
Nearly optimal independence oracle algorithms for
edge estimation in hypergraphs
Holger Dell
University of Frankfurt, Germany
IT University of Copenhagen and Basic Algorithms Research Copenhagen (BARC), Denmark

John Lapinskas
University of Bristol, UK

Kitty Meeks
University of Glasgow, UK

Abstract
Consider a query model of computation in which an n-vertex k-hypergraph can be accessed only
via its independence oracle or via its colourful independence oracle, and each oracle query may
incur a cost depending on the size of the query. Several recent results (Dell and Lapinskas, STOC
2018; Dell, Lapinskas, and Meeks, SODA 2020) give efficient algorithms to approximately count
the hypergraph’s edges in the colourful setting. These algorithms immediately imply fine-grained
reductions from approximate counting to decision, with overhead only logΘ(k) n over the running
time nα of the original decision algorithm, for many well-studied problems including k-Orthogonal
Vectors, k-SUM, subgraph isomorphism problems including k-Clique and colourful-H, graph motifs,
and k-variable first-order model checking.

We explore the limits of what is achievable in this setting, obtaining unconditional lower bounds
on the oracle cost of algorithms to approximately count the hypergraph’s edges in both the colourful
and uncoloured settings. In both settings, we also obtain algorithms which essentially match these
lower bounds; in the colourful setting, this requires significant changes to the algorithm of Dell,
Lapinskas, and Meeks (SODA 2020) and reduces the total overhead to logΘ(k−α) n. Our lower
bound for the uncoloured setting shows that there is no fine-grained reduction from approximate
counting to the corresponding uncoloured decision problem (except in the case α ≥ k − 1): without
an algorithm for the colourful decision problem, we cannot hope to avoid the much larger overhead
of roughly n(k−α)2/4. The uncoloured setting has previously been studied for the special case k = 2
(Peled, Ramamoorthy, Rashtchian, Sinha, ITCS 2018; Chen, Levi, and Waingarten, SODA 2020),
and our work generalises the existing algorithms and lower bounds for this special case to k > 2 and
to oracles with cost.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Oracles and decision trees; Mathematics of computing → Graph algorithms

Keywords and phrases Graph oracles, Fine-grained complexity, Approximate counting, Hypergraphs

Funding Kitty Meeks: Supported by EPSRC grant EP/V032305/1.

1 Introduction

Many decision problems in computer science, particularly those in NP, can naturally be
expressed in terms of determining the existence of a witness. For example, solving SAT
requires determining the existence of a satisfying assignment to a CNF formula. All such
problems Π naturally give rise to a counting version #Π, in which we ask for the number of
witnesses. It is well-known that #Π is often significantly harder than Π; for example, Toda’s
theorem implies that it is impossible to solve #P-complete counting problems in polynomial
time with access to an NP-oracle unless the polynomial hierarchy collapses. However, the
same is not true for approximately counting witnesses (to within a factor of two, say). For
example, it is known that: if Π is a problem in NP, then there is an FPRAS for #Π using

ar
X

iv
:2

21
1.

03
87

4v
2

 [
cs

.C
C

]
 2

6
A

pr
 2

02
4

https://orcid.org/0000-0001-8955-0786
https://orcid.org/0000-0003-3197-0854
https://orcid.org/0000-0001-5299-3073

2 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

an NP-oracle [36]; if Π is a problem in W [i], then there is an FPTRAS for #Π using a
W [i]-oracle [30]; and that the Exponential Time Hypothesis is equivalent to the statement
that there is no subexponential-time approximation algorithm for #3-SAT [14].

In this paper we are concerned with analogous results in the fine-grained setting, which
considers exact running times rather than coarse-grained classifications such as polynomial,
FPT, or subexponential; such results turn out to be inextricably bound to graph oracle
results of independent interest.

Past work in this area has focused on the family of uniform witness problems [15]. Roughly
speaking, these are problems which can be expressed as counting edges in a k-hypergraph
G in which the edges correspond to witnesses and induced subgraphs correspond to sub-
problems. (See Section 1.2 for a detailed definition.) Many of the most important problems
in fine-grained and parameterised complexity can be expressed as uniform witness problems
including k-SUM, k-OV, k-Clique, Hamming weight-k solutions to CNFs, Size-k Graph
Motif, most subgraph detection problems (including weighted problems such as Zero-
Weight k-Clique and Negative-Weight Triangle), and first-order model-checking [15],
in addition to certain database queries [19] and patterns in graphs [10]. Here k may be either
a constant, as in the case of k-SUM, or a parameter, as in the case of k-Clique. In this
setting, invoking a decision algorithm on a sub-problem of the original problem corresponds
to invoking an oracle to test, given a set of vertices S, whether the induced subgraph G[S]
contains any edges; this oracle is called an independence oracle for G and is well-studied in
its own right (see Section 1.3 for an overview).

Surprisingly, there is a partial analogue of the above reductions from approximate counting
to decision in this setting. If the vertices of G are coloured, given a set S ⊆ V (G), a colourful
independence oracle tests whether G[S] contains any edges with one vertex of each colour.
This typically corresponds to a natural colourful variant of the original decision problem —
for example, for k-Clique, it corresponds to deciding whether a k-coloured graph contains a
size-k clique with one vertex of each colour. These oracles are again well-studied in their
own right (see Section 1.3), and for many but not all uniform witness problems they can be
efficiently simulated using the independence oracle. Given access to a colourful independence
oracle for a graph G, we can count G’s edges to within a factor of 1±ε using ε−2kO(k) logΘ(k) n

oracle queries [15]. (See [5] for an improvement to the log factor.) In fact, we can say more —
if we can simulate the colourful independence oracle in time nαk with αk ≥ 1, then these
queries dominate the running time and we obtain an approximate counting algorithm with
running time nαk · ε−2kO(k) logΘ(k) n in the usual word-RAM model. Translating back out of
the oracle setting, this means that if we simulate the oracle by running an algorithm for the
colourful decision problem, then for constant k and ε, we obtain an approximate counting
algorithm with only polylogarithmic overhead over that decision algorithm. This result has
led to several improved approximate counting algorithms — see [15] for applications to k-OV
over finite fields and graph motifs, [19] for applications to database queries, and [10] for
applications to patterns in graphs.

We are left with two major open problems of concern to researchers in fine-grained
complexity, parameterised complexity and graph oracles, and we expect our paper to be of
interest to all three communities. First, can the result of [15] be generalised from colourful
independence oracles to independence oracles? This would imply, for example, a fine-grained
reduction from approximate induced sub-hypergraph counting to induced sub-hypergraph
detection. In this setting, efficiently simulating the colourful independence oracle using the
independence oracle requires solving a long-standing open problem — see Section 1.2 — so
the result of [15] does not straightforwardly apply. Second, in the parameterised setting, the

H. Dell, J. Lapinskas and K. Meeks 3

factor of logΘ(k) n is not truly polylogarithmic, but equivalent to a factor of kO(k)no(1). Can
it be improved to logO(1) n?

In this paper, we answer both questions, and in the process substantially generalise recent
graph oracle results for the k = 2 case [13]. In both the colourful and uncoloured settings, we
pin down the optimal oracle algorithm almost exactly. In both cases this algorithm improves
on the current state of the art, and it allows for the desired fine-grained reductions if and
only if the cost of calling the oracle on an x-vertex set (corresponding to the run-time of a
decision algorithm on an x-element instance) is close to xk. Moreover, our lower bounds are
unconditional — they do not rely on conjectures such as SETH or FPT ̸= W[1].

In a little more detail, suppose for the moment that ε = 1/2, and that the cost of
calling the oracle on an x-vertex set is xαk for some αk ∈ [0, k]. In the uncoloured setting,
we define a function g(k, αk) ≈ (k − α)2/(4k) (see (1.1.1)) and show that an overhead of
2O(k)ng(k,αk)±o(1) is both achievable and required; we have g(k, αk) = 0 when αk ≥ k − 1,
so in this regime we obtain a fine-grained reduction. In the colourful setting, we show
that the logΘ(k) n overhead of [15, 5] can be improved to logΘ(k−αk) n, but no further; thus
polylogarithmic overhead is possible if and only if k − αk ∈ O(1) as k → ∞. For general
values of ε, both of our upper bounds have an additional multiplicative overhead of O(ε−2),
which is common in approximate counting algorithms.

In the rest of the introduction, we state our results for graph oracles more formally
in Section 1.1, followed by their (immediate) corollaries for uniform witness problems in
Section 1.2. We then give an overview of related work in Section 1.3, followed by a brief
description of our proof techniques in Section 1.4.

1.1 Oracle results
Our results are focused on two graph oracle models on k-hypergraphs: independence oracles
and colourful independence oracles. Both oracles are well-studied in their own right from a
theoretical perspective, as they are both natural generalisations of group testing from unary
relations to k-ary relations, and the apparent separation between them in power is already a
source of substantial interest. They also provide a point of comparison for a rich history of
sublinear-time algorithms for oracles which provide more local information, such as degree
oracles. See the introduction of [13] for a more detailed overview of the full motivation, and
Section 1.3 for a survey of past results.

In both the colourful and uncoloured case, while formally the oracles are bitstrings and a
query takes O(1) time, in order to obtain reductions from approximate counting problems to
decision problems in Section 1.2 we will simulate oracle queries using a decision algorithm. As
such, rather than focusing on the number of queries as a computational resource, we define a
more general cost function which will correspond to the running time of the algorithm used
to simulate the query; thus the cost of a query will scale with its size. In our application,
this allows for more efficient reductions by exploiting cheap queries, while also substantially
strengthening our lower bounds. Indeed, simulating an oracle query typically requires between
poly(k) and poly(n) time, so a lower bound on the total number of queries required would
tell us very little; meanwhile, setting the cost of all queries to 1 in our results yields tight
bounds for the number of queries required.

We are also concerned with the running times of our oracle algorithms, again due to
our applications in Section 1.2. We work in the standard RAM-model of computation with
Θ(log n) bits per word and access to the usual O(1)-time arithmetic and logical operations on
these words; in addition, oracle algorithms can perform oracle queries, which are considered
to take O(1) time.

4 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

As shorthand, for all real x, y > 0 and ε ∈ (0, 1), we say that x is an ε-approximation to
y if |x − y| < εy. We define an ε-approximate counting algorithm to be an oracle algorithm
that is given n and k as explicit input, is given access to an oracle representing an n-vertex
k-hypergraph G, and outputs an ε-approximation to the number of edges of G, denoted
by e(G). We allow ε to be either part of the input (for upper bounds) or fixed (for lower
bounds).

1.1.1 Our results for the uncoloured independence oracle.
Given a k-hypergraph G with vertex set [n], the (uncoloured) independence oracle is the
bitstring IND(G) such that for all sets S ⊆ [n], IND(G)S = 1 if G[S] contains no edges and 0
otherwise. Thus a query to IND(G)S allows us to test whether or not the induced subgraph
G[S] contains an edge. We define the cost of an oracle call IND(G)S to be a polynomial
function of the form costk(S) = |S|αk , where the map k 7→ αk satisfies αk ∈ [0, k] but
is otherwise arbitrary. (This upper bound is motivated by the fact that we can trivially
enumerate all edges of G by using O(nk) queries to all size-k subsets of [n], incurring oracle
cost at most nk · kαk .)

It is not too hard to show that the naive O(nk)-cost exact edge-counting algorithm of
querying every possible edge and the naive O(nαk)-cost algorithm to decide whether any
edge is present by querying [n] are both essentially optimal. For approximate counting we
prove the following, where for all real numbers x we write ⌊x⌉ := ⌊x + 1/2⌋ for the value of x

rounded to the nearest integer, rounding up in case of a tie.

▶ Theorem 1 (Uncoloured independence oracle, polynomial cost function). Let αk ∈ [0, k] for
all k ≥ 2, let costk(x) = xαk , and let

g(k, β) := 1
k

·
⌊k − β

2

⌉
·
(

k − β −
⌊k − β

2

⌉)
. (1.1.1)

There is a randomised ε-approximate counting algorithm Uncol(IND(G), ε, δ) with failure
probability at most δ, worst-case running time

O
(

log(1/δ)
(
k5k + ε−225k log5 n · ng(k,1) · n

))
,

and worst-case oracle cost

O
(

log(1/δ)
(
k7k + ε−225k log5 n · ng(k,αk) · nαk

))
under costk. Moreover, every randomised (1/2)-approximate edge-counting IND-oracle al-
gorithm with failure probability at most 1/10 has worst-case expected oracle cost Ω((ng(k,αk)/k3k)·
nαk) under costk.

Observe that the polynomial overhead ng(k,αk) of approximate counting over decision is
roughly equal to n(k−αk)2/(4k). If αk = 0, then the worst-case oracle cost of an algorithm is
simply the worst-case number of queries that it makes. Thus Theorem 1 generalises known
matching upper and lower bounds of Θ̃(

√
n) queries in the graph case [13], both by allowing

k > 2 and by allowing αk > 0. (See Section 1.3 for more details.) Moreover, if αk ≥ k − 1,
then g(k, αk) = 0; thus in this case, Theorem 1 shows that approximate counting requires
the same oracle cost as decision, up to a polylogarithmic factor. Taking k = 2 and αk = 1,
this implies that whenever we can simulate an edge-detection oracle for a graph in linear
time, then we can also obtain a linear-time approximate edge-counting algorithm (up to
polylogarithmic factors). Analogous upper bounds on the running time and oracle cost of
Uncol also hold for any “reasonable” cost function of the form costk(n) = nαk+o(1); for
details, see Section 2.1.3 and Theorem 39.

H. Dell, J. Lapinskas and K. Meeks 5

1.1.2 Our results for the colourful independence oracle.
Given a k-hypergraph G with vertex set [n], the colourful independence oracle is the bitstring
cIND(G) such that for all disjoint sets S1, . . . , Sk ⊆ [n], cIND(G)S1,...,Sk

= 1 if G contains
no edge e ∈ E(G) with |Si ∩ e| = 1 for all i, and 0 otherwise. We view S1, . . . , Sk as
colour classes in a partial colouring of [n]; thus a query to cIND(G)S1,...,Sk

allows us to test
whether or not G contains an edge with one vertex of each colour. (Note that we do not
require S1 ∪ · · · ∪ Sk = [n].) Analogously to the uncoloured case, we define the cost of
an oracle call cIND(G)S1,...,Sk

to be a polynomial function of the form costk(S1, . . . , Sk) =
costk(|S1| + · · · + |Sk|) = (|S1| + · · · + |Sk|)αk , where the map k 7→ αk satisfies αk ∈ [0, k]
but is otherwise arbitrary.

It is not too hard to show that the naive O(nk)-cost exact edge-counting algorithm of
querying every possible edge and the naive O((kk/k!)nαk)-cost algorithm to decide whether
any edge is present by randomly colouring the vertices are both essentially optimal, and
indeed we prove as Proposition 65 that any such decision algorithm requires cost Ω(nαk).
For approximate counting, we prove the following.

▶ Theorem 2 (Colourful independence oracle, polynomial cost function). Let αk ∈ [0, k]
for all k ≥ 2, let costk(x) = xαk , and let T := log(1/δ)ε−2k27k log4(k−⌈αk⌉)+18 n. There
is a randomised ε-approximate edge counting algorithm Count(cIND(G), ε, δ) with worst-
case running time O(T · nmax(1,αk)), worst-case oracle cost O(T · nαk) under costk, and
failure probability at most δ. Moreover, every randomised (1/2)-approximate edge counting
cIND-oracle algorithm with failure probability at most 1/10 has worst-case oracle cost

Ω
(

k−9k
(log n

log log n

)k−⌊αk⌋−3
· nαk

)
under costk.

The upper bound replaces a logΘ(k) n term in the query count of the previous best-known
algorithm ([6] for αk = 0) by a logΘ(k−αk) n term in the multiplicative overhead over decision,
giving polylogarithmic overhead over decision when k − αk = O(1). The lower bound shows
that this term is necessary and cannot be reduced to logO(1) n; this is a new result even
for αk = 0. (See Section 1.3 for more details.) Analogous upper bounds on the running
time and oracle cost of Count also hold for any “reasonable” cost function of the form
costk(n) = nαk+o(1); for details, see Section 2.1.3 and Theorem 48.

1.1.3 Approximate sampling results.
There is a known fine-grained reduction from approximate sampling to approximate count-
ing [15]. Strictly speaking this, reduction is proved for αk = 1 with a colourful independence
oracle, but the only actual use of the oracle in the reduction is to enumerate all edges in a set
X with O(|X|k) size-k queries, so it transfers immediately to our setting. The upper bounds
of Theorems 1 and 2 therefore also yield approximate sampling algorithms with overhead
2O(k) logO(1) n over approximate counting.

1.1.4 A parameterised complexity motivation for our lower bound
results.

To understand an important motivation for the lower bounds in our results, consider as an
example the longest path problem: Given (G, k), does there exist a simple path of length k?

6 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

A long sequence of works in parameterised complexity led to a spectacular algorithm [8] for
this problem in undirected graphs that runs in time 1.66k · poly(n). There is a somewhat
shorter sequence of works for the corresponding approximate counting version of the problem,
which culminated in a 4k poly(n)-time algorithm [9, 24].

Instead of designing ever-more sophisticated algorithms for approximately counting k-
paths in order to get closer to the running time of the decision problem, our dream result
would instead be a subexponential-time approximate-counting-to-decision reduction that uses
the decision problem in a black-box fashion and causes only a factor 2o(k) poly(n) overhead in
the running time. This way, any improvements to the decision algorithm would automatically
carry over. One way to formalise what the black-box can do is captured by defining the
k-hypergraph whose edges are the k-paths of the underlying graphs; using an algorithm for
the k-path decision problem, it is trivial to simulate the independence oracle and easy to
simulate the colourful independence oracle for this hypergraph.

Theorem 2 implies that any decision algorithm for k-path can be turned into an approx-
imate counting algorithm by paying a logO(k) n-factor overhead in the running time. While
this is still a fixed-parameter tractable running time, it leads to a useless algorithm, since the
running time is much worse than ck poly(n). The main consequence of Theorem 2 for k-path
stems not from this meaningless upper bound, but from the lower bound, which is new even
for αk = 0: Our results imply that if the decision algorithm for k-path is formalized using
the colourful independence oracle, then the overhead of the approximate-counting-to-decision
reduction must be logΩ(k) n, and so a subexponential-time reduction cannot exist. Conversely,
if a useful approximate-counting-to-decision reduction exists, it cannot merely be based on
the hypergraph whose edges consist of all k-paths; instead, the reduction would have to have
access to and exploit the underlying structure of the original graph. We believe that this is a
useful insight for the design of future algorithms for approximate counting.

1.2 Reductions from approximate counting to decision
Theorems 1 and 2 can easily be applied to obtain reductions from approximate counting to de-
cision for many important problems in fine-grained and parameterised complexity. The follow-
ing definition is taken from [15]; recall that a counting problem is a function #Π: {0, 1}∗ → N
and its corresponding decision problem is defined via Π = {x ∈ {0, 1}∗ : #Π(x) > 0}.

▶ Definition 3. The decision problem Π is a uniform witness problem if there is a function
that maps instances x ∈ {0, 1}∗ to uniform hypergraphs Gx such that the following statements
hold:

(i) #Π(x) is equal to the number e(Gx) of edges in Gx;
(ii) V (Gx) and the size k(Gx) of edges in E(Gx) can be computed from x in time Õ(|x|);
(iii) there exists an algorithm which, given x and S ⊆ V (Gx), in time Õ(|x|) prepares an

instance Ix(S) ∈ {0, 1}∗ such that GIx(S) = Gx[S] and |Ix(S)| ∈ O(|x|).
The set E(Gx) is the set of witnesses of the instance x.

Intuitively, we can think of a uniform witness problem as a problem of counting witnesses
in an instance x that can be naturally expressed as edges in a hypergraph Gx, in such a way
that induced subgraphs of Gx correspond to sub-instances of x. This allows us to simulate
a query to IND(Gx)S by running a decision algorithm for Π on the instance Ix(S), and if
our decision algorithm runs on an instance y in time T (|y|) then this simulation will require
time Õ(T (|S|)). Typically there is only one natural map x 7→ Gx, and so we consider it to
be a part of the problem statement. Simulating the independence oracle in this way, the
statement of Theorem 1 yields the following.

H. Dell, J. Lapinskas and K. Meeks 7

▶ Theorem 4. Suppose αk ∈ [1, k] for all k ≥ 2. Let Π be a uniform witness problem.
Suppose that given an instance x of Π, writing n = |V (Gx)| and k = k(Gx), there is an
algorithm to solve Π on x with error probability at most 1/3 in time Õ(nαk). Then there is
an ε-approximation algorithm for #Π(x) with error probability at most 1/3 and running time

kO(k) + ε−2nαk · 2O(k)ng(k,αk) .

Note that the running time of the algorithm for #Π is the sum of the oracle cost and
the running time of the algorithm of Theorem 1; by requiring αk ≥ 1, we ensure this is
dominated by the oracle cost. (Indeed, for most uniform witness problems it is very easy to
prove that every decision algorithm must read a constant proportion of the input, and so we
will always have αk ≥ 1.) The lower bound of Theorem 1 implies that the nαk+g(k,αk) term
in the running time cannot be substantially improved with any argument that relativises;
thus in simple terms, there is a generic fine-grained reduction from approximate counting to
decision if and only if the decision algorithm runs in time Ω(nk−1).

It is instructive to consider an example. Take Π to be the problem Induced-H of
deciding whether a given input graph G contains an induced copy of a fixed graph H. In this
case, the hypergraph corresponding to an instance G will have vertex set V (G) and edge set
{X ⊆ V (G) : G[X] ≃ H}; thus the witnesses are vertex sets which induce copies of H in G.
The requirements of Definition 3(i) and (ii) are immediately satisfied, and Definition 3(iii) is
satisfied since deleting vertices from the hypergraph corresponds to deleting vertices of G.
Thus writing k = |V (H)|, Theorem 4 gives us a reduction from approximate #Induced-H to
Induced-H with overhead ε−22O(k)ng(k,αk) over the cost of the decision algorithm. Moreover,
on applying the fine-grained reduction from approximate sampling to counting in [15] we also
obtain an approximate uniform sampling algorithm with overhead ε−22O(k)ng(k,αk). Many
more examples of uniform witness problems to which Theorem 4 applies can be found in the
introduction of [15].

We now describe the corresponding result in the colourful oracle setting, which we now
set out — again, the following definition is taken from [15].

▶ Definition 5. Suppose Π is a uniform witness problem. Colourful-Π is defined as the
problem of, given an instance x ∈ {0, 1}∗ of Π and a partition of V (Gx) into disjoint sets
S1, . . . , Sk, deciding whether cINDGx(S1, . . . , Sk) = 0 holds.

Continuing our previous example, in Colourful-Induced-H, we are given a (perhaps
improper) vertex colouring of our input graph G, and we wish to decide whether G contains
an induced copy of H with exactly one vertex from each colour. Simulating an oracle call
to cIND(Gx)S1,...,Sk

corresponds to running a decision algorithm for Colourful-Π on the
instance Ix(S1 ∪ · · · ∪ Sk) with colour classes S1, . . . , Sk, and if this decision algorithm runs
on an instance y in time T (|y|) then this simulation will require time Õ(T (|S1| + · · · + |Sk|)).
Simulating the colourful independence oracle in this way, the statement of Theorem 2 yields
the following.

▶ Theorem 6. Suppose αk ∈ [1, k] for all k ≥ 2. Let Π be a uniform witness problem.
Suppose that given an instance x of Π, writing n = |V (Gx)| and k = k(Gx), there is an
algorithm to solve Colourful-Π on x with error probability at most 1/3 in time O(nαk).
Then there is an ε-approximation algorithm for #Π(x) with error probability at most 1/3
and running time

ε−2nαk · kO(k)(log n)O(k−αk) .

8 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

As in the uncoloured case, the requirement αk ≥ 1 ensures that the dominant term in the
running time is the time required to simulate the required oracle queries, and the lower bound
of Theorem 2 implies that the logO(k−αk) n term in the running time cannot be substantially
improved with any argument that relativises. Again writing k = |V (H)|, Theorem 6 gives
us a reduction from approximate #Induced-H to Colourful-Induced-H with overhead
ε−2kO(k)(log n)O(k−αk) over the cost of the decision algorithm. This result improves on
the reduction of [15, Theorem 1.7] by a factor of logΩ(αk) n, and using the fine-grained
reduction from approximate sampling to counting in [15] it can immediately be turned into
an approximate uniform sampling algorithm.

Observe that in most cases, there is far less overhead over decision in applying Theorem 6
to reduce #Induced-H to Colourful-Induced-H than there is in applying Theorem 4 to
reduce #Induced-H to Induced-H. In some cases, such as the case where H is a k-clique,
there are simple fine-grained reductions from Colourful-Induced-H to Induced-H, and
in this case Theorem 6 is an improvement. However, it is not known whether the same is
true of all choices of H, and indeed even an FPT reduction from Colourful-Induced-H to
Induced-H would imply the long-standing dichotomy conjecture for the embedding problem
introduced in [21]. More generally, but still within the setting of uniform witness problems,
the problem of detecting whether a graph contains a size-k set which either spans a clique
or spans an independent set is in FPT by Ramsey’s theorem, but its colourful version is
W[1]-complete [27].

While the distinction between colourful problems and uncoloured problems is already
well-studied in subgraph problems, these results strongly suggest that it is worth studying
in many other contexts in fine-grained complexity as well. Indeed, it is easy to simulate
IND(G) from cIND(G) with random colouring; thus the lower bound of Theorem 1 and the
upper bound of Theorem 2 imply that there is a fine-grained reduction from uncoloured
approximate counting to colourful decision, but not to uncoloured decision. By studying the
relationship between colourful problems and their uncoloured counterparts, we may therefore
hope to shed light on the relationship between approximate counting and decision.

Finally, we observe that the set of running times allowed by Theorems 4 and 6 may not
be sufficiently fine-grained to derive meaningful results for some problems. In fine-grained
complexity, even a subpolynomial improvement to a polynomial-time algorithm may be of
significant interest — the classic example is the Negative-Weight-Triangle algorithm of
[37], which runs in n3/eΩ(

√
log n) time on an n-vertex instance, compared to the naive O(n3)-

time algorithm. In order to “lift” such improvements from decision problems to approximate
counting, we must generalise the upper bounds of Theorems 1 and 2 to cost functions of the
form costk(x) = xαk±o(1) while maintaining low overhead. We do so in Theorems 39 and 48
for all “reasonable” cost functions, including any function of the form costk(x) = nαk logβk n

and any function of the form costk(x) = nαk e±(log n)γk where γk < 1. A full list of technical
requirements is given in Section 2.1.3, but the most important one is regular variation —
this is a standard notion from probability theory for “almost polynomial” functions, and
requiring it avoids pathological cases where (for example) we may have costk(x) = O(x) as
x → ∞, but costk(2xi) = ω(costk(xi)) as i → ∞ along some sequence (xi : i ≥ 1).

1.3 Discussion of related work
In order to compare algorithms without excessive re-definition of notation, throughout this
subsection we consider the problem of ε-approximating the number of edges in an m-edge,
n-vertex k-hypergraph.

Colourful and uncoloured independence oracles were introduced in [4] in the graph setting,

H. Dell, J. Lapinskas and K. Meeks 9

then first generalised to hypergraphs in [7]. Edge estimation using these oracles was first
studied in the graph setting (i.e. for k = 2) in [4], which gave an ε−4 logO(1) n-query algorithm
for colourful independence oracles and an (ε−4 + ε−2 min{

√
m, n2/m}) logO(1) n = (ε−4 +

ε−2n2/3) logO(1) n-query algorithm for uncoloured independence oracles. The connection to
approximate counting in fine-grained and parameterised complexity was first studied in [14].

For colourful independence oracles in the graph setting, [14] (independently from [4])
gave an algorithm using ε−2 logO(1) n cIND queries and ε−2n logO(1) n adjacency queries. [1]
subsequently gave a non-adaptive algorithm using ε−6 logO(1) n cIND queries.

The case of edge estimation in k-hypergraphs (i.e. for arbitrary k ≥ 2) was first considered
independently by [15, 5]; [15] gave an algorithm using ε−2kO(k) log4k+O(1) n queries, while
[5] gave an ε−4kO(k) log4k+O(1)-query algorithm. [15] also introduced a reduction from
approximate sampling to approximate counting in this setting (which also applies in the
uncoloured setting) with overhead kO(k) logO(1) n. [6] then improved the query count further
to ε−2kO(k) log3k+O(1) n.

In this paper, we give an algorithm with total query cost ε−2kO(k) log4(k−αk)+O(1) n under
costk(x) = xαk , giving polylogarithmic overhead when αk ≈ k. We also give a lower bound
which shows that a logΘ(k−αk) term is necessary; no lower bounds were previously known
even for αk = 0 (i.e. the case where the total query cost equals the number of queries).

For uncoloured independence oracles of graphs, [13] improved the algorithm of [4] to use

ε−Θ(1) min{
√

m, n/
√

m} polylog n = ε−Θ(1)√n polylog n (1.3.1)

queries and gave a matching lower bound. (It is difficult to tell the exact value of the Θ(1)
term from the proof, but it is at least 9 — see the definition of N in the proof of Lemma
3.9 on p. 15.) It is worth noting that the bound in (1.3.1) is stated as a function of both n

and m. We believe that our results can be stated in such a way as well, but we defer doing
so to the journal version of this paper.

