlates
with the number of trainable parameters [Per+06].

VQC Architecture. The model follows the typical three-part architecture, i.e. first the feature map,
then the variational part, and finally some measurements. For the CartPole environment, a simple
2-qubit circuit with amplitude encoding and 4 variational layers is used. Both qubits are measured
in the Pauli-Z basis and the action corresponding to the higher expectation value is selected. For the
MiniGrid environment, the 8-qubit circuit with just one repetition of the variational layer is used.
The encoding is done with the TN-compressed state, i.e. the output from the TN is encoded into
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(a) TN for performing dimensionality
reduction;

(b) VQC with feature map, several variational layers, and
1-qubit measurements;

Figure 15: Components of the architecture proposed by and taken from Chen et al. [Che+22].

the circuit as shown in Fig. 15b. As the environment has 6 actions, the top 6 qubits are measured,
and the action corresponding to the highest expectation value is executed.

RL with Evolutionary Optimization. The underlying algorithm is a Q-learning RL approach. The
updates of the QNN representing the action-value function are conducted via evolutionary optimiza-
tion. This implies, that no gradients have to be computed. Usually, this is one major bottleneck of
VQC-based RL, which might be circumvented by this approach.

The paper uses a simplistic instance of an evolutionary algorithm, where mutation, but no
recombination operations are employed. An initial population of M individuals is generated, which
are used to simulate some episodes on the environment. The best T agents (the ones producing
the highest reward averaged over several runs) are selected as parents for the next generation.
Random Gaussian noise is applied to this parents (mutation), until M − 1 children are generated.
Additionally, the best individual from the previous generation is kept, i.e. again M individuals.
This procedure is repeated until a certain convergence criteria is met, e.g. a high enough reward.

Experimental Findings and Discussion. The paper applies the two different encoding methods,
combined with the evolutionary optimization idea, to the respective environments. All experiments
are conducted as noiseless simulations. On the CartPole environment, the 2-qubit architecture
achieves an near-optimal performance with only 26 parameters, which is significantly less than in
most state-of-the-art NNs. The authors claim, that with their method the number of parameters
can be reduced to O(polylog(n)). In contrast, classical ML requires O(poly(n)) parameters.

The experiments on the MiniGrid environment employ the described hybrid TN-based architec-
ture. Results are compared to an encoding based on a simple NN, presumably similar to Lockwood
and Si [LS21]. All approaches achieve a near-optimal performance. Overall, the TN-model (with
large enough bond dimension) slightly outperforms the classical approach. The authors consider
this as a proof-of-principle for effectiveness of the MPS encoding for RL learning.

Remarks. The amplitude encoding is currently not feasible for more complex problems, due to
the lack of an NISQ-compatible state-preparation routine. The evolutionary optimization approach
could circumvent some of the problems typically associated with gradient based techniques. Exper-
iments on larger-scale environments might be an interesting direction for future work, to investigate
how the evolutionary algorithm deals with more complex optimization landscapes. We suggest to
incorporate some recombination procedures into the evolutionary algorithm, to enhance its perfor-
mance.

Multi-Objective Formulation. Related work by Ding and Spector [DS23] proposes a version of
evolutionary search for the automated generation of QRL architectures (see also the discussions on
VQC architecture above in Ref. [Hsi+22] and related work). The training itself is done with a QPG
approach [Jer+21a] (see Sec. 4.2.2) and nested with evolutionary architecture search [DS22]. This
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procedure is conducted w.r.t. several objectives, including enforcing a as-small-as-possible model
size and several noise-related considerations. The approach is validated on the three benchmark
environments CartPole, MountainCar, and Acrobot. The results demonstrate improved training
behavior – with smaller model size – compared to previous work [Jer+21a]. The authors also further
analyze the learned architectures for recurring patterns. However, it is acknowledge that larger-scale
experiments are necessary to identify a general guideline for architecture selection.

Multi-Agent Scenario. The work by Kölle et al. [Köl+23] extends the framework of Ref. [Che+22]
to the multi-agent setting (see Sec. 4.2.3). The authors compare different evolutionary strategies,
including mutation-only and two different setups with additional recombination steps. The evalua-
tion is conducted on the CoinGame environment and yields results that are competitive with classical
approaches – using significantly fewer parameters. It has to be noted, that the experiments are too
small-scale to make reliable statements about the scaling behaviour of this approach. While evolu-
tionary optimization is certainly an interesting consideration compared to gradient-based techniques,
the stated advantage regarding reduced proneness to barren plateaus is not sufficiently documented
and should therefore be viewed with some scepticism.

4.2.6 Application-Focused Work

This section summarizes work that discusses VQC-based QRL techniques for specific applications.
On the one hand, this is a very important area of research, in order to identify practically relevant
QRL one day. On the other hand, it has to be noted, that all current work is limited to relatively
small problem setups. This can be justified by current hardware restrictions – but also casts some
doubt on the scalability of the stated results. Nonetheless, an overview of the considered ideas
might be beneficial for further research:

Applications related to robotics and similar control tasks are discussed in Refs. [Acu+22; Hei+22;
Cob23; BYK22; SMK23; Hic+23; KCP23]. Planning tasks of different form are the focus of
Refs. [Cor+23; San+22; ACN22; Liu+23; Kum+23; Rai+23; SH23; RKM22]. Collaborative en-
vironments are addressed with multi-agent methods in Refs. [Yan+22; Par+23a; NS+23; Par+23b;
PK23; Yun+23; Ans+23]. The field of finances is discussed in Refs. [Che+23c; Yan23]. A back-
to-the-roots work considers QRL for board games in Ref. [CRC23]. Last but not least, the task of
designing VQC architectures is addressed in Ref. [Che23e].

QRL for Robotics and other Control Tasks
The work by Acuto et al. [Acu+22] applies the quantum SAC approach proposed in Ref. [Lan21] to
the control of an robotic arm. The environment is implemented as an extension of the Acrobot-v1
environment. On this small-scale setup the hybrid quantum model demonstrates reduced parameter
complexity compared to classical methods.

A robot navigation scenario is discussed by Heimann et al. [Hei+22] in a simulated environment.
The quantum Q-learning (see Sec. 4.2.1) approach demonstrates parameter reduction compared to
classical approaches. The setup is extended to a more complex environment by J. Cobussen [Cob23].

A similar robot navigation task is considered in Bar et al. [BYK22], which employs the Q-learning
method proposed in Ref. [Che+20]. The authors report a reduction in the number of parameters,
which however also yields a decreased success rate for the considered scenarios.

