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Conventional gas-liquid phase transitions feature a coexistence line that has a monotonic and
positive slope in line with our intuition that cooling always leads to condensation. Here we study the
inverse phenomenon, condensation of adsorbed organic molecules into dense domains upon heating.
Our considerations are motivated by recent experiments [Aeschlimann et al., Angew. Chem. (2021)],
which demonstrate the partial dissolution of an ordered molecular monolayer and the mobilization
of molecules upon cooling. We introduce a simple lattice model in which each site can have three
states corresponding to unoccupied and two discernible molecular conformations. We investigate
this model through Monte Carlo simulations, mean-field theory, and exact results based on the
analytical solution of the Ising model in two dimensions. Our results should be broadly applicable
to molecules with distinct conformations that have sufficiently different entropies or heat capacities.

I. INTRODUCTION

How a collection of disordered molecular building
blocks autonomously arranges into structured and func-
tional materials is of broad interest, from the synthesis
of novel materials to our understanding of living mat-
ter [1]. Statistical physics provides a powerful framework
through which the emergence of structure is connected
to the underlying physics of phase transitions. Exam-
ples range from the ordering of lipids into membranes
and tubules [2] to the drying-induced self-assembly of
nanoparticles on a surface [3], the morphologies of which
can be captured in a minimal lattice model [4]. Mor-
phologies of thin films of organic molecules deposited on
a substrate [5–7] play an important role for organic elec-
tronics and photovoltaics [8], in particular the control
over complex arrested morphologies due to the intricate
interplay of thermodynamic and kinetic factors [9, 10].

Here we investigate a generic lattice model of adsorp-
tion sites, each of which can be occupied by a molecule.
Our study is motivated by recent experimental studies of
the structure formation of dimolybdenum tetraacetate,
Mo2(O2CCH3)4, on a copper Cu(111) substrate in vac-
uum [11, 12]. At room temperature, molecules at sub-
monolayer coverage arrange into aligned chains. Re-
markably, upon cooling the substrate the ordered do-
mains partially dissolve and molecules become mobile
again, which is reminiscent of inverse melting [13]. The
idea of inverse freezing and melting has a long history
starting with Tammann [14] in 1903 but has been dis-
cussed mostly in connection with rather exotic systems
such as helium above 20 bar [15]. Only rather recently
it has been realized that adsorbed organic molecules
are good candidates to observe inverse transitions more
widely [16]. These systems have in common that the
liquid-solid phase boundary has an inflection point at
high pressure and finite temperature so that further re-
ducing the temperature leads to a reentrance into the liq-
uid phase. Reentrant phase behavior, inter alia, is also
found for complex network fluids [17, 18], liquid crys-
tals [19], and, generically, liquid mixtures [20, 21]. In

contrast, here we consider the phase behavior of a single
molecular component.

At thermodynamic equilibrium, coexisting phases in
an inhomogeneous system have to have the same chem-
ical potential. Changing the intensive thermodynamic
variables, along the coexistence line the change of chem-
ical potentials thus has to be equal, dµg = dµl, using gas
(g) and liquid (l) as a specific example. From the Gibbs-
Duhem relation dµx = −sxdT + vxdp one immediately
obtains the Clausius-Clapeyron relation

dp

dT
=
sg − sl

vg − vl
(1)

for the slope of the coexistence line, where sx is the en-
tropy and vx is the volume per molecule in the corre-
sponding bulk phase, and T and p are conjugate temper-
ature and pressure, respectively. Since we typically ex-
pect more available volume in the disordered gas phase
together with a larger translational entropy, the slope
is positive. A well-known exception is the solid-liquid
transition of water exhibiting a negative slope since the
volume of ice is larger. Another possibility is that the
entropy of the more ordered phase is larger. Clearly, in
this case the loss of translational entropy has to be off-
set by a gain of, e.g., intramolecular entropy. The min-
imal scenario thus involves two conformations of a com-
plex organic molecule so that in the ordered (solid/liquid)
phase the conformation with the larger entropy is found.
For dimolybdenum tetraacetate, scanning tunneling mi-
croscopy reveals that ordered molecules are standing
while freely diffusing molecules lie flat on the substrate
(Fig. 1), thus restricting intramolecular vibrations.

