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We show that the long-distance behavior of the two-body density correlation functions and the
Cooper-pair probability density of a balanced mixture of a two-component Fermi gas at T = 0,
is universal along the BEC-BCS crossover. Our result is demonstrated by numerically solving the
mean-field BCS model for different finite short-range atomic interaction potentials. We find an
analytic expression for the correlation length in terms of the chemical potential and the energy gap
at zero momentum.

Equilibrium density correlation functions are funda-
mental for the understanding of the spatial structure
of matter [1]. They yield the next level of information
beyond thermodynamics, unraveling the underlying ar-
rangement in matter found at all scales, from astronom-
ical galaxies to atomic conglomerates such as solids, liq-
uids, or superfluid phases [2–8]. In addition, correlation
functions are of fundamental relevance to characterize
the order of a phase transition as they directly track
density-density fluctuations [9–16]. Our interest here is
on the density correlations of the ubiquitous crossover of
fermionic superfluids that goes from a Bardeen-Cooper-
Schrieffer (BCS) state to a molecular Bose-Einstein con-
densate (BEC), as the s-wave scattering length is varied
through a Feshbach resonance [17–23]. Disregarding its
charged or neutral nature, superconductor, superfluid, or
molecular BEC states are the principal realizations that

demonstrate how the instability associated with weak
interactions develops into a many-body ground state
that, besides exhibiting a second order phase transition,
shows distinctive behaviors depending on the effective
attractive or repulsive nature of the interactions. This
prominent conclusion arising from the seminal works by
Leggett [24] and Eagles [25], has become a referent in the
whole field of fermionic matter in its degenerate regime.
The mean-field model of BEC and BCS states represents
the starting point for the understanding of more complex
phenomena, as for instance, superfluids or superconduc-
tors in lower dimensions or confined in non-homogeneous
environments, FFLO phases [23, 26], the cooling of neu-
tron stars [23], the formation of deuteron states in nuclear
matter [23], and of course, the rich diversity of systems
belonging to the physics of quasiparticles and excitons
[27].
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FIG. 1. (Color online) Large-distance correlation lengths ξα for (a) square well, (b) exponential, (c) Yukawa, and (d) Van der
Waals interatomic potentials, as functions of the scattering length a, with kF the Fermi momentum. In each panel, squares
(blue) correspond to the antiparallel spins correlation function G↑↓(r), triangles (green) to the parallel spins correlation function
G↑↑(r), and asterisks (red) to the pair probability distribution function |φBCS(r)|2; see text. The solid line (purple) is the length

associated with the correlation length ξ = (~2/4mεspec)1/2 with εspec given in Eq. (1). In each panel the dotted (black) line
corresponds to the contact interaction potential [28, 29].

An additional transcendental feature of the BEC-BCS
crossover model, which is the subject of this Letter, is
the universal character of the long-distance behavior of
the spatial density correlations exhibited for finite short-
range interatomic potentials. As we will show, the corre-

lation functions and the pair probability density can be
generally expressed as an exponentially decaying func-
tion, along with an algebraic decay and an oscillatory
function, regardless of the detailed features of the inter-
action potential at short lengths. Fig. 1 shows the main
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finding of this Letter, namely, that the correlation length
of the mean-field up-up (down-down), up-down density
correlation, and pair-probability distribution functions
can be universally expressed in terms of the chemical
potential µ and the energy gap at zero momentum ∆0,
as ξ = (~2/4mεspec)1/2, with

εspec =
√
µ2 + |∆0|2 − µ . (1)

This spectroscopic energy, introduced by Ketterle et al.
[20, 30], is the threshold energy to break a pair. It is
certainly a measurable quantity and can yield physical
insights for further improvements of our understanding
of the BEC-BCS crossover. It is relevant to mention
that characteristic lengths of the correlation functions,
as well as the Cooper pair-size have certainly been the
subject of several studies, see Refs. [22, 31–34]. Our
contribution to this matter is the identification of the
universal lengths ξ associated with the large-distance
behavior while remarking its relation with an effective
binding energy that is a consequence of many-body
effects and independent of the interaction details.