Collision-free navigation of self-driving cars is considered in Sinha et al. [SMK23]. The authors em-
ploy an actor-critic quantum A2C approach, which is similar to the QA3C introduced by Ref. [Che23a].
On a small 4-qubit toy environment the proposed approach shows improved training stability
compared to classical A2C. A similar problem is considered with tools from quantum Q-learning
(see Sec. 4.2.1) by Hickmann et al. [Hic+23].
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Citation First Author Title

[Acu+22] A. Acuto Variational Quantum Soft Actor-Critic for Robotic Arm Con-
trol

[Hei+22] D. Heimann Quantum Deep Reinforcement Learning for Robot Navigation
Tasks

[Cob23] J. Cobussen Quantum Reinforcement Learning for Sensor-Assisted Robot
Navigation Tasks

[BYK22] N. F. Bar An Approach Based on Quantum Reinforcement Learning for
Navigation Problems

[SMK23] A. Sinha Nav-Q: Quantum Deep Reinforcement Learning for Collision-
Free Navigation of Self-Driving Cars

[Hic+23] M. L. Hickmann Potential analysis of a Quantum RL controller in the context
of autonomous driving

[KCP23] G. S. Kim Realizing Stabilized Landing for Computation-Limited
Reusable Rockets: A Quantum Reinforcement Learning
Approach

[Cor+23] R. Correll Quantum Neural Networks for a Supply Chain Logistics Ap-
plication

[San+22] F. Sanches Short quantum circuits in reinforcement learning policies for
the vehicle routing problem

[ACN22] E. Andrés On the Use of Quantum Reinforcement Learning in Energy-
Efficiency Scenarios

[Liu+23] D. Liu Multi-agent quantum-inspired deep reinforcement learning for
real-time distributed generation control of 100% renewable en-
ergy systems

[Kum+23] M. Kumar Blockchain Based Optimized Energy Trading for E-Mobility
Using Quantum Reinforcement Learning

[Rai+23] S. Rainjonneau Quantum Algorithms applied to Satellite Mission Planning for
Earth Observation

[SH23] M. Shahid Introducing Quantum Variational Circuit for Efficient Man-
agement of Common Pool Resources

[RKM22] F. Rezazadeh Towards Quantum-Enabled 6G Slicing

Table 9: [Part 1] Work considered for “QRL with VQCs – Application-Focused Work” (Sec. 4.2.6)

The task of steering reusable rockets is considered in Kim et al. [KCP23]. The unspecified QRL
method demonstrates reduced memory requirements (by requiring fewer parameters) on an 8-qubit
toy environment.

QRL for Planning Tasks
The vehicle routing problem (VRP) is considered by Correll et al. [Cor+23] via an quantum-
enhanced attention mechanism. Several parts of a classical encoder-decoder model with attention
mechanism [KVW18] are replaced with medium-scale VQCs (up to 10 qubits). With using quantum
methods to implement orthogonal NNs [KLM21], a potential speed-up during inference is reported.
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Citation First Author Title

[Yan+22] R. Yan A Multiagent Quantum Deep Reinforcement Learning Method
for Distributed Frequency Control of Islanded Microgrids

[Par+23a] S. Park Quantum Multi-Agent Actor-Critic Networks for Cooperative
Mobile Access in Multi-UAV System

[NS+23] B. Narottama Layerwise Quantum Deep Reinforcement Learning for Joint
Optimization of UAV Trajectory and Resource Allocation

[Par+23b] S. Park Quantum Multi-Agent Reinforcement Learning for Au-
tonomous Mobility Cooperation

[PK23] S. Park Quantum Reinforcement Learning for Large-Scale Multi-
Agent Decision-Making in Autonomous Aerial Networks

[Yun+23] W. J. Yun Quantum Multi-Agent Actor-Critic Neural Networks for
Internet-Connected Multi-Robot Coordination in Smart Fac-
tory Management

[Ans+23] J. A. Ansere Quantum Deep Reinforcement Learning for Dynamic Resource
Allocation in Mobile Edge Computing-based IoT Systems

[Che+23c] E. A. Cherrat Quantum Deep Hedging

[Yan23] J. Yang Apply Deep Reinforcement Learning with Quantum Comput-
ing on the Pricing of American Options

[CRC23] J. Chao Quantum Enhancements for AlphaZero

[Che23e] S. Y.-C. Chen Quantum Reinforcement Learning for Quantum Architecture
Search

Table 10: [Part 2] Work considered for “QRL with VQCs – Application-Focused Work” (Sec. 4.2.6)

Experimental on a simple instance of the traveling salesman problem (TSP) are conducted to sup-
port this claim. A simpler approach for the same task is considered in Sanches et al. [San+22],
where only the attention heads are replaced with 4-qubit VQCs.

The work by Andrés et al. [ACN22] considers different planing tasks related to energy-efficiency
scenarios. The authors employ quantum actor-critic methods (see Sec. 4.2.2) to address these
tasks. The authors report a slower convergence compared to classical methods, however therefore
a reduced parameter complexity. Similar scenarios within the energy context are also discussed by
Liu et al. [Liu+23] and Kumar et al. [Kum+23].

The task of satellite mission planning is formulated as a scheduling problem and addressed by
Rainjonneau et al. [Rai+23]. The authors apply two different quantum-enhanced methods within
this context: (1) policy approximation (see Sec. 4.2.2) with VQCs; (2) replacing several components
of AlphaZero with quantum components, similar as to discussed in Ref. [CRC23]; The experiments
with 4-qubit circuits demonstrate a clear improvement compared to straightforward greedy methods.

The problem of distributing common pool resources is discussed by Shahid and Hassan [SH23].
Quantum-enhancedQ-learning (see Sec. 4.2.1) is applied to an 8-qubit toy environment, and superior
training performance compared to classical models of similar size is reported.

A task from mobile communication (6G slicing) is considered in Rezazadeh et al. [RKM22]. The
authors employ the VQC-based Q-learning approach proposed in Ref. [Che+20] and claim improve-
ments w.r.t. parameter complexity and the potential for distributed computing.
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QRL in Collaborative Scenarios
Different tasks that are based on the collaboration of multiple entities are discussed in a series
of work by Yan et al. [Yan+22], Park et al. [Par+23a; Par+23b; PK23], Yun et al. [Yun+23],
Narottama et al. [NS+23], and Ansere et al. [Ans+23]. The foundation is the multi-agent approach
QMARL proposed in Ref. [Yun+22] with smaller extensions. On respective toy environments, the
approaches demonstrate faster convergence and reduced parameter complexity compared to classical
implementations.

QRL for Finances
The work by Cherrat et al. [Che+23c] addresses the task of deep hedging with distributional actor-
critic methods. Classical methods are modified with quantum-enhanced orthogonal NNs [KLM21],
which promises speed-ups during inference. This is supported by medium-scale hardware test on
up to 16 qubits – which makes this one of the largest-scale demonstrations of VQC-based QRL.

Another work within the context of finances, conducted by J. Yang [Yan23], proposes the use of
quantum Q-learning (see Sec. 4.2.1) to speed up calculations.

QRL for Games
The work by Chao et al. [CRC23] thinks back to the origins of classical RL and consider es the
board game Orthello, which basically is a simplified version of Go. To solve this toy environment,
the authors modify two components of AlphaZero [Sil+18]: (1) replacing function approximators
with VQCs; (2) using tensor network methods for feature extraction; For simulations on up to 12
qubits, the methods show performance compared to classical approaches.

