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Abstract. We have developed a quantum-quasiclassical computational scheme for

quantitative treating of the nonseparable quantum-classical dynamics of the 6D

hydrogen atom in a strong laser pulse. In this approach, the electron is treated quantum

mechanically and the center-of-mass (CM) motion classically. Thus, the Schrödinger

equation for the electron and the classical Hamilton equations for the CM variables,

nonseparable due to relativistic effects stimulated by strong laser fields, are integrated

simultaneously. In this approach, it is natural to investigate the idea of using the CM-

velocity spectroscopy as a classical “build-up” set up for detecting the internal electron

quantum dynamics. We have performed such an analysis using the hydrogen atom in

linearly polarized laser fields as an example and found a strong correlation between the

CM kinetic energy distribution after a laser pulse and the spectral density of electron

kinetic energy. This shows that it is possible to detect the quantum dynamics of an

electron by measuring the distribution of the CM kinetic energy.

Keywords : Schrödinger equation, classical Hamilton equations, laser fields, discrete

variable representation, splitting-up method, spectral density

1. Introduction

In the works [1–4] the efficient quantum-quasiclassical computational scheme was

developed that was successfully applied to calculate various few-body processes and has

made it possible to resolve a number of topical problems in atomic (see [4] and references

therein), mesoatomic, and nuclear physics. In this approach, the few-body quantum

problem is reduced to the simultaneous integration of a system of coupled quantum

and classical equations: the time-dependent Schrödinger equation that describes the

quantum dynamics of slow light particles and the classical Hamilton equations that

describe the remaining variables of heavy fast particles. The key idea of this semiclassical

approach goes back to works [6–8] where it was applied to the molecular dynamics.

Recently [3], the method has been extended and adapted to the quantitative description
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of pair collisions of light slow Li atoms with heavy Yb+ ions in the confined geometry

of the hybrid atom-ion trap. On the basis of these calculations, a new method for

sympathetic cooling of ions in the RF Paul trap was proposed [4]: to use cold buffer

atoms for this purpose in the region of atom-ion confinement-induced resonance. This

approach also made it possible to perform calculations of the breakup cross sections in

the low-energy region (up to 10 MeV/nucleon), inaccessible so far to other methods, for

the 11Be breakup on a heavy target [5]. Here, we extend the method for quantitative

analysis of the nonseparable quantum-classical dynamics of the 6D hydrogen atom in a

strong laser pulse.

In a recent paper by Patchkovskii et. al. [9], it was found that the non-dipole

coupling in the hydrogen atom between the center-of-mass (CM) and the electron

motions induced by external strong laser fields leads to a correlation between the CM-

velocity distribution after the pulse action with the population of electron states induced

by the field. Therefore, the authors of this paper suggest using this effect for detection

of the internal electron quantum dynamics with CM-velocity spectroscopy. Moreover,

such a “device” has an advantage that it can be considered as a classical spectroscope

for investigation of the quantum dynamics inside the atom.

The problem of accurate treatment of the non-dipole coupling of the CM- and

relative electron-proton motions in a hydrogen atom effected by a strong laser field is

rather challenging due to the 6D dimensionality of the problem and the smallness of

the coupling effect which is of the order ∼ 1/c ∼ 1/137. In the work [9], the original

6D problem was replaced by the effective 3D Schrödinger equation by placing the atom

in an artificial trap (spherical harmonic oscillator) with an energy corresponding to the

energy of its thermal motion. After averaging the motion of the atom over the states

of the harmonic oscillator, they reduced the original 6D problem to the effective 3D

Schrödinger equation for the electron. In the present work, we propose to avoid this

drawback by applying our quantum-quasiclassical [1–4] approach to the 6D problem

of a hydrogen atom in a laser field in which the electron motion is treated quantum

mechanically and the CM variables classically. In this approach, simultaneously with

the time-dependent Schrödinger equation for the electron wave function we integrate a

set of classical Hamilton equations describing CM-variables.

With this approach, we have calculated the time dynamics of the electron and CM-

variables as well as the spectral densities of the electron and CM kinetic energies after

the linearly polarized laser pulses of rather high intensity (1014 W
cm2 ) and broad region

(90 − 800nm)of the wave lengths. The populations of the low-lying hydrogen energy

levels stimulated by the laser fields have also been evaluated. These calculations show

a strong correlation between the atom kinetic energy distribution after the pulse and

the electron spectral density inside the atom. This fact supports the idea [9] of using

the CM- velocity spectroscopy as a classical spectroscope for detecting the quantum

electron dynamics inside the atom.