The determination of the universal properties of the
long-distance behavior of two-body properties of an ul-
tracold balanced gas mixture of Fermi atoms, interacting
between pairs by a short finite range interatomic poten-
tial, see insets of Fig. 1, emerges from the Hamiltonian

H =
∑
k,σ

εkâ
†
k,σâk,σ+

1

2

∑
K;σ,σ′

Ukk′ â†k+q,σâ
†
k′−q,σ′ âk′,σ′ âk,σ.

(2)

Here, â†k,σ and âk,σ are creation and annihilation Fermi
operators of momentum k and spin component σ, identi-
fying two different hyperfine spins states and labeled as

↑ and ↓; the kinetic energy is εk = ~2k2

2m . In the interac-
tion term, K = {k,k′,q} and Ukk′ is the Fourier trans-
form of the finite short-range potential that models the
interparticle interaction Ukk′ = 1

V

∫
ei(k−k

′)·rU(r)d3r.
The finite-range potentials here studied are a square-well,
typically used as a first approach to model the interac-
tions [20], a purely decaying exponential, a classic nu-
clear model [35], the Yukawa potential [36], and a Van
der Waals potential, a typical atomic interaction tail [23].
These four models, representative of short-range inter-
atomic potentials, are expressed in terms of a character-
istic energy scale V0 and its spatial finite range R. In
our calculations we keep the BCS interaction between
atoms of different species only. It can be shown that the
Hartree and Fock terms, in the ground state, do not mod-
ify the essential physics of the crossover transition, not
only in the contact interaction but for the finite-range
interaction case as well [37]. After substituting the BCS

ansatz |ΨBCS〉 = Πk

(
uk + vka

†
k↑a
†
−k↓

)
|0〉, and perform-

ing the standard variational procedure in the grand po-
tential function Ω = 〈ΨBCS|H − µN |ΨBCS〉, one obtains
2u2k = 1 + (εk−µ)/Ek and 2v2k = 1− (εk−µ)/Ek, where

Ek =
√

(εk − µ)2 + ∆2
k. The energy gap ∆k and chemi-

cal potential µ satisfy the coupled equations,

∆k = − 1

V

∑
k′

Ukk′
∆k′

2Ek′
,

N =
∑
k

(
1− εk − µ

Ek

)
,

(3)

with N the total number of particles. Because of the
s-wave symmetry, the dependence of ∆k on k is on its
magnitude k only and, certainly, on the parameters V0
and R. It is very important to emphasize here that
for finite-range potentials the equation for ∆k does not
require the standard renormalization procedure used in
the case of the contact interaction approximation, to
warrant convergence [23]. In fact, such a divergence is an
artifact associated with the contact approximation itself
[38]. Once Eqs. (3) are solved, one can calculate the
functions uk and vk, on which the correlation functions
are expressed.

As broadly established in the literature, the BEC-BCS
crossover for the contact interaction is generally ana-
lyzed in terms of the s-wave scattering length a, which,
besides being the effective potential amplitude, signals
the emergence of a bound state as it diverges [20, 21, 23].
In contrast to the contact interaction, the expressions for
the finite-range potentials here considered do not depend
on a. This, however, is not an obstacle to investigate
the mean-field many-body physics in terms of such a
length. The key aspect is to have a relationship of a in
terms of the potential parameters V0 and R in order to
reveal the presence of bound states or dissociated pairs.
In some cases, we may have an analytic expression of a
as a function of V0 and R, but in general, we can find
such a relationship by numerically solving the two-body
Schrödinger equation in the low-energy limit [39]. We
make this correspondence for the proposed interaction
potentials in order to investigate the correlations along
the BEC-BCS crossover, in terms of a. Based on the
results of Refs. [37, 40], in this Letter we consider a
representative value for the range kFR = 0.1, with
kF = (3π2N/V )1/3 the Fermi momentum. This choice
is consistent with the hypothesis of a weakly interact-
ing gas; we shall comment below about larger values of R.

To investigate the spatial large-distance behavior of the
correlation functions for the finite-range potentials here
considered, see Fig. 1, we recall that the density-density
correlation functions are defined as [23, 28],

Gσσ′(x, r) = 〈n̂σ(x)n̂σ′(r)〉 − 〈n̂σ(x)〉〈n̂σ′(r)〉. (4)

where as stated above, σ and σ′ identify different
hyperfine spin states. The density operator for the spin

component σ is given by n̂σ(x) = ψ̂†σ(x)ψ̂σ(x), where

ψ̂σ(x) are the usual field operators of a uniform gas. For
a balanced mixture, the condition of equal population
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N↑ = N↓ implies G↑↓(r) = G↓↑(r) and G↑↑(r) = G↓↓(r).