QRL for Architecture Design
S. Y.-C. Chen [Che23e] addresses the task of quantum circuit design. The author uses the actor-
critic method QA3C [Che23a] to generate circuits that prepare 2-qubit Bell states and GHZ states
on up to 3 qubits.

4.3 Projective Simulation for Quantum Reinforcement Learning

Projective simulation for artificial intelligence, Briegel et al. (2012) and related work

Summary. Projective simulation for artificial intelligence by Briegel et al. [BD12] is the first in a
series of articles, which propose a learning scheme for creative behavior. This is understood in the
sense that the agent can deal with unseen experiences by relating to other conceivable situations.
The method is developed for classical agents. There is only a brief final paragraph, outlining a
quantum-mechanical implementation. Since subsequent papers ‘quantize’ the original idea heavily, a
brief summary is in order: The approach is based on a random walk on a previous-experience network
(memory), simulating an agent pondering its next action. More specifically, previous experiences
compose a network of clips, which is dynamically modified by new experiences. It is important to
note that clips, in contrast to actual experiences, are e.g. remembered observations, states or actions.
To select the next action, an observation of the agent activates a clip, followed by a random walk
through the network (projective simulation). This is repeated until an action is ‘excited’ and coupled
out from the network and the action is selected. It is worthwhile noting that the term projective as
used here is not related to its use in quantum physics, such as in projective measurement.

Action Selection. The process of action selection is slightly more sophisticated than described above.
If a percept s is observed, a random walk through the network starts from the corresponding percept
clip. After some deliberation time the random walk reaches an action clip, which is only out-coupled
and taken in reality if the percept-action pair (s, a) was rewarded in the past (i.e. tagged positively).
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Citation First Author Title

[BD12] H. J. Briegel Projective simulation for artificial intelligence

[Mel+17] A. A. Melnikov Projective simulation with generalization

[Boy+20] W. L. Boyajian On the convergence of projective-simulation–based reinforce-
ment learning in Markov decision processes

[Pap+14] G. D. Paparo Quantum Speedup for Active Learning Agents

[Tei21] M. Teixeira Quantum Reinforcement Learning Applied to Games

[TRC21] M. Teixeira Quantum Reinforcement Learning Applied to Board Games

[DFB15] V. Dunjko Quantum-enhanced deliberation of learning agents using
trapped ions

[Sri+18] T. Sriarunothai Speeding-up the decision making of a learning agent using an
ion trap quantum processor

[Fla+23] F. Flamini Towards interpretable quantum machine learning via single-
photon quantum walks

Table 11: Work considered for “Projective Simulation for QRL” (Sec. 4.3)

If not, a new simulation is started. This process repeats until an action clip with positive tag, or a
predefined reflection time is reached; in the latter case the action is out-coupled irrespective of the
tag.

Learning Procedure. The actual learning process can be summarized as follows:

1. If a transition (s, a) is rewarded, increase the network weight of the direct transition s → a.
(Note that the agent might have chosen s → a after many steps of PS; by reinforcing the
direct transition, it might be exploited directly next time);

2. Increase the weights of the indirect transition (all weights of the network that led to the
transition s→ a in the random walk through the network). Thus, the agent discovers useful
actions after deliberation of fictitious clips;

3. Introduce damping of all weights to let the agent forget, in order to be able to adapt to new
situations (as appearing for example in a time-dependent environment);

4. If a new situation is discovered, a corresponding clip is added to the network and directed
edges from all the other clips to the new one are added;

5. Additional extensions can be implemented, such as modifications of clips and creation of
completely fictitious compositions of episodes;

This line of research has been continued in Ref. [Mel+17] (generalization) and [Boy+20] (conver-
gence). In the last paragraph of Ref. [BD12] a quantum version of the algorithm is briefly discussed.
The idea is to replace the random walk on the network by a quantum walk. A number of subsequent
papers investigate the quantum approach more rigorously:

In order to define a quantum walk algorithm as done in Ref. [Pap+14], the PS approach is
viewed slightly different. The given clip network with the percept set S is separated in |S| disjoint
networks. Thus one obtains a directed weighted graph (a Markov chain) for each percept with
action clips as absorber states. Each of the actions is initially flagged (corresponding to the emotion
tags of the initial projected simulation proposal). If an actual out-coupled action did not lead to
a reward, this particular flag is removed. Now the action selection proceeds in the following way:
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If the agent observes a percept s, a random walk starts through the graph (deliberation) until
an action is reached, which is out-coupled only if the action is flagged (reflection). Thus, action
selection corresponds to sampling from the conditional probability distribution over the flagged
action space. Given the transition matrix P of the Markov chain, subsequent applications of P to
the initial state (probability one for the percept clip) realizes the approximate stationary distribution
(subsequently referred to as diffusion). Sampling from this distribution and disregarding un-flagged
actions produces the correct samples. As ps is the probability to sample a flagged action from the
equilibrium distribution obtained by diffusion, one needs to repeat the sampling process O(1/ps)
times until a flagged action is sampled. The quantum random walk search algorithm is closely related
to Grover’s algorithm. By elevating the transition matrix to a diffusion operator and introducing
an oracle that marks flagged actions, the quantum algorithm only needs O(1/√ps) oracle calls.
Consequently, a quadratic speed-up for the deliberation process can be achieved. Therefore, this
quantum algorithm speeds up the agent’s internal computation time for action selection. This
technique is extended and applied to board games in Refs. [Tei21; TRC21].

Experimental Implementation. In Ref. [DFB15] the authors investigate the implementation of the
algorithm proposed by Ref. [Pap+14] on an ion trap quantum computer. Results are also backed
up by numerical simulations. The actual proof-of-principle experiment with two qubits is discussed
in Ref. [Sri+18], where signatures of the quadratic speed up are observed. Ref. [Fla+23] proposes
a quantum-optics based implementation of the projective simulation paradigm. Here, the random
walk through the clip network is promoted to a quantum walk of a single photon through an optical
interferometer. Outcoupling of an action then corresponds to an occupation number measurement
of output modes.

4.4 Boltzmann Machines for Quantum Reinforcement Learning

Citation First Author Title

[Jer+21b] S. Jerbi Quantum Enhancements for Deep Reinforcement Learning in
Large Spaces

[Cra+18] D. Crawford Reinforcement Learning Using Quantum Boltzmann Machines

[Sch+22] M. Schenk Hybrid actor-critic algorithm for quantum reinforcement learn-
ing at CERN beam lines

[Lev+17] A. Levit Free energy-based reinforcement learning using a quantum
processor

Table 12: Work considered for “Boltzmann Machines for QRL” (Sec. 4.4)

Quantum Enhancements for Deep Reinforcement Learning in Large Spaces, Jerbi et
al. (2021) and related work
Summary. The work presented in Ref. [Jer+21b] investigates an alternative NN architecture to
those often used for learning the Q-function (or more generally the merit function) in RL tasks. The
authors argue that these alternative models perform advantageously in large action spaces. This is
due to their capability to represent multimodal functions better than standard network architectures,
while using a similar number of parameters. It is further found that these alternative architectures
are closely related to energy-based models, some of which admit quantum representations. In turn,
this allows quantum evaluations, enabling a provable quantum speed-up for fault-tolerant quantum
computing.
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Motivation. The standard architecture for Q-learning with NNs is depicted in Fig. 16 (upper part).
The representation of a state is fed into a NN, which outputs the values of the so-called merit function
(the Q-value in case of Q-learning) for each possible action (given the state). The policy can be
derived from this function by with softmax post-processing. The effective-temperature parameter
is decreased over time to reduce exploration and enhance exploitation.