Schupper and Shnerb have introduced a spin model
that highlights these minimal ingredients necessary for
an inverse order-disorder transition [22, 23]. It is based
on the Blume-Capel model [24, 25] with three states for
each spin (conformation 1, unoccupied, conformation 2).
This model features a tricritical point separating a line
of critical points from a first-order transition line. Intro-
ducing a degeneracy that endows occupied sites with a
higher internal entropy, the line of critical points develops
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FIG. 1. Chemical structure of dimolybdenum tetraacetate
and the two tentative conformations on top of a copper
Cu(111) substrate: (a) Lying molecules binding with ε1.
(b) Standing molecules binding with ε2. In addition, inter-
molecular Mo–O bonding is assumed to contribute a lateral
binding energy −εb, which is absent for lying molecules. Not
shown here but important for the model is that both confor-
mations are supposed to have different entropies.

an inflecting point and there is a reentrant behavior back
into the disordered paramagnetic phase as temperature
is reduced.

Informed by the experiments [12], here we study an
even simpler model that qualitatively reproduces the be-
havior observed in the experiments. As before we con-
sider three states corresponding to unoccupied sites and
the two conformations, but now only conformation 2 in-
teracts laterally (Fig. 1). This results in the Ising model
for the interacting conformations, which condense into
ordered domains below the critical temperature. The
non-interacting lying molecules form a gas of mobile
molecules outside these domains. Since molecules can
freely convert between both conformations, only the to-
tal number of molecules is conserved (the so-called semi-
grand canonical ensemble).

II. MODEL AND METHODS

A. Lattice gas model

We consider N molecules adsorbed onto a two-
dimensional substrate, the atomistic structure of which
defines a regular lattice. The substrate is held at con-
stant temperature T . We assume that each molecule can
be found in one of two conformations with numbers N1

and N2 obeying N1 +N2 = N . Specifically for dimolyb-
denum tetraacetate, conformation 1 is lying on the sub-
strate while conformation 2 is standing upright, cf. Fig 1.
Holding a single molecule fixed at a lattice site and in a
given conformation α = 1, 2 gives rise to the constrained
partition functions∑

ξ∈α

e−H(ξ)/kBT = e−fα/kBT (2)

defining the free energies fα(T ). Here, the sum is over all
microstates ξ compatible with the conformation α, H(ξ)
is the Hamiltonian assigning each microstate an energy,
and kB denotes Boltzmann’s constant.

A coarse-grained configuration of the system is now
determined by the positions of the N molecules and their
conformations. We assume that molecules bind laterally
with binding energy −εb when both are in conformation
2 and neglect lateral binding otherwise. We assign each
lattice site a variable n̂i = 1 if site i is occupied by a
molecule in conformation 2 (standing) and n̂i = 0 if the
lattice site is unoccupied or occupied by a lying molecule
(which do not interact laterally). We thus arrive at the
free energy functional

F({n̂i};T,N) = −εb

∑
(ij)

n̂in̂j + h(T )
∑
i

n̂i +Nf1 (3)

with h(T ) ≡ f2− f1 the free energy difference of a single
molecule in conformation 2 compared to conformation 1,
which plays the role of a temperature-dependent external
field. We recognize Eq. (3) as the lattice gas (equivalent
to the Ising model [26]) with a fluctuating number N2 of
molecules coupled to a finite “reservoir” with N1 +N2 =
N held fixed.

B. Mean-field theory

The mean-field free energy F derived from Eq. (3) is
composed of two terms, the free energy of two ideal gases
(corresponding to the two conformations) and an inter-
action term. We employ as order parameters

x ≡ N2

N
, φ ≡ N

K
(4)

representing the fraction 0 6 x 6 1 of standing molecules
and the coverage 0 6 φ 6 1, where K is the number of
lattice sites (assuming for simplicity that both confor-
mations occupy the same area). The free energy for N
non-interacting molecules

F0(N,K) = −TS0 = kBTKf0(N/K) (5)

is given by the entropy

S0(N,K) = kB ln

(
K

N

)
= kB ln

K!