It can be straightforwardly shown that the correlation
function for antiparallel spins is [20, 23, 28],

G↑↓(r) = |g↑↓(r)|2, (5)

where,

g↑↓(r) =
1

(2π)3

∫
d3k eik·r ukvk. (6)

And, correspondingly, the correlation function for paral-
lel spins is given by,

G↑↑(r) =
n

2
δ(3)(r)− |g↑↑(r)|2, (7)

where

g↑↑(r) =
1

(2π)3

∫
d3k eik·r v2k. (8)

An associated quantity in the BCS theory is the Cooper
pairs wavefunction,

φBCS(r) =
1

(2π)3

∫
d3k eik·r

vk
uk
. (9)

As we will illustrate below, the Cooper-pair density
probability distribution |φBCS(r)|2 shares the same
asymptotic features of the correlation functions.

As stated above, we first numerically solve the gap and
number equations, Eqs. (3), to obtain vk and uk. Then,
by numerical Fourier transforms, we calculate the cor-
relation functions G↑↑(r), G↑↓(r) and the density pair
probability |φBCS(r)|2, see Eqs. (5) - (9). This is a
difficult task, specially for finding their asymptotic be-
havior for long distances kF r � 1. While in the deep
BCS and BEC regimes, (kFa)−1 → ±∞, the numerical
convergence does not allow to make definite conclusions,
fortunately the best fittings can be found for values near
unitarity, namely −3 . (kFa)−1 . 3, which covers ex-
perimentally accessible values [19, 20, 23, 30]. Figures
1 and 2 are the main result of this Letter, that we find
them very impressive: the correlation functions and the
pair probability distribution, for large distances kF r � 1,
can be cast as distributions of the form

ρα(r) ≈ const

r2
e−r/ξαP(καr + ϕα) , (10)

where α =↑↓, ↑↑,BCS and P(καr + ϕα) a periodic
function to be determined and which, in principle,
depends on the particular model potential. In Fig. 1 we
show fittings of ξα for G↑↓(r) in (blue) squares, G↑↑(r)
in (green) triangles and |φBCS(r)|2 in (red) asterisks, for
the three finite-range potentials considered. As stated
above, the outstanding finding is the identification
of an universal expression for the correlation length
ξα = ξ = (~2/4mεspec)1/2, with εspec given by Eq.

(1), for both correlation functions and the pair-particle
distribution, which is shown as a solid (purple) line
in Fig. 1. Note that in such a figure we also include
the contact interaction case, U(r) = 4π~2aδ(r)/m, in a
dotted (black) line.

In Fig. 2 we plot the fitting of the long distance
wave vector oscillations κα. Again, for each interatomic
potential, the three functions G↑↑(r), G↑↓(r) and
|φBCS(r)|2 oscillate with the same wavelength, along the
crossover, as a function of (kFa)−1. For this quantity,
although we do not have a function that fits it, we find
the general conclusion that in the BCS side the wave
vector tends to the Fermi momentum, as expected,
κ → kF , then it falls down to zero towards the BEC
side. As can be seen in the figure, we were not able to fit
the oscillations in the BEC side since they are severely
arrested by the rapidly falling correlation length. As
a reference, the contact interaction case do explicitly
show that the wavelength of the oscillations grows with
no bound as (kFa)−1 → +∞. This oscillatory behavior
can be identified with the many-body configuration. In
the BCS limit the wave vector is similar to the Fermi
wave number, in agreement with the weakly interacting
regime. In the BEC limit the wave vector decreases
allowing the pair wave function and the opposite spins
correlation function to converge to a bound state
distribution. Although we do not present a figure to
demonstrate it, we find that the correlation functions
G↑↑(r) and G↑↓(r) oscillate out of phase, just as in
the contact interaction case [28], indicating the already
identified nested structure of the different spin species,
as statistically “observed” from any atom.
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FIG. 2. Wave vectors κα for the (a) square well, (b) exponen-
tial, (c) Yukawa, and (d) Van der Waals potentials. Symbols
are the same as in Fig. 1. The dotted (black) line corresponds
to the contact potential case reported in [28].