In the next section, we derive equations of the quantum-quasiclassical approach as

applied to the hydrogen atom in strong linearly polarized laser fields. The results of
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the calculations with this method of the hydrogen atom dynamics in strong laser fields

and the discussion are given in the third section. The last section is devoted to short

conclusion.

2. Treating 6D hydrogen atom in strong laser field with

quantum-quasiclassical approach

We investigate the dynamics of the 6D hydrogen atom in a strong laser field linearly

polarized along x-axis (atomic units e2 = me = ~ = 1 are used hereinafter except where

otherwise noted) with the electric E and magnetic B fields

E(ωt) = E(ωt)nx , B(ωt) =
1

c
E(ωt)ny , (1)

where

E(ωt) = E0f(t) cos(ωt− kz) (2)

and

f(t) = cos2(
πt

nTT
) , −nTT/2 ≤ t ≤ nTT/2 . (3)

The pulse duration determined in this way includes nT optical cycles with cycle period

T = 2π/ω. Here, nx and ny are unit vectors along the x and y axes, 1/c = α = 1/137

is the fine structure constant, k = ω/c is the wave number and the strength of the

laser field E0 defined by the field intensity I = ε0cE
2
0/2 = I0E

2
0 , where ε0 is the

vacuum permittivity and I0 = 3.51 × 1016 W
cm2 . All calculations were performed for

intensity I = 1014 W
cm2 . The laser field frequency ω is connected by known relation

ω = 2πc/λ with the wave length, which in our calculation was alternating in the region

90nm ≤ λ ≤ 800nm. Pulse propagates along the z-axis.

A vast majority of calculations of the dynamics of the hydrogen atom in laser fields

were performed in the dipole approximation for the atom-field interaction potential

V (r, t) = E0f(t) cos(ωt)x (where x = xe−xp and xe and xp are the variables of electron

and proton, respectively), in which the magnetic component (∼ α) in equations (1) and

the spatial dependence in the propagation direction of the pulse (∼ kz = αωz) in (2) are

neglected. Accounting for the magnetic component in (1) and the spatial dependence of

the laser field in (2), i.e. going beyond the dipole approximation, leads to the following

modification of the interaction potential (see Appendix A)

V (r,R, t) = V1(r, t) + V2(r,R, t) , (4)

where

V1(r, t) = E0f(t){cos(ωt)x+ α[cos(ωt)l̂y + ω sin(ωt)xz]} , (5)

and

V2(r,R, t) = αE0f(t){cos(ωt)[Zp̂x −Xp̂z] + ω sin(ωt)[xZ + zX]} . (6)

This potential is written in the CM R = (X, Y, Z) and relative r = (x, y, z) variables,

where l̂y = zp̂x − xp̂z is the y-th component of the operator of the electron angular
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momentum with respect to the proton. In deriving these formulas, we neglected the

terms ∼ α2 and ∼ 1/M = 1/(mp + me) and higher orders (Appendix A). Then, the

total Hamiltonian of the system takes the form

H(r,R, t) =
P 2

2M
+ h0(r) + V1(r, t) + V2(r,R, t) , (7)

where

h0(r) =
p̂2

2µ
− 1

r
, (8)

p̂ is the momentum operator of the relative motion of the electron with respect to the

proton, P is the momentum of the CM, µ = memp/(me + mp) is the reduced mass of

the atom and M = me +mp.

The importance of non-dipole effects was recognized long ago [10–13], and by now

the influence of these effects on various atomic processes in strong laser fields has been

studied quite intensively (see, for example, [14–22] and references therein). However,

non-separability of the CM motion has not received much attention so far [9], as we

suppose, due to the computational complexity of the problem. Here, we eliminate this

gap to some extent by proposing a computational method for the quantitative analysis

of the nonseparable quantum-classical dynamics of the 6D hydrogen atom in a strong

laser pulse, taking into account the motion of the CM and its coupling (6) with the

electron motion.