To the best of our knowledge, no results on uncoloured edge estimation for αk > 0 or k > 2
have previously appeared in the literature. However, we believe it would be easy to partially
generalise the proof of [4] to this setting. Very roughly speaking, their argument works by
running a naive sampling algorithm and a more subtle branch-and-bound approximation
algorithm in parallel, with the sampling algorithm running quickly on dense graphs and
the branch-and-bound algorithm running quickly on sparse graphs. The main obstacle to
generalising this approach would be the branch-and-bound approximation algorithm; however,
by replacing it with a slower branch-and-bound enumeration algorithm for k-hypergraphs such
as [28], we believe we would obtain worst-case oracle cost kO(k) +ε−22O(k)nαk+(k−αk)/2 under
costk(x) = xαk ; this technique is well-known in the literature and also appears in e.g. [35].
By comparison (see Figure 1), the algorithm of Theorem 1 achieves a much smaller worst-case
oracle cost of kO(k) + ε−22O(k)nαk+g(k,αk), where g(k, αk) ≈ (k − αk)2/(4k) < (k − αk)/2
and where g(k, αk) = 0 for αk ≥ k − 1. This substantially improves on the algorithm implicit
in [4], and indeed is optimal up to a factor of εΘ(1)kΘ(k). Also, our algorithm has a better
dependence on ε compared with [13] when k = 2; however, we bound the cost only in terms
of n and not in terms of m.

Although a full survey is beyond the scope of this paper, there are natural generalisations
of (colourful and uncoloured) independence oracles [33], and edge estimation problems are
studied for other oracle models including neighbourhood access [34]. Other types of oracle
are also regularly applied to fine-grained complexity in other models, notably including cut
oracles [29, 3]. Perhaps surprisingly, we were unable to find any previous examples in the
literature of unconditional oracle lower bounds relative to a general query cost function, and

10 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

1
2

2
3

1

1.2

𝛼

Overhead exponent in 𝑛

𝑘 = 5
𝑘 = 4
𝑘 = 3
𝑘 = 2

1

2 4 6 8 10 12

20

40

60

𝛼

Overhead exponent in log 𝑛

𝑘 = 12

1

Figure 1 Left: If each IND-query of size x has cost xαk , then up to kO(k) logO(1) n factors, we
show in Theorem 1 that ng(k,αk)+αk is the smallest possible IND-oracle cost to (1/2)-approximate
the number of edges. Plotted here in thick lines is the overhead α 7→ g(k, α) in the exponent of n

for k ∈ {2, 3, 4, 5}, and in dashed lines is the larger overhead exponent α 7→ (k − α)/2 obtained from
a naive generalisation of the techniques of [4]. Right: If each cIND-query of size x has cost xαk , then
up to kO(k)(log n)O(1)(log log n)O(k−αk) factors, we show in Theorem 2 that nαk log4(k−⌈αk⌉)+18 n is
the smallest possible cIND-oracle cost to (1/2)-approximate the number of edges. Plotted in thick
lines is the overhead α 7→ 4(k − ⌈α⌉) + 18 in the exponent of log n for k = 12, and the dashed line
depicts the overhead α 7→ 3k + 5 obtained by using the bound on the number of queries by [6]; our
bound is better if ⌈αk⌉ ≥ k/4 + Θ(1).

so our definitions and methods are novel in that sense. Of course, many existing works prove
unconditional lower bounds in terms of query count [34], or consider algorithmic construction
of graph oracles with bounded query times [23], or provide oracle algorithms with fast running
times in addition to low query counts [31]. In our setting, however, a lower bound in terms
of query cost is absolutely necessary. Recall that for us, query cost is the running time of
an algorithm for the decision problem we are reducing to, and the algorithmic results of
Theorems 4 and 6 all rely on smaller queries running faster; thus to prove they are “best
possible” in any meaningful sense, we absolutely require the formal notion of query cost set
out in Section 1.1.

Outside the oracle setting, it was recently proved [25] that any decision algorithm built
around the representative family technique of [20] can be turned into an approximate counting
algorithm with substantially lower overheads in k than those of [15]. More recently, several
important decision problems in the fine-grained setting with k = 3 have been discovered to
be “equivalent” to their exact counting versions [12]. This work is not directly comparable
to ours, as they work in a substantially stronger setting and use a correspondingly weaker

H. Dell, J. Lapinskas and K. Meeks 11

notion of equivalence. Their equivalence is in the sense of equivalence of conjectures — for
example, they prove that if there is an O(n2−ε)-time algorithm for 3-SUM, then there exists
0 < ε′ < ε such that there is an O(n2−ε′)-time algorithm for #3-SUM. We stress that for
exact counting problems as studied in [12], such equivalence results are genuinely deep and
surprising. However, for the approximate counting problems we study, analogous results are
typically quite easy to prove via the standard combination of sampling and branch-and-bound
approaches discussed above, and so we instead study the stronger notion of fine-grained
reductions from approximate counting to decision. Where no such reductions exist, we aim
to nail down the exact value of ε′. (Recall also that there are uniform witness problems
whose decision versions are in FPT but whose exact counting versions are W[1]-hard [27], so
we cannot hope to extend our results to exact counting in this setting.)

1.4 Proof techniques

1.4.1 Colourful upper bound
We first discuss the proof of the upper bound of Theorem 2, our cIND-oracle algorithm for edge
estimation using the colourful independence oracle of an n-vertex k-hypergraph G. In [15], it
is implicitly proved that a cIND-oracle algorithm that computes a “coarse approximation”
to e(G), which is accurate up to multiplicative error b, can be bootstrapped into a full ε-
approximation algorithm with overhead ε−22O(k) logO(1) n·b2. (See Theorem 49 of the present
paper for details.) It therefore suffices to improve the coarse approximation algorithm of [15]
from kO(k) logΘ(k) n queries and kO(k) logΘ(k) n multiplicative error to kO(k) logΘ(k−αk) n

query cost and kO(k) logΘ(k−αk) n multiplicative error. Moreover, by a standard colour-
coding argument, it suffices to make this improvement when G is k-partite with vertex classes
V1, . . . , Vk known to the algorithm.

Oversimplifying a little, and assuming n is a power of two, the algorithm of [15] works by
guessing a probability vector (Q1, . . . , Qk) ∈ {1, 1/2, 1/4, . . . , 1/n}k. It then deletes vertices
from V1, . . . , Vk independently at random to form sets X1, . . . , Xk, so that for all v ∈ Vj we
have P(v ∈ Xj) = Qj . After doing so, in expectation, Q1Q2 . . . Qk proportion of the edges
of G remain in the induced k-partite subgraph G[X1, . . . , Xk]. If e(G) ≪ 1/(Q1 . . . Qk), it is
easy to show with a union bound that no edges are likely to remain. What is more surprising
is that there exist q1, . . . , qk with q1 . . . qk ≈ 1/e(G) such that if Q⃗ = q⃗, then at least one edge
is likely to remain in G[X1, . . . , Xk]. Thus the algorithm of [15] iterates over all logΘ(k) n

possible values of Q⃗, querying cIND(G) on X1, . . . , Xk for each, and then outputs the least
value m such that e(G[X1, . . . , Xk]) > 0 for some Q1, . . . , Qk with 1/(Q1 . . . Qk) = m.

Our algorithm improves on this idea as follows. First, [15] does not actually prove the
existence of the vector q⃗ described above — it relies on a coupling between the different
guesses of Q⃗. We require not only the existence of q⃗ but also a structural result which may
be of independent interest. For all I ⊆ [k] and all ζ ∈ (0, 1], we define an (I, ζ)-core to be an
induced subgraph H = G[Y1, . . . , Yk] of G such that:

(i) H contains at least k−O(k) proportion of the edges of G.
(ii) For all i ∈ I, the set Yi is very small, containing at most 2/ζ vertices.
(iii) For all i /∈ I, every vertex of Yi is contained in at most ζ proportion of edges in H.

As an example, the most extreme core is the rooted star : It consists of some vertices ri ∈ Yi

for all i ∈ I and all k-partite edges e with e ⊇ { ri : i ∈ I }. We prove in Lemma 56 that,
for all ζ ∈ (0, 1], there is some I ⊆ [k] such that G contains an (I, ζ)-core H.

Suppose for the moment that we are given the value of I, but not Y1, . . . , Yk. By property
(i), it would then suffice to approximate e(H) using kO(k) logO(k−αk) n query cost. If |I| ≥ αk,

12 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

then we can adapt the idea of the algorithm of [15], but taking Qj = 1 for all i /∈ I to use
only logO(k−αk) n queries in total; intuitively, this is possible due to property (ii), which
implies that this is the “correct” setting. We set this algorithm out as CoarseLargeCore in
Section 4.1.3.

If instead |I| ≤ αk, then we will exploit the fact that query cost decreases polynomially
with instance size by breaking H into smaller instances. For all i /∈ I, we randomly delete
vertices from Vi with a carefully-chosen probability p. Property (iii), together with a
martingale bound (see Lemma 59), guarantees that the number of edges in the resulting
hypergraph G′ will be concentrated around its expectation of pke(G). If we had access to
Y1, . . . , Yk, we could then intersect Vi with Yi for all i ∈ I to obtain a substantially smaller
instance, whose edges we could count with cheap queries; we could then divide the result by
pk to obtain an estimate for e(G). Unfortunately we do not have access to Y1, . . . , Yk, but
we can still break G′ into smaller sub-hypergraphs by applying colour-coding to the vertex
sets Vi with i ∈ I, and as long as |I| ≤ αk this still gives enough of a saving in query cost to
prove the result. We set this algorithm out as CoarseSmallCore in Section 4.1.2.

Now, we are not in fact given the value of I in the (I, ζ)-core of G. But both Coar-
seLargeCore and CoarseSmallCore fail gracefully if they are given an incorrect value of I,
returning an underestimate of e(G) rather than an overestimate. We can therefore simply
iterate over all 2k possible values of I, applying CoarseLargeCore or CoarseSmallCore as
appropriate, and return the maximum resulting estimate of e(G). This proves the result.

1.4.2 Colourful lower bound
We now discuss the proof of the lower bound of Theorem 2. Using the minimax principle, to
prove the bound for randomised algorithms, it is enough to give a pair of random graphs G1
and G2 with e(G2) ≫ e(G1) and prove that no deterministic algorithm A can distinguish
between G1 and G2 with constant probability and worst-case oracle cost as in the bound.
We base these random graphs on the main bottleneck in the algorithm described in the
previous section: the need to check all possible values of Q in a k-partite k-hypergraph with
an (I, ζ)-core where |I| ≈ k − αk.

We take G1 to be an Erdős-Rényi k-partite k-hypergraph with edge density p :=
t−(k−⌊αk⌋−2)/2. We take the vertex classes V1, . . . , Vk of G1 to have equal size t, so that
t = n/k. We then define a random complete k-partite graph H as follows. We first define a
random vector Q⃗ of probabilities, then take binomially random subsets X1, . . . , Xk−⌊αk⌋−2
of V1, . . . , Vk−⌊αk⌋−2, with P(v ∈ Xj) = Qj for all v ∈ Vj . For j ≥ k − ⌊αk⌋ − 1, we take
Xj ⊆ Vj to contain a single uniformly random vertex. We then define H to be the complete
k-partite graph with vertex classes X1, . . . , Xk, and form G2 = G1 ∪ H by adding the edges
of H to G1. We choose Q in such a way that Q1 · . . . · Qk−⌊αk⌋−2 is guaranteed to be a
bit larger than pt⌊αk⌋+2, so that E(e(H)) ≫ E(e(G1)). Intuitively, this corresponds to the
situation of a randomly planted (I, ζ)-core where I = {k − ⌊αk⌋ − 1, . . . , k} — we will show
that the algorithm A needs to essentially guess the value of Q using expensive queries.

To show that a low-cost deterministic algorithm A cannot distinguish G1 from G2, suppose
for simplicity that A is non-adaptive, so that its future oracle queries cannot depend on the
oracle’s past responses. In this setting, it suffices to bound the probability of a fixed query
S = (S1, . . . , Sk) distinguishing G1 from G2.

It is not hard to show that without loss of generality we can assume Si ⊆ Vi for all i ∈ [k].
If |Sj | ≪ t for some j ≥ k − ⌊αk⌋ − 1, then with high probability Sj will not contain the
single “root” vertex of Xj , so H[S1, . . . , Sk] will contain no edges and S will not distinguish
G1 from G2. With some effort (a simple union bound does not suffice), this idea allows us

H. Dell, J. Lapinskas and K. Meeks 13

to essentially restrict our attention to large, expensive queries S. However, if |S1| . . . |Sk| is
large, then with high probability G1[S1, . . . , Sk] will contain an edge, so again S will not
distinguish G1 from G2 = G1 ∪H. With some more effort, this allows us to essentially restrict
our attention to queries where for some possible value q⃗ of Q⃗ we have |Sj | ≈ 1/qj for all
j ≤ k − ⌊α⌋ − 2; we choose these possible values to be far enough apart that such a query is
only likely to distinguish G1 from G2 if Q⃗ = q⃗. There are roughly ((log n)/ log log n)k−⌊αk⌋−2

possible values of Qj , so the result follows.
Of course, in our setting A may be adaptive, and this breaks the argument above. Since

the query A makes depends on the results of past queries, we cannot bound the probability
of a fixed query distinguishing G1 from G2 in isolation — we must condition on the results
of past queries. This is not a small technical point — it is equivalent to allowing A to be
adaptive in the first place. The most damaging implication is that we could have a query
S = (S1, . . . , Sk) with |S1| . . . |Sk| very large but such that G1[S1, . . . , Sk] contains no edges,
because most of the potential edges have already been exposed as not existing in past queries.
We are able to deal with this while preserving the spirit of the argument above, by arguing
based on the number of unexposed edges rather than |S1| . . . |Sk|, but it requires significantly
more effort and a great deal of care.

1.4.3 Uncoloured upper bound

We now discuss the proof of the upper bound of Theorem 1. We adapt a classic framework
for approximate counting algorithms that originated in [36], and that was previously applied
to edge counting in [14]. We first observe that by using an algorithm from [28], we can
enumerate the edges in an n-vertex k-hypergraph G with 2O(k) logO(1) n · e(G) queries to an
independence oracle. Suppose we form an induced subgraph Gi of G by deleting vertices
independently at random, keeping each vertex with probability 2−i; then in expectation,
we have e(Gi) = 2−kie(G). If e(Gi) is small, and e(Gi) ≈ E(e(Gi)), then we can efficiently
count the edges of Gi using [28] and then multiply by 2ki to obtain an estimate of e(G). We
can then simply iterate over all i from 0 to log n and return an estimate based on the first i

such that e(Gi) is small enough for [28] to return a value quickly.
Of course in general we do not have e(Gi) ≈ E(e(Gi))! One issue arises if, for some

r ∈ [k−1], every edge of G contains a common size-r set R — a “root”. Then with probability
1 − 2−ri, at least one vertex in R will be deleted and Gi will contain no edges. We address
this issue in the simplest way possible: by taking more samples. Roughly speaking, suppose
we are given i, and that we already know (based on the failure of previous values of i to
return a result) that e(G) > nk−r−1 for some 0 ≤ r ≤ k − 1. This implies that G cannot
have any “roots” of size greater than r. Rather than taking a single random subgraph Gi,
we take ti ≈ 2ri independent copies of Gi and sum their edge counts using [28]; thus if G

does contain a size-r root, we are likely to include it in the vertex set of at least one sample.
Writing Σi for the sum of their edge counts, we then return Σi/(ti2−ik) if the enumeration
succeeds.

The exact expression we use for ti is more complicated than 2ri, due to the possibility of
multiple roots — see Section 3.2.2 for a more detailed discussion — but the idea is the same.
The proof that Σi is concentrated around its expectation is an (admittedly somewhat involved)
application of Chebyshev’s inequality, in which the rooted “worst cases” correspond to terms
in the variance of Σi. We consider it surprising and interesting that such a conceptually
simple approach yields an optimal upper bound, and indeed gives us a strong hint as to how
we should prove the lower bound of Theorem 1.

14 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

1.4.4 Uncoloured lower bound

We finally discuss the proof of the lower bound of Theorem 1. As in the colourful case, we
apply the minimax principle, so we wish to define random k-hypergraphs G1 and G2 with
e(G2) ≫ e(G1) which cannot be distinguished by a low-cost deterministic algorithm A.

Our construction of G1 and G2 is natural from the above discussion, and the special case
with k = 2 and αk = 0 is very similar to the construction used in [13]. We take G1 to be
an Erdős-Rényi k-hypergraph with edge probability roughly k!/nr. We choose a random
collection of size-r sets in V (G1) to be “roots”, with a large constant number of roots present
in expectation, and we define a k-hypergraph H to include every possible edge containing at
least one of these roots as a subset. We then define G2 := G1 ∪ H.

Similarly to the colourful lower bound, in the non-adaptive setting, any fixed query Si

with |Si| large is likely to contain an edge of G1, and any fixed query with |Si| small is
unlikely to contain a root and therefore unlikely to contain any edges of H; in either case,
the query does not distinguish G1 from G2. Also as in the colourful case, generalising this
argument from the non-adaptive setting to the adaptive setting requires a significant amount
of care and effort.

Organization.

In Section 2.1, we set out some standard conventions and our formal definitions of running
time, oracle costs, and the most general cost functions to which our algorithmic results apply.
We then recall some standard results from the literature (and folklore) in Section 2.2, and in
Section 2.3 we apply a more recent result from [11] to allow us to quickly sample binomially
random subsets. We collect all our IND-oracle results in Section 3, proving various necessary
properties of g(k, αk) in Section 3.1, the upper bound in Section 3.2, and the lower bound in
Section 3.3. Finally, we collect all our cIND-oracle results in Section 4, proving the upper
bound in Section 4.1 and the lower bound in Section 4.3.

2 Preliminaries

2.1 Notation and definitions

2.1.1 Basic notation and conventions

We take N to be the set of natural numbers not including zero. For all n ∈ N, we write
[n] := {1, . . . , n}. We write log for the base-2 logarithm, and ln for the base-e logarithm.
Given two sets X and Y , we write X ⊂ Y to mean that X is a proper subset of Y and
X ⊆ Y to mean that X is a (possibly improper) subset of Y .

For all x ∈ R, we write ⌊x⌉ := ⌊x + 1/2⌋ for the value of x rounded to the nearest integer,
rounding up in the case of a tie. For all ε > 0, we say that x is an ε-approximation to y if
|x − y| ≤ εy.

For all sets S and all r ∈ N, we write S(r) for the set of all r-element subsets of S. If G

is a k-uniform k-hypergraph with S ⊆ V (G), we write G[S] for the subgraph induced by S;
thus E(G[S]) ⊆ S(k). Analogously, if S = (S1, . . . , Sk) is a k-tuple of disjoint sets, we write
G[S] = G[S1, . . . , Sk] for the induced k-partite subgraph, which has vertex set S1 ∪ · · · ∪ Sk

and edge set {e ∈ E(G) : |e ∩ Si| = 1 for all i ∈ [k]}. We write S(k) for the set of all possible
edges of G[S], i.e. {{s1, . . . , sk} : si ∈ Si for all i}. If G and H are graphs on the same vertex
set, we write G ∪ H for the graph on that vertex set with edge set E(G) ∪ E(H).

H. Dell, J. Lapinskas and K. Meeks 15

2.1.2 Oracle algorithms

Independence oracle.

Let G be a hypergraph with vertex set [n] and m edges. Let IND(G) ∈ {0, 1}2[n] be the string
that satisfies the following for all S ⊆ [n]:

IND(G)S =
{

1 if G[S] contains no edge;
0 otherwise.

(2.1.1)

The bitstring IND(G) is called the independence oracle of G. Let us write GIND(O) for the
hypergraph belonging to the independence oracle O.

Colourful independence oracle.

The colourful independence oracle cIND(G) of G is the bitstring that is defined as follows for
all disjoint sets S1, . . . , Sk ⊆ [n]:

cIND(G)S1,...,Sk
=
{

1 if G contains no edge e ∈ E(G) with ∀i : |Si ∩ e| = 1;
0 otherwise.

(2.1.2)

We write GcIND(O) for the hypergraph belonging to the colourful independence oracle O.

Oracle algorithm.

In this paper, an oracle algorithm is an algorithm with access to an oracle that represents
the input n-vertex k-hypergraph implicitly, either as an independence oracle or as a colourful
independence oracle. We assume that the numbers n and k are always given explicitly as
input and thus known to the algorithm at run-time; recall that the graph’s vertex set is always
[n], so this is also known. We consider IND-oracle algorithms in Section 3 and cIND-oracle
algorithms in Section 4, and we strictly distinguish between the worst-case running time of
the algorithm (which does not include oracle costs) and the worst-case oracle cost of the
queries (which does not include the running time of the algorithm). Given an oracle O (such
as IND(G) for some n-vertex k-hypergraph G) we write A(O, x) for the output produced by
A when supplied with O and with additional input x. While n and k are always included as
part of x, we typically do not write these out. The algorithm can prepare a query by writing
a set S or a tuple (S1, . . . , Sk) in the canonical encoding as an indicator string q ∈ {0, . . . , k}n

to a special query array. It can then issue the oracle query via a primitive query(q) and
receive the answer 0 or 1.

Induced subgraphs.

Observe that given IND(G), it is trivial to simulate IND(G[X]) for all X ⊆ [n], as we have
IND(G[X])S = IND(G)S for all S ⊆ X. We will frequently use this fact implicitly to pass
induced subgraphs of G as arguments to subroutines without incurring overhead. To this
end, we write A(IND(G[X]), x) as a shorthand for A′(IND(G), X, x), where A′ is the oracle
algorithm that runs A and simulates oracle queries to IND(G[X]) as just discussed using X

and IND(G). Likewise, given cIND(G), it is trivial to simulate cIND(G[S1, . . . , Sk]) for all
disjoint S1, . . . , Sk ⊆ [n].

16 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Randomness.

To model randomised algorithms, we augment the RAM-model with a primitive rand(R)
that returns a uniformly random element from the set {1, . . . , R} for any given R ≤ poly(n).
We view a randomised algorithm as a discrete probability distribution A over a set supp(A)
of deterministic algorithms based on the results of rand.

Running time.

We measure the running time in the standard RAM-model of computation with Θ(log n) bits
per word and the usual arithmetic and logical operations on these words. Writing T (A, G, x)
for the running time of A(IND(G), x), the worst-case running time of a randomised al-
gorithm A is defined as the function x 7→ maxG supA∈supp(A) T (A, G, x), where G ranges
over all n-vertex k-hypergraphs with n and k as specified in the input x. Similarly, for
a randomised algorithm A, the worst-case expected running time is defined as the func-
tion x 7→ maxG(EA∼A T (A, G, x)), where again the maximum is taken over all n-vertex
k-hypergraphs G.

Oracle cost.

We measure the oracle cost by a cost function cost = {costk : k ≥ 2}, where costk : (0, ∞) →
(0, ∞). We will typically require cost to be regularly-varying with parameter k (see Sec-
tion 2.1.3). In a k-uniform hypergraph G, the cost of an IND-oracle query to a set S ⊆ [n] is
given by cost(S) := costk(|S|); note that this query cost depends only on the size of S. By
convention, we set costk(0) := 0 for all k as empty queries cannot provide any information
about the graph. Similarly, the cost of a cIND-oracle query to a tuple (S1, . . . , Sk) is given
by cost(S1, . . . , Sk) := costk(|S1 ∪ · · · ∪ Sk|).

Let A be a deterministic oracle algorithm, and let X be the set of possible (non-oracle)
inputs to A; recall that this always includes n and k. Given an n-vertex k-uniform hypergraph
G and x ∈ X, let S1(G, x), . . . , StG,x

(G, x) be the sequence of queries that A makes when
supplied with input x and an oracle for G. Then for all n-vertex k-uniform hypergraphs G

and all x ∈ X, the oracle cost of A on G (with respect to cost) is defined as cost(A, G, x) =∑tG,x

i=1 costk(Si(G, x)). The oracle cost of a randomised oracle algorithm A on G and x is
denoted by cost(A, G, x), and is the random variable cost(A, G, x) where A ∼ A.

The worst-case oracle cost of a randomised oracle algorithm A (with respect to cost) is
defined as the function x 7→ maxG(supA∈supp(A) cost(A, G, x)); here the maximum is taken
over all n-vertex k-hypergraphs G, where n and k are as defined in the input x. Similarly, the
worst-case expected oracle cost of A is defined as the function x 7→ maxG(EA∼A(cost(A, G, x))),
where again the maximum is taken over all n-vertex k-hypergraphs G.

2.1.3 Requirements on cost functions for upper bounds
In the introduction, we focused on polynomial cost functions of the form costk(S) = |S|αk for
some αk ∈ [0, k], and these functions are easy to work with. However, even subpolynomial
improvements to an algorithm’s running time can be of interest and by considering more
general cost functions we can lift these improvements from decision algorithms to approximate
counting algorithms. To take a well-known example, in the negative-weight triangle problem,
we are given an n-vertex edge-weighted graph G and asked to determine whether it contains
a triangle of negative total weight; this problem is equivalent to a set of other problems under
subcubic reductions, including APSP [38]. The naive Θ(n3)-time algorithm can be improved

H. Dell, J. Lapinskas and K. Meeks 17

by a subpolynomial factor of eΘ(
√

log n) [37], but as stated in the introduction our result
would not lift this improvement from decision to approximate counting — we would need
to take k = 3 and cost(n) = n3/eΘ(

√
log n). (For clarity, in this specific case the problem is

equivalent to its colourful version and a fine-grained reduction is already known [14, 15].)
While we cannot hope to say anything meaningful in the algorithmic setting with a fully

general cost function, our results do extend to all cost functions which might reasonably arise
as running times. A natural first attempt to formalise what we mean by “reasonable” would
be to consider cost functions of the form costk(n) = nαk+o(1) as n → ∞. Unfortunately, such
cost functions can still have a pathological property which makes a fine-grained reduction
almost impossible: the o(1) term might vary wildly between different values of n. For
example, if we take costk(n) = nαk+sin(πn/2)/

√
log(n), then we have costk(n) = nαk+o(1), but

costk(2n)/costk(n) could be ω(polylog(n)), Θ(1) or o(1/ polylog(n)) depending on whether
n is congruent to 3, 2 or 1 modulo 4 (respectively). It is even possible to construct a similar
example which is monotonically increasing. We therefore require something slightly stronger,
borrowing a standard notion from the probability literature for distributions which are
“almost power laws”.

▶ Definition 7. A function f : R → R is regularly-varying if, for all fixed a > 0,

lim
x→∞

|f(ax)/f(x)| ∈ (0, ∞).

Observe that any cost function likely to arise as a running time is regularly-varying under
this definition. We will use the following standard facts about regularly-varying functions.

▶ Lemma 8. Let f be a regularly-varying function. Then there exists a unique α ∈ R, called
the index of f , with the following properties.

(i) For all fixed A > 0, limx→∞(f(Ax)/f(x)) = Aα. Moreover, for all closed intervals
I ⊆ R, this limit is uniform over all A ∈ I.

(ii) For all δ > 0, there exists x0 such that for all x ≥ x0 and all Ax ≥ 1,

Aα−δ
x ≤ f(Axx)/f(x) ≤ Aα+δ

x .

(iii) f(x) = xα+o(1) as x → ∞.
(iv) If α > 0, then there exists x0 such that f is strictly increasing on [x0, ∞).

Proof. Part (i) is proved in e.g. Feller [17, Chapter VIII.8 Lemmas 1–2]. We now prove part
(ii). Let Ax ≥ 1. By part (i), there exists x0 such that

for all x ≥ x0 and all A ∈ [1, 2], Aα−δ ≤ f(Ax)/f(x) ≤ Aα+δ. (2.1.3)

Suppose x ≥ x0, and let kx be sufficiently large such that A
1/kx
x ∈ [1, 2] holds. Then breaking

f(Axn)/f(n) into a telescoping product and applying (2.1.3) to each term yields

f(Axn)
f(n) =

kx∏
i=1

f(Ai/kx
x)

f(A(i−1)/kx
x)

≥
kx∏

i=1
A(α−δ)/kx

x = Aα−δ
x ,

as required. Similarly, f(Axn)/f(n) ≤ Aα+δ
x as required. Part (iii) follows immediately on

taking x = 1 in part (ii). To prove part (iv), take x, y ∈ (0, ∞) with x < y and observe from
part (ii) that when x and y are sufficiently large, cost(y) ≥ cost(x)(y/x)α/2 > cost(x). ◀

We will only need our cost functions to vary regularly in n, not k; to facilitate this, we
bring in the following standard result which allows us to “confine the regular variation to the
no(1) term”.

18 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

▶ Definition 9. A regularly-varying function with index 0 is called a slowly-varying function.

▶ Lemma 10. Let f be a regularly-varying function with index α. Then we have f(x) =
xασ(x) for some slowly-varying function σ.

Proof. This follows easily from Lemma 8; see Feller [17, Chapter VIII.8 (8.5)–(8.6)]. ◀

We are now ready to state the technical requirements on our cost functions.

▶ Definition 11. For each k ≥ 2, let costk : (0, ∞) → (0, ∞). We say that cost = {costk : k ≥
2} is a regularly-varying parameterised cost function if costk(x) ≤ xk for all k and x, and
there exists a slowly-varying function σ : (0, ∞) → (0, ∞) and a map k 7→ αk satisfying the
following properties:

(i) for all k and x, costk(x) = xαk σ(x);
(ii) for all k, αk ∈ [0, k];
(iii) for all k and x, costk(x) ≤ xk;
(iv) either lim infk→∞ αk > 0 or there exists x0 such that for all k, costk is non-decreasing

on (x0, ∞);
(v) there is an algorithm to compute ⌊αk⌋ in time O(k9k).

We say that k is the parameter of cost, α is the index of cost, and σ is the slowly-varying
component of cost.

Point (i) is the main restriction, and the one we have been discussing until now. Points (ii)
and (iii) have already been discussed in the introduction. In the colourful case we will need
to compute ⌊αk⌋ in order to know which subroutines to use, so point (v) avoids an additive
term in the running time. Finally, point (iv) is a technical convenience which (together with
point (i)) guarantees monotonicity, as we show in Lemma 12 below. Requiring point (iv) is
unlikely to affect applications of our results — typically such applications would either satisfy
αk = 0 (as we are concerned only with query count and not with query cost) or αk ≥ 1 (as
the decision algorithm used to simulate the oracle needs to read the entire input).