Let us now turn to the insight of identifying εspec
as the dominant energy scale at large distances. First,
this behavior has already been observed for the con-
tact potential in 3D. In Ref. [28] this was done by
extending the Fourier transform integrals of Eqs. (6),
(8) and (9) to the complex plane, allowing for a direct
identification of an exponential decay in terms of ξ.
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Additionally, and very recently, in Ref. [29] it was
shown that for the one-body density matrix of the
mean-field contact-interaction Fermi gas, indeed, ξ is
the characteristic length scale. On the other hand,
for contact interactions in 2D, it has been found that
ξ is the exact characteristic length of the correlation
functions across the whole crossover [41]. Moreover,
also in Ref. [28], the universal oscillatory wave vector
κ, Fig. 2, was found for the contact interaction potential.

To envision the meaning of the so-called spectroscopic
energy εspec we follow the observation of Ketterle et al.
[20, 30] who established that this is a threshold disso-
ciation energy to break a pair, certainly susceptible of
being measured. Those authors point out to the fact
that, besides the balanced two-component mixture with
↑ and ↓ spins, a third hyperfine spin state can be used to
capture the energy arising from a pair in the BCS state
when it dissociates. It is important to stress that this
third state has experimental relevance since typically a
radio frequency signal with a definite magnitude, arising
from the transition to such an additional state, confirms
the identity of the pairs along the crossover. The energy
difference for an excitation minus the energy associated
with the third hyperfine state ε3 may be generally written
as [30],

∆E − ε3 =
√

(εk − µ)2 + |∆k|2 + (εk − µ) . (11)

Then, one can readily find that the minimum value for
the pair dissociation is found at k = 0, see Fig. 3, thus
yielding εspec as expressed in Eq. (1). It is evident
that this derivation is independent of the interaction
potential used and, for sure, whether is of finite range
or of contact nature. However, the values of the gap ∆0

and the chemical potential µ do certainly depend on the
details of the interaction potential.

The universality of the correlation length partly rests
on the fact that the minimum value of the dissociation
energy occurs at k = 0 where, in turn, the gap ∆k has
its maximum value. This is seen in Fig. 3 where the
gap is plotted as a function of k and a for the analyzed
finite-range potentials. One can see from this figure that,
either on the BCS side (a < 0), or on the molecular BEC
sector (a > 0), the gap takes its maximum value at k = 0,
and then it decays as k grows. We recall here that in the
contact interaction case the gap is constant. A concise
observation regarding the square well and Van der Waals
potentials is that oscillations for large values of k arise as
a result of the discontinuity at R, that is, for small val-
ues of r. Although not shown here, as the range R of the

potential is diminished the region where the gap remains
almost constant increases. On the other hand, as R is
increased, while ξ as given by εspec, Eq. (1), remains a
universal result, its value starts to depart from the value
of the contact interaction, shown in Fig. 1 with the dot-
ted (black) line. These results evidently indicate that, as
the finite range R of the potential becomes smaller, the
asymptotic large-distance behavior of the contact inter-
action becomes a better approximation for a true finite
short-range interatomic interaction potential.
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To conclude we point out that, while the meaning of
the spectroscopic energy εspec and its associated length is
clear, the fact that this is the correlation length of all the
two-body functions is not at all evident. Furthermore,
although in hindsight one may argue that the universal
dependence of the correlation on kFa is a consequence
of the mean-field BCS theory, having a simple structure
at small wavevectors where the details of the interaction
potential become irrelevant, there still remains to find a
deeper and general argument to explain such a result.
The findings of this article may motivate experiments for
measuring correlation functions and verify whether their
asymptotic behavior is indeed similar for different atomic
systems or not.
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[14] S. Gupta, A. Irbäck, B. Petersson, R. Gavai, and
F. Karsch, The correlation lengths and the order of the
phase transition in three-dimensional z3 symmetric mod-
els, Nuclear Physics B 329, 263 (1990).

[15] J. A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson,
and T. C. P. Chui, Specific heat of liquid helium in zero
gravity very near the lambda point, Phys. Rev. B 68,
174518 (2003).

[16] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and
M. P. A. Fisher, Deconfined quantum critical points, Sci-
ence (New York, N.Y.) 303, 1490—1494 (2004).

[17] J. R. Engelbrecht, M. Randeria, and C. A. R. Sáde Melo,
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