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1Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089,
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Motivated by recent cold atom experiments, we study the relaxation of spin helices in quantum
XXZ spin chains. The experimentally observed relaxation of spin helices follows scaling laws that
are qualitatively different from linear-response transport. We construct a theory of the relaxation
of helices, combining generalized hydrodynamics (GHD) with diffusive corrections and the local
density approximation. Although helices are far from local equilibrium (so GHD need not apply
a priori), our theory reproduces the experimentally observed relaxational dynamics of helices. In
particular, our theory explains the existence of temporal regimes with apparent anomalous diffusion,
as well as the asymmetry between positive and negative anisotropy regimes.

Introduction — How interacting, isolated quantum
systems relax from far-from-equilibrium initial states is
one of the basic problems in many-body physics. This
problem is particularly interesting in one dimension,
since many experimentally relevant one-dimensional sys-
tems are approximately integrable. Integrable systems
support stable, ballistically propagating quasiparticles
even at high energy density. The presence of ballistic
quasiparticles might suggest that transport of the con-
served charges should be ballistic; however, because of
dressing effects due to interactions this is not always the
case. In many systems, such as anisotropic XXZ spin
chains, spin transport can be either ballistic, diffusive or
even superdiffusive depending on the anisotropy. The na-
ture of finite-temperature spin transport in the XXZ spin
chain has been studied extensively very recently, both
experimentally [1–6] and theoretically [7–18]. The theo-
retical analysis of transport in nearly integrable systems
relies on generalized hydrodynamics (GHD) [19–21], a
description of the asymptotic late-time dynamics that is
expected to apply once the system has locally approached
a generalized Gibbs ensemble (GGE) [22].

In cold-atom experiments, it is often more convenient
to prepare a pure initial state than a thermal (mixed)
one. A class of states that can straightforwardly be pre-
pared are spin helices in which the spin orientation varies
spatially in a periodic manner with a given wavelength
λ [1]. These states are far from local thermal equilibrium,
so it is not a priori obvious that GHD can describe their
dynamics. On general grounds, we expect such helices
to relax with a rate Γ ∼ λ−z with z a dynamical ex-
ponent which need not coincide with the linear-response
one since the spiral is very far from equilibrium. Re-
cent experimental results [2] indicate a particularly rich
behavior as a function of the anisotropy, different from
linear-response GHD expectations, which so far eluded
any theoretical explanation.

The XXZ spin- 1
2 chain is described by the Hamiltonian

(in the following we shall set J = 1)

H = J
∑
i

[
Sxi S

x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1

]
. (1)

Energy transport in the XXZ spin chain is purely ballistic
regardless of ∆, as the energy current is conserved under
the dynamics. Spin transport at half-filling and high-
temperature, however, depends much more nontrivially
on the anisotropy |∆| (but not on its sign), see [23, 24]
for recent reviews. In the easy-plane regime |∆| < 1,
spin transport has a ballistic component [25, 26], while
for |∆| > 1 it is believed to be diffusive [27, 28]. The
isotropic point |∆| = 1 corresponds to a dynamical phase
transition characterized by superdiffusive transport with
dynamical exponent z = 3/2 [3, 4, 15, 28–30]. Experi-
mental results pertaining to spin helices relaxation reveal
a very different picture [1, 2]: Spin helices appear to relax
(1) diffusively Γ ∼ λ−2 at the antiferromagnetic isotropic
point ∆ = 1 [1], (2) subdiffusively (z > 2) at short
times for ∆ > 1, (3) superdiffusively with 1 < z < 2 for
anisotropy 0 < ∆ < 1, and (4) ballistically Γ ∼ λ−1 for
∆ ≤ 0, with a crossover to diffusive relaxation at longer
times for ∆ < −1. The nature of the relaxation ap-
pears to be in sharp contrast with linear response (GHD)
results, suggesting that a different mechanism, possibly
beyond hydrodynamics and/or of quantum mechanical
nature is at play.