The authors argue that this NN architecture is not suited for large action spaces. It has to output
a high dimensional function, i.e. the merit functions for all actions simultaneously for a given state.
The authors argue that this network is unable to approximate a multimodal merit function in case
of complex state-action correlations. Instead, the authors discuss the NN structure shown in the
lower part of Fig. 16. Here, the state and action is fed to the NN, which outputs the corresponding
merit function. Action selection is done by sampling from the probability distribution, given by
a softmax function on the values of the merit function. Therefore, sampling requires |A| forward
passes, where A is the action set, making action selection a computationally expensive task for large
action spaces.

Experiments are conducted on a generalized GridWorld environment with a large set of actions.
The associated complex transition function gives rise to one optimal and many sub-optimal policies.
The authors find that the NN architecture shown in the lower part of Fig. 16 indeed performs better,
but at the cost of the expensive sampling described before.

Energy-based Models. The potential for quantum speed up comes from the observation that the
second architecture in Fig. 16 is equivalent to a certain kind of energy-based model. Energy-based
function approximators are used for generative modeling of probability distributions based on the
Boltzmann-Gibbs distribution with respect to an energy functional. Boltzmann machines are one
instance of such energy-based models where the energy functional is given by a spin-spin interaction
model. However, Boltzmann machines are hard to train which led to the development of restricted
Boltzmann machines where a special interaction structure with a hidden layer enables more efficient
training. In Ref. [Jer+21b] the authors observe that the lower architecture in Fig. 16 is equivalent
to a generalized form of restricted Boltzmann machines.

Figure 16: Difference between architectures in Q-learning (upper part of the figure) and energy-
based models (lower part of the figure) as shown in Jerbi et al. [Jer+21b]

Quantum Speed-Up. Inspired by this insight, the authors next investigate quantum energy-based
models. Here, the classical spin-spin interaction energy is promoted to a spin Hamiltonian, known
as quantum Boltzmann machines and restricted quantum Boltzmann machines. Some of these
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models allow efficient training, while the hardness of sampling remains. To speed up sampling
in the classical and quantum setting, the following quantum subroutines for a RL algorithm are
discussed:

(1) Quantum Gibbs sampling: The Gibbs-Boltzmann distribution is prepared as a qsample, from
which expectations values can be sampled with quadratic speed-up, compared to classical Monte-
Carlo sampling methods. (2) Gibbs-state preparation by Hamilton simulation: Using Hamilton-
simulation techniques, an approximation to the Gibbs qsample can be prepared, leading to quadratic
speed-up compared to exact sampling (calculating all energies and explicitly normalizing the prob-
ability distribution). (3) Quantum simulated annealing: This method uses a quantum method for
the approximate Monte-Carlo sampling of the Gibbs state itself by leveraging quantum random
walks on graphs.

All methods discussed so far need oracularized access to the Hamiltonian and it is unlikely
that they could be realized on current hardware. A realization on near-term hardware might be
achieved by (4) Variational Gibbs-state preparation: Here, a variational circuit can be employed
to approximate a Gibbs qsample, using the free energy as an objective. Any quantum speed up,
however, for this method is heuristic and has not been made rigorous so far.

Remarks. Related work [Cra+18; Sch+22; Lev+17] proposes models based on quantum Boltz-
mann machines for quantum annealing hardware. Since this literature survey focuses on algorithms
proposed for gate-based QC, we do not include a detailed summary here.

4.5 Quantum Policy and Value Iteration

So far, we have considered QRL algorithms that employ QC for function approximation or propose
quantum approaches to alternative learning frameworks such as PS. We now turn to proposals that
replace subroutines of existing RL frameworks by quantum algorithms such as amplitude estimation,
quantum maximum finding and, respectively, quantum matrix inversion. As a result, the proposed
QRL algorithms guarantee improved sample or computational complexity. As these methods need
oracular access to the environment, they should be categorized as post-NISQ algorithms.

Citation First Author Title

[Wan+21a] D. Wang Quantum algorithms for reinforcement learning with a gener-
ative model

[Gan+23] B. Ganguly Quantum Computing Provides Exponential Regret Improve-
ment in Episodic Reinforcement Learning

[Zho+23] H. Zhong Provably Efficient Exploration in Quantum Reinforcement
Learning with Logarithmic Worst-Case Regret

[GA23] B. Ganguly Quantum Acceleration of Infinite Horizon Average-Reward Re-
inforcement Learning

[CKP23] E. A. Cherrat Quantum Reinforcement Learning via Policy Iteration

[Wie+22a] S. Wiedemann Quantum Policy Iteration via Amplitude Estimation and
Grover Search - Towards Quantum Advantage for Reinforce-
ment Learning

Table 13: Work considered for “Quantum Policy and Value Iteration” (Sec. 4.5)

Quantum algorithms for reinforcement learning with a generative model, Wang et
al. (2021)
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Summary. The work in Ref. [Wan+21a] proposes two algorithms for RL with a generative model
and rigorously derives bounds for their sample complexity.

Classical Generative Models. Classically, the term generative model describes a simulator, which
queried with a state-action pair (s, a), produces a sample s′ ∼ P (·|s, a). Thus, by repeated sampling
for each state-action pair, one can estimate the transition matrix of the underlying MDP. This allows
to subsequently obtain an approximation of the optimal policy by means of value iteration. Over
the years there has been tremendous effort devoted to improving sample efficiency (defined as the
number of times the simulator has to be queried). This performance metric is meaningful if one
assumes that every query of the simulator is costly. The best classical algorithm [Li+20b] requires
a total number of O(|S||A|Γ3/ϵ2) samples, where |S| and |A| are the number of states and actions,
Γ = 1/(1 − γ) is the effective horizon of the MDP, and ϵ is the deviation of the optimal value
function from the approximation. The sample complexity is linear in the product |S||A|, since the
transition matrix has to be estimated for each (s, a). The factor 1/ϵ2 originates from Hoeffding’s
inequality (indeed bounding the deviation of a sample average from its real value by ϵ, requires
O(1/ϵ2) samples). The origin of the third power of Γ, in contrast, is less intuitive. Note that
the sample complexity of the classical algorithm is also a lower bound (in the classical case) and
therefore optimal.