▶ Lemma 12. Let cost be a regularly-varying parameterised cost function with parameter k,
index α and slowly-varying component σ. Then there exists x0 ∈ (0, ∞) such that for all k,
costk is non-decreasing on [x0, ∞).

Proof. If lim infk→∞ αk = 0 then this is immediate from Definition 11(iv), so suppose instead
lim infk→∞ αk = δ > 0. Then the function x 7→ xδσ(x) is regularly-varying, and hence by
Lemma 8(iv) there exists x0 such that for all y > x ≥ x0 we have yδσ(y) > xδσ(x). It follows
that for all k,

costk(y)
costk(x) = (y/x)αk

σ(y)
σ(x) ≥ yδσ(y)

xδσ(x) > 1

as required. ◀

2.2 Collected standard results
2.2.1 Probabilistic results
We will need the following two standard Chernoff bounds.

▶ Lemma 13 (Corollary 2.3 of Janson, Łuczak and Rucinski [22]). Let X be a binomial random
variable, and let 0 < δ < 3/2. Then P

(
|X − E(X)| ≥ δ E(X)

)
≤ 2e−δ2 E(X)/3.

H. Dell, J. Lapinskas and K. Meeks 19

▶ Lemma 14 (Corollary 2.4 of Janson, Łuczak and Rucinski [22]). Let X be a binomial random
variable, and let z ≥ 7 · E(X). Then P

(
X ≥ z

)
≤ e−z.

We will also make use of the following form of the FKG inequality.

▶ Lemma 15 (Theorem 6.3.2 of Alon and Spencer [2]). Let X1, . . . , Xn be independent
Bernoulli variables, let A and B be events determined by these variables, let 1A be the
indicator function of A and let 1B be the indicator function of B. If 1A and 1B are either
both increasing or both decreasing as functions of X1, . . . , Xn, then P(A ∩ B) ≥ P(A)P(B).
If 1A is increasing and 1B is decreasing or vice versa, then P(A ∩ B) ≤ P(A)P(B).

The following probability bound is folklore.

▶ Lemma 16. Let t be an integer, let Z1, . . . , Zt be discrete random variables, let E1, . . . , Et

be events such that Ei is a function of Z1, . . . , Zi, and let E = E1 ∪ · · · ∪ Et. For all i, let Zi

be the set of possible values of Z1, . . . , Zi under which E1, . . . , Ei do not occur, that is,

Zi =
{

(z1, . . . , zi) : P
(

E1, . . . , Ei | (Z1, . . . , Zi) = (z1, . . . , zi)
)

= 1
}

.

Suppose that for all i, every (z1, . . . , zi) ∈ Zi is a prefix to some (z1, . . . , zt) ∈ Zt. Then

P(E) ≤ max
(z1,...,zt−1)∈Zt−1

t∑
i=1

P
(

Ei | (Z1, . . . , Zi−1) = (z1, . . . , zi−1)
)

. (2.2.1)

We will use Lemma 16 when proving lower bounds. In doing so, we will take Z1, . . . , Zt

to be pairs of query results from running a deterministic algorithm on two random inputs, Ei

to be the event that we distinguish the two inputs on the ith query, and E to be the event
that we distinguish the two inputs at all. Note the order of the maximum and the sum
in (2.2.1); in a simple union bound over E1, . . . , Et, they would occur in the opposite order
for a weaker result.

Proof. Consider the random variable

Y :=
t∑

i=1
P
Zi

(
E1, . . . , Ei−1, Ei | Z1, . . . , Zi−1

)
.

Note that the ith term in this sum is a random variable that is a function of Z1, . . . , Zi−1.
We first bound Y above. Deterministically, on exposing the values of Z1, . . . , Zt we obtain

Y ≤ max
z1,...,zt−1

t∑
i=1

P
Zi

(
E1, . . . , Ei−1, Ei | (Z1, . . . , Zi−1) = (z1, . . . , zi−1)

)
.

If (z1, . . . , zt−1) /∈ Zt−1, then let k = min{ℓ ≤ t − 1: (z1, . . . , zℓ) /∈ Zℓ}. Thus (z1, . . . , zk) /∈
Zk, but (if k > 1) we have (z1, . . . , zk−1) ∈ Zk−1; it follows that E1, . . . , Ek−1 and Ek all
occur. The last t − k probabilities in the corresponding sum are therefore zero (even if k = 1),
and we have

t∑
i=1

P
Zi

(
E1, . . . , Ei−1, Ei | (Z1, . . . , Zi−1) = (z1, . . . , zi−1)

)
=

k∑
i=1

P
Zi

(
E1, . . . , Ei−1, Ei | (Z1, . . . , Zi−1) = (z1, . . . , zi−1)

)
.

20 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

It follows that

Y ≤ max
k∈[t]

max
(z1,...,zk−1)∈Zk−1

k∑
i=1

P
Zi

(
E1, . . . , Ei−1, Ei | (Z1, . . . , Zi−1) = (z1, . . . , zi−1)

)
,

as we are maximising over the same terms — each (z1, . . . , zt−1) /∈ Zt−1 corresponds to
a shorter (z1, . . . , zk−1) ∈ Zk−1. Moreover, since every vector in Zk−1 is a prefix to some
vector in Zt−1 by hypothesis, the first maximum must be attained at k = t, and so

Y ≤ max
(z1,...,zt−1)∈Zt−1

t∑
i=1

P
Zi

(
E1, . . . , Ei−1, Ei | (Z1, . . . , Zi−1) = (z1, . . . , zi−1)

)
. (2.2.2)

We now calculate E(Y). By linearity of expectation and since each Ei is a function of
Z1, . . . , Zi, we have

E(Y) =
t∑

i=1
E

Z1,...,Zi−1

(
P
Zi

(
E1, . . . , Ei−1, Ei | Z1, . . . , Zi−1

))

=
t∑

i=1
P

Z1,...,Zi

(
E1, . . . , Ei−1, Ei

)
= P(E) .

Since E(Y) is bounded above by the maximum possible value of Y , the result follows
from (2.2.2). ◀

2.2.2 Algorithmic results
In order to prove lower bounds on the cost of randomised oracle algorithms we will apply the
minimax principle, a standard tool from decision tree complexity. There are many possible
statements of this principle (see [39, Theorem 3] for the original one by Yao); for convenience,
we provide a statement matched to our setting along with a self-contained proof.

▶ Theorem 17. Let n, k ∈ N with k ≥ 2. Let A be a randomised oracle algorithm whose
possible non-oracle inputs are drawn from a set X and whose possible outputs lie in a set Σ.
Let x ∈ X, and let n and k be as determined by x. Let G be the set of all k-hypergraphs
on [n]. If D is any probability distribution on G, and F is any set of functions G × X → Σ
with PA∼A[A ∈ F] ≥ p, then

max
G∈G

E
A∼A

[cost(A, G, x)] ≥ p inf
A∈F

E
G∼D

[cost(A, G, x)] . (2.2.3)

The expectation EA∼A[cost(A, G, x)] on the left side of Equation (2.2.3) is the expected
cost of running a randomised algorithm A on the graph G; thus the left side of Equation (2.2.3)
is the worst-case expected oracle cost of A over all possible inputs G (with non-oracle input x).
The set F will be application-dependent, but will typically contain all deterministic algorithms
that with suitably high probability exhibit the “correct” behaviour on the specific input
distribution D — for example, returning an accurate approximation to the number of edges
in the input graph. In our applications, the requirement PA∼A[A ∈ F] ≥ p will be immediate
from the stated properties of A. The point of Theorem 17, then, is that we can lower-bound
the cost of an arbitrary randomised algorithm A on a worst-case deterministic graph G ∈ G
by instead lower-bounding the cost of any deterministic algorithm A on a randomised input
distribution D of our choice.

H. Dell, J. Lapinskas and K. Meeks 21

Proof. We derive the claim as follows:

max
G∈G

E
A∼A

[cost(A, G, x)] ≥ E
G∼D

E
A∼A

[cost(A, G, x)] = E
A∼A

E
G∼D

[cost(A, G, x)]

≥ E
A∼A

[
E

x∼X
[cost(A, G, x)]

∣∣∣ A ∈ F
]

· P
A∼A

[A ∈ F]

≥ 1
2 inf

A∈F

[
E

x∼X
[cost(A, G, x)]

]
.

The first and last inequalities are trivial, and the second inequality follows by conditioning
and dropping the terms for A ̸∈ F , which is correct because the cost is non-negative. ◀

Finally, we set out two lemmas for passing between different performance guarantees on
randomised algorithms. The ideas behind these lemmas (independent repetition and median
boosting) are very standard, but we set them out in detail because we are working in the
word-RAM model (see Section 2.1.2) and so we may not be able to efficiently compute our
own stated upper bounds on oracle cost; thus there is more potential than usual for subtle
errors.

We use the following standard lemma to pass from probabilistic guarantees on running time
and oracle cost to deterministic guarantees. The lemma assumes an implicit problem definition
in the form of a relation between inputs and outputs, modelling which input-output pairs
are considered to be correct. In our application, an input-output pair ((G, x), A(IND(G), x))
is considered correct if A(IND(G), x) is an ε-approximation to e(G).

▶ Lemma 18. Let cost = {costk : k ≥ 2} be a cost function as in Section 2.1.2. Let A be a
randomised oracle algorithm whose possible non-oracle inputs are drawn from a set X. Let
Torig, Corig, T comp

totals, T comp
cost : X → (0, ∞), and let δ > 0 be a constant. Suppose that:

given any possible oracle input O and non-oracle input x ∈ X, with probability at least
1 − δ, A(O, x) has the correct input-output behaviour, runs in time O(Torig(x)), and has
oracle cost O(Corig(x));
for all x ∈ X, Torig(x) and Corig(x) can be computed in time O(T comp

totals(x)); and
for all x ∈ X, writing kx and nx for the values of k and n specified by x, for all n ≤ nx,
costkx

(n) can be computed in time O(T comp
cost (x)).

Then there is a randomised oracle algorithm A′ such that:
(i) A′ has the same inputs as A together with a rational γ ∈ (0, 1);
(ii) A′ has worst-case running time O(T comp

totals(x) + log(1/γ) · Torig(x) · T comp
cost (x));

(iii) A′ has worst-case oracle cost O(log(1/γ) · Corig(x));
(iv) A′ exhibits the same correct input-output behaviour as A with probability 1 − γ − δ.

Proof. The algorithm A′(O, x, γ) works as follows:
Compute Torig(x) and Corig(x).
Repeat at most ⌈logδ(γ)⌉ times:

Run A(O, x) and keep track of the running time incurred. Compute the cost of each
invocation of the oracle before it happens, and keep track of the total cost incurred.
If the total running time exceeds Torig(x) (not counting overhead for tracking the
running time) or if the total oracle cost would exceed Corig(x) on the next oracle query,
abort this run.
If A(O, x) halts within these resource constraints, return its output.

Return the error RTE (‘running time exceeded’).

22 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Part (i) is immediate. Observe that A′ runs A(O, x) at most O(log(1/γ)) times, each
time incurring O(Torig(x)) running time and O(Corig(x)) oracle cost. Moreover, since each
oracle query takes Θ(1) time, each run of A makes O(Torig(x)) oracle queries; thus we spend
O(Torig(x) · T comp

cost (x)) time per run on keeping track of the total running time and oracle
cost. Finally, we spend O(T comp

totals(x)) time computing Torig(x) and Corig(x). Thus (ii) and
(iii) follow.

Let E be the event that at least one run of A succeeds within the resource constraints.
Since the runs are independent, we have P(E) ≥ 1 − δ⌈logδ(γ)⌉ ≥ 1 − γ. Moreover, conditioned
on a given run being within the resource constraints, this run exhibits the correct input-output
behaviour for A with probability at least 1 − δ; thus conditioned on E , the algorithm A′

also exhibits the correct input-output behaviour with probability at least 1 − δ. By a union
bound, (iv) follows. ◀

We also use the following standard lemma to boost the success probability of approximate
counting by taking the median output among independent repetitions.

▶ Lemma 19. Let A be a randomised oracle algorithm. Suppose that given non-oracle
input x, the algorithm A has worst-case running time O(T (x)) and worst-case oracle-cost
O(C(x)). Suppose further that for some constant δ < 1/2, for all possible oracle inputs O

and non-oracle inputs x, with probability at least 1 − δ, the algorithm call A(O, x) outputs a
real number which lies in some possibly-unbounded interval IO,x. Then there is a randomised
oracle algorithm A′ such that:

(i) A′ has the same inputs as A together with a rational γ ∈ (0, 1);
(ii) A′ has worst-case running time O(log(1/γ) · T (x));
(iii) A′ has worst-case oracle cost O(log(1/γ) · C(x));
(iv) For all possible inputs (O, x), with probability at least 1 − γ, the algorithm call A′(O, x)

outputs a real number which lies in IO,x.

Proof. Write ξ = 1 − 1/(2(1 − δ)), and note that ξ ∈ (0, 1) since δ ∈ [0, 1/2). Given oracle
input O and non-oracle inputs x ∈ X and γ ∈ (0, 1), the algorithm A′ runs A(O, x) a total
of N := ⌈6 ln(2/γ)/ξ2⌉ times using independent randomness and returns the median of
the outputs, treating any non-numerical outputs of A as −1. Parts (i)–(iii) are immediate.
Moreover, let M be the number of outputs of A which lie in IO,x. If M > N/2, then the
output of A′ also lies in IO,x. Since E(M) ≥ (1 − δ)N , it follows that

P(A′(O, x, γ) ∈ IO,x) ≥ P(M ≥ N/2) ≥ P
(
M ≥ E(M)/(2(1 − δ))

)
≥ P

(
|M − E(M)| ≥ ξ E(M)

)
Since M is a binomial variable, by the Chernoff bound of Lemma 13 it follows that

P(A′(O, x, γ) ∈ IO,x) ≥ 1 − 2e−ξ2 E(M)/3 ≤ 1 − 2e−ξ2N/6 ≥ 1 − γ ,

as required. ◀

2.2.3 Algebraic results
In proving our lower bounds, we will lower-bound the cost of a deterministic approximate
counting algorithm in terms of the sizes of the queries it uses; we will then need to maximise
this bound over all possible sets of query sizes to put our lower bound into closed form. A key
part of this argument will be Corollary 22, stated below. In order to prove this Corollary 22,
we first state a standard generalisation of Jensen’s inequality due to Karamata.

H. Dell, J. Lapinskas and K. Meeks 23

▶ Definition 20. Let t be a positive integer and let x⃗, y⃗ ∈ Rt. We say that y⃗ majorises x⃗ and
write y⃗ ≻ x⃗ or x⃗ ≺ y⃗ if

(i) x1 ≥ · · · ≥ xt and y1 ≥ · · · ≥ yt;
(ii) x1 + · · · + xt = y1 + · · · + yt; and
(iii) for all m ∈ [t − 1], x1 + · · · + xm ≥ y1 + · · · + ym.

▶ Lemma 21 (Karamata’s inequality, eg. see [32, Theorem 12.2]). Let I be an interval in R
and let ϕ : I → R be a convex function. Let t be a positive integer and let x⃗, y⃗ ∈ Rt. If x⃗ ≺ y⃗,
then

t∑
i=1

ϕ(xi) ≤
t∑

i=1
ϕ(yi) .

▶ Corollary 22. Let r ≥ α ≥ 0. Let c > 0, let t be a positive integer and let s⃗ ∈ [0, c]t. Let
W > 0, and suppose that

∑t
i=1 sα

i ≤ W . Then we have
t∑

i=1
sr

i ≤ Wcr−α .

Proof. First observe that if α = 0 then t ≤ W by hypothesis; thus
∑

i sr
i ≤ tcr ≤ Wcr−α as

required. For the rest of the proof, we assume that α > 0. Further, without loss of generality,
we may assume that s1 ≥ · · · ≥ st and that

∑
i sα

i = W (by increasing s⃗ and t if necessary).
We apply Lemma 21, taking ϕ(x) = xr/α, xi = sα

i for all i ∈ [t], and

yi =

cα if i ≤ ⌊W/cα⌋,

W − ⌊W/cα⌋cα if i = ⌊W/cα⌋ + 1,

0 otherwise .

Observe that ϕ is convex since r ≥ α and that
∑

i xi =
∑

i yi = W by hypothesis. Further,
y⃗ ≻ x⃗ — indeed, (i) and (ii) of the definition are immediate, and for all m ∈ [t − 1] we have
x1 + · · · + xm ≤ min{W, mcα} = y1 + · · · + ym. Thus Lemma 21 applies and we obtain

t∑
i=1

sr
i =

t∑
i=1

ϕ(xi) ≤
t∑

i=1
ϕ(yi) = ⌊W/cα⌋cr + (W − ⌊W/cα⌋cα)r/α . (2.2.4)

Observe that

(W − ⌊W/cα⌋cα)r/α = (W/cα − ⌊W/cα⌋)r/α · cr ≤ (W/cα − ⌊W/cα⌋)cr ,

where the inequality follows since W/cα − ⌊W/cα⌋ < 1 by definition and α ≥ r. The result
therefore follows from (2.2.4). ◀

Finally, the following bound on binomial coefficients is folklore.

▶ Lemma 23. Let S be an arbitrary set, and let |S| ≥ a ≥ b ≥ 0. Then we have(
|S| − a

b

)
≥ |S|b

(2a)a
.

Proof. If |S| ≥ 2a, then we have(
|S| − a

b

)
≥ (|S| − a)b

bb
≥ (|S|/2)b

bb
≥ |S|b

(2a)a
.

If instead |S| < 2a, then we have(
|S| − a

b

)
≥ 1 ≥ |S|b

(2a)a
. ◀

24 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

2.3 Efficiently sampling small random subsets
Let U = {1, . . . , n} be a universe of size n and let i be an integer with 0 ≤ i ≤ O(log n).
How can we sample a random set X ⊆ U such that each element u ∈ U is picked with
independent probability 2−i? Naively, we would do this by flipping a 2−i-biased coin for each
element u ∈ U , which overall takes time O(n). This will be too slow for our purposes, so we
give an improved algorithm in SampleSubset with running time O(i + n/2i) and prove its
correctness in Lemma 26 (the goal of this subsection).

As a key subroutine of SampleSubset, we will need to sample from a binomial distribution
Bin(n, 1/2i). In the real-RAM model, there is a simple and highly-efficient algorithm for this
(namely drawing a uniformly random element from [0, 1] and using the inverse method), and
more sophisticated methods are available (e.g., see Fishman [18]). However, as we work in
the word-RAM model (see Section 2.1.2) and e.g.

(
n

n/2
)

is a Θ(n)-bit number, the problem
requires more thought. Bringmann [11, Theorem 1.19] provides a word-RAM algorithm to
sample from Bin(n, 1

2) in expected constant time.

▶ Lemma 24 (Bringmann [11, Theorem 1.19]). In the word-RAM model with Θ(log n) bits
per word, a binomial random variable Bin(n, 1

2) can be sampled in expected time O(1).

Farach-Colton and Tsai [16, Theorem 2] show how to turn a sampler for Bin(n, 1
2) into a

sampler for Bin(n, p). We will only need the special case where 1/p is a power of two. In
this case the methods of [16] yield a much faster sampler, but this is not formally stated.
Since the p = 1/2i case is far simpler than the general case, for the convenience of the reader
we prove our own self-contained corollary to Lemma 24 rather than analysing [16] in depth.

▶ Corollary 25. On the word-RAM with w = Ω(log n), given n and i, a binomial random
variable Bin(n, 2−i) can be sampled in expected time O(i).

Proof. We can sample from Bin(n, 2−i) by tossing n fair coins in i rounds: In round j = 1,
all coins are tossed, and in round j > 1, all coins that turned up heads in round j − 1 are
tossed again. After round j = i, we count how many coins show heads and this is our sample
from Bin(n, 2−i), because the probability that any specific coin survives all rounds is exactly
2−i.

We can efficiently simulate this procedure as follows: In round j = 1, we sample n1 from
Bin(n, 1

2). In round j > 1, we sample nj from Bin(nj−1, 1
2). We return ni as our sample from

Bin(n, 2−i). Thus, all that is needed is to draw i samples from Bin(n′, 1
2) using Lemma 24

for various values of n′ ≤ n. Therefore, the overall expected running time is O(i). ◀

We now apply Corollary 25 to implement SampleSubset.

▶ Lemma 26. SampleSubset is correct and runs in expected time O(i + 2−in).

Proof. We first show that the random set X is indeed distributed as claimed for i ≥ 3. To
this end, let Y be a random subset {1, . . . , n} that is sampled by including each element u ∈
{1, . . . , n} with independent probability 2−i. We claim that X and Y follow the same
distribution. Indeed, |Y | follows Bin(n, 2−i). By symmetry, conditioned on |Y |, the set Y

is equally likely to be any size-|Y | subset of {1, . . . , n}. Hence, X and Y follow the same
distribution, as required.

Now we describe how exactly the algorithm is implemented in order to achieve the
expected running time. For i ≤ 2, the algorithm runs in time O(n) as required. For i ≥ 3,
line 4 takes time O(i) by line 25. In order to achieve expected time O(2−in), line 5 is
implemented using a hash set: We sample uniformly random elements from {1, . . . , n} (with

H. Dell, J. Lapinskas and K. Meeks 25

Algorithm 1 SampleSubset

Input : Integers n and i.
Output : A random set X ⊆ {1, . . . , n} that includes each element with independent

probability 2−i.
1 begin
2 if i ≤ 2 then
3 Sample X naively by independently flipping a 2−i-biased coin for each element

of {1, . . . , n}
4 else
5 Sample S from the binomial distribution Bin(n, 2−i) using Corollary 25.
6 Sample X as a uniformly random size-S subset of {1, . . . , n}.

replacement) and one by one add them to the hash set until the hash set contains exactly S

distinct elements. Each hash set operation takes O(1) expected time, so it remains to argue
how many elements we have to sample.

Conditioned on S ≤ 7
8 n, at any point it takes at most 8 samples in expectation until a

new element is added to the hash set. Overall, the expected total running time to sample S

distinct elements in line 5 is thus at most 8S ≤ O(2−in).
Conditioned on S > 7

8 n, a coupon collector argument shows that it takes an expected
number O(n log n) of samples until we have seen S distinct elements. This would be too
large, so it remains to prove that the probability that S > 7

8 n holds is vanishingly small.
Indeed, S is binomially distributed with mean E(S) = 2−in. Let z = 7

8 n and note that
z ≥ 7 · 2−3 ≥ 7E(S) holds by i ≥ 3. Thus, we have P(S ≥ z) ≤ e−z = e−7n/8 by Lemma 14.
By O(e−7n/8n log n) ≤ O(1), the running time in the event Si,j > 7

8 n vanishes in expectation.
To conclude, the overall expected time of lines 4 and 5 is O(i + 2−in) as claimed. ◀

Later, it will be technically convenient to make the constant in the expected running
time of SampleSubset explicit.

▶ Definition 27. Let Csample be such that for all n and i, SampleSubset(n, i) runs in
expected time at most Csample(i + 2−in).

3 Independence oracle with cost

In this section, we study the edge estimation problem for IND-oracle algorithms, which are
given access to the independence oracle IND(G) in k-uniform hypergraphs G with a cost
function cost : 2V (G) → R≥0. The cost can be thought of as the running time of a subroutine
that detects the presence of an edge, but it can also be used to model other types of cost.
We restrict our attention to cost functions that only depend on the size of the query, so we
write cost(S) = cost(|S|), and in this case we assume that the cost is regularly-varying with
index α ∈ [0, k]. In particular, in the case α = 0, the cost corresponds to the number of
queries and therefore yields bounds for independence oracles without costs.

In Section 3.1, we prove some simple algebraic lemmas that we will use to express our
bounds in terms of the parameter g(k, β) already introduced in Theorem 1. We then present
an IND-oracle algorithm in Section 3.2 that approximately counts edges of a given k-uniform
hypergraph, proving the upper bound part of Theorem 39 and, as a corollary, the upper
bound part of Theorem 1. Finally, in Section 3.3 we prove that the total cost incurred by

26 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

our IND-oracle algorithm is optimal up to a polylogarithmic factor, establishing Theorem 41
and, as a corollary, the lower bound part of Theorem 1.

3.1 Algebraic preliminaries
Recall the following notation from the statement of Theorem 1.

▶ Definition 28. For all real numbers k and β, we define

g(k, β) = 1
k

·
⌊

k − β

2

⌉
·
(

k − β −
⌊

k − β

2

⌉)
.

In Theorem 1, g(k, β) will arise from a maximum over log n iterations of the main loop in
our oracle algorithm; in Theorem 41, it will arise from a maximum over k possible choices of
input distribution for our lower bound. The arguments required are very similar in both cases,
so we prove the necessary lemmas in this combined section. Our goals will be Lemma 31 and
Corollary 33; these are bounds on algebraic expressions which arise naturally in bounding
the total running time and oracle cost of UncolApprox above in Section 3.2 and in bounding
the required oracle cost below in Section 3.3. The proofs are standard applications of algebra
and elementary calculus, and may be skipped on a first reading. We first prove some simple
bounds on g.

▶ Lemma 29. For all k ≥ 0 and β ∈ [0, k], we have g(k, β) ≤ (k − β)2/(4k). In particular,
g(k, β) ≤ k/4.

Proof. Fix k and β ∈ [0, k], and let h(x) = x(k − β − x)/k. Then since β ∈ [0, k], h is a
parabola maximised at x = (k − β)/2, so it follows that

h(k − β) ≥ h(⌊(k − β)/2⌉) = g(k, β).

We have h(k − β) = (k − β)2/(4k), so the first part of the result follows. The second part is
then immediate on observing that (k − β)2 is maximised over β ∈ [0, k] at β = k/2. ◀

▶ Lemma 30. For all integers k ≥ 2 and all β ∈ [0, k], we have g(k, β) ≥ g(k, 0) − β/2.

Proof. We first claim that for fixed k, g(k, β) is continuous in β. This is immediate for all
values of β except those at which the value of ⌊(k − β)/2⌉ “jumps”, i.e. those values of β such
that k − β is an odd integer. For such values of β, we must show that the limit of g(k, x) is
the same as x converges to β from above and below. Suppose k − β is indeed an odd integer;
then we have

lim
x↑β

g(k, x) = 1
k

· k − β − 1
2 ·

(
k − β − k − β − 1

2

)
= (k − β − 1)(k − β + 1)

4k
,

lim
x↓β

g(k, x) = 1
k

· k − β + 1
2 ·

(
k − β − k − β + 1

2

)
= (k − β + 1)(k − β − 1)

4k
.

Thus limx↑β g(k, x) = limx↓β g(k, x) as required, and g(k, β) is continuous in β as claimed.
We next observe that for all non-negative integers x and all fixed k ≥ 2, g(k, β) is

differentiable over β ∈ (x, x+1), since ⌊(k −β)/2⌉ is constant on this interval. The derivative
is given by

∂

∂β
g(k, β) = − 1

k

⌊k − β

2

⌉
≥ − 1

k
· lim

β↓0

⌊k − β

2

⌉
≥ −1

2 ,

H. Dell, J. Lapinskas and K. Meeks 27

1

2

3

0 10 20 30 40 50 60
𝑖

𝑘/4

1

Figure 2 Depicted are the functions i 7→ 1
k

f1(L̂i, γ̂i) () and i 7→ 1
k

f2(L̂i, γ̂i) () from Lemma 31
for n = 260 and k = 12. For each fixed integer L ∈ {0, . . . , k − 1}, the functions are linear in γ,
which gives rise to the step artefacts; when γ is fixed, the functions are degree-2 polynomials in L,
which causes the overall parabolic shape. When k and log n are even, the overall maximum is equal
to k

4 and achieved at i = log n
2 .

where the final inequality follows since k ≥ 2 is an integer and β > x ≥ 0. Since we have
already shown that on fixing k and viewing g as a function of β, g is continuous everywhere
and only fails to be differentiable at integer values, it follows by the mean value theorem
that for all β ≥ 0, g(k, β) ≥ g(k, 0) − β/2 as required. ◀

We now prove our first key upper bound. We will use this both directly to bound the
running time of UncolApprox and in the proof of Lemma 32.

▶ Lemma 31. Fix integers k ≥ 2 and n ≥ 1. For all integers i ≥ 0, let L̂i ∈ N and γ̂i ∈ [0, 1)
be the unique values with 2ik = nL̂i+γ̂i . Let

Fi = n(L̂i+γ̂i)(k−L̂i)/k · max{2−i, n−γ̂i} (3.1.1)

For all non-negative reals β, we have

max
i

Fi · 2−iβ = max
L∈{0,...,k−⌈β⌉}

nL(k−L−β)/k = ng(k,β) . (3.1.2)

Moreover, if β > k − 1 and i ≥ (log n)/k, then we have

Fi · 2−iβ ≤ n−(β−(k−1)).

Proof. Using 2i = n(L̂i+γ̂i)/k and taking base-n logarithms of both sides of Equation (3.1.1),
we get logn(Fi · 2−iβ) = 1

k max{f1(L̂i, γ̂i), f2(L̂i, γ̂i)} where f1, f2 : N × [0, 1] → R are the
functions depicted in Figure 2 and defined via

f1(L, γ) = (L + γ)(k − L) − (L + γ) − (L + γ)β = (L + γ)(k − L − 1 − β) ,

f2(L, γ) = (L + γ)(k − L) − kγ − (L + γ)β = (L + γ)(k − L − β) − kγ .

We now provide an upper bound for both functions f1 and f2. Both functions are linear in γ,
and thus the maximum is achieved at γ = 0 or γ = 1. Thus it remains to upper bound the
following four functions of L:

f1(L, 0) = L(k − L − 1 − β) ,

f1(L, 1) = (L + 1)(k − L − 1 − β) ,

f2(L, 0) = L(k − L − β) ,

f2(L, 1) = (L + 1)(k − L − β) − k .