In this letter, we present a theory of how spin helices
relax, using a local-density approximation (LDA) assum-
ing local equilibration and GHD equations including dif-
fusive corrections. We assume that spin helices first re-
lax to local equilibrium, and can be described by a local
GGE with spatially varying Lagrange multipliers. The
remaining time evolution is obtained from GHD by nu-
merical integration. Our theory reproduces all the qual-
itative features observed in ultracold atom experiments,
and sheds light on the asymptotic long-time behavior. In
particular, our results reconcile the apparent contradic-
tion between GHD and the recent experiments [1, 2].
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(a)                           (b)                                 (c)

FIG. 1. Easy-plane regime. GHD prediction for the time evolution of the contrast (4) from the helix initial state in the
regime 0 ≤ ∆ < 1. Left plots (a,b) display the time evolution of the logarithm of the contrast under XXZ Hamiltonian with
∆ = cosπ/6 ∼ 0.87, showing exponential decay at long times for any finite value of the helix wave-length λ. The ballistic time-
dependence as t/λ is violated in the displayed time-scales, whereas an approximate, t/λ1.43 (superdiffusive) rescaling leads to
an apparent collapse of the data for different λ on the displayed time-scales. The inset of (b) displays the approximate exponent
α in t/λα fitted for different values of ∆ (see supplementary material for additional numerical data), showing an approach to
diffusion α = z = 2 as ∆ → 1. (c) Time evolution of the contrast at the free fermion point ∆ = 0, where the hydrodynamic
prediction is written in a closed form in terms of a Bessel function, C(t) = J0(4πt/λ), signalling exact ballistic dynamics. Exact
numerical simulations at different values of λ are presented, showing very good agreement with the hydrodynamic predictions
already for intermediate values of λ.

Helices and local equilibrium — We consider the
initial helix state

|ψ0〉 =

L⊗
j=1

(
cos

θj
2
|↑ 〉j + sin

θj
2
|↓ 〉j

)
, (2)

where the angle spins over a length given by λ as θj =
θ0 + (2πj)/λ. This state is characterized by an initial
profile of magnetization 〈Szj 〉 = 1/2 cos θj and energy
ei = Sxi S

x
i+1 +Syi S

y
i+1 + ∆Szi S

z
i+1, in the limit of large λ,

given by

〈ei〉 =
(

1 + ∆ + (∆− 1) cos(θj)
)
/8. (3)

We aim at computing the spin contrast,

C(t) = 4
∑
j

cos(θj)〈ψ0(t)|Szj |ψ0(t)〉, (4)

which quantifies the magnetization dynamics of the sys-
tem and was computed experimentally [1, 2]. Let us first
consider the case of an initial homogeneous state |ψ(θ0)〉
with θj = θ0 for all j. When letting such initial state time
evolve under Hamiltonian (1), the system quickly reach
a local equilibrium described by a Generalized Gibbs En-
semble (GGE) [31–34], namely for a generic local opera-
tor O at large (microscopic) times

〈ψ0(θ0)|O(t)|ψ0(θ0)〉 → Tr[ρGGE(θ0) O], (5)

where ρGGE(θ0) = e−
∑

i β
i(θ0)Qi/Z, where Qi are all the

conserved total operators of Hamiltonian (1), such that
[H,Qi] = 0, and with the chemical potentials βi(θ0) de-
pending non-trivially on the angle. While the helix state
(2) is a pure state, we expect that over a short time scale
it will first thermalize locally |ψ0〉〈ψ0| →

∏
i ρGGE(θi).

This local equilibrium assumption corresponds to a local
density approximation (LDA): the (pure) initial state is
replaced by a local equilibrium state, which we expect to
be valid for λ� a with a the lattice spacing.

Hydrodynamics — The resulting evolution at
longer times from local to global equilibrium is then con-
trolled by the theory of hydrodynamics. Notice that if
the only conserved quantities of the system were en-
ergy and magnetization, we would need to evolve the
initial energy and magnetization profiles (fixed from the
initial state from LDA) using a 2-component hydrody-
namic evolution. However, since the XXZ spin chain
is integrable, the number of initial chemical potentials
βi is infinite, and the correct hydrodynamic evolution
is the recently introduced Generalized Hydrodynamics
(GHD) [13, 19, 20, 28, 35–51]. It works in the follow-
ing way: the initial profile of chemical potentials can
be recast into an initial profile of density of occupa-

tions of quasiparticles ρ
θj
s (u). Different species of quasi-

particles are called strings and are labelled by the in-
dex s, and their momentum k(u) and energy ε(u) are
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parametrized by the rapidity parameter u. Their time
evolution ρs(u;x, t) is given by the Navier-Stokes GHD
equations, which read in full generality as [52]