Since in our problem P = MV � µv, we can consider the motion of a heavy atom

as a whole classically (CM- motion) and the motion of a light electron relative to a proton

in an atom is quantum. It also justified by the well-known fact that the classical model

of Maxwell-Boltzmann ideal gas perfectly describes gas laws down to sufficiently low

temperatures. This allows us to apply here the algorithm of the quantum-quasiclassical

approach [1–4] and, following this scheme, reduce the original problem of the hydrogen

atom in a laser field to the integration of the following system of coupled equations

i~
∂

∂t
ψ(r, t) = {h0(r) + V1(r, t) + V2(r,R(t), t)}ψ(r, t) , (9)

d

dt
P (t) = − ∂

∂R
Hcl(R(t),P (t)) , (10)

d

dt
R(t) = − ∂

∂P
Hcl(R(t),P (t)) , (11)

with the effective Hamiltonian

Hcl(R,P ) =
P 2

2M
+ 〈ψ(r, t)|V2(r,R(t), t)|ψ(r, t)〉 . (12)

To solve problem (9-12), it is necessary to set the initial conditions for t = −nTT/2

ψ(r, t = −nTT ) = φnlm(r) , (13)

R(t = −nTT ) = R0 , P (t = −nTT ) = P0 , (14)
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and integrate simultaneously the system of the coupled equations (9-12), where φnlm(r)

is the hydrogen atom wave function of the bound state |nlm〉.
A feature of problem (9-14) is the presence in it of the characteristic frequencies of

the laser pulse and transitions between the levels of atoms, which are very different from

each other. Therefore, the algorithm used for the numerical integration of the system

(9-14) must be stable in a wide frequency range. To integrate the time-dependent

3D Schrödinger equation (9) we apply our recently developed algorithm [23] based on

splitting-up method with a 2D discrete-variable representation (DVR) [24, 25]. It was

successfully used to calculate, in the dipole approximation, the excitation and ionization

of a hydrogen atom by a strong elliptically polarized laser field (1014 W
cm2 ). Simultaneously

to the forward in time propagation tn → tn+1 = tn + ∆t of the electron wave-packet

ψ(r, tn)→ ψ(r, tn+1) when integrating the time-dependent Schrödinger equation (9), we

integrate the Hamilton equations of motion (10,11) with the Störmer-Verlet method [26]

adapted in [3, 4] for quantum-quasiclassical case:

P (tn +
∆t

2
) = P (tn)− ∆t

2

∂

∂R
Hcl(P (tn +

∆t

2
),R(tn)) ,

R(tn + ∆t) = R(tn) +
∆t

2

{
∂

∂P
Hcl(P (tn +

∆t

2
),R(tn))

+
∂

∂P
Hcl(P (tn +

∆t

2
),R(tn + ∆t))

}
,

P (tn + ∆t) = P (tn +
∆t

2
)− ∆t

2

∂

∂R
Hcl(P (tn +

∆t

2
),R(tn + ∆t)) . (15)

We calculate ψ(r, t) and R(t),P (t) and average values of the kinetic energy of the

atom as a whole 〈|Ekin|〉 and the electron kinetic energy 〈|E(el)
kin |〉 after the pulse end

〈|Ekin|〉 =
1

Tout − Tin

∫ Tout

Tin

P 2(t)

2M
dt ∼

∫ ∞
−∞

[
∑

s=x,y,z

|Pk(ω)|2]dω , (16)

〈|E(el)
kin |〉 =

1

Tout − Tin

∫ Tout

Tin

p2(t)

2µ
dt ∼

∫ ∞
−∞

[
∑

s=x,y,z

|pk(ω)|2]dω , (17)

as well as the spectral densities |Ps(ω)|2 and |ps(ω)|2 of the atom and electron kinetic

energies, respectively (where s = x, y, z, Tin = −nTT and Tout = (nT + 1)T ). Here

Ps(ω) =

∫ Tout

Tin

Ps(t)e
iωtdt (18)

and

ps(ω) =

∫ Tout

Tin

〈|ps(t)|〉eiωtdt (19)

where the distributions of ps(ω) are expressed in terms of the instantaneous values

〈|p̂s(t)|〉 of the electron momentum, calculated simultaneously with integrating system

(9-11)