N !(K −N)!
(6)

to distribute the molecules among K lattice sites with

f0(x) ' x lnx+ (1− x) ln(1− x)

using Stirling’s approximation. For the standing
molecules there are K sites with coverage φ2 ≡ N2/K =
xφ. The N1 lying molecules can access only the remain-
ing K1 = K−N2 lattice sites. Adding both contributions
and after some algebra we obtain

F0(N1,K1) + F0(N2,K) = kBTK [φf0(x) + f0(φ)] . (7)
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The interaction term in Eq. (3) is approximated through

− εb

∑
(ij)

n̂in̂j = −1

2
εb

∑
i

n̂i
∑
j∈Ni

n̂j = −1

2
εbN2n̄2, (8)

where we have replaced the inner sum by the average
number n̄2 = zN2/K of standing neighbors with coordi-
nation number z (z = 4 for the square lattice). Adding
this term to the ideal gas contribution Eq. (7), the re-
duced free energy density now reads

f(x, φ) ≡ F/K

zεb

= −1

2
(xφ)2 + hxφ+ Tφf0(x) + Tf0(φ) + φf1. (9)

Here and in what follows we employ dimensionless quan-
tities through rescaling free energies fα/(zεb) → fα and
temperature kBT/(zεb)→ T .

Since molecules can interconvert between both confor-
mations, the first equilibrium condition is

∂f

∂x
=

(
−φx+ h+ T ln

x

1− x

)
φ = 0, (10)

which yields the mean-field equation of state

φ(x;T ) =
1

x

[
h+ T ln

x

1− x

]
. (11)

Above the critical temperature, T > Tc, the curve φ(x;T )
is monotonic. For a fixed φ there is one composition x
and the system remains homogeneous.

Below the critical temperature, the system becomes in-
homogeneous. At coexistence, both the reduced chemical
potential

µ =
1

zεb

∂F

∂N
=
∂f

∂φ
(12)

and the reduced pressure

p = − a

zεb

∂F

∂A
= −(f − φµ) (13)

need to be equal in all coexisting phases. Eliminating
φ = φ(x) through Eq. (11), chemical potential and pres-
sure are functions of composition alone with compact ex-
pressions

µ(x) = T ln
φ(1− x)

1− φ
+ f1, (14)

p(x) = −1

2
(φx)2 − T ln(1− φ). (15)

Through numerical root finding we determine the com-
positions x± obeying µ(x+) = µ(x−) and p(x+) = p(x−)
simultaneously.

To determine the mean-field critical point, we inspect
the derivative of the pressure

dp

dx
= T

T − xφ+ (xφ)2

x2(1− x)(1− φ)
, (16)

which has zeros for

xφ =
1

2
± 1

2

√
1− 4T . (17)

This implies the critical mean-field temperature TMF
c =

1
4 independent of h (as expected for the Ising model).

Solving xcφ(xc) = 1
2 with Eq. (11) yields

xc =
1

1 + e4hc−2
, φc =

1

2xc
. (18)

For the critical point to lie within the accessible range,
we need xc > 1

2 and thus hc = h(Tc) 6 1
2 .

C. Monte Carlo simulations

We also perform Monte Carlo simulations based on the
lattice free energy Eq. (3). Picking a random molecule,
we perform one of two trial moves: attempting to move
the molecule to one of the z = 4 neighboring lattice sites
with probability 1−pconv or switching to the other confor-
mation with pconv. Trial moves are accepted with prob-
ability

min{1, e−∆F/kBT } (19)

and rejected otherwise, where ∆F = Fnew − Fold is the
change of the free energy Eq. (3). Attempted jumps to
occupied sites are always rejected. The only parameter of
the Monte Carlo algorithm is the probability pconv, which
does not influence averages in thermal equilibrium. Most
simulation data has been obtained for pconv = 0.1.

To study direct phase coexistence, we employ an elon-
gated simulation box with K = Lx × Ly lattice sites
setting Ly = 40 and Lx = 3Ly. Due to the line tension,
the average interface between dense and dilute domains
aligns with the shorter box edge so that translational in-
variance holds along the y-axis but is broken along the
x-axis. This facilitates the sampling of x-dependent av-
erages, from which we extract the bulk properties away
from the interfaces.

III. DISCUSSION

A. Constant free energy difference

We now discuss the phase diagrams following from the
analysis of the previous section. To this end, we require
an expression for h(T ), and thus for the constrained free
energies of the conformations. For our purposes, we de-
compose

fα = εα − Tsα, (20)

where εα can be interpreted as binding energies with the
substrate and the functions sα describe the different en-
tropies of the two conformations (in units of kB).
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FIG. 2. Phase diagram for constant h = ε = 0.35 (s = 0).
(a) Mean-field equation of state φ(x;T ) [Eq. (11)] for three
temperatures (colored lines). The critical point (black sym-
bol) lies on the dashed black line [Eq. (18)] and is determined
by the value of hc = h [Eq. (18)]. Colored symbols indicate
the coexistence values, which form the binodal (solid black
line). The unstable part of φ(x;T ) is drawn as a dashed line.
(b) The coexisting values φ±

2 for the coverage φ2 = xφ of
standing molecules bounding the two-phase region. Dashed
line is the mean-field result. Symbols indicate numerical re-
sults with the solid gray line showing the Ising prediction
Eq. (22). The temperature is reduced by the corresponding
critical temperature. (c,d) Similar to (b) but showing (c) the
total coverage φ and (d) the fraction x of standing molecules.