28 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Note that for all L, f1(L, 1) = f2(L + 1, 0), f1(L, 0) ≤ f2(L, 0), and f2(L, 1) ≤ f2(L, 0) hold;
thus

max
i

logn(Fi · 2−iβ) = 1
k

max
i

(
max

{
f1(L̂i, γ̂i), f2(L̂i, γ̂i)

})
= 1

k
max

L∈{0,...,k}
f2(L, 0).

By elementary calculus, f2(L, 0) is maximised over integer values of L at L = ⌊(k − β)/2⌉.
Moreover, this value of L is at most k − ⌈β⌉; indeed, if β ≤ k − 1 then we have ⌊(k − β)/2⌉ =
⌊(k−β+1)/2⌋ ≤ (k−β+1)/2 ≤ k−β, and if β > k−1 then we have ⌊(k−β)/2⌉ = k−⌈β⌉ = 0.
Thus we have

max
i

Fi · 2−iβ = n
1
k max0≤L≤k−⌈β⌉(f2(L,0)) = n

1
k f2(⌊ k−β

2 ⌉, 0) = ng(k,β) ,

as required.
Finally, suppose β > k − 1 and i ≥ (log n)/k, so that L ≥ 1. Arguing as before,

logn(Fi · 2−iβ) ≤ 1
k

max
L≥1

f2(L, 0) = max
L≥1

L(k − L − β)

= max
L≥1

(
L(1 − L) − L(β − (k − 1))

)
.

The function inside the maximum is decreasing in L for L ≥ 1, so we have logn(Fi · 2−iβ) ≤
−(β − (k − 1)) and the result follows. ◀

We now state what is essentially our second key lemma of the section; however, for
technical convenience, we replace cost functions by their associated polynomials. We will
then use this lemma to prove the actual result we need in Corollary 33.

▶ Lemma 32. Fix integers k ≥ 2 and n ≥ 1. For all integers i ≥ 0, let L̂i ∈ N and γ̂i ∈ [0, 1)
be the unique values with 2ik = nL̂i+γ̂i . Let

Fi = n(L̂i+γ̂i)(k−L̂i)/k · max{2−i, n−γ̂i} .

For all β ∈ [0, k], we have

max
i

Fi ·
(

max{n/2i, n1/4}
)β = max

r∈{⌈β⌉,...,k}
nr(k−r+β)/k = nβ+g(k,β) .

Moreover, if β > k − 1 and i ≥ (log n)/k, then we have

Fi ·
(

max{n/2i, n1/4}
)β ≤ nmax{3β/4,k−1} .

Proof. Observe that by Lemma 31 applied with β = 0, Fi ≤ ng(k,0). By Lemma 30, it follows
that Fi ≤ ng(k,β)+β/2, and so

Fin
β/4 ≤ ng(k,β)+3β/4 < nβ+g(k,β) . (3.1.3)

On the other hand, by Lemma 31 we have

max
i

Fi(n/2i)β = ng(k,β)+β .

It follows that

max
i

Fi ·
(

max{n/2i, n1/4}
)β = ng(k,β)+β ,

H. Dell, J. Lapinskas and K. Meeks 29

as required. Moreover, by substituting L = k − r and applying Lemma 31, we have

max
r∈{⌈β⌉,...,k}

nr(k−r+β)/k = max
L∈{0,...,k−⌈β⌉}

n(k−L)(L+β)/k

= max
L∈{0,...,k−⌈β⌉}

nβ+L(k−L−β)/k = nβ+g(k,β) ,

again as required.
Finally, suppose β > k − 1 and i ≥ (log n)/k. Then by Lemma 31 we have

Fi(n/2i)β ≤ nβ−(β−(k−1)) = nk−1 .

Moreover, in this case we have g(k, β) = 0 and so (3.1.3) implies that Fin
β/4 ≤ n3β/4. The

result therefore follows. ◀

Finally, we restate Lemma 32 in terms of a general slowly-varying cost function; this is
the form of the result we will actually use. Here C+(n) will be the upper bound on oracle
cost we derive in Section 3.2.

▶ Corollary 33. Let cost be a regularly-varying parameterised cost function with parameter k

and slowly-varying component σ, and let αk ∈ [0, k] be the index of costk for all k ≥ 2. For
each integer i, let L̂i(n) ∈ N and γ̂i(n) ∈ [0, 1) be the unique values with 2ik = nL̂i(n)+γ̂i(n),
and let

Fi(n) = n(L̂i(n)+γ̂i(n))(k−L̂i(n))/k · max{2−i, n−γ̂i(n)} ,

C+
k (n) = max

0≤i≤log n−1

(
Fi(n) · costk(max{n/2i, n1/4})

)
.

Then for all sequences k = k(n) with k(n) ∈ {2, . . . , n} for all n, we have:
(i) C+

k (n) = ng(k,αk)+o(1)costk(n) as n → ∞; and
(ii) if σ is eventually non-decreasing or if there exists η > 0 such that αk ≥ k − 1 + η for

all k, then C+
k (n) = O(ng(k,αk)costk(n)) as n → ∞.

Proof. Let σ be the slowly-varying component of cost, so that costk(n) = nαk ℓ(n). By Lemma 32
applied with β = αk, we have

C+
k (n) = max

i

(
Fi(n) · (max{n/2i, n1/4})αk · σ

(
max{n/2i, n1/4}

))
≤ ng(k,αk)+αk · max

i

(
σ
(

max{n/2i, n1/4}
))

= ng(k,αk)costk(n) · max
i

(
σ
(

max{n/2i, n1/4}
)

σ(n)

)
. (3.1.4)

Since σ is slowly-varying, part (i) follows immediately from (3.1.4). Moreover, if σ is
eventually non-decreasing, then since max{n/2i, n1/4} ≤ n, (ii) follows from (3.1.4). Finally,
suppose αk ≥ k − 1 + η for some fixed η > 0. We split into two cases depending on i.

If i < (log n)/k, then we have L̂i(n) = 0, so Fi(n) = 1. By Lemma 8(ii) and (iii), for
sufficiently large n we have costk(n/2i) ≤ costk(n)/2iαk/2 = O(costk(n)) and costk(n1/4) ≤
nβ/2 = o(costk(n)); it follows that

Fi(n)costk(max{n/2i, n1/4}) = O(costk(n)) .

30 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

If instead i ≥ (log n)/k, then by Lemma 32 we have

Fi(n)costk(max{n/2i, n1/4}) = Fi(n) · (max{n/2i, n1/4})αk · σ
(

max{n/2i, n1/4}
)

≤ nmax{3αk/4,k−1} · σ
(

max{n/2i, n1/4}
)

= costk(n) · n−αk+max{3αk/4,k−1} ·
σ
(

max{n/2i, n1/4}
)

σ(n) .

Observe that αk/4 ≥ (k − 1)/4 ≥ 1/4, and that αk − k − 1 ≥ η, which is a constant; by
Lemma 8(iii), it follows that the n−αk+max{3αk/4,k−1} term dominates the σ(·) terms and so
the left-hand side is O(costk(n)). We have therefore shown that C+

k (n) = O(costk(n)) in all
cases, as required. ◀

3.2 Oracle algorithm for edge estimation
Our IND-oracle algorithm for the edge estimation problem has two components:
1. A randomised IND-oracle algorithm SparseCount by Meeks [28, Theorem 6.1] to enu-

merate all edges of a given hypergraph when given access to the independence oracle.
SparseCount is an exact enumeration algorithm, and its running time can be tightly con-
trolled by setting a threshold parameter M and aborting it after M edges are seen. This
version of the algorithm requires only roughly O(M) queries, but may return TooDense
to indicate that the hypergraph has more than M edges.

2. A randomised IND-oracle algorithm UncolApprox that invokes SparseCount on smaller
and smaller random subgraphs until they are sparse enough so that SparseCount succeeds
at enumerating all edges under the time constraints. We describe UncolApprox in
Section 3.2.2. From the exact numbers of edges that were observed in several independently
sampled random subgraphs, the algorithm then calculates and returns an approximation
to the number of edges in the whole hypergraph.

We give a self-contained overview of SparseCount in Section 3.2.1. We then set out
UncolApprox in Section 3.2.2, describe the intuition behind it, and sketch a proof of its
correctness. We then prove its correctness formally in Section 3.2.3, and bound its running
time in Sections 3.1 and 3.2.4.

3.2.1 SparseCount: Enumerate all edges in sparse hypergraphs
All the properties of SparseCount we need will follow from [28], but for completeness
we sketch how SparseCount works and give some intuition. Note that the version of
SparseCount described in [28, Algorithm 1] gives a deterministic guarantee of correctness
when supplied with a deterministic oracle. For our purposes this is unnecessary, and so our
sketch will be of a slightly simpler version; in [28] our uniformly random sets are replaced
with a deterministic equivalent using k-perfect hash functions.

SparseCount has access to a k-uniform hypergraph through its independence oracle.
Moreover, SparseCount is given a set U ⊆ V (G), the integer k, and a threshold parameter
M ≥ 1 as input. SparseCount(IND(G), U, k, M) works as follows:
1. Sample t uniformly random colourings c1, . . . , ct : U → [k] for t = Θ(e2k log|U |).
2. For each i from 1 to t, run a subroutine RecEnum to recursively enumerate and output

all edges e that are colourful with respect to ci. Keep track of the number of unique
edges seen so far by incrementing a counter each time RecEnum outputs an edge e that is
colourful with respect to ci and not colourful with respect to any c1, . . . , ci−1.

H. Dell, J. Lapinskas and K. Meeks 31

3. If at any point the counter exceeds M , abort the execution immediately and return
TooDense. Otherwise, return the final contents of the counter.

Next, we describe the missing subroutine RecEnum that is called by SparseCount. The
input for RecEnum is a tuple (U1, . . . , Uk) of disjoint subsets of U as well as the threshold
parameter M ≥ 1. In the initial call, Uj is the jth colour class of some colouring ci from
step 1 of SparseCount. RecEnum(IND(G), U1, . . . , Uk) then proceeds as follows:
1. If the set e with e = U1 ∪ · · · ∪ Uk has size at most k, we have |U1| = · · · = |Uk| = 1, and

e is an edge (as determined by a call IND(G)(e) to the independence oracle of G), then
output e; otherwise, do nothing.

2. Otherwise, independently and uniformly at random split each part Uj into two disjoint
parts Uj0 and Uj1 of near-equal size, and recurse on all tuples (U0b0 , . . . , Ukbk

) for all bit
vectors b ∈ {0, 1}k for which G[U0b0 ∪· · ·∪Ukbk

] contains at least one edge (as determined
by a call to the independence oracle on G[U0b0 ∪ · · · ∪ Ukbk

]).

The intuition for the correctness of the algorithm is as follows: By standard colour-coding
arguments, with high probability every edge is colourful with respect to at least one of the t

random colourings ci and so RecEnum will find it (regardless of how parts are split in step 2).
The running time of RecEnum is not affected too much by edges that are not colourful,
because with high probability a large proportion of edges are colourful and uncoloured edges
get deleted quickly when the subsets are sampled. We encapsulate the relevant properties of
SparseCount in the following lemma.

▶ Lemma 34. There is a randomised IND-oracle algorithm SparseCount(IND(G), U, k, M, δ)
with the following behaviour:

SparseCount takes as input a set U ⊆ V (G), integers k and M , and a rational number δ >

0.
SparseCount may output the integer e(G[U]), TooDense (‘The hypergraph G[U] definitely
has more than M edges’), or RTE (‘Allowed running time exceeded’).
If e(G[U]) ≤ M holds, then SparseCount(U, k, M, δ) outputs either e(G[U]) or RTE;
otherwise, it outputs either TooDense or RTE.
SparseCount invokes the uncoloured independence oracle of G at most

O
(

log 1
δ · e2k log2|U | · min{M, e(G[U])}

)
times, and runs in time at most

O
(

log 1
δ · e2k log2|U | · min{M, e(G[U])} · |U |

)
aside from that.
The probability that SparseCount outputs RTE is at most δ.

We omit a formal proof of Lemma 34, since it follows easily from Meeks [28, Theorem 1.1]
with a very similar argument to [28, Theorem 6.1], with the following minor caveats. First,
we have applied the standard probability amplification result of Lemma 18 to pass from
bounds on the expected running time to deterministic bounds that hold with probability
at least 2/3, and from there we have applied Lemma 19 to pass to bounds that hold with
probability 1 − δ. (We take the cost function to be the number of queries, and the interval
of Lemma 19 to be {e(G[U])}.) Second, the theorem statements in [28] do not explicitly
separate bounds on the number of oracle queries from the total running time without oracle
queries, and in particular this means the dependence on n in their running time bounds is
stated as nO(1). However, from the proof of [28, Theorem 1.1] in Section 4 we see that there
are O(ek+o(k)e(G[U]) log2 n) total oracle calls, and that the running time without oracle calls
is O(ek+o(k)e(G[U])n log2 n).

32 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

3.2.2 UncolApprox: Approximately count all edges in hypergraphs
In this section, we analyse our main algorithm, UncolApprox, which is laid out as Algorithm 2.
We write n for the number of vertices of G and m = e(G) for the number of edges.

The basic idea of the algorithm is both simple and standard. In the main loop over
i = 0, . . . , log n of lines 6–23, for a suitably-chosen integer ti, we sample ti independent
random subsets Ui,j of V (G), including each element with probability pi = 1/2i. We then
count the edges in each e(G[Ui,j]) using SparseCount with a suitably-chosen threshold Mi,j .
It is easy to see by linearity of expectation that E(e(G[Ui,j])) = pk

i e(G), so if our calls to
SparseCount succeed then in expectation we return e(G) in line 23.

The main subtlety of UncolApprox is in optimising our choice of parameters to minimise
the running time while still ensuring correctness with high probability. The intuition here
will tie into our lower bound proof in Section 3.3, so we go into detail rather than simply
presenting calculations.

By line 5, we can assume without loss of generality that n is a power of two, which
simplifies the notation. Moreover, we write m = nδ and split δ into its integral part L = ⌊δ⌋
and its rational part γ = δ − L, and we remark that m ≤

(
n
k

)
< nk and thus 0 ≤ L ≤ k − 1

and γ ∈ [0, 1) holds.
The first parameter in UncolApprox is pi = 2−i, which is the probability of independently

including each vertex v in the set Ui,j . Note that each edge e ∈ E(G) has k elements and
thus survives in G[Ui,j] with probability pk

i = 2−ik. Therefore, the expected number of
edges in G[Ui,j] is pk

i m, and for a given iteration i, the expected total number of edges
Ti :=

∑
j e(G[Uj]) is tip

k
i m. In the following definition, we define i∗ as the largest integer

such that this expected value remains at least 1.

▶ Definition 35. Given an m-edge graph G, let i∗ = i∗(G) be the largest value of i such that
pk

i m ≥ 1 holds (where pi = 2−i as in UncolApprox).

Note that i∗ ≤ log n − 1 follows from m < nk and pk
i∗m ≤ 2k+1. We will show in Lemma 36

using Chebyshev’s inequality that Ti is very likely to be an ε-approximation of E(Ti) whenever
i ≤ i∗. Observe that if this holds, then whenever Ti ≤ Mi, all iterations of SparseCount
succeed and UncolApprox outputs a valid ε-approximation of m.

Given Lemma 36, the reason UncolApprox is correct will be as follows: Whenever i ≤ i∗,
if all calls to SparseCount succeed in iteration i, we output an ε-approximation to m as
required. The parameter Mi is chosen in such a way that if the number of edges is roughly
2ik, then all calls to SparseCount are indeed likely to succeed. When i = i∗ we do indeed
have m ≈ 2ik, so we are very likely to output a valid ε-approximation in this iteration if we
have not already done so.

For the correctness of UncolApprox, the concentration analysis of Lemma 36 is therefore
crucial. The values L̂i and γ̂i with 2ik = nL̂i+γ̂i arise naturally in this analysis. Recall that ti

is the number of random graphs G[Ui,j] we count to estimate m; to minimise the running time,
we want to choose ti as small as possible while maintaining concentration of Ti, so we choose
it to scale with the maximum possible value of Var(Ti) on the assumption that m ⪅ 2ik.
This maximum value always arises when m ≈ 2ik, and there are two possible “extreme cases”
of input graphs G with this edge count for which Var(Ti) could be near-maximum. The value
of γ̂i determines which case dominates, and hence which value we should take for ti. (This is
the source of the maximum in line 9.)

Suppose for simplicity that m is a power of 2k, writing m = 2ik = nL̂i+γ̂i . The first
extreme case is a single-rooted star graph. Such a graph G contains a single size-(k − L̂i − 1)
root R ⊆ V (G) such that every edge of G contains R. Note that there are roughly nL̂i+1

H. Dell, J. Lapinskas and K. Meeks 33

Algorithm 2 UncolApprox
This IND-oracle algorithm applies SparseCount to carefully-chosen numbers of successively
sparser random subgraphs of G until the samples become sparse enough so that SparseCount
stops returning TooDense and starts consistently returning accurate edge counts. At this
point, the algorithm takes the average of the edge counts over all samples at that density and
renormalises to obtain the final estimate.

Oracle: Independence oracle IND(G) of an n-vertex k-hypergraph G.
Input: n, k ∈ N and ε ∈ (0, 1).
Output: x ∈ Q that, with probability at least 2/3, is an ε-approximation to e(G).

1 begin
2 if nk ≤ ε−2 or n ≤ k5 then
3 Enumerate all size-k subsets of V (G), check the independence oracle for each

to compute e(G) by brute force, and return this value.
4 if n is not a power of two then
5 Set n = 2⌈log n⌉ to add at most n − 1 padding vertices. Before sending any

future query to the oracle, we remove all padding vertices from the query.
6 for i = 0, . . . , log n − 1 do
7 Set the vertex survival probability pi = 1/2i.
8 Set L̂i ∈ {0, 1, . . . , k} and γ̂i ∈ { 0

log n , 1
log n , . . . , log n−1

log n } to be the unique
values that satisfy nL̂i+γ̂i = 2ik.

9 Set Fi = n(L̂i+γ̂i)(k−L̂i)/k · max{2−i, n−γ̂i}.
10 Set ti = ⌈ε−210k22k log n · Fi⌉ and set Mi = 2k+1 · ti.
11 for j = 1, . . . , ti do
12 Use SampleSubset (see Lemma 26) to efficiently sample a random

subset Ui,j ⊆ V (G) that includes each element with independent
probability pi. If the total running time of all SampleSubset calls ever
exceeds 20Csample

∑log n−1
i=0 ti(i + n/2i), then abort and return RTE.

13 if |Ui,j | > max{7pin, 7k ln n} then
14 Return RTE.
15 Let Ci,j = SparseCount(IND(G), Ui,j , k, Mi,j , n−5k/120).
16 if Ci,j = TooDense then
17 Continue in line 7 with the next iteration of the outer for-loop.
18 else if Ci,j = RTE then
19 return RTE.
20 else
21 Set Mi,j+1 to Mi,j − Ci,j .

22 if none of Ci,1, . . . , Ci,ti are TooDense then
23 return 1

pk
i

ti

∑ti

j=1 Ci,j .

34 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

possible edges containing R, so G can indeed have roughly m edges since 0 ≤ γ̂i < 1. In
order for Ti to be an ε-approximation to E(Ti), it is necessary that the algorithm finds some
edge during iteration i, so at least one set Ui,j must contain R. Since R ⊆ Ui,j happens with
probability pk−L̂i−1

i , we need 1/pk−L̂i−1
i samples in expectation until we see even a single

edge, where

1/pk−L̂i−1
i = 2i(k−L̂i−1) = n(L+γ̂i)(k−L̂i)/k · 2−i (3.2.1)

This shows why Fi in line 9 can’t be much smaller if the first term of the maximum dominates.
(Our choice of ti then includes some additional minor factors to amplify the probability of
producing an ε-approximation.)

The second extreme case is a many-rooted star graph. Such a graph G contains ⌈nγ̂i⌉
disjoint roots Rx of k − L̂i vertices each. The edges of the graph are precisely the size-k sets
e that contain at least one Rx. Observe that each root has roughly nL̂i incident edges, so
G has roughly nL̂i+γ̂i = m edges. Again, in order for Ti to be an ε-approximation to E(Ti)
the algorithm must find some edge, so some set Ui,j must contain a root. Each set Ui,j has
probability pk−L̂i

i to contain any particular root, and thus probability at most pk−L̂i
i · nγ̂i to

contain at least one root. Thus, the expected number of samples until we have seen a single
edge is at least:

1/
(
pk−L̂i

i · nγ̂i
)

= 2i(k−L̂i) · n−γ̂i = n(L̂i+γ̂i)(k−L̂i)/k · n−γ̂i (3.2.2)

This shows why Fi in line 9 can’t be much smaller if the second term of the maximum
dominates.

We refrain from making these claims on the optimality of the choice of ti (and thus
the running time of UncolApprox) any more formal, because we provide lower bounds for
any algorithm in Section 3.3. However, we think it is worth giving the intuition since the
proof of the lower bound uses the first extreme case as a source of hard input graphs. (The
calculations in the proof of Lemma 31 show that while the second case is necessary for
correctness — without it we will take too few samples to obtain concentration on our output
when γ̂i is close to 1 — it does not end up affecting the running time.)

3.2.3 Correctness of UncolApprox

In the following lemma, we show that, for every iteration i ≤ i∗ and with high probability, the
average and normalised number of edges in the subgraphs G[Ui,j] is a good approximation
to the number of edges in G.

▶ Lemma 36. In UncolApprox, suppose i ≤ i∗(G) and ε ≥ n−k/2. We have

P
(∣∣∣∣e(G) − 1

pk
i ti

ti∑
j=1

e(G[Ui,j])
∣∣∣∣ ≥ ε · e(G)

)
≤ 1

10k log n
.

Proof. We first set out some notation. For convenience, for all 0 ≤ i ≤ log n − 1 and all
j ∈ [ti], let Zi,j = e(G[Ui,j]), let Zi = 1

pk
i

ti

∑ti

j=1 Zi,j , and let m = e(G). In this notation,
our goal is to prove that |Zi − m| ≤ εm with probability at least 1 − 1/(10k log n). We will
prove the result by bounding the variance of Zi above and applying Chebyshev’s inequality;
observe by linearity of expectation that E(Zi) = m.

H. Dell, J. Lapinskas and K. Meeks 35

For all e ∈ E(G), let 1e be the indicator random variable of the event e ⊆ Ui,j . By
linearity of expectation, for all j, we have

Var(Zi,j) = E(Z2
i,j) − E(Zi,j)2 ≤

∑
(e,f)∈E(G)2

e∩f ̸=∅
e̸=f

E(1e1f) =
∑

(e,f)∈E(G)2

e∩f ̸=∅
e ̸=f

p
|e∪f |
i . (3.2.3)

For any set A ⊆ V (G), we write dA for the number of edges in G which contain A. For all
e, f ∈ E(G) we have |e ∪ f | = 2k − |e ∩ f |, so it follows from (3.2.3) that

Var(Zi,j) ≤
k−1∑
ℓ=1

∑
A⊆V (G)

|A|=ℓ

∑
(e,f)∈E(G)2

e∩f=A

p
2k−|A|
i =

k−1∑
ℓ=1

∑
A⊆V (G)

|A|=ℓ

d2
Ap2k−ℓ

i . (3.2.4)

Observe that for any set A of size ℓ ∈ [k − 1], we have dA ≤ min{m, nk−ℓ}; thus by (3.2.4),

Var(Zi,j) ≤
k−1∑
ℓ=1

min{m, nk−ℓ}p2k−ℓ
i

∑
A⊆V (G)

|A|=ℓ

dA. (3.2.5)

For all ℓ ∈ [k − 1], every edge of G contains exactly
(

k
ℓ

)
sets A of size ℓ, and every set A

of size ℓ is contained in precisely dA edges of G. Thus by double-counting,∑
A⊆V (G)

|A|=ℓ

dA =
(

k

ℓ

)
m ≤ 2km . (3.2.6)

It therefore follows from (3.2.5) that

Var(Zi,j) ≤ 2kp2k
i m

k−1∑
ℓ=1

min{m, nk−ℓ}p−ℓ
i . (3.2.7)

Write m = nL+γ , where 0 ≤ γ < 1 and L is an integer. If γ = 0, then the two terms in the
minimum are equal. Otherwise, the first term in the minimum is achieved for L + γ < k − ℓ,
which is equivalent to ℓ ≤ k − L − 1, and the second term is achieved for ℓ ≥ k − L.
Substituting in pi = 2−i, it follows from (3.2.7) that

Var(Zi,j) ≤ 2k−2ikm2
k−L−1∑

ℓ=1
2iℓ + 2k−2ikmnk

k−1∑
ℓ=k−L

(2i/n)ℓ. (3.2.8)

Recall 0 ≤ i ≤ log n. We observe that the terms in the first sum in (3.2.8) are non-
decreasing in ℓ, so the largest term is achieved for ℓ = k − L − 1. Conversely, the terms
of the second sum are non-increasing in ℓ, which means that the largest term is achieved
for ℓ = k − L. Thus, (3.2.8) implies that

Var(Zi,j) ≤ k2−iL−ik+km · max{2−im, nL} = k2−iL−ik+km2 max{2−i, n−γ} . (3.2.9)

For all i, since the Zi,j ’s are i.i.d. and E(Zi) = m holds, by (3.2.9) we have

Var(Zi) = Var(Zi,1)
tip2k

i

≤ k2i(k−L)+k

ti
· E(Zi)2 · max{2−i, n−γ}. (3.2.10)

36 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Now, recall from line 8 of UncolApprox that L̂ := L̂i ∈ N and γ̂ := γ̂i ∈ [0, 1) are defined in
such a way that nL̂+γ̂ = 2ik holds. Since i ≤ i∗ we have 2ik ≤ m, so either we have L̂ = L and
γ̂ ≤ γ or we have L̂ ≤ L − 1. We now claim that in either case, 2i(k−L) · max{2−i, n−γ} ≤ Fi,
where Fi is defined as in line 9 of UncolApprox.

In the first case, where L̂ = L and γ̂ ≤ γ, we have:

2i(k−L) · max{2−i, n−γ} ≤ 2i(k−L̂) · max{2−i, n−γ̂} = Fi (3.2.11)

as claimed. In the second case, we have L̂ ≤ L − 1 and 2i = n(L̂+γ̂)/k, so

2i(k−L) · max{2−i, n−γ} ≤ 2i(k−L̂−1) · 1 = n(L̂+γ̂)(k−L̂)/k · 2−i

≤ n(L̂+γ̂)(k−L̂)/k · max{2−i, n−γ̂} = Fi (3.2.12)

again as claimed. Combining (3.2.11) and (3.2.12) and using our choice of ti in line 10 of
UncolApprox, we can continue our calculation from (3.2.10) to arrive at our final variance
bound of

Var(Zi) ≤ k2kFi

ti
· E(Zi)2 ≤ ε2 · E(Zi)2

10k log n
.

By Chebyshev’s inequality, it follows that

P
(

|Zi − E(Zi)| ≥ εE(Zi)
)

≤ Var(Zi)
ε2 E(Zi)2 ≤ 1

10k log n
.

Since E(Zi) = m = e(G), the claim follows from the definition of Zi. ◀

We now prove correctness of UncolApprox.

▶ Lemma 37. With probability at least 2/3, UncolApprox(IND(G), ε) returns an ε-approximation
to e(G).

Proof. If ε < n−k/2 or n ≤ k5, then the exhaustive search in line 3 produces the exact
number e(G). Now suppose ε ≥ n−k/2 and n ≥ k5. We consider the following events for an
execution of UncolApprox(IND(G), ε):
E1: For all i ≤ i∗, either UncolApprox does not reach iteration i or the value 1

pk
i

ti

∑ti

j=1 e(G[Ui,j])
is an ε-approximation to e(G).

E2: SparseCount never returns RTE, so that UncolApprox does not return RTE in line 19.
E3: All calls to SampleSubset have combined runtime at most R := Csample

∑log n−1
i=0 ti(i +

n/2i), so that UncolApprox does not return RTE in line 12.
E4: All sets Ui,j satisfy |Ui,j | ≤ zi := max{7pin, 7k ln n}, so that UncolApprox does not

return RTE in line 14.

Let E = E1 ∩ E2 ∩ E3 ∩ E4. We will first prove that P(E) ≥ 2/3, and then show that if E
occurs then UncolApprox halts by iteration i∗(G) and returns a valid ε-approximation of
e(G) as required.

For all i ≤ log n − 1, observe that (k − L̂i)/k ≤ 1 and max{2−i, n−γ̂i} ≤ 1; thus
Fi ≤ e(G) ≤ nk. Since ε ≥ n−k/2 and k ≤ n1/5, it follows that

ti ≤ 12ε−2k22knk log n ≤ 12n3k+2/5 log n.

Thus SparseCount is called at most 12n5k times in total. Since we call SparseCount with
parameter δ = 1/(120n5k), it follows from Lemma 34 and a union bound that

P(E1) ≥ 9/10. (3.2.13)

H. Dell, J. Lapinskas and K. Meeks 37

By Lemma 36 and a union bound over all i with 0 ≤ i ≤ i∗ ≤ log n − 1,

P(E2) ≥ 1 − i∗ + 1
10 log n

≥ 9
10 . (3.2.14)

Recall from Definition 27 that the expected running time of a call to SampleSubset(n, i)
is at most Csample(i + n/2i); thus the expected running time of all such calls is at most
Csample

∑log n−1
i=0 ti(i + n/2i), so by Markov’s inequality we have

P(E3) ≥ 19/20. (3.2.15)

The number of queries that the algorithm makes to SparseCount and the number of sets
Ui,j is at most

∑log n−1
i=0 ti ≤ nk log n ≤ n2k. Moreover, by a Chernoff bound (Lemma 14),

the probability that an individual |Ui,j | is larger than zi is at most e−zi ≤ n−7k. Thus a
union bound yields

P[E4] ≥ 1 − n2k · n−7k ≥ 11/12 .