〈|ps(t)|〉 =

∫
ψ∗(r, t)p̂sψ(r, t)dr . (20)



quantum-classical approach 6

3. Electron and CM- dynamics of hydrogen atom in strong laser fields

Using the computational scheme presented in the previous section, we have calculated

the dynamics of the hydrogen atom in a linearly polarized laser field of 1014 W
cm2 intensity

for three wavelengths 800nm, 400nm and 90nm. The transition from longer to shorter

waves makes it possible to analyse the effect of amplifying the coupling between the

internal motion of the electron and the CM- motion, since in this case the radiation

frequency ω = 2πc/λ increases and, as a consequence, the cross term V2(r,R(t), t) (6)

in the Hamiltonian (7) of the problem is amplified. All calculations were performed for

the hydrogen atom in its initial state (t = −nTT ) in the ground state φ100(r) at the

origin of the coordinates (R0 = 0) with zero momentum (P0 = 0).

Figure 1 shows the results of the calculation of R(t), P (t) and 〈|p̂(t)|〉 for λ =

800nm (ω = 0.057). The calculations were carried out for ∆t = T/4400 = π/(2200ω) on

a radial grid 0 ≤ r ≤ 500 with Nr = 2000 grid points and an angular grid with Nθ = 11

and Nφ = 11 Guassian nodes in θ and φ variables, respectively, which give a convergent

result. The construction of a spatial grid and the method for analyzing convergence in

integrating Eq.(9) on a sequence of refining grids are described in [23]. The calculated

curves X(t), Z(t), Px(t) and Pz(t) show that the atom is accelerated under the action

of the laser field in accordance with the known experimental results [27]. Moreover, the

acceleration in the direction of pulse propagation (z-axis) is three orders of magnitude

higher than the acceleration in the direction of polarization (x-axis). Interaction with

the laser field also leads to electron acceleration (see curves 〈|px(t)|〉 and 〈|pz(t)|〉).
Moreover, its amplitude of oscillations in the direction of propagation of the laser pulse

is two orders of magnitude smaller than the amplitude of oscillations in the direction

of laser polarization and significantly lags in time. It should also be noted that at the

initial stage of the interaction of an atom with a laser field (t < 0), electron oscillations

are determined by the laser frequency ω = 0.057, but starting from times approaching

to t ∼ 0, high-frequency components appear in the electron momentum 〈|px(t)|〉, which

we associate with the excitation of low-lying levels of the atom, i.e. the frequencies

Ω ∼ 1
2
− 1

8
∼ 0.375 � ω = 0.057 related with the transition n = 1 → n′ = 2, 3.. . This

high-frequency effect is also visible in 〈|pz(t)|〉 and is only slightly noticeable in the Px(t)

and Pz(t) component of the atomic momentum. Here and below, we do not present the

calculated y-components, since they are several orders of magnitude smaller than the x-

and z-components due to the absence of terms depending on y in the coupling potential

(6).

Next, we have calculated the spectral densities |Px(ω)|2, |Pz(ω)|2 and |px(ω)|2,
|pz(ω)|2 of the kinetic energies of the atom and electron (see definitions (16-20)), which

are shown in Fig. 2 for the region of excited states of the atom ~ω ≥ −1
8

= −0.125

(see the lower graph in Fig. 2). Here we should note the repetition of the shape

of the x- component of the distribution curve |px(ω)|2 of the electron kinetic energy

of in the spectral density |Px(ω)|2 of the atom kinetic energy. The same effect is

qualitatively repeated for the components |pz(ω)|2 and |Pz(ω)|2. It also shows the
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Figure 1. The values X(t),Z(t), Px(t), Pz(t), 〈|px(t)|〉 and 〈|pz(t)|〉 calculated for the

laser field with I = 1014 W
cm2 and λ = 800nm (ω = 0.057a.u.). The time-dependence

of the laser pulse E(ωt) (2) is also presented at z = 0. The time is given in a.u.

( ~
me(αc)2

= 2.42× 10−17sec)

.
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calculated populations Wn =
∑

lm |〈φnlm(r)|ψ(r, t = (nT + 1)T )〉|2 of the low-lying

states of the hydrogen atom after the end of the action of the laser pulse.