The mean-field equation of state [Eq. (11)] is plotted
in Fig. 2(a) for constant h = 0.35 (i.e., s = 0) and sev-
eral temperatures T below the critical temperature Tc.
Following an isotherm through increasing the global cov-
erage φ, the system is a disordered gas of lying molecules
with a small fraction x of standing molecules that is
slowly increasing. At some φ− we hit the binodal and
now dense domains of standing molecules (large φ+ and
x+) start to coexist with dilute regions (small φ− and
x−). Further increasing the global coverage φ, these val-
ues remain the same but domains occupy a larger fraction
κ of the system according to the lever rule

κ(φ) =
φ− φ−

φ+ − φ−
. (21)

Above φ > φ+, the system is in the homogeneous dense
(“liquid”) phase. Increasing the temperature T , the co-
existence values approach each other (along the binodal)
and the range of global occupations φ− < φ < φ+ for
which coexistence is possible shrinks and eventually van-

ishes at Tc.
In Fig. 2(b), we plot the coverage φ±2 of standing

molecules, which is symmetric. We also plot numeri-
cal coverages from Monte Carlo simulations, which agree
qualitatively but approach each other more slowly at
higher temperatures. The critical temperature in the
simulations is that of the Ising model, TMC

c = [2z ln(1 +√
2)]−1 ' 0.142. We find that the numerically deter-

mined coverages follow Onsager’s result for the coexisting
densities [27]

φ±2 =
1

2
± 1

2

[
1− sinh

(
1

2zT

)−4
]1/8

(22)

(obtained in the thermodynamic limit). The standing
molecules thus behave as predicted by the standard Ising
model independent of h, which controls the total fraction
of standing molecules.

We can improve upon our mean-field results through
using that the chemical potential of standing molecules
at coexistence reads µ∗2 = f2−1/2 in the thermodynamic
limit (zero external field in the corresponding spin repre-
sentation). For the free energy of the lying molecules, we
use F1(N1,K1) = N1f1 +F0(N1,K1) = K1[ξf1 +Tf0(ξ)]
with fraction ξ ≡ N1/K1. At equilibrium, the chemical
potentials

µ1 =
∂F1

∂N1

∣∣∣∣
K1

= f1 + T ln
ξ

1− ξ
!
= µ∗2 (23)

have to be equal. This can be solved for the fraction
ξ = [1 + e−(h−1/2)/T ]−1 as a function of temperature
T and free energy difference h per molecule. Using the
definition

ξ =
N1

K1
=
N −N2

K −N2
=
φ− φ2

1− φ2
(24)

we finally obtain a prediction for the total coverage

φ± = ξ + (1− ξ)φ±2 (25)

in both the dilute and dense phase. Employing Eq. (22),
this prediction is shown in Fig. 2(c) together with the
numerical results. While not perfect, the agreement im-
proves dramatically over the simple mean-field ansatz
Eq. (8). Finally, in Fig. 2(d) we show the fractions
x± = φ±/φ±2 of standing molecules in both phases.

B. Constant entropy difference

We now lift the degeneracy of the conformational en-
tropies with temperature-dependent h(T ) = ε − Ts,
where ε ≡ ε2 − ε1 is the difference of substrate binding
energies and s ≡ s2−s1 the difference of internal entropy
of the two molecular conformations. For ε > 0 confor-
mation 2 binds more weakly to the substrate compared
with conformation 1. A difference s > 0 implies that the
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FIG. 3. (a) Mean-field phase diagram for temperature-
dependent h(T ) = ε − Ts with ε = 0.45 and s = 0.4 (same
critical point as in Fig. 2). (b) Same parameters but plotted
as a function of the intensive variables temperature T and
pressure p. The white line is the phase boundary ending in a
critical point. The color indicates the fraction x of standing
molecules.

internal entropy of conformation 2 is larger, i.e., more
internal modes (vibrations, etc.) are thermally excited.