It follows from (3.2.13), (3.2.14), (3.2.15) and a union bound that

P(E) ≥ 2/3. (3.2.16)

If E occurs, then any iteration i ≤ i∗ in which UncolApprox halts will return an ε-
approximation of e(G). (Indeed, UncolApprox cannot return RTE, so it halts in a given
iteration if and only if SparseCount does not return TooDense. In this case we have
Ci,j = e(G[Ui,j]) for all j, so since E1 occurs it outputs a valid ε-approximation.) We now claim
that if E occurs and UncolApprox reaches iteration i∗, then SparseCount does not return
TooDense in iteration i∗. Given this claim, it follows immediately that UncolApprox halts
by iteration i∗(G) and returns a valid ε-approximation; thus the result follows from (3.2.16).

Suppose E occurs, and that UncolApprox reaches iteration i∗. Then by the definition
of i∗, we have 2−i∗km = pk

i∗m ≥ 1 and 2−(i∗+1)km < 1. This implies pk
i∗m ≤ 2k. Since E1

occurs and ε ≤ 1, we have

ti∗∑
j=1

e(G[Ui∗,j]) ≤ pk
i∗ti∗ · 2m ≤ 2k+1ti∗ = Mi∗ .

In iteration j of the inner for loop of UncolApprox, we will therefore have

Mi∗,j = M∗
i −

j−1∑
ℓ=1

e(G[Ui∗,ℓ]) ≥ e(G[Ui∗,j]),

Thus the jth SparseCount call sees at most Mi∗,j edges and will thus avoid return-
ing TooDense as required. This concludes the proof. ◀

3.2.4 Running time and oracle cost of UncolApprox
We now proceed to bound the running time and oracle cost of UncolApprox. In the following,
cost(|S|) will give the oracle cost of a set S ⊆ V (G). Note that we do not require cost to be
regularly-varying in the lemma below.

▶ Lemma 38. Let cost = {costk : k ≥ 2} be an arbitrary cost function with parameter k.
Suppose that costk(x) ≤ xk for all k and x and that there exists x0 such that for all k,

38 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

costk is non-decreasing on [x0, ∞). Let T (G, ε) be the worst-case running time required to
run UncolApprox(IND(G), ε) and let C(G, ε) be the worst-case oracle cost incurred under
cost. Then for every n-vertex k-hypergraph G we have

T (G, ε) ≤ O
(
k5k + ε−225k log5 n · n1+g(k,1)), (3.2.17)

C(G, ε) ≤ O
(

k7k + ε−225k log5 n · max
i

(
Ficostk(max{n/2i, n1/4})

))
. (3.2.18)

As a special case, if costk(n) = 1 for all k, n ∈ N, then the bound on the cost implies that
UncolApprox makes at most O

(
ε−225k log5 n · nk/4) queries to the oracle in the worst case.

Proof. We first consider the resource requirements of line 3 by splitting into three subcases.

Case 1: n ≤ k5. In this case, the running time and query count of exhaustive search are both
O(
(

n
k

)
) ≤ O((en/k)k) = O(k5k), and each query has cost given by costk(k) = O(kk). This

is accounted for by the additive k5k and k7k terms on the right sides of Equations (3.2.17)
and (3.2.18).

Case 2: nk ≤ ε−2. In this case, the running time and query count of exhaustive search are
both O(nk) = O(ε−2), and each query is of size k. The running time is therefore dominated
by the second summand on the right side of Equation (3.2.17). Since k ≤ n and cost is
eventually non-decreasing, we have costk(k) = O(costk(n)); since F0 = 1, it follows that the
cost is dominated by the second summand on the right side of Equation (3.2.18).

Thus in all cases our bounds on running time and cost are satisfied, and we may assume
nk > ε−2 and n > k5 so that UncolApprox does not halt in line 3.

Observe that since n is a power of two, we can quickly calculate L̂i and Fi = 2i(k−L̂i),
and hence also ti and Mi; we do not need to calculate γ̂i. The running time and cost are
therefore dominated by lines 12 and 15.

For brevity, let I = log(n) − 1. In line 12, we abort execution in line 12 if the running
time gets too large, so the total running time of all calls to SampleSubset is at most

I∑
i=0

ti · O(ipin) = O
(

n log2 n · max
{

tipi : i ∈ {0, . . . , I}
})

.

Expanding via tipi = ⌈ε−210k22k log n · Fi⌉2−i and using the bound Fi2−i ≤ ng(k,1) from
Lemma 31 (applied with β = 1), we immediately see that this is at most

O(ε−2k22k log3 n · n1+g(k,1)) ,

which is dominated by the second summand on the right side of Equation (3.2.17).
It remains to analyse line 15, starting with the min{Mi,j , e(G[Ui,j])} term in both the

cost and the running time of SparseCount according to Lemma 34. This running time
is dominated by the case in which UncolApprox does not halt early by returning RTE, so
assume this is the case. Line 15 calls SparseCount(IND(G), Ui,j , k, Mi,j , n−5k/120), and the
inner loop over j aborts once such a call returns TooDense. Let j∗

i ∈ {1, . . . , ti} be the last
iteration of the inner loop. For all j with j < j∗

i , the return value is Ci,j = e(G[Ui,j]). It
follows that

j∗
i∑

j=0
min{Mi,j , e(G[Ui,j])} ≤

j∗−1∑
j=0

e(G[Ui,j]) + Mi,j∗

=
j∗−1∑
j=0

e(G[Ui,j]) +
(

Mi −
j∗−1∑
j=0

Ci,j

)
= Mi.

H. Dell, J. Lapinskas and K. Meeks 39

Moreover, since we do not return RTE, we have |Ui,j | ≤ max{7pin, 7k ln n} ≤ n for all i.
Thus by Lemma 34, the total running time of all iterations of line 15 is

O
(I∑

i=0

j∗∑
j=0

log(n5k/120)e2kzi log2 zi min{Mi,j , e(G[Ui,j])}
)

= O
(

ke2k log4 n ·max
i

(ziMi)
)

.

Substituting in the definitions of zi and Mi, we obtain a running time of at most

O
(

ε−225k log5 n · max
i

(Fi max{n/2i, k ln n})
)

.

Recall that k ≤ n1/5, so k ln n ≤ n1/4; it follows by Lemma 32, applied with β = 1, that this
expression is dominated by the right side of Equation (3.2.17).

Observe that line 12 has no oracle cost, so we now bound the total oracle cost of line 15.
Arguing exactly as with the running time, the total number of queries in the ith iteration is
at most

O
(j∗∑

j=0
log(n5k/120)e2k log2 zi min{Mi,j , e(G[Ui,j])}

)
= O

(
ε−225k log4 n · Fi

)
.

Since costk is eventually non-decreasing and |Ui,j | ≤ zi for all j, the cost of any query in the
ith iteration is at most

max
j

(costk(|Ui,j |)) = O(costk(zi)) = O(costk(max{n/2i, k ln n}) .

It follows that the total oracle cost over all iterations is at most

O
(I∑

i=0
ε−225k log4 n · Ficostk

(
max{n/2i, k ln n}

))
= O

(
ε−225k log5 n max

i

(
Ficostk(max{n/2i, n1/4})

))
.

This is dominated by the right side of Equation (3.2.18) as required. ◀

▶ Theorem 39. Let cost = {costk : k ≥ 2} be a regularly-varying parameterised cost function
with parameter k, index αk ∈ [0, k], and slowly-varying component σ. There is a randomised
IND-oracle algorithm Uncol(IND(G), ε, δ) with worst-case running time

O
((

k5k + ε−225k log5 n · n1+g(k,1)) log(1/δ)
)

, (3.2.19)

worst-case oracle cost

O
((

k7k + ε−225k log5 n · ng(k,αk)+o(1)costk(n)
)

log(1/δ)
)

, (3.2.20)

and the following behaviour: Given an n-vertex k-hypergraph G and rationals ε, δ ∈ (0, 1),
the algorithm outputs an integer m that, with probability at least 1 − δ, is an ε-approximation
to e(G).

Moreover, if either σ is eventually non-decreasing or there exists η > 0 such that αk ≥
k − 1 + η for all k, then the worst-case oracle cost is

O
((

k7k + ε−225k log5 n · ng(k,αk)costk(n)
)

log(1/δ)
)

. (3.2.21)

40 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

1

2

3

4

5

0 10 20 30 40 5050
𝑖

1

Figure 3 The expected overall cost of the ith iteration of UncolApprox is depicted in the
scenario where n = 250, k = 5, and the cost function is one of six functions with cost(τ) = τα for
α ∈ {0, . . . , k}. Plotted is the exponent g of the main ng term of the cost of iteration i; we have
g = logn(Fi2−iαnα). As can be readily seen from the figure, increasing α shifts the most expensive
iteration to the left. Thus, if we have prior knowledge about the rough number of edges, we may be
able to improve the cost of our algorithm. For example, if we know that the graph is very dense so
that i∗ ≥ 0.8 log n holds, then we can start the algorithm in iteration i = 0.8 log n, which improves
the cost. We may similarly improve the cost analysis if α is small compared to k and the graph
is sparse, so that, for example, i∗ ≤ 0.1 log n holds. Interestingly, when α ≥ k − 1, the hardest
instances seem to be the ones that are very sparse.

Proof. By Lemma 37, UncolApprox has success probability at least 2/3. Applying standard
boosting (Lemma 19) to UncolApprox, yields the algorithm with success probability 1 − δ

claimed here. By Lemma 12, the eventually non-decreasing cost assumption in Lemma 38
is satisfied and thus the worst-case bounds on running time (Equation (3.2.17)) and cost
(Equation (3.2.18)) follow. The time bound in Equation (3.2.19) is identical to the one
in Equation (3.2.17), the cost bound Equation (3.2.20) follows from Equation (3.2.18) by
applying Corollary 33(i), and the cost bound Equation (3.2.21) follows from Equation (3.2.18)
by applying Corollary 33(ii). ◀

3.3 Lower bounds on oracle algorithms for edge estimation

In this section, we unconditionally prove that the oracle cost achieved by UncolApprox is
essentially optimal. We do this by proving a lower bound on the IND-decision tree complexity
of approximate edge-counting. More specifically, we construct two correlated random n-vertex
k-hypergraphs G1 and G2 that, with high probability, have a significantly different number of
edges. This means that any approximate edge-counting algorithm A will distinguish them
with high probability. On the other hand, we also prove that any deterministic IND-oracle
algorithm A that can distinguish between G1 and G2 must incur a large cost. We formalize
this discussion as follows:

▶ Theorem 40. Let costk(n) = nαk , where αk ∈ [0, k]. Let n, k, r be integers with
√

n/104 ≥
k ≥ r ≥ αk ≥ 1. Let ε ∈ (0, 1) satisfy 240k!/nr ≤ ε. There exist two correlated distributions
G1 and G2 on n-vertex k-hypergraphs with the following properties:

(i) We have P(G1,G2)∼(G1,G2)[e(G2) ≥ (1 + ε)e(G1)] ≥ 0.95.

H. Dell, J. Lapinskas and K. Meeks 41

(ii) If A is a deterministic IND-oracle algorithm with

P
(G1,G2)∼(G1,G2)

(
A(IND(G1)) ̸= A(IND(G2))

)
≥ 2/3 , (3.3.1)

then the expected oracle cost of A (with respect to cost) under random inputs G1 ∼ G1
satisfies

E
G1∼G1

[cost(A, G1)] ≥ nr(k−r+αk)/k/(1080k3kε(r−αk)/k) .

Before we prove this theorem, let us apply the minimax theorem (Theorem 17) to it, in
order to derive our main lower bound for IND-oracle algorithms.

▶ Theorem 41. Let costk(n) = nαk , where αk ∈ [0, k]. Let A be an IND-oracle algorithm
such that for all k-hypergraphs G, A(IND(G)) is a 1

2 -approximation to e(G) with probability
at least 9/10. Then A has worst-case expected oracle cost at least Ω(nαk+g(k,αk)/k3k) as
n → ∞, where k may depend on n in an arbitrary fashion.
Observe that unlike in Section 3.2, we do not require {costk : k ≥ 2} to be a regularly-varying
parameterised cost function.

Proof. First suppose that k >
√

n/104, so that Theorem 40 does not apply. In this case, we
have k3k = Ω(n3k/2). Moreover, by Lemma 29 and since αk ≤ k, we have

αk + g(k, αk) ≤ αk + (k − αk)2

4k
= (k + αk)2

4k
≤ (2k)2

4k
= k .

It follows that nαk+g(k,αk)/k3k = o(1). Since αk ≥ 0, even a single query to IND(G) requires
Ω(1) cost and so the result is vacuously true.

For the rest of the proof, we may assume k ≤
√

n/104. Suppose G1, G2 are n-vertex
k-hypergraphs that satisfy e(G2) ≥ 3e(G1)/2. With probability at least (9/10)2 ≥ 4/5 over
the random choices of A, the algorithm A will correctly output a (1/2)-approximation for
both graphs G1 and G2. This implies that A distinguishes G1 and G2 in the sense that the
following holds:

P
A∼A

(
A(IND(G1)) ̸= A(IND(G2))

)
≥ 4/5 .

By a union bound, taking ε = 1/2 in Theorem 40i implies

P
A∼A

(G1,G2)∼(G1,G2)

(
A(IND(G1)) ̸= A(IND(G2))

)
≥ 3/4 . (3.3.2)

Let F be the family of IND-oracle algorithms A that satisfy (3.3.1). By (3.3.2), we have

3
4 ≤ P

A∼A
(G1,G2)∼(G1,G2)

(
A(IND(G1)) ̸= A(IND(G2))

)
≤ P

A∼A
(A ∈ F) + 2

3 P
A∼A

(A /∈ F)

= 1
3 P

A∼A
(A ∈ F) + 2

3 ,

and so PA∼A(A ∈ F) ≥ 1/4. Thus by minimax (i.e. Theorem 17 taking p = 1/4), we can
lower-bound the worst-case expected oracle cost of A by the worst-case expected oracle cost
of any deterministic A ∈ F :

max
G

E
A∼A

[cost(A, G)] ≥ 1
4 inf

A∈F
E

G1∼G1
[cost(A, G1)] .

42 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

By Theorem 40ii, it follows that

max
G

E
A∼A

[cost(A, G)] = Ω(nr(k−r+αk)/k3k) .

The result now follows immediately from Lemma 32. ◀

3.3.1 G1 and G2: Choosing a hard input distribution
Our first step in the proof of Theorem 40 shall be to define the random graphs G1 and G2
and prove that e(G2) ≥ (1 + ε)e(G1) holds with probability at least 0.95.

Recall from the discussion in Section 3.2.2 that our algorithmic approach is to randomly
sample induced subgraphs and apply the independence oracle to these induced subgraphs.
Recall also that one of the possible “worst cases” in which the number of samples required
to see an edge is maximised is a single-rooted star graph, in which all edges intersect in a
single r-vertex “root”. Consider the effects of combining an Erdős-Rényi k-hypergraph H1
with a single-rooted star graph H2 of similar density. Intuitively, we would expect that any
large random set S is likely to contain an edge from H1, so independence oracles will return
the same result for H1[S] and (H1 ∪ H2)[S]. At the same time, any small random set S is
unlikely to contain all of R, and will therefore also not distinguish H1 from H1 ∪ H2. This
motivates our choice of G1 and G2, which we define as follows; note that for technical reasons
we allow H2 to contain multiple roots.

▶ Definition 42. Let n, k, r be integers with
√

n/104 ≥ k ≥ r ≥ αk ≥ 1. Let ε ∈ (0, 1) satisfy
240k!/nr ≤ ε. We define the following probabilities:

p1(n, k, r, ε) := k!/(εnr), p2(n, k, r, ε) := 240r!/nr.

We define H1(n, k, r, ε) to be an Erdős–Rényi random k-hypergraph on the vertex set [n],
where each edge occurs independently with probability p1(n, k, r, ε). We define R(n, k, r, ε) to
be a random subset of [n](r), where each size-r set is included independently with probability
p2(n, k, r, ε); we refer to these size-r sets as roots. We define H2(n, k, r, ε) to be the k-
hypergraph with edge set{

e ∈ [n](k) : e ⊇ R for some R ∈ R
}

.

Finally, we define

G1(n, k, r, ε) = H1(n, k, r, ε),
G2(n, k, r, ε) = H1(n, k, r, ε) ∪ H2(n, k, r, ε).

Generally the values of n, k, r and ε will be clear from context, and in this case we will omit
them from the notation.

The following lemma establishes Theorem 40i for G1 and G2.

▶ Lemma 43. Let n, k, r be integers with
√

n/104 ≥ k ≥ r ≥ αk ≥ 1. Let ε ∈ (0, 1) satisfy
240k!/nr ≤ ε. Then with probability at least 0.95, we have e(G2) > (1 + ε)e(G1).

Proof. Observe that

|e(G2) − e(G1)|
e(G1) = e(H2) − |E(H1) ∩ E(H2)|

e(H1) . (3.3.3)

H. Dell, J. Lapinskas and K. Meeks 43

To prove the lemma, we must prove that the left side of (3.3.3) is larger than ε with probability
at least 0.95; to this end, we use Chernoff bounds to bound e(H1) and |E(H1) ∩ E(H2)|
above, and e(H2) below.

Upper bound on e(H1). By linearity of expectation, E(e(H1)) = p1
(

n
k

)
≤ p1nk/k! =

nk−r/ε. Since ε < 1, we have nk−r/ε > nk−r ≥ 1. By the Chernoff bound of Lemma 14
applied with z = 7nk−r/ε, we have

P
(
e(H1) ≤ 7nk−r/ε

)
≥ 1 − e−7nk−r/ε ≥ 1 − e−7 ≥ 0.99 . (3.3.4)

Upper bound on |E(H1) ∩ E(H2)| when e(H2) ≥ 30nk−r. Any edge of H2 is
included in E(H1) independently with probability p1. By assumption on n, r, ε, we have
p1 ≤ 1/240 ≤ 1/14, so conditioned on e(H2) = M for any M ∈ N, we have

E
[
|E(H1) ∩ E(H2)|

∣∣∣ e(H2) = M
]

= p1M ≤ M/14 .

By the Chernoff bound of Lemma 14 applied with z = M/2, we have for all M ≥ 30nk−r:

P
(

|E(H1)∩E(H2)| ≤ e(H2)/2
∣∣∣ e(H2) = M

)
≥ 1−e−7M/14 ≥ 1−e−15nk−r

≥ 0.99 . (3.3.5)

Lower bound on e(H2). Let Z be the set of all edges of H2 that contain exactly one
root R ∈ R, and let E be the event that all roots R ∈ R are disjoint from each other. We
have

when E occurs, e(H2) ≥ |Z| = |R| ·
(

n − r|R|
k − r

)
, (3.3.6)

Note that |R| is binomially distributed, and since
√

n/10 ≥ k ≥ r we have

E(|R|) = p2

(
n

r

)
= p2

r!

r−1∏
i=0

(n − i) ≥ p2

r!

(
nr −

r−1∑
i=0

i

)
≥ p2nr

4r! ≥ 30 .

Moreover, E(|R|) ≤ p2nr/r! = 240. By the Chernoff bound of Lemma 13 applied with
δ = 1/2, it follows that

P
(
30 ≤ |R| ≤ 360) ≥ 1 − 2e− E(|R|)/12 ≥ 1 − 2e−5 ≥ 0.98 . (3.3.7)

Moreover, to bound P(E), we observe that there are exactly
(

n
r

)(
r
i

)(
n−r
r−i

)
pairs (S, T) of size-r

sets S and T with |S ∩ T | = i. A union bound over all possible intersecting pairs of distinct
roots yields

P(E) ≤
r−1∑
i=1

(
n

r

)(
r

i

)(
n − r

r − i

)
· p2

2 ≤
r−1∑
i=1

nr · ri · nr−i

r! · i! · (r − i)! · (240r!)2

n2r
= 2402

r−1∑
i=1

rir!
nii!(r − i)! .

Observe that r2/n ≤ k2/n < 10−8; thus

P(E) ≤ 2402
r−1∑
i=1

(r2/n)i ≤ 2402
∞∑

i=1
(r2/n)i = 2402 ·

(
1

1 − r2/n
− 1
)

≤ 2402 · 2r2/n < 0.01 .

Combining this with Equations (3.3.6) and (3.3.7) and a union bound, we obtain

P

(
e(H2) ≥ 30

(
n − 360r

k − r

))
≥ P

(
E and 30 ≤ |R| ≤ 360

)
≥ 1 − (0.01 + 0.02) = 0.97 .

44 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Combined with
(

n−360r
k−r

)
≤ nk−r, we arrive at

P
(
e(H2) ≥ 30nk−r

)
≥ 0.97 . (3.3.8)

Conclusion of proof. Combining Equations (3.3.5) and (3.3.8), we get

P
(
e(H2) ≥ 30nk−r and |E(H1) ∩ E(H2)| ≤ e(H2)/2

)
≥ 0.99 · 0.97 ≥ 0.96 .

Combined with Equation (3.3.4) and a union bound, all three bounds are likely to hold:

P
(
e(H2) ≥ 30nk−r and |E(H1) ∩ E(H2)| ≤ e(H2)/2 and e(H1) ≤ 7nk−r/ε

)
≥ 0.95 .

By Equation (3.3.3), we arrive at the following with probability at least 0.95:

|e(G2) − e(G1)|
e(G1) = e(H2) − |E(H1) ∩ E(H2)|

e(H1) ≥ 15nk−r

7nk−r/ε
> ε.

The result therefore follows. ◀

3.3.2 Bounding the cost of separating G1 and G2

Throughout this section, let n, k, r, ε and A be as in the statement of Theorem 40, and
let G1, G2, H1 and H2 be as in Definition 42. Note that the number of queries carried out
by A on G1 is a random variable. This would lead to some uninteresting and unpleasant
technicalities in the probability bounds, so we first make some easy observations that allow
us to assume this number is deterministic.
▶ Remark 44.

(i) Without loss of generality, A only ever queries sets which are either empty or have size
at least k.

(ii) For all vertex sets S with |S| ≥ k, we have:
IND(G1)S = 1 if and only if S contains no edge of H1.
IND(G2)S = 0 if and only if S contains an edge of H1 or a root from R.

(iii) Without loss of generality, we may assume that there is some t = tn,k ∈ N such that
A makes exactly the same number t of queries for each n-vertex k-hypergraph oracle
input.

Proof. To see i, recall from Section 2.1.2 that the IND-oracle algorithm A receives n and
k as explicit inputs. Any time A is about to query a set S of size less than k, it could
instead avoid performing the query and correctly assume that the answer is IND(G)S = 1.
Modifying A in this way can only reduce the cost of A.

ii then follows directly from the definitions of G1, G2, and IND, even when S = ∅.
To see iii, first observe that we can enumerate the edges of an n-vertex k-hypergraph G

using the oracle by querying all size-k subsets of [n] with total oracle cost nkkαk ≤ (nk)k. Thus
without loss of generality, we may assume cost(A, G) ≤ 3(nk)k for all n-vertex k-hypergraphs
G, by running A in parallel with the simple enumeration algorithm and returning the
result of whichever algorithm finishes first. Under this assumption, A will always carry out
xG < 4(nk)k queries on G before returning, and we simply “pad” A by inserting 4(nk)k − xG

zero-cost queries to the empty set before outputting the final answer. ◀

We now set out some notation to describe the sequence of oracle queries executed by A

on a given input graph. Recall from Section 2.1.2 that A is explicitly given n and k as input,
and can access G only by querying individual bits of IND(G).

H. Dell, J. Lapinskas and K. Meeks 45

▶ Definition 45. Let G be an arbitrary n-vertex k-hypergraph. Let q(G) be the sequence of
oracle queries that A makes when given input IND(G), and write q(G) =: (S1(G), . . . , St(G)).
For all i ∈ [t], let bi(G) = IND(G)Si

be the bit returned by the ith query, and let b(G) =
(b1(G), . . . , bt(G)). We refer to (q(G), b(G)) as the transcript of A on input G. For all i ∈ [t],
let q<i(G) = (S1(G), . . . , Si−1(G)) and b<i(G) = (b1(G), . . . , bi−1(G)).

Observe that since A is a general deterministic oracle algorithm, the ith query it makes
will be a function of the responses to its first i − 1 queries. As such, the total oracle cost of
running A on IND(G) is a function of b(G). We now define notation for these concepts.

▶ Definition 46. For all i ≤ t and all bit strings b⃗ ∈ {0, 1}t, let Si(⃗b) be the ith query that A

makes after it obtained the responses b1, . . . , bi−1 to the first i − 1 queries. (Note in particular
that Si(⃗b) is a deterministic function of b⃗.) For all C > 0, let XC be the set of all possible
response vectors that lead to a total query cost of at most C for A, that is,

XC =
{

b⃗ ∈ {0, 1}t :
t∑

i=1
costk(Si(⃗b)) ≤ C and b⃗ = b(G) for some G

}
.

Finally, write I (⃗b) = {i ∈ [t] : Si(⃗b) ̸= ∅}, so that |Si(⃗b)| ≥ k for all i ∈ I (⃗b) by Remark 44i .

We now state and prove Lemma 47, which is the heart of the proof of Theorem 40ii and
bounds the probability of distinguishing between G1 and G2 with queries of a given cost C

above in terms of the sizes of these queries. Turning this into an upper bound in terms of C

then requires optimising over possible query sizes; we do this in the final proof of Theorem 40
at the end of this section.

The intuition behind Lemma 47 is that A can only distinguish between G1 and G2 if it
ever makes a query that distinguishes them, that is, if b(G1) ̸= b(G2) holds. We will consider
queries individually. If a query contains too many vertices, then it is very likely to include an
edge of H1, which is thus contained in both G1 and G2; if a query contains too few vertices,
then it is unlikely to pick up a root of H2, in which case it will have the same result in
both G1 and G2.

It is important to note that these queries are heavily dependent on each other — indeed,
independence would correspond to the special case of a non-adaptive algorithm A, which
must always use the same sequence of queries regardless of the responses. As such, turning
this idea into a proof requires careful handling of the conditioning on past queries.

▶ Lemma 47. For all C > 0, we have

P
(

A(IND(G1)) ̸= A(IND(G2)) and
t∑

i=1
costk(Si(G1)) ≤ C

)
≤ 4kkkp2 max

b⃗∈XC

∑
i∈I(⃗b)

min
{

|Si(⃗b)|r,
1

p1|Si(⃗b)|k−r

}
.

Proof. For convenience, we define shorthand for the event of the lemma statement:

E occurs when A(IND(G1)) ̸= A(IND(G2)) and
t∑

j=1
costk(Sj(G1)) ≤ C .

Recall that
∑t

j=1 costk(Sj(G1)) ≤ C if and only if b(G1) ∈ XC , and that A(IND(G1)) ̸=
A(IND(G2)) can only happen when b(G1) ̸= b(G2) since A is deterministic. Thus

P(E) ≤ P
(

b(G1) ∈ XC and
t∨

i=1

{
bi(G1) ̸= bi(G2)

})
.

46 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

If P(b(G1) ∈ XC) = 0 then the result is immediate, so we may assume without loss of
generality that P(b(G1) ∈ XC) > 0. It follows that

P(E) ≤ P
(t∨

i=1

{
bi(G1) ̸= bi(G2)

} ∣∣∣ b(G1) ∈ XC

)
. (3.3.9)

We next bound P(E) in terms of the probabilities of distinguishing between G1 and G2 at
each query. We apply Lemma 16 to the event of (3.3.9), taking Zi = (bi(G1), bi(G2)), taking
Ei to be the event that bi(G1) ̸= bi(G2), and working conditioned on b⃗(G1) ∈ XC . Observe
that the condition on the sets Zi of the lemma is satisfied — indeed, any transcript with
b<i(G1) = b<i(G2) has non-zero probability to be extended to a transcript with b<t(G1) =
b<t(G2), since we have R = ∅ with non-zero probability and, conditioned on R = ∅, we have
b(G1) = b(G2) with certainty. Thus Lemma 16 applies, and we have

P(E) ≤ max
b⃗∈XC

t∑
i=1

P
(

bi(G1) ̸= bi(G2)
∣∣∣ b<i(G1) = b<i(G2) = (b1, . . . , bi−1)

)
.

For brevity, for any bit string b⃗ = (b1, . . . , bt), we define the event Bi(⃗b) to occur when
b<i(G1) = b<i(G2) = (b1, . . . , bi−1). Moreover, conditioned on Bi(⃗b) we have Si(G1) =
Si(G2) = Si(⃗b), so since E(G1) ⊆ E(G2) the event bi(G1) ̸= bi(G2) can only occur if bi(G1) = 1
and bi(G2) = 0. Hence,

P(E) ≤ max
b⃗∈XC

t∑
i=1

P
(

bi(G1) = 0 and bi(G2) = 1
∣∣∣Bi(⃗b)

)
.

Further, note that conditioned on Bi(⃗b), if Si(⃗b) = ∅ then we have bi(G1) = bi(G2) = bi = 1
with certainty. It follows that

P(E) ≤ max
b⃗∈XC

∑
i∈I(⃗b)

P
(

bi(G1) = 0 and bi(G2) = 1
∣∣∣Bi(⃗b)

)
.