In Figs. 3 and 4, we present the results of calculations with doubling the laser

radiation frequency λ = 400nm (ω = 0.114). As we can see in Fig. 3, this leads to an

increase in the acceleration of the atom due to the amplification of the term (6) mixing

the CM- motion and the relative motion of the electron in the atom. As in the previous

case, at times approaching t ∼ 0 higher harmonics arise corresponding to the transitions

n → n′ = 2, 3... in the quantities 〈|px(t)|〉 and 〈|pz(t)|〉. As in the previous case, the

calculated spectral densities |Ps(ω)|2 repeat the shape of the electron kinetic energy

distributions |ps(ω)|2 in the atom. Note also some shifts in energy between distributions

|Ps(ω)|2 and |ps(ω)|2, which is visible as well in Figs. 2 for λ = 800nm. This effect can

be explained by the fact that the spectral densities |Ps(ω)|2 for atoms are calculated

in the laboratory frame and the electron distributions |ps(ω)|2 in the accelerated CM-

frame.

Finally, we have performed calculations for λ = 90nm (ω = 0.5) that gives the

strongest coupling between the CM- and relative electron motions. The results of these

calculations are presented in Figs. 5 and 6. Amplification of the coupling term (6)

in the Hamiltonian of the problem (7) due to an increase in ω leads to even greater

acceleration of the atom in the direction of the laser pulse propagation compared to the

previous cases. The amplitude of the atomic momentum oscillations in the direction

of polarization during the interaction with the laser field exceeds the previous values.

However, after the laser is turned off, the atomic momentum in this direction remains

negligibly small, as before the interaction with the laser pulse. Since the frequency of

transitions n = 1 → n′ = 2, 3, ... between atomic levels in this case is less than the

frequency of laser radiation Ω ∼ 1
2
− 1

8
< ω = 0.5, high-frequency components are not

observed in 〈|px(t)|〉 and 〈|pz(t)|〉. Moreover, at long times t ≥ 20 these transitions

lead to some slowing down of the 〈|px(t)|〉 oscillations. Figure 6 shows the calculated

spectral densities |Ps(ω)|2 and |ps(ω)|2. As in the previous cases, the shapes of the

spectral density curves of the atomic kinetic energy repeat the shapes of the electron

momentum distributions. It should be noted here that we found no dependence on the

frequency in the distributions |Px(ω)|2 and |px(ω)|2.
Here we must emphasize the following fact. In Figs. 2, 4, and 6, we present the

calculated curves |Ps(ω)||2 in the region −0.125 ≤ ω < 0. However, the Maxwellian

peak at room temperature corresponds to 300K ' 0.04eV ' ~ω ' 10−3a.u. very close

to the point ~ω ∼ 0, i.e. practically out of the region of the potentially supposed

measurements of the spectral densities |Ps(ω)|2 where we performed calculations.

4. Conclusion

The paper describes a quantum-quasiclassical approach to the quantitative analysis

of the 6D hydrogen atom in a strong laser field. This approach allowed us to study

this problem outside the commonly used dipole approximation for the interaction of
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Figure 2. The values |Px(ω)|2, |Pz(ω)|2, |px(ω)|2,|pz(ω)|2 and the populations Wn

calculated for the laser field with I = 1014 W
cm2 and λ = 800nm (ω = 0.057a.u.).
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Figure 3. The values X(t),Z(t), Px(t), Pz(t), 〈|px(t)|〉 and 〈|pz(t)|〉 calculated for the

laser field with I = 1014 W
cm2 and λ = 400nm (ω = 0.114a.u.). The time-dependence of

the laser pulse E(ωt) (2) is also presented at z = 0.
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Figure 4. The values |Px(ω)|2, |Pz(ω)|2, |px(ω)|2,|pz(ω)|2 and the populations Wn

calculated for the laser field with I = 1014 W
cm2 and λ = 400nm (ω = 0.5a.u.).
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Figure 6. The values |Px(ω)|2, |Pz(ω)|2, |px(ω)|2,|pz(ω)|2 and the populations Wn

calculated for the laser field with I = 1014 W
cm2 and λ = 90nm (ω = 0.5a.u.).
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a laser field with an atom, when the electron variables cannot be separated from the

CM variables. Calculations performed for different frequencies of laser radiation showed

that an increase in frequency, which leads to an increase in the term coupling CM-

and relative variables in the Hamiltonian of the problem, leads to an increase in the

acceleration of an atom by a laser field.