Incorporating Quantum Subroutines. As shown in Ref. [Wan+21a], the classical sample complexity
can be reduced by replacing the classical mean-estimation subroutine in Ref. [Li+20b] by a quantum
routine based on the quantum mean-estimation algorithm [Bra+02]. Even though the optimal
classical algorithm is more sophisticated as outlined above and so is its quantization, the following
discussion captures the essential features. The quantum subroutine requires the generative model
in oracle form and can then be used to estimate the expectation value E(V ) =

∑
s′ P (s

′|s, a)V (s′)
(which appears in the Bellman equation) individually for every pair (s, a) in time O(1/ϵ). This
quadratic speed-up originates from Grover’s algorithm, on which the quantum-mean estimation
algorithm is based upon. As a consequence, the quantum-policy iteration algorithm achieves the
sample complexity O(|S||A|Γ1.5/ϵ) with an quadratic improvement in Γ and ϵ.

The dependence on the size of the action space can be further reduced by using quantum max-
imum finding [Mon15] to calculate the maximum over actions in the Bellman optimality equation.
However, using this quantum routine, one can not fully exploit the power of the classical optimal
algorithm. Hence, while the dependence on |A| is reduced quadratically and the improvement in
ϵ is kept, the improvement in Γ is lost. As a result, the algorithm based on both quantum-mean
estimation and quantum maximum finding achieves a sample complexity O(|S|

√
|A|Γ3/ϵ).

Finally, the lower bound O(|S||A|Γ1.5/ϵ) is derived and possible improvements of the algorithm
to reach this limit are discussed.

Quantum computing provides exponential regret improvement in episodic reinforce-
ment learning, Ganguly et al. (2023)
Summary. In Ref. [Gan+23] and independently in Ref. [Zho+23] the authors consider the problem of
an agent operating in a finite-horizon episodic tabular MDP and investigate if quantum computing
can alleviate the exploration-exploitation trade-off. This problem has been considered for the case
of bandits [Wan+23; LHT22; LZ22] but is here generalized to the full multi-state RL problem. In
the online setting, the agent only has access to the next state and reward given its current state
and chosen action. In contrast, previous work [Wan+21a] assumed access to a generative model,
which can be queried with arbitrary state-action pairs producing samples of the next state and
reward. This setting does not consider the exploration-exploitation trade-off that arises from online
interaction with the environment. Here, the agent must learn to discover high-reward states by a
suitable exploration strategy. The performance of the agent in this problem can be measured by
the regret, which is defined as the cumulative difference between the optimal value function and its
approximation after K episodes. The goal is to design an algorithm with the weakest scaling of the
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regret in K, indicating a more effective trade-off between exploration and exploitation. The classical
UCB-VI algorithm achieves the lower bound Ω(

√
K) [JOA10; AOM17] of the regret. The proposed

quantum algorithm in Ref. [Gan+23] builds upon this classical algorithm by replacing the mean
estimation routine with a quantum algorithm. Given a state-action pair, the quantum algorithm
assumes a ‘transition oracle’ which generates a quantum superposition over all possible next states
with amplitudes given by the square root of the respective transition probabilities. A similar oracle
is used for generating rewards. The algorithm utilizes the quantum multivariate mean estimation
algorithm [Ham21], which reduces the number of samples required to satisfy a given error bound
for mean estimation quadratically. The result is a decrease of the regret of the quantum algorithm
from O(

√
K) to O(1) up to logarithmic factors. This is an exponential improvement over classical

results. In a follow-up work by the same authors [GA23], the results were extended to infinite horizon
problems, where an exponential reduction in regret from O(

√
T ) to O(1) (T being the total number

of time steps) is achieved. Additionally, Ref. [Zho+23] consideres linear function approximation and
demonstrates that the exponential improvement is maintained.

Quantum Reinforcement Learning via Policy Iteration, Cherrat et al. (2023) Summary.
Ref. [CKP23] proposes a quantum algorithm for an iterative scheme of Q-value evaluation and policy
improvement. The algorithm evaluates the Q-value on a quantum computer, with the state vector
representing the Q-values, being extracted by measurements. The policy afterwards is improved on
a classical device. The algorithm can achieve quantum advantage in certain situations.

To set up the general framework, the authors first formulate the Bellman equation for Q-value
evaluation as a matrix equation [LP03]

Q = R+ γPΠQ .

Denoting the size of the action and state space as |A| and |S|, the |A||S| dimensional vectors Q and
R represent the Q-values and the reward vector, respectively; the environment transition function
is the |A||S| × |S| dimensional matrix P ; the policy is represented by an |S| × |A||S|-dimensional
matrix Π; γ denotes the usual discounting factor; The authors propose to compute (11− γPΠ)−1R
on a quantum device.

Quantum Subroutine: Block Encodings and Linear Algebra. To perform this task, Ref. [CKP23]
relies on so-called block encodings of matrices [Gil+19]. This powerful framework gives rise to
various quantum algorithms for encoding general complex (not necessarily rectangular) matrices
in the leading principal block of a larger unitary matrix. Once the data has been loaded, the
framework further provides linear-algebra routines such as matrix multiplication, addition [Gil+19]
and inversion [CKS17]. The encoding algorithms need quantum access to the data, i.e. via oracles.
Therefore, the methods can be attributed to the post-NISQ algorithms category. A well-known data-
loading scheme is the sparse-input model, viable for sparse matrices. The authors of Ref. [CKP23]
apply a more general scheme, the so-called µp(A) [CGJ19] block encoding of a matrix A. Here, the
quality (i.e. the probability to obtain the correct output of the algorithm, e.g. after matrix-vector
multiplication and a subsequent measurement) of the encoding depends on the maximum of the
column and row norms of the matrix. The aforementioned norm is a function of p and can be
chosen freely to optimize the encoding quality. Based on this formalism, the authors show that
policy evaluation requires time

O(µPΓpolylog(|S||A|Γ/ϵ)) . (29)

In Eq. (29), the parameter Γ = (1−γ)−1, ϵ denotes the accuracy of the matrix inversion subroutine.
The term µP describes the quality of the encoding of the environment-transition matrix, which
depends on the structure of the environment. In the worst case it scales as

√
|S||A|. Due to the

sparsity of the transition function of many environments, a better scaling is often expected. As
discussed below, for the frozen-lake environment one even finds µP = O(1). The complexity in
Eq. (29) assumes an efficient loading routine for the matrices. To achieve efficient loading also for
the policy matrix, a QRAM data structure for the policy needs to be constructed. This needs to
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happen in time O(|S||A|) for each policy-evaluation step. Afterwards, the matrix can be loaded
efficiently for each cycle of the measurement protocol.