Figure 3(a) shows the mean-field phase diagram for
ε = 0.45 and constant s = 0.4, implying the critical value
hc = 0.35. While the binodal shifts up, qualitatively we
observe a similar behavior to that shown in Fig. 2 for con-
stant h. In Fig. 3(b), we plot the same phase diagram but
now for the intensive variables temperature and pressure.
The coexistence region becomes a line, crossing which the
coverage and fraction jump discontinuously.

In the next step, we make the temperature dependence
more pronounced through increasing both ε and s. Fig-
ure 4(a) now shows a qualitatively very different behavior
with a non-monotonic φ− that increases for lower temper-
atures. Cooling the substrate for sufficiently low global
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FIG. 4. (a) Phase diagram for ε = 0.75 and s = 6 (these
are the values employed for the simulation snapshots shown
in Fig. 5 of Ref. 12) and global coverage φ = 1

2
. Solid gray

line is again the theoretical prediction and symbols indicate
numerical results. (b) Fraction of standing molecules (confor-
mation 2, blue symbols and solid gray line) in the coexisting
phases. The orange line and symbols show the total fraction x
of standing molecules. Below T0 (vertical line), all molecules
are found in the mobile lying conformation.

coverage thus leads to a reentrance into the homogeneous
phase. We can easily rearrange Eq. (24) to obtain the to-
tal fraction

x =
1− ξ/φ
1− ξ

(26)

of standing molecules (conformation 2). In Fig. 4(b) we
show that this fraction declines and reaches zero at the
non-zero temperature T0. The system is always homoge-
neous below T0 with all molecules being mobile (confor-
mation 1). Specifically, for φ = 1

2 we find T0 = (ε− 1
2 )/s.

For ε < 1
2 we have conventional coexistence without reen-

trance (T0 < 0). For s > 0 and 1
2 6 ε 6 1

2 + Tcs
we observe reentrance, whereby at lower temperatures
the energetic gain of lying molecules overcomes the en-
tropy surplus of standing molecules. For even larger ε,
the system is always homogeneous with a transition from
standing to lying molecules at T0 > Tc.

C. Temperature-dependent entropy

Assuming temperature-independent internal entropies
sα might not be appropriate for complex molecules.
Close to the critical temperature Tc, we expand sα(T ) =
sα(Tc)+(cα/Tc)(T−Tc) with heat capacities cα = cα(Tc)
per molecule in conformation α (again measured in units
of kB). The free energy difference per molecule now reads

h(T ) = f2 − f1 = ε− Ts− T (T/Tc − 1)c (27)

with s the entropy difference at Tc and c ≡ c2−c1 the dif-
ference in molecular heat capacities. Figure 5(a) demon-
strates that the resulting phase diagram again exhibits
reentrance into the homogeneous phase for sufficiently
large c. The total fraction of molecules in conformation 2
drops as before but then rebounds at lower temperatures
do to the decrease of the entropy difference [Fig. 5(b)].
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FIG. 5. (a) Coexisting coverages φ± from Eq. (25) using
Eq. (27) for h(T ) at global coverage φ = 1

2
, ε = 0.25, and

s = 0 for three molecular heat capacities c. (b) Correspond-
ing fraction x of standing molecules. For c = 8 the standing
molecules again vanish, entering a homogeneous state of mo-
bile lying molecules, but reappear at lower temperatures.
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Increasing c even further leads to the vanishing of stand-
ing molecules and an intermediate homogeneous phase
before again ordering at low temperatures. The temper-
ature range T±0 of this intermediate phase can be calcu-
lated from the vanishing numerator of Eq. (26). Specifi-
cally, for s = 0 and φ = 1

2 we find the simple expression

T±0 =
1

2
Tc

1±

√
1 + 4

ε− 1
2

cTc

 (28)

with critical value c∗ ' 7.05 above which the system goes
through the intermediate homogeneous phase.

D. Condensation or freezing?

Before concluding we briefly comment on a subtle
point. Both the freezing into a solid and the condensa-
tion into a denser liquid phase can be described as order-
disorder transitions. In contrast to condensation, freez-
ing in three dimensions involves the breaking of transla-
tional symmetry into a discrete crystal symmetry. Two-
dimensional systems can still freeze into a solid but with-
out truly long-range positional order, which is destroyed
by thermal fluctuations [28]. Strictly speaking, therefore,
no crystal exists in two dimensions. While a molecu-
lar monolayer comes very close to two dimensions, the
underlying substrate induces an external potential that,
even if weak, breaks translational symmetry and thus
can reintroduce long-range order [29]. Note that a lattice
model is insufficient to capture the spontaneous breaking
of translational symmetry since the discrete lattice can-
not accommodate a continuous symmetry. Rather than
freezing into a periodic crystal, our model thus describes
condensation of molecules into dense domains.