By Remark 44ii, we have bi(G1) = 1 if and only if Si(⃗b)(k) ∩ E(H1) = ∅, and we have
bi(G2) = 0 if and only if either Si(⃗b)(k) ∩ E(H1) ̸= ∅ or Si(⃗b)(r) ∩ R ≠ ∅. This implies

P(E) ≤ max
b⃗∈XC

∑
i∈I(⃗b)

P
((

Si(⃗b)(k) ∩ E(H1) = ∅
)

and
(
Si(⃗b)(r) ∩ R ≠ ∅

) ∣∣∣Bi(⃗b)
)

. (3.3.10)

We next decompose Bi(⃗b) into a conjunction of events depending either only on H1 or
only on R; this will allow us to split each summand of (3.3.10) into two independent events.
We define

B−
i,1(⃗b) :=

∧
j≤i−1
bj=1

(
Si(⃗b)(k) ∩ E(H1) = ∅

)
,

B+
i,1(⃗b) :=

∧
j≤i−1
bj=0

(
Si(⃗b)(k) ∩ E(H1) ̸= ∅

)
,

Bi,2(⃗b) :=
∧

j≤i−1
bj=1

(
Si(⃗b)(r) ∩ R = ∅

)
.

H. Dell, J. Lapinskas and K. Meeks 47

Then we have Bi(⃗b) = B−
i,1(⃗b) ∧ B+

i,1(⃗b) ∧ Bi,2(⃗b), where B−
i,1(⃗b) ∧ B+

i,1(⃗b) depends only on H1

and Bi,2(⃗b) depends only on H2. By (3.3.10), it follows that

P(E) ≤ max
b⃗∈XC

∑
i∈I(⃗b)

P
(

Si(⃗b)(k) ∩ E(H1) = ∅
∣∣∣B−

i,1(⃗b) ∧ B+
i,1(⃗b)

)
P
(

Si(⃗b)(r) ∩ R ≠ ∅
∣∣∣Bi,2(⃗b)

)
.

(3.3.11)

We next deal with the “negative” conditioning. For all x ∈ {0, . . . , k}, we define

F x
i (⃗b) = Si(⃗b)(x) \

⋃
j∈[i−1]

bj=1

Sj (⃗b)(x) .

Observe that F k
i (⃗b) is precisely the set of size-k subsets of Si(⃗b) which can still be edges

of H1 conditioned on B−
i,1(⃗b), and that F r

i (⃗b) is precisely the set of size-r subsets of Si(⃗b)
which can still be roots in R conditioned on Bi,2(⃗b). It follows from (3.3.11) that

P(E) ≤ max
b⃗∈XC

∑
i∈I(⃗b)

P
(

F k
i (⃗b) ∩ E(H1) = ∅

∣∣∣B+
i,1(⃗b)

)
P
(

F r
i (⃗b) ∩ R ≠ ∅

)
. (3.3.12)

We next deal with the “positive” conditioning. Observe that the indicator function of
B+

i,1(⃗b) is a monotonically increasing function of the indicator variables of H1’s edges, and
the indicator function of F k

i (⃗b) ∩ E(H1) = ∅ is a monotonically decreasing function of these
variables. Thus the two events are negatively correlated and therefore, by the FKG inequality
(Lemma 15) combined with (3.3.12), we obtain

P(E) ≤ max
b⃗∈XC

∑
i∈I(⃗b)

P
(

F k
i (⃗b) ∩ E(H1) = ∅

)
P
(

F r
i (⃗b) ∩ R ≠ ∅

)
= max

b⃗∈XC

∑
i∈I(⃗b)

(1 − p1)|F k
i (⃗b)|

(
1 − (1 − p2)|F r

i (⃗b)|
)

≤ max
b⃗∈XC

∑
i∈I(⃗b)

e−p1|F k
i (⃗b)|p2|F r

i (⃗b)|.

(3.3.13)

By definition, we have |F r
i (⃗b)| ≤ |Si(⃗b)(r)| ≤ |Si(⃗b)|r, and so we can bound each term in

the right-hand side of (3.3.13) by

e−p1|F k
i (⃗b)|p2|F r

i (⃗b)| ≤ p2|Si(⃗b)|r . (3.3.14)

We also provide a second upper bound on each term which will be stronger when |Si(⃗b)| is
large. To this end, we double-count the set Z of pairs (X, Y) ∈ F r

i (⃗b) × F k
i (⃗b) with X ⊆ Y .

Each size-k set Y ∈ F k
i (⃗b) contains at most

(
k
r

)
size-r sets X ∈ F r

i (⃗b), and each size-r
set X ∈ F r

i (⃗b) is contained in exactly
(|Si (⃗b)|−r

k−r

)
size-k sets Y ∈ F k

i (⃗b); hence we obtain(
|Si(⃗b)| − r

k − r

)
|F r

i (⃗b)| = |Z| ≤
(

k

r

)
|F k

i (⃗b)| ≤ 2k|F k
i (⃗b)| . (3.3.15)

(Recall that for all b⃗ and all i ∈ I (⃗b), we have |Si(⃗b)| ≥ k.) By Lemma 23 (taking a = k and
b = k − r), we have

(|Si (⃗b)|−r
k−r

)
≥ |Si(⃗b)|k−r/(2k)k. Rearranging terms in (3.3.15) yields

|F r
i (⃗b)| ≤ 4kkk|F k

i (⃗b)|
|Si(⃗b)|k−r

. (3.3.16)

48 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Using this, we can bound each term of (3.3.13) as follows:

e−p1|F k
i (⃗b)|p2|F r

i (⃗b)|
(3.3.16)

≤ 4kkkp2 · e−p1|F k
i (⃗b)| · |F k

i (⃗b)|
|Si(⃗b)|k−r

≤ 4kkkp2 · 1
p1|Si(⃗b)|k−r

. (3.3.17)

The second inequality here follows by observing that the expression xe−p1x is maximised
by 1/(p1e) at x = 1/p1. Thus by applying the bounds of (3.3.14) and (3.3.17) to the terms
of (3.3.13), we arrive at the claimed bound of

P(E) ≤ 4kkkp2 max
b⃗∈XC

∑
i∈I(⃗b)

min
{

|Si(⃗b)|r,
1

p1|Si(⃗b)|k−r

}
. ◀

We are now ready to prove Theorem 40, from which our main result Theorem 41 follows
as discussed earlier at the start of the section.

▶ Theorem 40. Let costk(n) = nαk , where αk ∈ [0, k]. Let n, k, r be integers with
√

n/104 ≥
k ≥ r ≥ αk ≥ 1. Let ε ∈ (0, 1) satisfy 240k!/nr ≤ ε. There exist two correlated distributions
G1 and G2 on n-vertex k-hypergraphs with the following properties:

(i) We have P(G1,G2)∼(G1,G2)[e(G2) ≥ (1 + ε)e(G1)] ≥ 0.95.
(ii) If A is a deterministic IND-oracle algorithm with

P
(G1,G2)∼(G1,G2)

(
A(IND(G1)) ̸= A(IND(G2))

)
≥ 2/3 , (3.3.1)

then the expected oracle cost of A (with respect to cost) under random inputs G1 ∼ G1
satisfies

E
G1∼G1

[cost(A, G1)] ≥ nr(k−r+αk)/k/(1080k3kε(r−αk)/k) .

Proof. We take G1 and G2 as in Definition 42; these satisfy i by Lemma 43. It remains to
prove ii.

Observe that by Markov’s inequality, with probability at least 2/3, A(IND(G1)) uses
queries with total cost at most 3Z. Write E for the event that A(IND(G1)) ̸= A(IND(G2)) and∑t

i=1 cost(Si(G1)) ≤ 3Z; it follows by a union bound that

P(E) ≥ P
(
A(IND(G1)) ̸= A(IND(G2))

)
− 1/3 ≥ 1/3 .

We now bound P(E) above. By Lemma 47, we have

P(E) ≤ 4kkkp2 max
b⃗∈X3Z

∑
i∈I(⃗b)

min
{

|Si(⃗b)|r,
1

p1|Si(⃗b)|k−r

}
.

Combining these two equations yields

4kkkp2 max
b⃗∈X3Z

∑
i∈I(⃗b)

min
{

|Si(⃗b)|r,
1

p1|Si(⃗b)|k−r

}
≥ 1

3 . (3.3.18)

The remainder of the proof consists of bounding the left side of (3.3.18) above in terms
of Z. We now write yi = |Si(⃗(b))| for all i ∈ [t], and we define the set Y with

Y =
{

y⃗ ∈ [0, n]t :
t∑

i=1
yαk

i ≤ 3Z
}

,

H. Dell, J. Lapinskas and K. Meeks 49

where [0, n] is the real interval. For all b⃗ ∈ X3Z , the vector (|S1(⃗b)|, . . . , |St(⃗b)|) is contained
in Y , since cost(yi) = yαk

i holds. Moreover, |Si(⃗b)| ≥ 1 for all i ∈ I (⃗b) by definition.
By (3.3.18), we therefore have

max
y⃗∈Y

∑
i∈[t]
yi≥1

min
{

yr
i ,

1
p1yk−r

i

}
≥ 1

3p24kkk
≥ 1

3p2kk+2 .

Since x 7→ xr is increasing and x 7→ 1/(p1xk−r) is decreasing, their minimum is maximised
over the non-negative reals when they are equal. Over the interval [0, n], the minimum
is maximised for some x ∈ [0, n] with xr ≤ 1/(p1xk−r), which is equivalent to 0 ≤ x ≤
min{n, p

−1/k
1 }. It follows that replacing the interval [0, n] in the definition of Y by the

interval [0, p
−1/k
1] will not affect the value of the maximum; thus writing

Y ′ =
{

y⃗ ∈ [0, p
−1/k
1]t :

t∑
i=1

yαk
i ≤ 3Z

}
,

it follows that

max
y⃗∈Y ′

t∑
i=1

yr
i ≥ max

y⃗∈Y ′

∑
i∈[t]
yi≥1

min
{

yr
i ,

1
p1yk−r

i

}
= max

y⃗∈Y

∑
i∈[t]
yi≥1

min
{

yr
i ,

1
p1yk−r

i

}
≥ 1

3p2kk+2 .

We now apply Karamata’s inequality in the form of Corollary 22, taking c = 1/p
1/k
1 and

W = 3Z. Since r ≥ αk, this yields

3Z

p
(r−αk)/k
1

≥ 1
3p2k2k

,

Substituting in the definitions of p1 and p2 then yields

Z ≥ nr−(r/k)(r−αk)

1080k3kε(r−αk)/k
= n(kr+αkr−r2)/k

1080k3kε(r−αk)/k

as required. ◀

4 Colourful independence oracle with cost

In this section, we study the edge estimation problem for cIND-oracle algorithms, which are
given access to the colourful independence oracle cIND(G) of a k-uniform hypergraph G. Any
query cIND(G)X1,...,Xk

incurs a cost of costk(|X1|+· · ·+|Xk|), where cost = { costk : k ≥ 2 }
is regularly-varying with parameter k. In Section 4.1, we prove the upper bound part of
Theorem 2 as a special case of Theorem 48 by constructing a randomised cIND-oracle
algorithm for edge estimation. In Section 4.3, we prove the lower bound part of Theorem 2
as a special case of Theorem 68 by showing that no randomised cIND-oracle algorithm for
edge estimation can have significantly smaller worst-case oracle cost than the one obtained
in Section 4.1.

4.1 Oracle algorithm for edge estimation
We will prove the following result.

50 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Algorithm Statement Approximation Condition
Count_DLM22 Theorem 57 ε —
Count Theorem 48 ε —
ColourCoarse_DLM22 Lemma 51 (4k log n)k large k

ColourCoarse_New Lemma 50 kO(k) logk−α′
k

−1 n small k
CoarseSmallCoreHelper Lemma 60 kO(k) small cores
CoarseSmallCore Lemma 54 boost of CoarseSmallCoreHelper
CoarseLargeCoreHelper Lemma 63 (kO(k) logk−|I| n) large cores
CoarseLargeCore Lemma 55 boost of CoarseLargeCoreHelper
VerifyGuess_New Lemma 62 distinguishes “e(G) ≪ M” from “core and e(G) ≥ M”
Table 1 Overview of the algorithms used in Section 4.1.

▶ Theorem 48. Let cost = {costk : k ≥ 2} be a regularly-varying parameterised cost
function with parameter k and index αk ∈ [0, k], let α′

k := ⌈αk⌉ − 1, and let T :=
log(1/δ)ε−2k27k log4(k−α′

k)+14 n. There is a randomised cIND-oracle algorithm Count(cIND(G), ε, δ)
with worst-case running time O(T · (costk(n) + n)), worst-case oracle cost O(T · costk(n)),
and the following behaviour: Given an n-vertex k-hypergraph G and rationals ε, δ ∈ (0, 1),
the algorithm outputs an integer m that, with probability at least 1 − δ, is an ε-approximation
to e(G).

Recall from Section 2.1.2 that we strictly separate our running times from our oracle
costs, and note that the running time in Theorem 48 still depends on the cost function.
Indeed, Count will exploit a tradeoff between oracle cost and running time, and this is why
we require the index of the cost function to be efficiently computable in Definition 11(v).

The structure of the proof of Theorem 48 is roughly similar to the proof of [15, The-
orem 1.1]: We construct a cIND-oracle algorithm ColourCoarse with a coarse multiplicative
approximation guarantee and use the following theorem, proved implicitly in [15], to boost
it into an ε-approximation algorithm. See also [6, Lemma 5.2], where this reduction was
formally stated for the worst-case number of queries; in our formalisation, the oracle cost
can be general, and we carefully distinguish the running time and the oracle cost.

▶ Theorem 49 (Turn coarse into fine approximation). Let b = b(n, k), T = T (n, k) = Ω(k2n)
and C = C(n, k), and suppose that ColourCoarse(cIND(G), X1, . . . , Xk) is a randomised
cIND-oracle algorithm with worst-case running time T , worst-case oracle cost C, and the
following behaviour: Given an n-vertex k-hypergraph G with n a power of two and disjoint
sets X1, . . . , Xk ⊆ V (G), the algorithm outputs an integer m such that, with probability at
least 2/3, we have m/b ≤ e(G[X1, . . . , Xk]) ≤ mb.

Then there is a randomised cIND-oracle algorithm Count(cIND(G), ε, δ) with worst-case
running time

O
(

log(1/δ)ε−2e3kb2 log4 n · T
)

,

worst-case oracle cost

O
(

log(1/δ)ε−2e3kb2 log4 n · C
)

,

and the following behaviour: Given an n-vertex k-hypergraph G and rationals ε, δ ∈ (0, 1),
the algorithm outputs an integer m that, with probability at least 1 − δ, is an ε-approximation
to e(G).

Proof. We first reduce from approximate edge counting in the whole graph with multiplicative
error 2b to approximate edge counting in induced k-partite subgraphs with multiplicative

H. Dell, J. Lapinskas and K. Meeks 51

error b; that is, we give a randomised cIND-oracle algorithm Coarse(cIND(G), δ) with the
following behaviour. Suppose G is an n-vertex k-hypergraph to which Coarse has (only)
colourful oracle access, where n is a power of two, and suppose 0 < δ < 1. Then, in time
O(log(1/δ)ke2k · T) and with oracle cost O(log(1/δ)ke2k · C), Coarse(cIND(G), δ) outputs a
rational number ê. Moreover, with probability at least 1 − δ, ê/2b ≤ e(G) ≤ ê · 2b.

To obtain this algorithm Coarse from ColourCoarse, we carry out an intermediate
colour-coding procedure (HelperCoarse(cIND(G)) in [15]), whose running time is dominated
by O(ke2k) invocations of ColourCoarse, then run HelperCoarse a total of O(log(1/δ))
times and output the median result. The proofs of correctness of these steps are given as [15,
Lemma 4.3] and [15, Lemma 3.3], respectively.

The main counting algorithm in [15] is denoted there by Count; to avoid overloading
notation, we will instead refer to it as Count_DLM22. Having defined Coarse, we now define
Count by running Count_DLM22(cIND(G), ε, δ), replacing the Coarse subroutine from [15]
with this new version and replacing the value of b in [15] (which corresponds to the error
bound in Coarse) with b∗ := 2b(n, k). By exactly the same argument as in [15], the output
of Count has the desired properties with the desired probability; it remains to bound the
running time and query cost. Thankfully, most of these bounds are already given in terms of
b, and so we only need to follow the analysis through.

From the proof of [15, Theorem 1.1], Count_DLM22 is just a wrapper for the main
algorithm HelperCount(cIND(G), ε), which serves to remove the requirement that n be a
power of two (by adding isolated vertices) and reduce the failure probability to δ by running
HelperCount O(1/δ) times and outputting the median value.

The running time of HelperCount is analysed in [15, Lemma 3.5]; from this analysis,
both the running time and oracle cost are dominated by O(log n) calls to a subroutine
Refine.

In [15, Lemma 3.4], the running time of Refine is given in terms of some of its arguments
L, ξ and δ′. From steps (A2) and (A5) of HelperCount in [15], in every invocation of Refine
we have ξ = O(ε−1 log n) and 1/δ′ = O(log n). The value of L is not fixed — it is a so-called
(G, b, y)-list L of induced subgraphs whose weighted sum approximates e(G) — but from
invariant (iii) in the proof of [15, Lemma 3.5], in each invocation of Refine we have

|L| = O
(
k log(nb∗) + (b∗)2ξ−2 log(1/δ′)

)
= O(kb2ε−2 log3 n).

With these bounds in place, we now bound the running time and oracle cost of Refine.
From [15, Lemma 3.4], the running time and oracle cost of Refine are dominated by calls to
Coarse; the total number of such calls is upper bounded in [15, Lemma 3.5] by O(λ), where

λ := |L| + 2kξ−2(b∗)2 log(1/δ′) = O(ε−22kb2 log3 n).

Each call to Coarse has δ−1 = O(λ/δ′), so the running time of each call is O(log(λ log n) ·
ke2kT) and the query cost of each call is O(log(λ log n)ke2kC). We may assume that
ε−1 < nk (otherwise the algorithm counts exactly by brute force) and similarly that b < nk,
so log(λ log n) = O(k log n). It follows that the running time of each call to Refine is
O(k2e2k log n · T) and the oracle cost is O(k2e2k log n · C). Multiplying by the number λ

of total calls, we see that the running time of HelperCount is O(ε−2e3kb2 log4 n · T), and
the oracle cost is O(ε−2e3kb2 log4 n · C). Since UncolApprox runs HelperCount O(log(1/δ))
times, the result follows. ◀

In order to apply Theorem 49 to prove Theorem 48, we need to provide an algorithm
ColourCoarse with suitable properties. In fact, we will use one of two different algorithms,

52 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

depending on the size of k relative to n. Most of the rest of the section is devoted to proving
the following lemma, which gives the existence of a suitable algorithm when k is not too
large.

▶ Lemma 50. Let cost = {costk : k ≥ 2} be a regularly-varying parameterised cost function
with parameter k and index αk. Let

α′
k := ⌈αk⌉ − 1, T := k9k+2 log2(k−α′

k)+9 n,

b := (2k)5k(log n)k−α′
k−1 logk(8k log40k(k−α′

k)/(αk−α′
k)(n)).

There is a randomised cIND-oracle algorithm ColourCoarse_New(cIND(G), X1, . . . , Xk)
with worst-case running time O(T (costk(n) + n)), worst-case oracle cost O(T costk(n)),
and the following behaviour: Given an n-vertex k-hypergraph G with n a power of two,
k ≤ (log n)/(log log n)2, and disjoint sets X1, . . . , Xk ⊆ V (G), the algorithm outputs an
integer m such that, with probability at least 2/3, we have m/b ≤ e(G[X1, . . . , Xk]) ≤ mb.

We defer the proof of this lemma to Sections 4.1.1–4.1.3. When k is large enough relative
to n that logk n = kO(k), the algorithm of Lemma 50 may break down, but in this regime we
can simply use the coarse approximation algorithm from [15]. We now state its properties.

▶ Lemma 51 (Dell, Lapinskas, and Meeks [15, Lemma 4.2]). Let cost = {costk : k ≥ 2} be
a regularly-varying parameterised cost function with parameter k and index αk, let b :=
(4k log n)k, and let T := (8k log n)2k+2. There is a randomised cIND-oracle algorithm

ColourCoarse_DLM22(cIND(G), X1, . . . , Xk)

with worst-case running time O(T (costk(n) + n)), worst-case oracle cost O(T costk(n)), and
the following behaviour: Given an n-vertex k-hypergraph G with n a power of two and disjoint
sets X1, . . . , Xk ⊆ V (G), the algorithm outputs an integer m such that, with probability at
least 2/3, we have m/b ≤ e(G[X1, . . . , Xk]) ≤ mb.

Proof. This is immediate from [15, Lemma 4.2], bounding the cost of each query above by
O(costk(n)). This bound is valid by Lemma 12 since the cost function is regularly-varying. ◀

We now set out the proof of Theorem 48 from Theorem 49 and Lemmas 50 and 51 (which
consists of easy algebra), before devoting the rest of the section to proving Lemma 50.

▶ Theorem 48. Let cost = {costk : k ≥ 2} be a regularly-varying parameterised cost
function with parameter k and index αk ∈ [0, k], let α′

k := ⌈αk⌉ − 1, and let T :=
log(1/δ)ε−2k27k log4(k−α′

k)+14 n. There is a randomised cIND-oracle algorithm Count(cIND(G), ε, δ)
with worst-case running time O(T · (costk(n) + n)), worst-case oracle cost O(T · costk(n)),
and the following behaviour: Given an n-vertex k-hypergraph G and rationals ε, δ ∈ (0, 1),
the algorithm outputs an integer m that, with probability at least 1 − δ, is an ε-approximation
to e(G).

Proof. We apply Theorem 49, taking our coarse approximate counting algorithm Colour-
Coarse to be as follows. Given an n-vertex instance (G, X1, . . . , Xk), if k ≤ (log n)/(log log n)2

then we apply the algorithm ColourCoarse_New of Lemma 50 and return the results, and
otherwise we apply the algorithm ColourCoarse_DLM22 of Lemma 51 and return the results.

As in Lemma 50, let

α′
k := ⌈αk⌉ − 1, T1 := k9k+2 log2(k−α′

k)+9 n,

b1 := (2k)5k(log n)k−α′
k−1 logk(8k log40k(k−α′

k)/(αk−α′
k)(n)).

H. Dell, J. Lapinskas and K. Meeks 53

As in Lemma 51, let

T2 := (8k log n)2k+2, b2 := (4k log n)k.

Observe that when k ≥ (log n)/(log log n)2, we have

k2k = e2k log k = e2k(1−o(1)) log log n = Ω(logk n),

and hence

T2 = O(k7k log2 n) = O(T1), b2 = O(k4k) = O(b1).

Thus on an n-vertex instance, our coarse approximation algorithm uses oracle queries of
combined cost O(T1costk(n)), runs in time O(T (costk(n) + n)), and has multiplicative error
O(b1).

We now take Count to be the algorithm of Theorem 49. Let

T3 = log(1/δ)ε−2e3kb2
1 log4 n;

then Count uses oracle queries of combined cost O(T1T3costk(n)) and runs in time O(T1T3n).
Observe that

b2
1 = O

(
k13k(log n)2(k−α′

k)(log log n)2k
)
. (4.1.1)

If k ≥ (log log n)/(log log log n)2, then

k2k = e2k log k = e2k(1−o(1)) log log log n = Ω((log log n)k);

if instead k ≤ (log log n)/(log log log n)2, then

(log log n)k ≤ e(log log n)/(log log log n) = (log n)o(1).

In either case, we have (log log n)2k = O(k4k log n), and hence by (4.1.1), b2
1 = O(k17k log2(k−α′

k)+1 n).
Thus

T1T3 = O
(

log(1/δ)ε−2k27k log4(k−α′
k)+14 n

)
= O(T),

and the result follows. ◀

The rest of this section is dedicated to proving Lemma 50.

4.1.1 Coarse approximation: an overview
In order to prove Lemma 50, given oracle access to an n-vertex k-hypergraph G and vertex
classes X1, . . . , Xk, we will make use of two separate approximate counting algorithms.
Writing H := G[X1, . . . , Xk] for brevity, each algorithm will provide an estimate that is very
likely not to be much larger than e(H). Depending on G, one of these estimates is very likely
to also not be much smaller than e(H), so by returning whichever result is largest we obtain
a coarse approximation to e(H) as required. In this section, we set out the properties of
these algorithms and explain how to use them to prove Lemma 50. We then set out the
algorithms themselves and prove their stated properties in Sections 4.1.2 and 4.1.3.

For motivation, we first sketch a possible proof of Lemma 50 that does not work. Form
a graph H ′ from H by deleting vertices independently at random, so that each vertex is
retained with probability p = 1/(log n)k2 . Each edge of H ′ is preserved with probability

54 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

1/(log n)k3 , so in expectation, H ′ contains e(H)/(log n)k3 edges and n/(log n)k2 vertices.
By Chernoff bounds, we in fact have |V (H ′)| = (1 + o(1))n/(log n)k2 with high probability;
suppose (incorrectly) that we also had e(H ′) = (1+o(1))e(H)/(log n)k3 with high probability.
Then we could simply run the full approximate counting algorithm of [15] on H ′ and multiply
the result by (log n)k3 . Indeed, the factor of (log |V (H ′)|)4k+7 in the query count of [15]
would be dominated by the factor of 1/(log n)αk2 saved in oracle cost by running it on an
instance with fewer vertices.

Of course, we do not in general have such concentration of e(H ′), as illustrated by the
following definition.

▶ Definition 52. Let H be a k-hypergraph, and let 0 < ζ ≤ 1. We say that v ∈ V (H) is a
ζ-root of H if d(v) ≥ ζe(H).

If X1 contains a ζ-root v with ζ relatively large, then we should expect e(H ′) to depend
very strongly on whether or not v ∈ V (H ′), and so we should not expect concentration of
e(H ′). It turns out, however, that in some sense this is the only barrier to concentration of
e(H ′): if H were to contain no ζ-roots for an appropriate choice of ζ, then the above proof
would work.

Despite the possibility of ζ-roots, we can still recover part of this argument if we know
enough about where ζ-roots occur in the graph: if some vertex classes do not contain any
ζ-roots, then we can reasonably hope for concentration of the number of edges that survive
when we delete vertices uniformly at random from these root-free classes. (See Lemma 59.)
In fact, we will make use of subgraphs of H which contain a large proportion of the edges
and in which all roots are contained in a collection of relatively small vertex classes; this
notion is formalised in the following definition.

▶ Definition 53. Let H = (V, E) be a k-partite k-hypergraph with vertex classes X1, . . . , Xk.
Let I ⊆ [k], and let ζ ∈ (0, 1). For each i ∈ [k], let Yi ⊆ Xi. Then we say that (Y1, . . . , Yk)
is an (I, ζ)-core of H if the following properties hold:

(i) e(H[Y1, . . . , Yk]) ≥ e(H)/(2k)k;
(ii) for all i ∈ I, we have |Yi| ≤ 2/ζ;
(iii) for all i ∈ [k] \ I, the set Yi contains no ζ-roots of H[Y1, . . . , Yk].

We will show in Lemma 56 that, for any ζ ∈ (0, 1), every k-partite k-hypergraph contains
an (I, ζ)-core for some I. Before doing so, we set out the behaviour of two algorithms which
exploit this fact.

For simplicity, suppose (Y1, . . . , Yk) is an (I, ζ)-core of the k-partite k-hypergraph H for
some suitably-chosen ζ, and write H ′ = H[Y1, . . . , Yk]; we use this specific core to sketch
proofs of correctness for the algorithms, but the algorithms themselves do not have access to
the sets (Y1, . . . , Yk). Our first algorithm is designed to run efficiently in the case where G

has an (I, ζ)-core with |I| small, and works by recursively applying the algorithm of [15] to
a collection of smaller instances, roughly as described above: vertices from classes outside
I are deleted randomly and classes in I are partitioned into appropriately-sized subsets,
each combination of which is considered in one of the smaller instances. Formally, we will
prove the following lemma in Section 4.1.2. (The parameter t in this algorithm is a technical
convenience which we will optimise later.)

▶ Lemma 54. Let cost = {costk : k ≥ 2} be a regularly-varying parameterised cost function
with parameter k. Let

b := (2k)k+2 , T := log(1/δ)k6k+1 log4k+8(n)n|I|/t|I|.

H. Dell, J. Lapinskas and K. Meeks 55

There is a randomised cIND-oracle algorithm

CoarseSmallCore(cIND(G), X1, . . . , Xk, I, t, δ)

with worst-case running time O(n+T ·kt log(n)), worst-case oracle cost O(T costk(2kt)), and
the following behaviour: Given an n-vertex k-hypergraph G with n a power of two, disjoint
sets X1, . . . , Xk ⊆ V (G), a set I ⊆ [k], an integer t with n ≥ t ≥ 12 log k, and a rational
δ > 0, the algorithm outputs a non-negative integer m such that, with probability at least
1 − δ:

(i) m ≤ b · e(G[X1, . . . , Xk]);
(ii) if G has an (I, ζ)-core for some ζ satisfying t ≥ (8kζ)1/(2(k−|I|))n, then m ≥ e(G[X1, . . . , Xk])/b.

We note explicitly that [15] is concerned only with the total number of queries (that
is, costk(n) = 1), and that in this setting Lemma 54 does not yield an improved oracle
cost. Note also that CoarseSmallCore does not require the value of sets (Y1, . . . , Yk) of
the (I, ζ)-core, only the value of I itself (which we will simply guess, as there are only 2k

possibilities).
Our second algorithm is designed to deal with the opposite situation, when there is

an (I, ζ)-core with |I| large. In this case, we can adapt the algorithm of [15] to perform
significantly better. Very roughly speaking, the algorithm of [15] works by finding probabilities
p1, . . . , pk ∈ {1, 1/2, 1/4, . . . , 1/ log n} such that:
(a) p1p2 . . . pk is as small as possible;
(b) on randomly deleting all but roughly pi proportion of vertices from each vertex class Xi,

the resulting graph still contains at least one edge with high probability.
We then conclude that H contains at least roughly 1/(p1 . . . pk) edges. (Note that this is
inaccurate on a formal level, but it is close enough to give intuition.) The approach to finding
such probabilities p1, . . . , pk in [15] is simply to check all logk n possibilities. However, if H

contains an (I, ζ)-core, then for all i ∈ I we know that many edges are concentrated on a
few ζ-roots in Xi. It follows that we must take pi very close to 1 to satisfy property (b),
substantially reducing the number of possible values of p1, . . . , pk we need to check; this
translates into a reduction in both the running time and oracle cost that scales with |I|.
Formally, we will prove the following lemma in Section 4.1.3.