Classical Subroutine: Policy Improvement. The policy improvement step on a classical device
requires reading out the Q-vector from the quantum computer after matrix inversion. Naively,
one would expect that the measurement process introduces exponential overhead. However, since
convergence results for the Bellman equations are based on the maximum norm (L∞ norm), the
authors employ L∞-norm state tomography [KP20]. This is efficient, i.e. requires O(1/ϵ2) shots,
where ϵ now is the target accuracy for the optimal Q-values (under L∞-norm). Consequently, the
overall time complexity (neglecting logarithmic terms) of the algorithm is

O(|S||A|+ µPΓ/ϵ
2) . (30)

In Eq. (30) the factor 1/ϵ2 appears in the second term since the matrix inversion subroutine is called
for each of the 1/ϵ2 shots. The first term is the classical complexity of calculating the argmax
function for policy improvement and construction of the policy oracle prior to each evaluation step.

Example Environments. The authors consider the FrozenLake and the InvertedPendulum environ-
ments as examples. We will briefly discuss the insights from the former here: The simple form of
the environment allows choosing µP = 1/2, which thus is independent of the size of the action and
state space. Note that the gate complexity is still of the order of |S||A|. It only becomes efficient
for special structured instances of the environment such as all ‘holes’ on the diagonal of the grid.

Quantum advantage. The leading term in Eq. (30) is linear in |S| and |A|, showing a speed-up
with respect to classical linear-system of equations solvers. These exhibit complexity O((|S||A|)ω),
with ω > 1, and vanilla Q-value iteration with complexity O(|S|2|A|). Even though a more detailed
characterization of possible quantum advantage is not provided in Ref. [CKP23], it is clear that the
speed up can be at most polynomial.

Least-Squares Policy Iteration. Finally, the authors generalize the method to least-squares policy
iteration [LP03], where the Q-vector is approximated by a set of basis functions. For details refer
to Refs. [LP03; CKP23].

Quantum Policy Iteration via Amplitude Estimation and Grover Search - Towards
Quantum Advantage for Reinforcement Learning, Wiedemann et al. (2022)
Summary. In the QRL scheme proposed in Refs. [Wie+22a; Wie21], a policy is evaluated by
constructing a superposition of all possible trajectories of an MDP with fixed-horizon and with
finite action and state space. Making use of amplitude estimation [Bra+02], the number of calls to
a state-transition oracle for estimation of the value function (up to some fixed additive error) can be
quadratically reduced. A second algorithm finds the optimal policy in the policy space quadratically
faster compared to direct policy search by means of Grover’s algorithm.

First Algorithm. The first algorithm assumes access to a policy oracle Π and an environment oracle
E which act on an initial state |s⟩ as

Π(|s⟩|0⟩A) =
∑
a

√
π(a|s)|s⟩|a⟩

E(|s⟩|a⟩|0⟩R|0⟩S) =
∑
r,s′

√
p(r, s′|s, a)|s⟩|a⟩|r⟩|s′⟩ .

Applying these operators sequentially on partially fresh registers as shown in Fig. 17 results in a
superposition of all possible trajectories

|t⟩ = |s0⟩|a0⟩|r1⟩|s1⟩ . . . |rH⟩|sH⟩
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where H is the horizon of the MDP, such that the quantum state reads

|ψπ⟩ =
∑
t

√
pt|t⟩|Gt⟩ .

Here, pt is the probability of trajectory t. An additional unitary operator has been applied that
calculates the return Gt of trajectory t and encodes the value into an additional register entangled
with the corresponding trajectory. The superscript π on |ψπ⟩ denotes that the state corresponds to
the superposition of trajectories for a given policy π.

Figure 17: Sequence of policy and environment operator application to an initial state s. This con-
structs a superposition of all possible trajectories for a fixed horizon MDP as shown in Wiedemann
et al. [Wie21].

The next step of the algorithm attaches an ancilla qubit. With bit-by-bit rotations of the state
the digital encoding of Gt is transformed into amplitude encoding (assuming here for simplicity
Gt ∈ [0, 1]). A simple calculation reveals that the probability of finding the ancilla qubit in state
|1⟩ is given by the average return, that is the value function of the initial state s. With this insight
in mind, the authors propose amplitude estimation [Bra+02]. This involves the phase-estimation
algorithm, to extract the value function. While classically sampling from the superposition of
trajectories would require O(1/ϵ2) preparations of the state, the quantum algorithm achieves the
same error with O(1/ϵ), resulting in a quadratic speed-up. Hereby, ϵ denotes the fixed additive
error to which the value function is to be determined.

Second Algorithm. The second algorithm shown in Ref. [Wie+22a] is a quantum version of direct
policy search. The authors propose to create a superposition

1√
|P|

∑
π

|π⟩|ψπ⟩

where |π⟩ is a digital representation of the policy, |ψπ⟩ the superposition of all trajectories corre-
sponding to policy π as before, and |P | the size of the policy space. Quantum minimum finding
[DH96] can now be applied to find the optimal policy (the one with maximal expected return
starting from initial state s), requiring only O(

√
|P |) preparations of the state. This is opposed

by O(|P |) in classical direct policy search. Note, however, that the space of all policies scales as
O(|A||S|), where |A| and |S| are the sizes of action and state space, respectively. Consequently,
the quantum algorithm scales exponentially worse compared to policy iteration where the Bellman
optimality equation is iterated with polynomial complexity in |S| and |A|. The method proposed
in Refs. [Wie+22a; Wie21] therefore should be seen as a quantum version of direct policy search.

4.6 Quantum Reinforcement Learning with Oracularized Environments

In this final section we summarize work that proposes fully quantum-mechanical approaches to
QRL. In the articles we survey below, the environment is a quantum system or oracle that can
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be queried by superpositions of states and actions. Interactions with a quantum-mechanical agent
create superpositions of trajectories as input for subroutines like Grover search, quantum-maximum
finding, and amplitude estimation. Provable quantum advantage renders some of these proposals
interesting candidates for the post-NISQ era.

Citation First Author Title

[DTB16] V. Dunjko Quantum-Enhanced Machine Learning

[DTB15] V. Dunjko Framework for learning agents in quantum environments

[DTB17] V. Dunjko Advances in quantum reinforcement learning

[HDW21] A. Hamann Quantum-accessible reinforcement learning beyond strictly
epochal environments

[Wan+21b] D. Wang Quantum exploration algorithms for multi-armed bandits

[Wan+23] Z. Wan Quantum Multi-Armed Bandits and Stochastic Linear Bandits
Enjoy Logarithmic Regrets

[Sag+21a] V. Saggio Experimental quantum speed-up in reinforcement learning
agents

[HW22] A. Hamann Performance analysis of a hybrid agent for quantum-accessible
reinforcement learning

[Cor18] A. Cornelissen Quantum gradient estimation and its application to quantum
reinforcement learning

Table 14: Work considered for “QRL with Oracularized Environments” (Sec. 4.6)

Quantum-Enhanced Machine Learning, Dunjko et al. (2016) and related work
Summary. In Ref. [DTB16] and in a more detailed preprint [DTB15] a general framework of an
agent-environment interaction where both entities are quantum-mechanical systems is developed.
To query the environment by a superposition of action states (intuitively the agent learns in par-
allel), clearly the environment must be modeled by some form of an oracle. As it turns out, this
oracularization is much more involved than one might naively think. The focus of the work is
therefore:

• Formalizing a quantum mechanical version of agent-environment interaction

• Investigation of the classical limit

• Properties of the general quantum mechanical set-up

• Treatment of special oracularizable environments

• Identification of quantum advantage for these environments

General Setup. The interaction between agent and environment is modeled as shown in Fig. 2a in
Ref. [DTB15]. The register RA processes the computations of the agent, while the register RE repre-
sents the environment. The communication register stores one action and one state. The interaction
is described by completely positive trace preserving (CPTP) maps or, if we wish, unitary maps on
a larger system. The first map ME

1 outputs the initial state and stores it into the communication
register. The map MA

1 (modeling the agent) reads this state and, after some processing on RA,
outputs an action state which is added to the communication register. Now this action processed
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by ME
2 , which outputs a new state. Consecutively, the previous state in the communication register

is overwritten, and so on. The particular form of the states of RC (if in superpositions of action or
not) will be discussed later.

While RC only contains a state-action pair, the agent’s register stores all previous states and
actions (because the next action proposed by the learning algorithm depends on all actions and
states encountered before, note here the distinction between algorithm and policy). The same is
true for the (in general non-Markovian) environment.

Next, as shown in Fig. 18, a tester register RT is introduced, which is designed to ‘observe’ the
elapsed history (all encountered states and actions during a learning sequence). This copying from
RC to RT is modeled by controlled unitaries (so they do not modify RC). Each of them act on a
fresh part of the register RT .

The term copying the register here means that a superposition of computational basis states is
concatenated with a second register, on which then each basis state is copied to. This produces
in general a highly entangled state, which cannot be factorized into the initial state on the first
register and a copy on the second (note the no-cloning theorem only rules out a transformation
producing this factorized copy for a general initial state). The most general form of the tester
interaction treated in this work allows additional unitary transformations, such that the copying
can be described in the form of controlled unitaries. A tester interaction that merely copies the
states will be referred to as classical.

After training, the register RT contains the sequence of actions and states, the so-called his-
tory. Any metric measuring performance of learning can be phrased as a function of the history
probabilities. Therefore, it can be formulated as the expectation value of an observable on RT .

Figure 18: Adding a tester as proposed in Dunjko et al. [DTB16].

Classical Limit. For recovering the classical learning set-up, the notion of classical interaction is
defined by restricting the form of the maps, such that the state in RA−RC −RE remains separable
(note that no entanglement between the registers does not prohibit entangled agent or environment
states, thus quantum mechanical environments and agents equipped with a quantum computer
are not excluded). Additionally, the tester interaction is supposed to be classical (in the sense as
defined above). For this setup it is shown that for every scenario with separable register state there
exists a classical environment and a classical agent that produce the same history. Consequently,
no quantum improvements are possible. Hence, there can be no improvement in the figure of merit,
even when the agent has access to a quantum computer.

General Quantum-Mechanical Set-Up. What happens when we allow general maps and general
states on the registers? The authors prove that the state on RT is still an incoherent mixture, and
therefore no quantum advantage can be expected. The reason for this result lies in the memory of
agent and possibly the environment: The agent in general has to remember all previous encountered
states and actions, because the learning algorithm run by the agent is a function of that particular
elapsed history. The quantum state therefore is a superposition of histories entangled with a state,
which describes the agent that has seen this particular history. The states of this agent are orthog-
onal, since a different agent state translates into a different bit state of the memory. Thus, when
tracing out these degrees of freedoms, the resulting reduced density matrix on RT is an incoherent
mixture and no quantum advantage can be achieved in the figure of merit. (Side remark: This does
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not exclude a quantum advantage in terms of computational complexity in the internal processing
of the agent. The result is about exploiting the ‘quantumness’ of the environment-agent interaction)

We note that one has to be careful with the interpretation of density matrices. One might
be inclined to think that an incoherent mixture of history states weighted by their probability in
some sense corresponds to traversing all of the histories simultaneously but note that the correct
expectation value with respect to this density matrix is only obtained in the limit of infinitely many
runs corresponding to sampling trajectories one after another.

Oracularization of Environments. The next part of the work focuses on a special class of envi-
ronments and learning setting without memory, which overcome the decoherence problem. These
oracularized environments are of the following form:

• episodic with fixed horizon → fixed sequence of interactions

• deterministic → action sequence fully determines the history, states can be disregarded

• binary rewards issued at final state → allows use of Grover search

Quantum Advantage. With these assumptions a proper oracle can be constructed, that can be
queried with a superposition of actions. This allows to use it as a phase flip oracle, as in the
Deutsch-Jozsa or Grover algorithm. The time required for finding a rewarded-action sequence is
therefore quadratically reduced. Consequently, this setting is meaningful for learning tasks, where
the reward is very sparse. That is, the agent cannot learn until it has first seen a reward. After this
initial exploration phase, the agent can now be further trained in simulation. Finally, some of the
assumptions are relaxed. The authors also show, how stochastic oracles can be constructed.

Further Work. There is further work that builds upon the results of Refs. [DTB15; DTB16]. In
Ref. [DTB17], the algorithm is applied to the optimization of parameters describing the properties
of the agent (hyperparameter). It also discusses the notion of register hijacking, where the agent
has access to hidden memory registers of the environment. This assumption allows the oraculariza-
tion of more general environments, which is also discussed in Ref. [Dun+18]. This class is further
generalized in Ref. [HDW21] beyond episodic environments. A closer investigation of amplitude
amplification techniques for the special case of multi-armed bandits environments is conducted in
Refs. [Wan+21b; Wan+23]. In Ref. [Sag+21a], the learning setting is implemented experimen-
tally for a two-qubit system and an experimental quantum advantage is observed. Finally, the
performance of an agent in this setting is investigated in Ref. [HW22].

Quantum gradient estimation and its application to quantum reinforcement learning,
Cornelissen (2018)
Summary. The master’s thesis [Cor18] considers model-based RL and develops quantum algorithms
for policy evaluation and policy optimization. For the former method a quadratic improvement in
sample complexity is found.

Quantum Policy Evaluation. A quantum algorithm for quantum policy evaluation is presented in
Sec. 6.2 of the thesis and will be summarized in the following: The algorithm is executed on a
register that is capable to store T states and actions of a T -step MDP. To generate a sequence,
a transition-probability oracle and a policy oracle are defined. They generate a superposition of
all possible action-state sequences of the Markov problem, weighted by the square root of the
corresponding probabilities. Note that the state is normalized as the probabilities sum up to one.
Next, a reward oracle is defined which, when acting on a state-action pair, multiplies the state with a
phase factor. The phase is the discounted reward for this state action pair. The discount factors are
introduced by making use of fractional phase oracles. This is discussed in detail in Sec. 4 and 5 of the
thesis, which are based on Refs. [GAW19; Gil+19]. The fractional reward oracle is applied to every
state-action pair in the register, resulting in the product of phase factors containing the individual
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discounted rewards. Thus, when merging the exponentials to one exponential, the full quantum
state is a superposition of all state-action sequences, weighted by the square root of the individual
probability and a phase factor containing the corresponding return. Next, it is shown how the phase
factor can be encoded in the amplitude by a controlled operation on an ancilla qubit. Consequently,
the probability of measuring the ancilla in, say, state |0⟩ is given by the expectation value of the
return, that is the value function. It can be measured using quantum-amplitude estimation, which
works based on the phase estimation algorithm. The amplitude-estimation algorithm is a Grover-
type algorithm. Hence, it is not surprising that the quadratic speed up compared to classical
Monte-Carlo sampling results from this algorithmic step.