∂tρs + ∂x(veff
s ρs) =

1

2
∂x

(∑
s′

Ds,s′ · ∂xρs′
)
, (6)

with initial condition ρs(u;x, t) = ρ
θx=j
s (u). We stress

that given the periodicity of the initial state, we can
rescale space and time by λ, studying this way eq. (6) in
the system x ∈ [0, 1] with periodic boundary conditions
and with the diffusive right hand side rescaled by 1/λ.
The effective velocity of the quasiparticles is defined as
their group velocity veff

s (u) = ε′(u)/k′(u) (which depends
non-trivially on the density), and the diffusion kernel
Ds,s′(u, u

′) gives the effective diffusion of each quasiparti-
cles due to their local microscopic scatterings [27, 52, 53].
Equation (6) is therefore strongly non-linear and it can
be solved by simple generalizations of midpoint or back-
ward Euler methods. The quasiparticle content is dras-
tically different in the easy-axis regimes |∆| ≥ 1 and the
easy-plane. We shall first consider the latter, which also
includes the free fermionic point ∆ = 0.

Easy plane regime — We focus here on the regime
|∆| < 1, see Fig. 1. Let us first consider the free fermions
case ∆ = 0, as also recently studied in [54]. In this case,
after a Jordan-Wigner transformation, the dynamics can
be simulated exactly for any system size and time, as
the initial state is a Gaussian state. We are therefore
able to check exact numerical results against the hydro-
dynamic approximation, namely given by eq (6) where
u = k, veff = sin(k) and zero diffusion. The hydrody-
namic equations can in this case be solved exactly giving
ρ(k;x, t) = ρ0

k(x − sin(k)t), where ρ0
k is obtained from

the helix initial state using LDA [55]. We find the con-
trast C(t) = J0(4πt/λ) with J0 a Bessel function, which
decays to zero algebraically as t−1/2, and not exponen-
tially as assumed in Ref. [2]. The comparison between
the exact simulations, see Fig. 1 and the hydrodynamic
predictions shows a very good agreement even for rela-
tively small λ ∼ O(10), confirming the validity of the
hydrodynamic approach.

We now turn to the interacting case, focusing on the
values ∆ = cos(π/`) with ` > 2 because the quasiparticle
content is simpler at these points: for ∆ = cos(π/`) one
has ` quasiparticle species, each of them with their as-
sociated ρs(u) [56–58], and the magnetisation profile at
time t is given by

〈Sz(x, t)〉 = 1/2−
∑̀
s=1

s

∫
du ρs(u;x, t). (7)

The GGE corresponding to the initial state can be found
using the transfer-matrix based approach introduced in
[56]. Relative to ∆ = 0, the key new feature of the inter-
acting case is that the ballistic propagation of quasipar-
ticles is convolved with diffusive spreading due to elastic

(a)

(b)                       (c)  

FIG. 2. Easy-axis regime. GHD prediction for the time
evolution of the contrast (4) from the helix initial state in the
regime |∆| > 1. Top plot (a) displays the time evolution under
XXZ Hamiltonian with ∆ = 1.1, showing exponential decay
with diffusive scaling t/λ2 for the different values of λ reported
in plots (b,c). The inset displays the numerically extracted
value of relaxation time τ = −1/2 limt→∞(t/λ2)−1 logC(t)
compared with the infinite time prediction of Dspin in eq.
(8), which becomes flat in x, see Fig. 3. Plot (b) displays the
same time evolution but with negative value of ∆ = −1.1, as
function of t/λ, showing an, approximated, ballistic rescaling
t/λ at short times, with the long-time diffusive decay with
t/λ2 dependence showed in plot (c).

collisions [27, 52, 53]. For an initial state of fixed λ,
this convolution transforms into a product, and the con-
trast goes as C(λ, t) = f(t/λ) exp(−Dt/(2λ2)), where D
is an effective spin diffusion constant. In the Euler scal-
ing limit t → ∞, λ ∼ t, the diffusive correction becomes
irrelevant; however, the late-time limit for fixed λ is dom-
inated by this diffusive correction. If we fit the data over
intermediate time ranges, we find an apparent superdif-
fusive collapse C(t) = g(t/λα) with 1 < α < 2, consistent
with the experiment, though our analysis suggests that
this is a finite-time effect (and indeed α drifts toward 2 as
we fit later times). Moreover, as ` → ∞ (i.e., ∆ → 1−),
this apparent α drifts toward 2, because D diverges in
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this limit and the contrast is increasingly dominated by
the diffusive correction: in order to recover the ballistic
scaling one would need to go to inaccessibly late times
and long wavelengths. We will return below to the lim-
iting behavior at ∆ = 1.