We have found that the experimentally measured quantity, the spectral density of

the atomic kinetic energy |Ps(ω)|2, qualitatively repeats the shape of the distribution

curve |ps(ω)|2 of the kinetic energy of an electron in an atom. That is, it is shown that

one can detect the quantum dynamics of an electron by measuring the distribution of

the atom kinetic energy. Our result confirms the suggestion to apply the CM- velocity

spectroscopy (a “built-in” classical instrument) to detect the internal quantum dynamics

of an electron. The idea of using the CM- velocity spectroscopy for detecting electron

dynamics was recently suggested in work [9] where, however, the correlation between the

CM-velocity and the populations of atomic levels due to interaction with laser fields was

analyzed in the simplified 3D quantum model for the hydrogen atom in laser fields. Here

we analyzed and justified this idea in a more natural way by applying our quantum-

quasiclassical approach for the 6D atom in a laser field, in which we simultaneously

integrated the Schrödinger equation for the electron and the classical Hamiltonian

equations for CM-variables. In this regard, it is interesting to note that recently the

closeness of the momentum distributions of nuclei and electrons was observed during

the ionization of a helium atom by the Compton scattering method [28]. The role of

nuclear motion in some problems of atomic and molecular physics was also discussed in

the review article [29].

The approach we have developed opens up the possibility of investigating the

influence of CM motion in the non-dipole approximation on the ionization and excitation

of atoms by strong laser fields, the radiation pressure in this problem, the generation of

high harmonics, and other effects.
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Appendix A. Non-dipole interaction of hydrogen atom with laser field

A particle with charge q and mass m in an electromagnetic field (1) is affected by the

force

F = qE +
q

m
[p×B] = qE(ωt){nx +

1

mc
(p̂xnz − p̂znx)} . (A.1)

Here, we have neglected the term

−i q
mc

E0f(t)
∂

∂z
cos(ωt− kz) = −i qω

mc2
E0f(t) sin(ωt− kz) ∼ 1

c2
(A.2)
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of a higher order of smallness compared to c−1 = 137−1. Since the common factor

E(ωt) = E0f(t) cos(ωt − kz) in (A.1) also contains the parameter of smallness ∼ c−1

in term kz = ωc−1z, using the relation cos(ωt − kz) ≈ cos(ωt) − ωc−1z sin(ωt) whose

accuracy is of the order of c−1 and neglecting terms of higher orders than ∼ c−1, we

reduce (A.1) to the form

F = qE0f(t){cos(ωt)[nx +
1

mc
(p̂xnz − p̂znx)] +

ω

c
sin(ωt)znx} . (A.3)

Further, using the well-known relation F(r) = −∇U(r) connecting the vector field with

a scalar potential field, we obtain the interaction potential of a charged particle with an

electromagnetic field (1) up to terms ∼ c−1 inclusive

U(r) = qE0f(t){cos(ωt)x+
1

mc
cos(ωt)(zp̂x−xp̂z) +

ω

c
sin(ωt)(xz)} .(A.4)

We represent the interaction potential of a hydrogen atom with a laser field (1) as

a sum of potentials (of type (A.4))

V (re,Rp) = U(re) + U(Rp) (A.5)

describing the interaction of an electron (qe = −e) and a proton (qp = e) with field (1),

respectively. Passing to the coordinates of the center of mass R and relative motion r

in the hydrogen atom

re = (1− me

M
)r + R ≈ r + R pe = p +

me

M
P ≈ p (A.6)

Rp = R− me

M
r ≈ R pp =

mp

M
P− p ≈ P− p , (A.7)

with neglecting terms of the order of M−1 = (me + mp)
−1, we finally obtain the

interaction potential (4) of the hydrogen atom with the laser field (1) in the non-dipole

approximation with an accuracy of the order of c−2 and M−1 (in the atomic units

~ = e2 = me = 1)

V (r,R) = V1(r) + V2(r,R) , (A.8)

where

V1(r) = E0f(t){cos(ωt)x+
1

c
[cos(ωt)l̂y + ω sin(ωt)xz]} , (A.9)

and

V2(r,R) =
1

c
E0f(t){cos(ωt)[Zp̂x −Xp̂z] + ω sin(ωt)[xZ + zX]} . (A.10)
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