IV. CONCLUSIONS

The Ising model provides a rigorous statistical mechan-
ics underpinning for a wide class of disorder-order tran-
sitions and serves as a paradigm for reversible structure
formation. It captures the competition between short-
range isotropic attraction and translational entropy, de-
scribing the condensation of a dense liquid coexisting
with a dilute gas. Crossing a first-order transition gives
rise to phase ordering kinetics that can be exploited to
control and create non-equilibrium structures and mor-
phologies [30].

In contrast to atoms and colloidal particles, molecules
have internal degrees of freedom. For molecules with
approximately isotropic intermolecular interactions, the
Ising model is still an appropriate large-scale description
but the “field” may acquire a dependence on tempera-
ture due to the intramolecular entropy. An additional
competition between intramolecular energy and entropy
opens a route to reshape the phase diagram. Here we

have studied the case of two molecular conformations,
whereby intermolecular interactions are only assumed for
one confirmation (here conformation 2). This restriction
has allowed us to exploit the analytical solution of the
Ising model in two dimensions to accurately construct
the phase behavior, which is determined by two temper-
atures: the critical temperature Tc of the Ising model
below which domains form (driven by the interactions
of conformation 2) and the temperature T0 below which
conformation 2 vanishes. While Tc is fixed, tuning T0 al-
lows to shape the coexistence region and to find parame-
ters for which reentrance into a homogeneous disordered
phase is possible.

Such reentrance upon cooling has been observed re-
cently for dimolybdenum tetraacetate and has been at-
tributed to two different molecular conformations [12]:
Lying molecules (conformation 1) bind more strongly due
to the metal–metal interaction (ε1 < ε2), which at the
same time suppresses internal degrees of freedom (s1 <
s2) due to steric hindrance with the substrate (cf. Fig. 1).
To relate the scenario of inverse condensation to the ex-
periments of Ref. 12, we first note that (for the ordered
phase to be present) room temperature needs to be be-
low the the critical temperature. This condition implies
the lower bound εb > 25.7 meV/(zTc) ≈ 45 meV. As
reference, the effective binding energy of C60 molecules
has been estimated to be εb ≈ 235 meV [31] and thus is
five times larger. The difference in substrate binding en-
ergies between the two conformations of dimolybdenum
tetraacetate has been determined to ε̃ ≈ 410 meV [11],
hence dimensionless ε = ε̃/(zεb) of order unity seem rea-
sonable. As an alternative scenario, we have considered
a difference of heat capacities between both conforma-
tions, which also leads to reentrant behavior for differ-
ences exceeding a few kB’s. Our results thus indicate
that inverse condensation should indeed be observable
for a wide range of adsorbed organic molecules.

Beyond the phase behavior of adsorbed molecules,
our results are potentially interesting for condensates
of proteins forming membraneless organelles inside the
cell [32, 33], which are studied intensively at the moment.
Reentrant behavior has already been reported [34, 35]
and could be studied theoretically in on-lattice “stickers-
and-spacers” models for multivalent proteins [36].
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[6] A. Kühnle, “Self-assembly of organic molecules at metal
surfaces,” Curr. Opin. Colloid Interface Sci. 14, 157–168
(2009).

[7] E. Empting, M. Klopotek, A. Hinderhofer, F. Schreiber,
and M. Oettel, “Lattice gas study of thin-film growth sce-
narios and transitions between them: Role of substrate,”
Phys. Rev. E 103, 023302 (2021).

[8] B. Kippelen and J.-L. Brédas, “Organic photovoltaics,”
Energy Environ. Sci. 2, 251 (2009).

[9] S. Whitelam, E. H. Feng, M. F. Hagan, and P. L.
Geissler, “The role of collective motion in examples of
coarsening and self-assembly,” Soft Matter 5, 1251–1262
(2009).

[10] M. F. Hagan, O. M. Elrad, and R. L. Jack, “Mechanisms
of kinetic trapping in self-assembly and phase transfor-
mation,” J. Chem. Phys. 135, 104115 (2011).

[11] J. Kollamana, Z. Wei, L. Lyu, M. Zimmer, F. Dietrich,
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