Easy axis regime — The regime |∆| ≥ 1 is char-
acterized by an infinite number of quasiparticles, nor-
malized such that their integrated sum gives the value
of the absolute value of the magnetization |〈Sz〉| =
1/2 −

∑
s s
∫
duρs(u). As quasiparticles can only pro-

vide the absolute value of magnetization it is clear that
the full magnetization field requires some extra informa-
tion, namely the sign of the magnetization. As first in-
troduced in [59, 60], the positions of the domain walls
where the sign of the magnetization changes is given by
the positions x∞(t) of the largest quasiparticles, with la-
bel s → ∞, the so-called giant magnons, which move
with effective velocity vspin = veff

∞ and which need to be
treated aside. The inclusion of diffusion gives a Gaus-
sian spreading to the position of the largest quasiparti-
cles, given by the diagonal element of the diffusion kernel
Dspin = lims→∞Ds,s, which can then be evolved via the
equation

∂tf + vspin∂xf =
1

2
∂x

(
Dspin∂xf

)
, (8)

with initial condition f = sgn(〈Sz(x, t)〉). Then magneti-
zation is obtained by evolving this together with (6) and
computing 〈Sz(x, t)〉 = f(x, t)[1/2−

∑
s s
∫
duρs(u;x, t)].

We evolve from the initial GGE fields, using the expres-
sion for the densities already being found explicitly in
[61].

Let us first focus on the regime ∆ = 1 + ε+. In this
case the initial helix state is locally close to the ferro-
magnetic vacuum, where energy density equal to 1/4.
Such thermodynamic states are characterised by vanish-
ing spin velocity and very small spin diffusion constant,
which eventually goes to zero at ∆ = 1. For any ∆ > 1
the dynamics is diffusive with a relativity small diffusion
constant, which we believe is responsible for apparent
finite-time subdiffusive scaling observed experimentally
in that regime [2], see Fig. 2. Note that our hydrody-
namic equations do not include subdiffusive corrections,
but they predict asymptotically diffusive relaxation, al-
beit with a minute diffusion constant.

The regime ∆ < −1 presents some surprises, see Fig.
2. From linear response results, we expect that no spin
ballistic transport should be present at zero net magneti-
zation in the system. However in this regime we witness
short-time ballistic dynamics given by an effective ther-
moelectric effect. The initial energy density is not flat,
contrary to the case ∆ ∼ 1+, see (3). This is true for
most of the initial densities of conserved quantities but
we can restrict ourself to energy density in order to ex-
plain the main physical effects. Such an initial unbalance
is initially ballistically redistributed (given their finite ve-

(a)                         (b)  

FIG. 3. Short time effects. Time evolution of spin velocity
(a) and diffusion constant (b) in eq. (8), plotted as function
of position j/λ at different times and for two different values
of ∆, one positive ∆ = 1.1 (red lines) and one negative ∆ =
−1.1 (blue lines). We show how for positive ∆, velocity and
diffusion constant remains constantly very small (consistent
with apparent subdiffusion at short times). For negative ∆,
the diffusion constant is finite and converges at large times to
a constant function in x, while the spin velocity also grows
in time (from its initial condition vspin(x, t = 0) = 0), to
then later decay again to zero, explaining short-time ballistic
dynamics.

locities veff
s (u)) by the small s ∼ O(1) quasiparticles in

the system, which are spin uncharged. Such a flow of
small quasiparticles in the system induced a finite veloc-
ity for the largest quasiparticle, vspin, which is pushed
by chiral scatterings with the lighter ones, see Fig. 3.
At short times we thus see signatures of ballistic trans-
port, although ultimately the contrast decays diffusively
as C(t) ∼ e−Dt/(2λ

2) with a prefactor D given by the spin
diffusion constant of the global equilibrium final state, see
Fig. 3. This short time ballistic dynamics for ∆ < −1
was also observed experimentally [2] and had remained
unexplained until now: note that this result is particu-
larly surprising from the point of view of linear response
since high temperature transport does not depend on the
sign of ∆. This asymmetry between ∆ > 1 and ∆ < −1
regimes relies entirely on the special nature of the helix
initial state and on thermoelectric effects.