▶ Lemma 55. Let cost = {costk : k ≥ 2} be a regularly-varying parameterised cost function
with parameter k. Let

b := (2k)5k logk−|I| n log|I|(1/ζ) , T := 27k log(1/δ) log2|I|(1/ζ)(log n)2(k−|I|)+1 .

There is a randomised cIND-oracle algorithm

CoarseLargeCore(cIND(G), X1, . . . , Xk, I, ζ, δ)

with worst-case running time O(Tn log n), worst-case oracle cost O(T costk(n)), and the
following behaviour: Given an n-vertex k-hypergraph G with n ≥ 32 a power of two, disjoint
sets X1, . . . , Xk ⊆ V (G), a set I ⊆ [k], rationals ζ, δ ∈ (0, 1

32) such that the denominator of
ζ is O(nk), the algorithm outputs a non-negative integer m such that, with probability at
least 1 − δ:

(i) m ≤ b · e(G[X1, . . . , Xk]); and
(ii) if G has an (I, ζ)-core, then m ≥ e(G[X1, . . . , Xk])/b.

We now show that every k-hypergraph contains an (I, ζ)-core for some I, ensuring that
one of these two algorithms is always guaranteed to perform well for a suitably-chosen value
of ζ.

56 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

▶ Lemma 56. Let 0 < ζ ≤ 1, and let H be a k-partite k-hypergraph with vertex classes
X1, . . . , Xk. Then there exists I ⊆ [k] such that H contains an (I, ζ)-core.

Proof. Informally, we will prove that we can find a set I and an (I, ζ)-core (Y1, . . . , Yk) by
applying the following algorithm. We start out with I = ∅ and Yi = Xi for all i. We look for a
value of i /∈ I such that at least 1/(2k) proportion of edges of J := H[Y1, . . . , Yk] are incident
to a (ζ/2)-root of J in Yi. If such an i exists, then we add i to I, delete all non-(ζ/2)-roots
from Yi, and repeat the process. Otherwise, for all i /∈ I we delete all (ζ/2)-roots from Yi,
then halt; as we will prove, (Y1, . . . , Yk) is then an (I, ζ)-core of H.

Formally, we proceed by induction, proving the following claim.

Claim: Suppose that there exist J = H[Y1, . . . , Yk] and I ⊆ [k] such that:
(C1) |E(J)| ≥ |E(H)|/(2k)|I|; and
(C2) for all i ∈ I, |Yi| ≤ 2/ζ.
Then there exist J ′ = H[Y ′

1 , . . . , Y ′
k] and I ′ ⊆ [k] such that either:

(D1) (Y ′
1 , . . . , Y ′

k) is an (I ′, ζ)-core of H; or
(D2) J ′ and I ′ satisfy (C1) and (C2) and |I ′| = |I| + 1.

Proof of Lemma from Claim: Since (C1) and (C2) are satisfied for J = H and I = ∅, we
can apply the claim repeatedly until (D1) holds. This process must terminate after at most
k + 1 applications, since we cannot have |I| > k.

Proof of Claim: Let J = H[Y1, . . . , Yk] and I ⊆ [k] be as in the Claim. For each i ∈ [k] \ I,
let Zi be the set of (ζ/2)-roots of J in Xi. We split into two cases corresponding to (D1)
and (D2) of the Claim.

Case 1: For all i ∈ [k] \ I, we have
∑

v∈Zi
dJ (v) ≤ e(J)/(2k). In this case, we take Y ′

i = Yi

for all i ∈ I and Y ′
i = Yi \ Zi for all i ∈ [k] \ I. We claim that (Y ′

1 , . . . , Y ′
k) is an (I, ζ)-core of

H (satisfying (i)–(iii) of Definition 53), as in (D1). If I = [k] then this is immediate from
(C1) and (C2), so suppose |I| ≤ k − 1. Let J ′ = H[Y ′

1 , . . . , Y ′
k]. To see that (i) holds, observe

that by the definition of the sets Y ′
i and by hypothesis,

e(J ′) ≥ e(J) −
∑
i/∈I

∑
v∈Zi

dJ(v) ≥ e(J) − (k − |I|)e(J)
2k

≥ e(J)
2 . (4.1.2)

By (C1) this is at least e(H)/(2k)|I|+1 ≥ e(H)/(2k)k, so (i) holds. Moreover, (ii) follows
from (C2). Finally, observe that for all i /∈ I and all v ∈ Y ′

i , we have v /∈ Zi; it follows from
the definition of Zi and (4.1.2) that

dJ′(v) ≤ dJ(v) < ζe(J)/2 ≤ ζe(J ′);

thus v is not a ζ-root of J ′, as required by (iii). We have shown that (D1) holds, so we are
done.

Case 2: There exists ℓ ∈ [k] \ I such that
∑

v∈Zℓ
dJ (v) > e(J)/(2k). In this case, we choose

an arbitrary such ℓ, we take Y ′
ℓ = Zℓ, Y ′

i = Yi for all i ̸= ℓ, and I ′ = I ∪ {ℓ}. We claim that
J ′ := J [Y ′

1 , . . . , Y ′
k] and I ′ satisfy (C1) and (C2) with |I ′| = |I| + 1, as in (D2). We certainly

have |I ′| = |I| + 1. To see (C1), observe that by hypothesis,

e(J ′) =
∑

v∈Zℓ

dJ(v) > e(J)/(2k);

H. Dell, J. Lapinskas and K. Meeks 57

hence by (C1) of the inductive hypothesis, we have |E(H ′)| ≥ |E(G)|/(2k)|I|+1 as required.
To see (C2), observe that, by the definition of Zℓ,

e(J) ≥
∑

v∈Zℓ

dJ(v) ≥ |Zℓ|ζe(J)/2,

and hence |Zℓ| ≤ 2/ζ. It follows by (C2) of the inductive hypothesis that |Y ′
i | ≤ 2/ζ for all

i ∈ I ′, as required by (C2). We have shown that (D2) holds, so we are done. ◀

With Lemmas 54–56 in hand, we now set out the algorithm ColourCoarse_New required
by Lemma 50 as Algorithm 3. (Recall from the statement of Lemma 50 that αk ∈ [0, k] is
the index of our regularly-varying cost function.) We now restate Lemma 50 and prove it.

Algorithm 3 ColourCoarse_New
This algorithm applies either CoarseSmallCore or CoarseLargeCore with each possible
choice R of root classes, depending on the size of the set R, and returns the maximum number
of edges estimated by any of these calls.

Oracle: Colourful independence oracle cIND(G) of an n-vertex k-hypergraph G.
Input: Integer n that is a power of two and satisfies k ≤ (log n)/(log log n)2, and

disjoint subsets X1, . . . , Xk ⊆ V (G).
Output: Non-negative integer m such that, with probability at least 2/3,

m/b ≤ e(G[X1, . . . , Xk]) ≤ mb, where α′
k := ⌈αk⌉ − 1 and

b := (2k)5k(log n)k−α′
k−1 logk

(
8k log40k(k−α′

k)/(αk−α′
k)(n)

)
.

1 begin
2 Set t := ⌊n/(log n)20k/(αk−α′

k)⌋ .
3 Set ζ := (t/n)2k(k−α′

k)/(8k) .
4 if n < 32 or t < 12 log k then
5 Count edges of G[X1, . . . , Xk] by brute force, return the answer, and halt.
6 forall R ⊆ [k] do
7 if |R| ≤ α′

k then
8 Set ZR = CoarseSmallCore(cIND(G), X1, . . . , Xk, R, t, 1/2k+5).
9 if |R| ≥ α′

k + 1 then
10 Set ZR = CoarseLargeCore(cIND(G), X1, . . . , Xk, R, ζ, 1/2k+5).

11 return max{ZR : |R| ⊆ [k]}.

▶ Lemma 50. Let cost = {costk : k ≥ 2} be a regularly-varying parameterised cost function
with parameter k and index αk. Let

α′
k := ⌈αk⌉ − 1, T := k9k+2 log2(k−α′

k)+9 n,

b := (2k)5k(log n)k−α′
k−1 logk(8k log40k(k−α′

k)/(αk−α′
k)(n)).

There is a randomised cIND-oracle algorithm ColourCoarse_New(cIND(G), X1, . . . , Xk)
with worst-case running time O(T (costk(n) + n)), worst-case oracle cost O(T costk(n)),
and the following behaviour: Given an n-vertex k-hypergraph G with n a power of two,
k ≤ (log n)/(log log n)2, and disjoint sets X1, . . . , Xk ⊆ V (G), the algorithm outputs an
integer m such that, with probability at least 2/3, we have m/b ≤ e(G[X1, . . . , Xk]) ≤ mb.

58 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Proof. We first prove that CoarseLargeCore has the correct behaviour, before we turn to
time and cost.

Behaviour.

We begin by noting that the conditions of Lemma 54 (respectively Lemma 55) are satisfied
each time we call the relevant subroutine. For CoarseLargeCore, it is immediate that
when reaching line 10 we have n ≥ 32. We trivially have 1/2k+5 < 1/32, and since ζ =
(t/n)2k(k−α′

k)/(8k) ≤ 1/ log20 n and n > 4, we also have ζ < 1/32. For CoarseSmallCore,
we trivially have n ≥ t and that t is an integer, and Lines 4-5 guarantee that t ≥ 12 log k.
Finally, we have α′

k ≤ k − 1, so CoarseSmallCore is always called with R ⊂ [k].
Observe that the number of calls made to CoarseSmallCore and CoarseLargeCore

combined is 2k. Lemmas 54 and 55 imply that the results of each such call lie within certain
bounds with failure probability at most 1/2k+5; by a union bound, it follows that with
probability at least 31/32, no call to CoarseSmallCore or CoarseLargeCore fails in this
way. In this case, we say that ColourCoarse_New succeeds. It therefore suffices to prove that,
whenever ColourCoarse_New succeeds, its output m satisfies m/b ≤ e(G[X1, . . . , Xk]) ≤ mb.

First, note if ColourCoarse_New succeeds, then by Lemma 54(i) and Lemma 55(i), every
invocation of either CoarseSmallCore or CoarseLargeCore returns a value that is at most
b · e(G[X1, . . . , Xk]), so we have m ≤ b · e(G[X1, . . . , Xk]) as required.

To see that ColourCoarse_New returns a value that is not too small, recall from Lemma 56
that there exists I ⊆ [k] such that G[X1, . . . , Xk] contains an (I, ζ)-core. Suppose first that
|I| ≤ α′

k. In this case we obtain ZI by invoking CoarseSmallCore with R = I. Observe
that, by definition,

(8kζ)1/(2(k−|I|))n = (t/n)2k(k−α′
k)/(2(k−|I|))n ≤ (t/n)kn ≤ t,

so it follows from Lemma 54(ii) that ZI ≥ e(G[X1, . . . , Xk])/b. Since our output m is the
maximum over all values ZR, it follows that m ≥ e(G[X1, . . . , Xk])/b, as required. Now
suppose that |I| ≥ α′

k + 1. In this case, we obtain ZI by invoking CoarseLargeCore with
R = I, and it follows from Lemma 55(ii) that ZR ≥ e(G[X1, . . . , Xk])/b. As before, it is then
immediate that m ≥ e(G[X1, . . . , Xk])/b, as required.

Running time and oracle cost.

We now prove the claimed bounds on the time and cost of ColourCoarse_New. Since
k ≤ (log n)/(log log n)2, we have logk(n) ≤ 2(log n)/(log log n) = no(1) as n → ∞, and so

t = n1−o(1). (4.1.3)

Let η = (αk − α′
k)/2. Since costk is regularly-varying with index αk and a slowly-varying

component which does not depend on k, by Lemma 8(ii) there exists x0 such that

for all k ≥ 2, all x ≥ x0 and all Ax ≥ 1, costk(Axx)/costk(x) ≥ Aαk−η
x . (4.1.4)

Throughout the proof, we assume without loss of generality that n is sufficiently large that
t ≥ x0.

Suppose we solve the problem by brute force in line 5, with time and oracle cost O(nk).
Since t ≤ 12 log k ≤ log n, and since t = n1−o(1) by (4.1.3), we have log n ≤ n1−o(1) and
hence n = O(1). It follows that nk = 2O(k) = O(kk). For the rest of the proof, suppose we
do not solve the problem by brute force in line 5.

H. Dell, J. Lapinskas and K. Meeks 59

First, we bound the oracle cost of invocations of CoarseSmallCore. Let

T1 = max
{

log(2k+5)k6k+1 log4k+8(n)(n/t)i : 0 ≤ i ≤ α′
k

}
; (4.1.5)

then by Lemma 54, each invocation of CoarseSmallCore has oracle cost O(T1costk(2kt)).
Observe that the maximum in (4.1.5) is attained at i = α′

k, so

T1 ≤ k6k+2 log4k+8(n)(n/t)α′
k ≤ (T/k3k) log4k−1(n)(n/t)α′

k (4.1.6)

Since CoarseSmallCore is invoked at most 2k times, by (4.1.6) and (4.1.4) applied with
x = 2kt and Ax = n/(2kt), the total oracle cost of all such invocations is at most

O(T1costk(2kt)) = O
(

2k T

k3k
log4k(n)

(n

t

)α′
k
(2kt

n

)αk−η

costk(n)
)

= O
(

T log4k(n)
(t

n

)αk−α′
k−η

costk(n)
)

.

Substituting in the values of t and η yields an oracle cost of at most

O
(
T log4k(n) log−10k(n)costk(n)

)
= O

(
T costk(n)

)
,

as required.
We now bound the running time of invocations of CoarseSmallCore. By Lemma 54,

each invocation of CoarseSmallCore has running time O(n + T1kt log n). When αk > 1, we
have T1kt log n = O(T1costk(2kt)), and so the running time is O(T (costk(n) + n)) as above.
Suppose instead αk ≤ 1, so that α′

k = 0. Since CoarseSmallCore is invoked at most 2k

times, by (4.1.6) it follows that the total running time is at most

O
(

2kn + (T/kk) log4k(n)t
)

= O
(

n
(

2k + (T/kk) log4k(n)(t/n)
))

= O
(

n
(

T + T log4k−20k/αk (n)
))

.

Since αk ≤ 1, this is O(nT). Thus in both cases, the running time is O(T (costk(n) + n)) as
required.

We now bound the oracle cost of invocations of CoarseLargeCore. Let

T2 = max
{

27k log(2k+5) log2i(1/ζ) log2(k−i)+1(n) : α′
k + 1 ≤ i ≤ k

}
; (4.1.7)

then by Lemma 55, each invocation of CoarseLargeCore has oracle cost O(T2costk(n)).
Observe that, by the definitions of ζ and t, and since t ≥ 1 by (4.1.3),

log(1/ζ) = log
(
8k(n/t)2k(k−α′

k)) = O(k2 log(n/t)) = O(k3 log log n). (4.1.8)

If k ≥ (log log n)/(log log log n)2, then

k3k = 23k log k ≥ 23k(1−o(1)) log log log n = Ω((log log n)k);

if instead k ≤ (log log n)/(log log log n)2, then

(log log n)k ≤ 2(log log n)/(log log log n) = (log n)o(1).

In either case, by (4.1.8) we have log2k(1/ζ) = O(k6k log n). It follows from (4.1.7) that

T2 = O
(

27kk6k+1 log2(k−α′
k)(n)

)
= O

(
T/(2k log n)

)
. (4.1.9)

60 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Thus the total oracle cost of all 2k invocations of CoarseLargeCore is

O(2kT2costk(n)) = O(T costk(n))

as required.
Similarly, by Lemma 55 and (4.1.9), the running time of all 2k invocations of LargeCore

Coarse is O(2kT2n log n) = O(Tn); thus the total time is O(T (costk(n) + n)) as required.
Finally, we observe that lines 2, 3 and 11 take O(k2k) time (including arithmetic operations

on (k log n)-bit numbers) and make no oracle calls. The result therefore follows. ◀

4.1.2 Counting edges with a small core
As described in Section 4.1.1, our second approximate counting algorithm (which will be
efficient when the input graph has an (I, ζ)-core with |I| small) will make use of the main
counting algorithm from [15] as a subroutine; we can paraphrase this result as follows.

▶ Theorem 57 (Dell, Lapinskas, and Meeks [15, Theorem 1.1 paraphrased]). Let cost =
{costk : k ≥ 2} be a regularly-varying parameterised cost function with parameter k. There is a
randomised cIND-oracle algorithm Count_DLM22(cIND(G), ε, δ) with worst-case running time
O(log(1/δ)ε−2k6k(log n)4k+8n), worst-case oracle cost O(log(1/δ)ε−2k6k(log n)4k+7costk(n),
and the following behaviour: Given an n-vertex k-hypergraph G and rationals ε, δ ∈ (0, 1), the
algorithm outputs a rational number that, with probability at least 1−δ, is an ε-approximaiton
to e(G).

We can now state the heart of our algorithm, CoarseSmallCoreHelper. Given correctness
and time and cost bounds on CoarseSmallCoreHelper (which we will prove as Lemma 60),
Lemma 54 will follow immediately by applying Lemma 19 to reduce the failure probability
of CoarseSmallCoreHelper from 1/3 to δ with O(log(1/δ)) overhead.

Observe that line 7 guarantees that |V (Hπ)| ≤ 2kt, so the calls to Count_DLM22 will run
quickly – this is where the fast running time will come from. Moreover, the graphs Hπ of
line 10 are all edge-disjoint, and that each edge of G[X1, . . . , Xk] survives in some Hπ with
probability (t/n)k−|I|; thus we have E(Z) = e(G[X1, . . . , Xk]). Establishing concentration
here will be central to the correctness proof. To this end, we first recall the following
standard martingale concentration bound due to McDiarmid [26]; we then apply it to prove
concentration for specific graphs Hπ in Lemma 59.

▶ Lemma 58. Let f be a real function of independent real random variables Z1, . . . , Zm,
and let µ = E(f(Z1, . . . , Zm)). Let c1, . . . , cm ≥ 0 be such that, for all i ∈ [m] and all pairs
(x, x′) differing only in the i’th coordinate, we have |f(x) − f(x′)| ≤ ci. Then for all y > 0,

P
(
|f(Z1, . . . , Zm) − µ| ≥ y

)
≤ 2e−2y2/

∑m

i=1
c2

i .

▶ Lemma 59. Let H be an n-vertex k-partite k-hypergraph with vertex classes X1, . . . , Xk.
Let 0 < ζ, p < 1, let I ⊆ [k], and suppose H has an (I, ζ)-core. For all i ∈ I, let X ′

i = Xi; for
all i ∈ [k]\I, let X ′

i be a random subset of Xi in which each element is included independently
with probability p. Then, setting H ′ = H[X ′

1, . . . , X ′
k], we have

P
(
e(H ′) < pk−|I|e(H)/(2k)k+1) ≤ 2 exp

(
−p2(k−|I|)/(2kζ)

)
.

Proof. Let r := |I|. Without loss of generality, suppose I = [r] (otherwise we can reorder
X1, . . . , Xk). By hypothesis, H has an (I, ζ)-core; denote this by (Y1, . . . , Yk). For all i ∈ [k],

H. Dell, J. Lapinskas and K. Meeks 61

Algorithm 4 CoarseSmallCoreHelper
This algorithm computes an estimate of the number of edges in G which is unlikely to be
much too large and, if G has an (I, ζ)-core satisfying certain properties, is also unlikely to be
much too small. Its running time increases with the size of the set I.

Oracle: Colourful independence oracle cIND(G) of an n-vertex k-hypergraph G.
Input: Positive integer n that is a power of two, disjoint subsets

X1, . . . , Xk ⊆ V (G), set I ⊆ [k], and integer t satisfying n ≥ t ≥ 12 log k.
Output: Non-negative integer Z that satisfies the following properties with

probability at least 2/3, where b := (2k)k+2. Firstly,
e(G[X1, . . . , Xk]) ≤ Zb. Secondly, if G[X1, . . . , Xk] has an (I, ζ)-core for
some ζ satisfying t ≥ (8kζ)1/(2(k−|I|))n, then e(G[X1, . . . , Xk]) ≥ Z/b.

1 begin
2 forall i ∈ I do
3 Compute an arbitrary partition Xi,1, . . . , Xi,xi of Xi into xi ≤ ⌈n/t⌉ sets each

of cardinality at most t.
4 forall i ∈ [k] \ I do
5 Compute a random subset Xi,1 ⊆ Xi by retaining each element independently

with probability t/n.
6 if |Xi,1| > 2t then
7 Return an arbitrary value and halt.

8 Compute the set Π of all functions π with domain [k] such that π(i) ∈ [xi] for
each i ∈ I and π(i) = 1 for all i /∈ I.

9 forall π ∈ Π do
10 Set Hπ := G[X1,π(1), . . . , Xk,π(k)].

11 return Z := nk−|I|

tk−|I|

∑
π∈Π Count_DLM22(cIND(Hπ), 1/2, 1/(12nk)).

62 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

let Y ′
i = Yi ∩ X ′

i; thus, Y ′
1 , . . . , Y ′

r are equal to Y1, . . . , Yr, and Y ′
r+1, . . . , Y ′

k are formed by
randomly deleting vertices from Yr+1, . . . , Yk. Let J := H[Y1, . . . , Yk] and J ′ := H[Y ′

1 , . . . , Y ′
k].

We next show that it suffices to prove concentration of e(J ′). Observe by linearity of
expectation applied to indicator random variables for each edge in E(J) that E(e(J ′)) =
pk−re(J). Moreover, observe that e(H ′) ≥ e(J ′), and recall from Definition 53(i) that since
Y1, . . . , Yk is a core we have e(J) ≥ e(H)/(2k)k; thus whenever e(J ′) ≥ pk−re(J)/2, we also
have e(H ′) ≥ pk−re(H)/(2k)k+1. It follows that

P
(
e(H ′) < pk−re(H)/(2k)k+1) ≤ P

(
e(J ′) < pk−re(J)/2

)
. (4.1.10)

We now bound the right-hand side of (4.1.10) above by applying Lemma 58 to e(J ′).
Observe that e(J ′) is a function of the independent indicator variables for the events {v ∈ Y ′

j }
for j ≥ r + 1, and that modifying any of those indicator variables — that is, adding or
removing a vertex v from some Y ′

j — affects e(J ′) by at most dJ(v). Thus by Lemma 58,

P
(

e(J ′) < pk−re(J)/2
)

≤ 2 exp
(

−p2(k−r)e(J)2
/(

2
k∑

i=r+1

∑
v∈Yi

dJ(v)2
))

. (4.1.11)

Now, since (Y1, . . . , Yk) is an (I, ζ)-core for H, by Definition 53(iii) we have dJ (v) ≤ ζe(J)
for all v ∈ Yr+1 ∪ · · · ∪ Yk. Moreover, since H is k-partite we have

∑
v∈Yi

dJ(vℓ) = e(J) for
all i ∈ [k]. Thus

k∑
i=r+1

∑
v∈Yi

dJ(v)2 ≤ ζe(J)
k∑

i=r+1

∑
v∈Yi

dJ(v) ≤ kζe(J)2.

By (4.1.10) and (4.1.11), it follows that

P
(
e(H ′) < p2(k−|I|)e(H)/(2k)k+1) ≤ 2 exp

(
−p2(k−r)/(2kζ)

)
,

as required. ◀

We now prove correctness of CoarseSmallCoreHelper.

▶ Lemma 60. CoarseSmallCoreHelper behaves as stated. Moreover, let

T := k6k+1 log4k+8(n)n|I|/t|I|.

Then on an n-vertex k-hypergraph G, CoarseSmallCoreHelper(cIND(G), X1, . . . , Xk, I, t)
has oracle cost O(T costk(2kt)) and running time O(Ttk log n + n).

Proof. Running time and oracle cost. Since we halt early at line 7 whenever any set
Xi,j contains more than 2t vertices, Count_DLM22 is only invoked on graphs with at most
2kt vertices. By Theorem 57, it follows that each invocation of Count_DLM22 runs in
time O(k6k+1 log4k+9(n) · 2kt) and has oracle cost O(k6k+1 log4k+8(n)costk(2kt)). Since
|Π| = O((n/t)|I|), it follows that line 11 runs in time O(Ttk log n) and has oracle cost
O(T costk(2kt)). The rest of the algorithm runs in time O(nk) and does not call the oracle,
so the desired bounds follow.

Correctness. Let r := |I|, and let H := G[X1, . . . , Xk]. Without loss of generality, suppose
that I = [r] (otherwise we can reorder X1, . . . , Xk). We will argue that, with high probability,
none of the following bad events occur:
E1: we halt at line 7 due to a set Xi,1 having size greater than 2t;

H. Dell, J. Lapinskas and K. Meeks 63

E2: at least one invocation of Count_DLM22 at line 11 returns a value that is not a (1/2)-
approximation to e(Hπ);

E3: we do not have Z ≤ b · e(H);
E4: H has an (I, ζ)-core for some ζ satisfying t ≥ (8kζ)1/(2(k−r))n and we do not have

Z ≥ e(H)/b.
If none of these events occur, then the algorithm behaves as stated. Hence

P(CoarseSmallCore fails) ≤ P(E1)+P(E2)+P
(
E3 | ¬E1, ¬E2)

)
+P

(
E4 | ¬E1, ¬E2)

)
. (4.1.12)

We first bound P(E1) above. For all i ∈ I, we have |Xi,j | ≤ t for all j by construction
in line 3. For all i ∈ [k] \ I, we have xi = 1, and |Xi,1| follows a binomial distribution with
mean |Xi|t/n ≤ t. Since t ≥ 12 log k, it follows by a standard Chernoff bound (Lemma 13
with δ = 1) that

P(E1) ≤ 2e−t/3 ≤ 2/e4 < 1/12. (4.1.13)

We next observe that, by Theorem 57, each invocation of Count_DLM22 fails with
probability at most 1/(12nk). There are |Π| ≤ ⌈n/t⌉|I| ≤ nk invocations in total, so by a
union bound we have

P(E2) ≤ 1/12. (4.1.14)

We next observe that, writing H ′ = G[X1, . . . , Xr, Xr+1,1, . . . , Xk,1], since H is k-partite,
we have

e(H ′) =
∑
π∈Π

e(Hπ).

Hence, conditioned on ¬E1 and ¬E2, i.e. conditioned on CoarseSmallCoreHelper reaching
line 11 and on the calls to Count_DLM22 returning valid approximations, we have

(n/t)k−re(H ′)/2 ≤ Z ≤ 2(n/t)k−re(H ′). (4.1.15)

We now bound P(E3 | ¬E1, ¬E2) above using (4.1.15). Each edge of G[X1, . . . , Xk] survives
in H ′ with probability (t/n)k−r, so by linearity of expectation we have

µ := E(e(H ′) | ¬E1, ¬E2) = e(H)(t/n)k−r.

It follows by the fact that k ≥ 2, (4.1.15), and Markov’s inequality that

P
(
Z ≥ e(H) · b | ¬E1, ¬E2

)
≤ P

(
Z ≥ 24µ(n/t)k−r | ¬E1, ¬E2

)
≤ P

(
e(H ′) ≥ 12µ | ¬E1, ¬E2

)
≤ 1/12. (4.1.16)

Finally, we bound P(E4 | ¬E1, ¬E2) above. Suppose G[X1, . . . , Xk] has an (I, ζ)-core
for some ζ satisfying t ≥ (8kζ)(1/2(k−|I|))n (since otherwise this probability is zero). Us-
ing (4.1.15) and Lemma 59, taking p = t/n, we have

P(E4 | ¬E1, ¬E2) = P(Z < e(H)/(2k)k+2 | ¬E1, ¬E2)
≤ P((n/t)k−re(H ′)/2 < e(H)/(2k)k+2 | ¬E1, ¬E2)
≤ P(e(H ′) < (t/n)k−re(H)/(2k)k+1 | ¬E1, ¬E2)

≤ 2 exp
(
−(t/n)2(k−r)/(2kζ)

)
.

Since t ≥ (8kζ)1/(2(k−r))n by hypothesis, it follows that

P(E4 | ¬E1, ¬E2) ≤ 2e−4 < 1/12. (4.1.17)

The result now follows from (4.1.12), (4.1.13), (4.1.14), (4.1.16) and (4.1.17). ◀

64 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Lemma 54 now follows immediately from Lemma 60 together with Lemma 19, which is
used to reduce the failure probability from 1/3 to 1 − δ for arbitrary rational δ ∈ (0, 1).

4.1.3 Counting edges with a large core
In this section, we adapt the algorithm ColourCoarse_DLM22 of [15] into CoarseLargeCore,
which runs faster but still gives a good approximation when supplied with a set I and a
rational number ζ such that the input graph H = G[X1, . . . , Xk] has an (I, ζ)-core. The
crucial ingredient in [15] is a subroutine VerifyGuess which takes as input a guess M of
the number of edges in H, and distinguishes — with reasonable probability – two cases:
the number of edges is at least M , or the number of edges is much less than M . It is then
relatively easy to use this subroutine to implement the algorithm of [15] by using binary
search to find the least guess M which VerifyGuess accepts. Our adaptation follows exactly
the same structure; we first present the analogue of VerifyGuess.

Algorithm 5 VerifyGuess_New
This algorithm, with reasonable probability, distinguishes between two cases: the number of
edges in the input hypergraph is much less than the guess M , or the input hypergraph contains
an (I, ζ)-core and its number of edges is at least M .

Oracle: Colourful independence oracle cIND(G) of an n-vertex k-hypergraph G.
Input: Positive integers n and M that are powers of two and satisfy n ≥ 32, disjoint

subsets X1, . . . , Xk ⊆ V (G), set I ⊆ [k], and rational number ζ ∈ (0, 1/32)
with denominator O(nk).