Quantum Policy Optimization. In Sec. 6.4 of the thesis a policy optimization algorithm is developed.
This method can be seen as a quantum analogue of policy gradient. First of all, the policy needs
to be parameterized. This is done by introducing the parameters xsa such that π(a|s) = xsa for
all a but one arbitrarily chosen a∗ and π(a∗|s) = 1 −

∑
a xsa otherwise. By that definition, the

policy is properly normalized and all xsa ∈ [0, 1]. Consequently, the expected return is a high-
dimensional polynomial in the parameters xsa. For taking the derivative of this objective, Jordan’s
quantum gradient algorithm [Jor05] in it’s advanced form [GAW19] is employed. This leads to a
finite-difference approximation of the gradients, written in a phase factor, which can be read out
after applying phase estimation. Following Ref. [Gil+19], significant amount of work is devoted
to transform the probability oracle for the policy and the transition matrix described above into a
phase oracle. Once the superposition of state-action sequences is prepared, an oracle call multiplies
each state in the superposition by the corresponding discounted reward. Consecutively, the gradient
estimation algorithm is applied and the gradients can be read out. This step is followed by adapting
the policy through gradient ascent. It is concluded in the thesis that this policy optimization
algorithm does not necessarily lead to quantum speed-up. However, as the author argues, it is
conceivable that improvement of the algorithm might lead to a quantum speed-up.

5 Outlook

We have given a rather detailed account of the various instances QRL that have appeared throughout
the literature. We observed, that the dichotomy found at the hardware level, i.e., currently available
NISQ devices vs. fault-tolerant and error-corrected QPUs, manifests also at the algorithmic level.

With NISQ devices in mind, VQCs have been suggested as function approximators. These
replace their classical counterparts in RL algorithms with function approximation in policy space,
value space, or both. Here, one typically replaces a classical learning heuristic by a learning heuristic
with a quantum component. Any sort of potential quantum advantage, however, is not immediately
apparent. We eventually can obtain theoretical insight into the properties of VQCs viewed as ML
models and function approximators. However, a direct comparison to their classical cousins, such
as neural networks, is anything but easy and might strongly depend on the chosen metric. How
can we meaningfully deploy an agent trained with VQC-components? What are the requirements
for quantum advantage in such a heuristic setting? What does non-simulability of quantum circuits
imply for e.g. generalization bounds of VQCs as ML models? Can we scale VQCs while maintaining
their desirable properties? What is the intrinsic inductive bias of VQCs viewed as ML models?
What are the implications for RL and its application domains? All these questions are currently
being investigated in the research community, and we are looking forward to new results.

While quantum algorithms for fault-tolerant and error-corrected QPUs have been put forward,
we are still far from being able to deploy these algorithms for meaningful problem sizes. Given the
necessary advancements of hardware platforms, it will be exciting to see whether these types of
quantum algorithms will become competitive with classical learning approaches in practice.

We hope that our survey on the QRL literature and the various types of QRL algorithms will
help guide newcomers to the field and will serve as a valuable reference for researchers.
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List of Abbreviations

BCQ batch-constrained deep Q-learning. 38, 40

BCQQ batch-constrained quantum Q-learning. 38–40

CNN convolutional neural network. 20, 47

CPTP completely positive trace preserving. 61

CQ2L conservative quantum Q-learning. 40, 41

CQL conservative Q-learning. 40–42

CTDE centralized training with decentralized execution. 36, 37

DDQL double deep Q-learning. 17, 19–22

DL deep learning. 3

DLP discrete logarithm problem. 24

DNN deep neural network. 11, 17, 18, 24, 33

DQAS differential quantum architecture search. 46

DQL deep Q-learning. 17, 18

DQN deep Q-network. 41

DRL deep reinforcement learning. 4, 11, 16

DRU data re-uploading. 38–40

FIM Fisher information matrix. 26, 27, 29

MARL multi-agent reinforcement learning. 36

MDP Markov decision process. 3–5, 42, 57, 59, 60, 63

ML machine learning. 2, 7, 10, 11, 23, 25, 48, 64

MPS matrix product state. 47, 48

MSE mean square error. 17

NISQ noisy intermediate-scale quantum. 2, 3, 10, 12, 24, 47, 48, 56, 58, 61, 64

NN neural network. 3, 6, 10, 12, 18, 20–22, 24, 26, 35, 36, 43, 45–48, 50, 52, 54, 55

PDF probability density function. 4, 23

POMDP partially observable Markov decision process. 42, 44

PPO proximal policy optimization. 45, 46

PS projective simulation. 12, 53, 56

QA3C quantum asynchronous advantage actor critic. 34, 46, 49, 52
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QC quantum computing. 2, 3, 7, 11–13, 33, 44, 56

QCNN quantum convolutional neural network. 20

QDDPG quantum deep deterministic policy gradient. 31, 33

QiRL quantum-inspired reinforcement learning. 2, 11, 13–15, 44, 45

QLSTM quantum long short-term memory. 46

QMARL quantum multi-agent reinforcement learning. 35–38, 52

QML quantum machine learning. 7, 10, 11, 23, 24, 26

QNN quantum neural network. 37, 48

QNPG quantum natural policy gradient. 29, 30

QPG quantum policy gradient. 22–24, 27–29, 48

QPU quantum processing unit. 3, 11, 16, 64

QRL quantum reinforcement learning. 2, 3, 7, 10–15, 17, 21, 23, 27, 28, 30, 32, 34, 37, 38, 40–43,
46, 48–54, 56, 59–61, 64

QRNN quantum recurrent neural network. 46

RL reinforcement learning. 2–5, 7, 10–13, 15–17, 19, 21–24, 27, 28, 30–33, 35, 37, 40, 42, 44–46,
48, 52, 54, 56, 57, 63, 64

SAC soft actor-critic. 34, 35, 37, 38, 49

TD temporal difference. 13

TN tensor network. 47, 48

TSP traveling salesman problem. 51

VQ-DQN variational quantum deep Q-networks. 39, 41

VQA variational quantum algorithm. 11

VQC variational quantum circuit. 2, 6, 7, 10–12, 15–21, 23–43, 45–52, 64

VQE variational quantum eigensolver. 32

VRP vehicle routing problem. 50
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