Discussion and the point ∆ = 1 — We have de-
veloped a hydrodynamic description of the relaxation of
spin spirals in the XXZ spin chain, based on imposing
local equilibrium using the local density approximation.
This description captures all the experimentally observed
relaxation phenomena, with one important exception:
the case of ∆ = 1. Here, the local density approximation
incorrectly predicts that a long-wavelength spin spiral
does not relax at all, since it is locally in the quasipar-
ticle vacuum. In fact, experiments see relaxation with
dynamical exponent z = 2 [1]. To describe this case, one
must go beyond the local density approximation. We
briefly outline how the z = 2 scaling follows from GHD.
We imagine cutting the system up into hydrodynamic
cells on a much larger length-scale than λ, and assuming
that each cell equilibrates. Because the initial condition
is smoothly modulated at λ, its quasiparticle content will
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be dominated by strings of size s ∼ λ (this is the crucial
distinction between the helix and a thermal state, which
has a string population involving all sizes). Relaxation
occurs when these dominant strings cross a distance λ.
Since at ∆ = 1, a s = λ-string has in general a velocity
veff
s ∼ 1/s = 1/λ [7], at large λ, the associated timescale

scales as λ2, yielding z = 2. Incorporating this physics
more quantitatively in our framework remains a task for
future work.

More generally, our results suggest that GHD (sup-
plemented with diffusive corrections) remains a powerful
framework for describing the dynamics of initial states
that are far from local thermal equilibrium. It would
be interesting to extend our framework to other far-
from-equilibrium states—e.g., those following interaction
quenches or the Newton’s cradle setup [62, 63]—and to
incorporate experimental features such as trap-induced
inhomogeneity and other integrability-breaking pertur-
bations.
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Supplementary Material

CONTRAST AT ∆ = 0

The Hamiltonian (1) with ∆ = 0 can be mapped via Jordan-Wigner transformation into the tight binding model

H =
∑
j

c†jcj+1 + h.c. (9)

with fermionic operator {ci, c†j} = δij . The initial helix state (2) is a Gaussian state and its correlation matrix can be
computed exactly

Cij = 〈ψ0|c†i cj |ψ0〉 = δij cos2(θj/2) + (1− δij) sin2(θi/2) cos2(θj/2), (10)

which can be evolved with the single-particle Hamiltonian to obtain exact numerical simulations. The hydrodynamic
limit can be obtained by computing the momentum occupation function n(k) = 〈c†kck〉 = 2πρ(k) at each point x = i,
and then its GHD time evolution

∂tn(k;x, t) + vk∂xn(k;x, t) = 0, (11)

is simply solved by n(k;x, t) = n(k;x− v(k)t), with v(k) = sin k, which reads

n(k;x, t) = cos4

(
θ(x− vkt)

2

)
+ 2πδ(k) sin2

(
θ(x− vkt)

2

)
cos2

(
θ(x− vkt)

2

)
, (12)

with θ(x) = 2πx/λ. The contrast is then given by

C(t) =

∫ λ

0

dx

[
1

2
−
∫ π

−π

dk

2π
n(k;x− v(k)t)

]
sin

(
2πx

λ

)
=

1

2π

∫ π

−π
dk

λ

4
cos

(
π

2
+

4πt

λ
sin(k)

)
= J0(4πt/λ).

ADDITIONAL NUMERICAL DATA IN THE EASY PLANE REGIME

(a)                                               (b)                                                 (c)                                               (d)                                               

FIG. 4. Easy-plane regime. GHD prediction for the time evolution of the contrast (4) from the helix initial state in the
regime 0 ≤ ∆ < 1 at short times, plotted as function of t/λ. We see how upon increasing ∆ the dynamics stop being purely
ballistic at shorter times.
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(a)                        (b)

(c)                       (d)

(e)                        (f)

FIG. 5. Easy-plane regime. GHD prediction for the time evolution of the contrast (4) from the helix initial state in the
regime 0 ≤ ∆ < 1 at short times, plotted as function of t/λ (left) and of the rescaled (superdiffusive) time t/λα, using the same
values reported in Fig. 1 in the main text, to achieve collapse of the data.
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