Output: Either Yes or No. Setting

pout = 1/
(
25k log|I|(1/ζ) logk−|I| n

)
,

we require the following two properties. Completeness ensures that if
G[X1, . . . , Xk] contains an (I, ζ)-core and e(G[X1, . . . , Xk]) ≥ M , then
VerifyGuess_New outputs Yes with probability at least pout. Soundness
ensures that if e(G[X1, . . . , Xk]) < M · pout/((8k)k log|I|(1/ζ) logk−|I| n),
then VerifyGuess_New outputs No with probability at least 1 − pout/2.

1 begin
2 For each i ∈ [k] and each 0 ≤ j ≤ 2 log n − 1, construct a subset Zi,j of Xi by

including each vertex independently with probability 1/2j .
3 Construct the finite set A of all tuples (a1, . . . , ak) of non-negative integers

satisfying: ai ≤ 2 log n for all i ∈ [k]; ai ≤ 2 log(1/ζ) + 1 for all i ∈ I; and
a1 + · · · + ak ≥ log M − k log(2k).

4 forall (a1, . . . , ak) ∈ A do
5 if cIND(G)Z1,a1 ,...,Zk,ak

= 0 then
6 return Yes.

7 return No.

The main difference between VerifyGuess_New and the algorithm VerifyGuess of [15]
is the choice of the set A, which is much smaller; this is possible because of the (I, ζ)-core,
and leads to an improved running time and oracle cost. The main difference in the proofs is
that we must show that the presence of the core implies that completeness still holds even
with this smaller set A, i.e. that if E(G[X1, . . . , Xk]) ≥ M then with reasonable probability

H. Dell, J. Lapinskas and K. Meeks 65

there still exists (a1, . . . , ak) ∈ A such that e(G[Z1,a1 , . . . , Zk,ak
]) > 0 and the algorithm

outputs Yes in line 6. The following lemma is a generalisation of part of the proof of [15,
Lemma 4.1], and we will use it to find this tuple (a1, . . . , ak).

▶ Lemma 61. Let J be a k-partite k-hypergraph with vertex classes C1, . . . , Ck, and let
i ∈ [k]. Let Λ = max{5, log |Ci|}. Then there exists a integer 0 ≤ a ≤ 2Λ − 1 and a set
S ⊆ Ci such that:

(i) for all v ∈ S, dJ(v) ≥ e(J)/2a; and
(ii) 2−a|S| ≥ 1/(16Λ).

Proof. Without loss of generality, suppose i = 1 (by reordering C1, . . . , Ck if necessary).
We first throw away every vertex in C1 with degree significantly lower than average; let
C−

1 := {v ∈ C1 : dJ(v) > e(J)/(2|C1|)}, and let J− := J [C−
1 , C2, . . . , Ck]. Observe that

e(J−) = e(J) −
∑

v∈C1\C−
1

dJ(v) ≥ e(J) − |C1| · e(J)/(2|C1|) = e(J)/2, (4.1.18)

and that dJ−(v) = dJ(v) for all v ∈ C−
1 .

We now partition vertices of C−
1 according to their degree. For all integers d ≥ 1, let

Cd
1 := {v ∈ C−

1 : 2d−1 ≤ dJ−(v) < 2d}.

Thus Cd
1 is the set of vertices in C−

1 with degree roughly 2d in J− (or equivalently in J). By
the definition of C−

1 , for all v ∈ C−
1 we have e(J)/(2|C1|) < dJ−(v) ≤ e(J); hence Cd

1 = ∅
for all values of d not satisfying 2d > e(J)/(2|C1|) and 2d−1 ≤ e(J). Since each edge in J−

is incident to a vertex in exactly one set Cd
1 , by the pigeonhole principle, we deduce that

there exists

D ∈
[
1 +

⌊
log e(J)

2|C1|

⌋
, 1 + ⌊log e(J)⌋

]
(4.1.19)

such that

e(J−[CD
1 , C2, . . . , Ck]) ≥ e(J−)

⌊log e(J)⌋ − ⌊log(e(J)/(2|C1|))⌋ + 1

≥ e(J−)
log(e(J)) − log(e(J)/(2|C1|)) + 2 = e(J−)

3 + log |C1|
.

It follows by (4.1.18) that

e(J−[CD
1 , C2, . . . , Ck]) ≥ e(J)

6 + 2 log |C1|
. (4.1.20)

We now take S := CD
1 and a := ⌈log e(J)⌉ − D + 1. It remains to prove that S and a

satisfy the conditions required by the lemma statement.
First, observe from (4.1.19) that

0 ≤ a ≤ ⌈log e(J)⌉ −
⌊

log e(J)
2|C1|

⌋
≤ log e(J) − log e(J)

2|C1|
+ 2 < 2Λ − 1,

as required in the lemma statement. We next prove (i). Since every vertex v ∈ CD
1 has

degree at least 2D−1 in J−, from the definition of a we have

2adJ(v) ≥ 2a+D−1 = 2⌈log e(J)⌉ ≥ e(J),

66 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

as required by (i). Finally, we prove (ii). Since every vertex in CD
1 has degree at most 2D in

J−, by (4.1.20) we have

2D|CD
1 | ≥ e(J−[CD

1 , C2, . . . , Ck]) ≥ e(J)
6 + 2 log |C1|

,

and hence

|CD
1 | ≥ e(J)

2D+1(3 + log |C1|) ≥ e(J)
2D+2Λ .

By the definition of a we have

2−a ≥ 2−⌈log e(J)⌉+D−1 ≥ 2D−2

e(J) ,

so it follows that 2−a|CD
1 | ≥ 1/(16Λ) as required. ◀

The rest of the analysis of VerifyGuess_New is almost exactly the same as in [15], with
the relevant part of the proof replaced by Lemma 61 and with slightly different algebra. We
provide full details for the benefit of the reader.

▶ Lemma 62. VerifyGuess_New behaves as stated, runs in time

O(22k(log n)k−|I| log|I|(1/ζ) + kn log n),

and has oracle cost

O(22k(log n)k−|I| log|I|(1/ζ) · costk(n)).

Proof. Let G, M, X1, . . . , Xk, I, ζ be the input for VerifyGuess_New, and write H =
G[X1, . . . , Xk].

Running time and oracle cost. We first observe that

|A| ≤ 2k(log(1/ζ) + 1)|I|(log n)k−|I|.

Since log(1/ζ) ≥ 5, we have log(1/ζ) + 1 ≤ (6/5) log(1/ζ) and hence

|A| ≤ (12/5)k log|I|(1/ζ)(log n)k−|I| = O(22k(log n)k−|I| log|I|(1/ζ))). (4.1.21)

Lines 2 and 3 make no oracle calls; line 2 takes O(kn log n) time to construct the sets Zi,j ,
and line 3 takes O(|A|) time to construct A. The loop at line 4 invokes the oracle |A| times
and runs in O(|A|) time. Line 7 makes no oracle calls and runs in constant time. The claimed
bounds on running time and oracle cost follow on bounding the cost of every oracle call by
costk(n) (using Lemma 12), and it remains to prove that the soundness and completeness
properties hold.

Soundness. This follows by an identical argument to that used in the proof of [15, Lemma
4.1]; for clarity we reproduce this reasoning with the values of pout and |A| changed for the
situation at hand. For notational convenience, we denote the gap in the soundness case by γ,
that is, we set γ := pout/((8k)k log|I|(1/ζ) logk−|I| n). Suppose that e(H) < γM .

Recall that the algorithm returns Yes if and only if e(G[Z1,a1 , . . . , Zk,ak
]) > 0 holds for

some (a1, . . . , ak) ∈ A. Hence by a union bound over all e ∈ E(H) and all (a1, . . . , ak) ∈ A,
we have

P(Returns No) ≥ 1 −
∑

(a1,...,ak)∈A

e(H)
k∏

j=1
2−aj . (4.1.22)

H. Dell, J. Lapinskas and K. Meeks 67

We now bound this product above. By the definition of A, we have 2−a1 . . . 2−ak ≤ (2k)k/M .
By hypothesis, we have e(H) < γM and hence (2k)k/M ≤ γ(2k)k/e(H). It follows from
(4.1.22) that

P(Returns No) ≥ 1 − |A|γ(2k)k. (4.1.23)

By (4.1.21) and the fact that k ≥ 2 we have

γ ≤ pout
(40/12)kkk|A|

<
pout

2k+1kk|A|
.

It therefore follows from (4.1.23) that we return No with probability at least 1 − pout/2. This
establishes the soundness of the algorithm, so it remains to prove completeness.

Completeness. Suppose now that (Y1, . . . , Yk) is an (I, ζ)-core for H and that e(H) ≥ M .
We must prove that VerifyGuess_New outputs Yes with probability at least pout. Let
H0 := H[Y1, . . . , Yk], and note that by Definition 53(i), e(H0) ≥ e(H)/(2k)k ≥ M/(2k)k. It
suffices to show that with probability at least pout, there is at least one setting of the vector
(a1, . . . , ak) ∈ A such that H0[Z1,a1 , . . . , Zk,ak

] contains at least one edge.
We will define this setting iteratively. First, with reasonable probability, we will find

an integer a1 and a vertex v1 ∈ Z1,a1 such that H1 := H0[{v1}, Y2, . . . , Yk] contains roughly
2−a1e(H0) edges; our choice of a1 will come from an application of Lemma 61. In the process,
we expose Z1,j for all j. We then, again with reasonable probability, find an integer a2 and a
vertex v2 ∈ Z2,a2 such that H2 := H0[{v1}, {v2}, Y3, . . . , Yk] contains roughly 2−a1−a2e(H ′)
edges. Continuing in this vein, we eventually find (a1, . . . , ak) ∈ A and vertices vi ∈ Zi,ai

such that {v1, . . . , vk} is an edge in H0[Z1,a1 , . . . , Zk,ak
], proving the result.

We formalise this idea by defining a collection of events. For all i ∈ [k], let Ei be the event
that there exist integers a1, . . . , ai ≥ 0 and v1, . . . , vi ∈ V (H) such that:
(a) for all j ∈ [i], vj ∈ Zj,aj

;
(b) for all j ∈ [i] \ I, aj ≤ 2 log(n) − 1;
(c) for all j ∈ [i] ∩ I, aj ≤ 2 log(1/ζ) + 1; and
(d) setting Hi := H0[{v1}, . . . , {vi}, Yi+1, . . . , Yk], we have e(Hi) ≥ e(H0)/

∏i
j=1 2aj .

We make the following Claim: for all i ∈ [k],

P(Ei | E1, . . . , Ei−1) ≥

{
1/(32 log(1/ζ)) if i ∈ I,

1/(32 log n) otherwise.

Note that for i = 1, the range E1, . . . , Ei−1 is empty.

Proof of Lemma 62 from Claim: Suppose Ek occurs, and let a1, . . . , ak and v1, . . . , vk

be as in the definition of Ek. By (d), we know that {v1, . . . , vk} is an edge in H; it follows
by (a) that it is also an edge in G[Z1,a1 , . . . , Zk,ak

]. Also by (d), since the number of edges
containing {v1, . . . , vk} cannot be more than one, we have

k∏
j=1

2aj ≥ e(H0). (4.1.24)

Since e(H) ≥ M by hypothesis, and (Y1, . . . , Yk) is an (I, ζ)-core, by Definition 53(i) we have
e(H0) ≥ M/(2k)k; it follows from (4.1.24) that a1 + · · · + ak ≥ log M − k log(2k). It follows
from (b) and (c) that (a1, . . . , ak) ∈ A, so whenever Ek occurs, VerifyGuess_New returns
Yes on reaching (a1, . . . , ak) in line 4. By the Claim, we have

P(Ek) =
k∏

j=1
P(Ej | E1, . . . , Ej−1) ≥ 1/

(
32k log|I|(1/ζ) logk−|I| n

)
= pout,

68 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

so completeness follows. The lemma statement therefore follows as well.

Proof of Claim: We proceed by induction. Suppose we have defined v1, . . . , vi−1 and
a1, . . . , ai−1 as a deterministic function of {Zi′,j : i′ ≤ i − 1} conditioned on E1, . . . , Ei−1; this
is vacuously true for i = 1, and true by the induction hypothesis for 2 ≤ i ≤ k. We then
expose the values of {Zi′,j : i′ ≤ i − 1} conditioned on E1, . . . , Ei−1, and hence the values of
v1, . . . , vi−1 and a1, . . . , ai−1; we abuse notation slightly by abbreviating the corresponding
suite of events to F and identifying a1, . . . , ai−1, v1, . . . , vi−1, and Hi−1 with their values
conditioned on F . We seek to prove that for all choices of F ,

P(Ei | F) ≥

{
1/(32 log(1/ζ)) if i ∈ I,

1/(32 log n) otherwise.

Observe that F is independent of all sets Zi,j .
We apply Lemma 61 with J = Hi−1, so that Ca = {va} for all a ≤ i − 1 and Ca = Ya for

all a ≥ i. We take ai to be the resulting integer a, and Si ⊆ Ci to be the resulting set S.
We will take Ei to be the event that Si ∩ Zi,ai

≠ ∅, and if Ei occurs then we will choose vi

arbitrarily from Si ∩ Zi,ai . By construction, v1, . . . , vi satisfy property (a).
We first note that by Lemma 61, ai ≤ max{9, 2 log(|Yi|) − 1}. If i /∈ I, then it follows

that ai ≤ max{9, 2 log n − 1}; since n ≥ 32, it follows that ai ≤ 2 log n − 1. If i ∈ I, then
since (Y1, . . . , Yk) is an (I, ζ)-core of H0, by Definition 53(ii), we have |Yi| ≤ 2/ζ and hence
ai ≤ max{9, 2 log(1/ζ) + 1}; since ζ ≤ 1/32, it follows that ai ≤ 2 log(1/ζ) + 1. Either way,
a1, . . . , ai satisfy properties (b) and (c).

We next observe that if Ei occurs, so that there exists some vi ∈ Si ∩ Zi,ai
, then by

Lemma 61(i) and property (d) of Hi−1, we have

e(Hi) = dHi−1(vi) ≥ e(Hi−1)/2ai ≥ e(H0)/
i∏

j=1
2aj .

Thus property (d) is also satisfied for Hi.
Finally, we observe that since all sets Zi,j are independent of F , we have

P(Ei | F) = P(Zi,ai
∩ Si ̸= ∅) = 1 − (1 − 2−ai)|Si| ≥ 1 − e−2−ai |Si|.

By Lemma 61(ii), it follows that

P(Ei | F) ≥ 1 − e−1/(16 max{5,log |Yi|}) ≥ 1
32 max{5, log |Yi|}

.

As before, since (Y1, . . . , Yk) is an (I, ζ)-core, n ≥ 32 and ζ ≤ 1/32, the required lower bound
follows whether i ∈ I or not. ◀

In [15], VerifyGuess is used as a subroutine by an algorithm ColourCoarse_DLM22:
this algorithm makes repeated calls to VerifyGuess for each M ∈ {1, 2, 4, 8, ..., nk}, and
outputs an estimate of the number of edges in G that, with probability at least 2/3, is a
b-approximation. We mimic this behaviour with the following algorithm.

▶ Lemma 63. CoarseLargeCoreHelper behaves as stated. Moreover, let

T = 27k log2|I|(1/ζ)(log n)2(k−|I|)+1n.

Then on an n-vertex k-hypergraph G, CoarseLargeCoreHelper(cIND(G), X1, . . . , Xt, I, ζ)
runs in time O(Tn log n), and has oracle cost O(T costk(n)).

H. Dell, J. Lapinskas and K. Meeks 69

Algorithm 6 CoarseLargeCoreHelper
This algorithm makes repeated calls to VerifyGuess_New with different guesses M , to obtain
a coarse approximation to the number of edges in the input hypergraph, assuming that it
contains an (I, ζ)-core.

Oracle: Colourful independence oracle cIND(G) of an n-vertex k-hypergraph G.
Input: Integer n ≥ 32 that is a power of two, disjoint subsets X1, . . . , Xk ⊆ V (G),

set I ⊆ [k], and rational number ζ ∈ (0, 1/32) with denominator O(nk).
Output: Non-negative integer m such that, setting b := (2k)5k logk−|I| n log|I|(1/ζ),

m satisfies both of the following properties with probability at least 2/3.
Firstly, e(G[X1, . . . , Xk]) ≤ mb. Secondly, if G[X1, . . . , Xk] has an
(I, ζ)-core then e(G[X1, . . . , Xk]) ≥ m/b.

1 begin
2 Set pout := 1/

(
25k log|I|(1/ζ) logk−|I| n

)
.

3 Calculate N := ⌈24 ln(12k log n)/pout⌉.
4 forall M ∈ {1, 2, 4, 8, . . . , nk} do
5 Call VerifyGuess_New(cIND(G), M, X1, . . . , Xk, I, ζ) a total of N times, and

let SM ∈ {0, . . . , N} be the number of calls that returned Yes. (Naturally,
we use independent randomness for each call.)

6 if cIND(G)X1,...,Xk
= 1 then

7 Set m = 0.
8 else
9 if there exists M such that SM ≥ 3poutN/4 then

10 Let m be the greatest such M .
11 else
12 Set m = nk.

13 return 2m/b.

70 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Proof. The proof is similar to that of [15, Lemma 4.2], but we include full details here for
the sake of completeness.

Running time. For brevity, let X := log|I|(1/ζ) logk−|I| n. CoarseLargeCoreHelper simply
executes VerifyGuess_New N times, where N = O(25kX log n), and performs o(N) arith-
metic operations to calculate N . By Lemma 62, each execution takes time O(22kX +
kn log n) = O(22kX log(n) · n) and has oracle cost O(22kX · costk(n)). The overall running
time of CoarseLargeCoreHelper is therefore O(27kX2 log2(n) · n), and the overall oracle
cost is O(27kX2 log(n) · costk(n)), as claimed.

Correctness. Let H := G[X1, . . . , Xk]. We will demonstrate that:
(a) P(2m/b > b · e(H)) ≤ 1/6; and
(b) if H contains an (I, ζ)-core, then P(2m/b < e(H)/b) ≤ 1/6.
Given (a) and (b), correctness follows immediately by a union bound.

We first prove (a). Fix M ∈ {1, 2, 4, 8, . . . , nk} with e(H) < 2M/b2. Observe that for
such an M , VerifyGuess_New outputs Yes with probability at most pout/2; thus the random
variable SM is a binomial variable with mean at most Npout/2. A standard Chernoff bound
(Lemma 13 with δ = 1/2) then implies

P(SM ≥ 3Npout/4) ≤ 2e−Npout/24 ≤ 1/(6k log n).

Thus on taking a union bound over all such M , with probability at least 5/6, we have
e(H) ≥ 2m/b2 and hence our output, 2m/b, is at most b · e(H) as required.

Next, suppose that H contains an (I, ζ)-core; we must prove (b). Let M− be the maximum
value in {1, 2, 4, . . . , nk} with e(H) ≥ M−, so that M− ≤ e(H) < 2M−. Observe that for
M−, VerifyGuess_New outputs Yes with probability at least pout; hence E(SM−) ≥ Npout,
and so a standard Chernoff bound (Lemma 13 with δ = 1/4) implies

P(SM− < 3Npout/4) ≤ 2e−Npout/48 ≤ 1/6.

Thus with probability at least 5/6, we have m ≥ M− and hence e(H) ≤ 2m. It follows that
our output, 2m/b, is at least e(H)/b. ◀

Lemma 55 now follows immediately from Lemma 63 together with Lemma 19, which is
used to reduce the failure probability from 1/3 to 1 − δ for arbitrary rational δ ∈ (0, 1).

4.2 Lower bounds on oracle algorithms for edge detection
In order to prove the lower bound part of Theorem 2 in the regimes where k or α are large,
we use a simple lower bound on cIND-oracle algorithms for the problem of deciding whether
the given k-hypergraph has at least one edge or whether it is empty. In this section, we prove
that simple lower bound as Proposition 65 and state the form we will need as Corollary 66.

For the following lemma, recall that a deterministic cIND-oracle algorithm makes a
sequence S1, . . . , SN of queries to the oracle, where each query Si = (Si,1, . . . , Si,k) is a tuple
of disjoint vertex subsets, and recall that S

(k)
i is the set of all possible edges in a k-partite

k-hypergraph spanned by Si,1, . . . , Si,k. In the lemma, we show that N deterministic queries
of overall bounded cost can detect a random edge e only with small probability.

▶ Lemma 64. Let costk(n) = nαk be a cost function, where αk ∈ [0, k]. Let G be an n-vertex
k-hypergraph, let S1, . . . , SN be an arbitrary sequence of queries to cIND(G) with total cost
at most C, and let e ∈ V (G)(k) be sampled uniformly random. Then

P
e

(
e ∈

N⋃
i=1

S
(k)
i

)
≤ C/nαk .

H. Dell, J. Lapinskas and K. Meeks 71

Proof. For all i ∈ [N], let si :=
∑k

j=1 |Si,j | ∈ [0, n]. Then the total cost incurred by the N

queries satisfies
∑N

i=1 cost(Si) =
∑N

i=1 sαk
i ≤ C. By the AM-GM inequality, we have

∣∣S(k)
i

∣∣ =
k∏

j=1
|Si,j | ≤ sk

i /kk .

By a union bound, it follows that

P
(

e ∈
N⋃

i=1
S

(k)
i

)
≤
(

n

k

)−1 N∑
i=1

∣∣S(k)
i

∣∣ ≤ kk

nk

N∑
i=1

sk
i

kk
= 1

nk

N∑
i=1

sk
i .

By assumption, we have
∑N

i=1 sαk
i ≤ C and si ∈ [0, n] for all i. We now apply Karamata’s

inequality in the form of Corollary 22, taking α = αk, W = C, c = n, t = N and r = k. This
yields:

P
(

e ⊆
N⋃

i=1
S

(k)
i

)
≤ Cnk−αk

nk
= C

nαk
. ◀

Next, we use Lemma 64 to show that any a randomised cIND-oracle algorithm must incur
relatively high cost in order to distinguish the empty k-hypergraph from a k-hypergraph that
is not empty.

▶ Proposition 65. Let costk(n) = nαk , where αk ∈ [0, k], and let p ∈ (0, 1]. Let A be a
randomised cIND-oracle algorithm with worst-case oracle cost at most C such that, for all
k-hypergraphs G, with probability at least p, A(cIND(G)) returns 1 if and only if e(G) > 0.
Then C ≥ pnαk .

Proof. Let G1 be the k-hypergraph on [n] with no edges, and let G2 be the k-hypergraph on
[n] with exactly one edge, chosen uniformly at random. Let A be a deterministic cIND-oracle
algorithm with worst-case oracle cost at most C, and suppose A(cIND(G1)) ̸= A(cIND(G2))
with probability at least p. Let S1(A), . . . , SNA

(A) be the (deterministic) sequence of oracle
queries issued by A(cIND(G1)). On input G2, the deterministic algorithm A(cIND(G2)) will
make exactly the same queries until a query Si(A) potentially contains the planted random
edge e. Thus by Lemma 64, we have

p ≤ P
G2

(
A(cIND(G1)) ̸= A(cIND(G2))

)
≤ P

e

(
e ∈

NA⋃
i=1

Si(A)(k)
)

≤ C/nαk ,

and hence C ≥ pnαk . Let F be the family of all such algorithms A.
We have PA,G2(A(cIND(G1)) ̸= A(cIND(G2))) ≥ p, so we must have A ∈ F with non-zero

probability. Thus the worst-case oracle cost of A is at least pnαk , as required. ◀

In the following corollary, we lift Proposition 65 to worst-case expected oracle cost.

▶ Corollary 66. Let costk(n) = nαk , where αk ∈ [0, k], and let p ∈ (0, 1]. Let A be a
randomised cIND-oracle algorithm with worst-case expected oracle cost at most C such that,
for all k-hypergraphs G, with probability at least 9/10, A(cIND(G)) returns 1 if and only if
e(G) > 0. Then C ≥ nαk /100.

Proof. Suppose for a contradiction that such an algorithm A existed with C ≤ nαk /100; then
consider the algorithm A′, which simulates A, keeping track of the oracle costs. It aborts the

72 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

simulation of A just before the total oracle cost would exceed nαk /10. If A has terminated
normally, A′ copies the output, and otherwise A′ outputs an arbitrary value. By construction,
A′ has worst-case oracle cost at most nαk /10. By Markov’s inequality, the probability that
A incurs cost at least nαk /10 is at most 1/10, and so A′ has success probability p ≥ 4/5. By
Proposition 65, such an algorithm A′ cannot exist, a contradiction. ◀

4.3 Lower bounds on oracle algorithms for edge estimation
In this section, we unconditionally prove that the worst-case oracle cost achieved by Count is
essentially optimal. As with Theorem 40, we will construct two correlated random n-vertex
k-hypergraphs G1 and G2 that (with high probability) have significantly different numbers
of edges, but such that any deterministic cIND-oracle algorithm that can distinguish between
G1 and G2 must incur a large worst-case oracle cost. This approach will yield the following
result.

▶ Theorem 67. Let t, k ≥ 1, let α ∈ [0, k − 3], and let cost(x) = xα. Let t0 := 2400k6 ,
and suppose that t ≥ t0. There exist two correlated distributions G1 and G2 on k-partite
k-hypergraphs whose vertex classes V1, . . . , Vk each have size t with the following properties:

(i) We have P(G1,G2)∼(G1,G2)[e(G2) ≥ 4e(G1)] ≥ 19/20.
(ii) Let

C := tα

25k+7k7k
·
(

log t

log log t

)k−⌊α⌋−3
.

Suppose A is a deterministic cIND-oracle algorithm with

P
(G1,G2)∼(G1,G2)

(
A(cIND(G1)) ̸= A(cIND(G2))

)
≥ 2/3 , (4.3.1)

which only uses cIND-queries S = (S1, . . . , Sk) with Si ⊆ Vi for all i ∈ [k]. Then the
expected oracle cost of A (with respect to cost) under random inputs G1 ∼ G1 satisfies
EG1∼G1 [cost(A, G1)] ≥ C/2.

Before we prove Theorem 67 in Sections 4.3.1–4.3.3, let us apply the minimax principle
(Theorem 17) to it, in order to derive our main lower bound for cIND-oracle algorithms.

▶ Theorem 68. Let n, k be positive integers, and let costk(n) = nαk be a cost function,
where αk ∈ [0, k]. Let A be a randomised cIND-oracle algorithm such that, for all n-vertex
k-hypergraphs G, A(cIND(G)) is a (1/2)-approximation to e(G) with probability at least 9/10.
Then A has worst-case expected oracle cost at least Ω(L(n, k)), where

L(n, k) := nαk

k10k
·
(log n

log log n

)k−⌊αk⌋−3
.

Proof. Let C(n, k) be the worst-case expected oracle cost of A on n-vertex k-hypergraphs.
We must show that C(n, k) ≥ Ω(L(n, k)) holds. Note that Corollary 66 already gives a simple
bound of C(n, k) ≥ nα/100, where we write α = αk. We bound C(n, k) by a case distinction
depending on the values of n, k, and α.

Case 1: α ≥ k − 3. In this case, we have (log n)k−⌊α⌋−3 ≤ 1, so L(n, k) ≤ nα, thus the bound
from Corollary 66 already suffices.

Case 2: 4k ≥ (log n)1/7. In this case, we have logk n ≤ 47kk6k ≤ O(k10k), so now we have
L(n, k) ≤ O(nα) and the bound from Corollary 66 again suffices.

H. Dell, J. Lapinskas and K. Meeks 73

Case 3: α ≤ k − 3 and 4k ≤ (log n)1/7. In this case, observe that n ≥ 247k7 holds. Let
t = ⌊n/k⌋. By k ≥ 2, we have t ≥ 2400k6 = t0. Let G1, G2 ∼ G1, G2 be k-partite k-
hypergraphs with t vertices in each vertex class as in Theorem 67. By adding isolated vertices
if necessary, we can use A to approximately count edges in G1 and G2 in expected cost at
most C(n, k).

Recall from Section 2.1.2 that we regard A as a discrete probability distribution over
a set supp(A) of deterministic algorithms based on random choices of A, and let A ∼ A.
By hypothesis, with probability at least (9/10)2 ≥ 4/5, A will correctly output a (1/2)-
approximation for both graphs G1 and G2. Moreover, by Theorem 67(i), with probability at
least 19/20, we have e(G2) ≥ 4e(G1). If both of these events occur, then we cannot have
A(cIND(G1)) = A(cIND(G2)); thus by a union bound, we have

P
A∼A

(G1,G2)∼(G1,G2)

(
A(cIND(G1)) ̸= A(cIND(G2))

)
≥ 3/4 . (4.3.2)

Let F be the family of cIND-oracle algorithms A ∈ supp(A) that satisfy (4.3.1). By (4.3.2)
and conditioning on the event A ∈ F , we have

3
4 ≤ P

A∼A
(G1,G2)∼(G1,G2)

(
A(cIND(G1)) ̸= A(cIND(G2))

)
≤ 1 · P

A∼A
(A ∈ F) + 2

3 · P
A∼A

(A /∈ F) = 1
3 · P

A∼A
(A ∈ F) + 2

3 ,

and so PA∼A(A ∈ F) ≥ 1/4. Thus by minimax (that is, Theorem 17 with p = 1/4 and
D = G1), we can lower-bound the worst-case expected oracle cost of A by the expected oracle
cost of any deterministic A ∈ F on a random input G1 ∼ G1:

C(n, k) ≥ 1
4 inf

A∈F
E

G1∼G1
[cost(A, G1)] .

Observe that any such A can be turned into a cIND-algorithm which uses only queries of the
form (S1, . . . , Sk) with Si ⊆ Vi by splitting each query into at most kk sub-queries of equal
or lesser size; thus by Theorem 67(ii), we get

C(n, k) ≥ tα

25k+10k8k
·
(

log t

log log t

)k−⌊α⌋−3
.

Since 2 ≤ k ≤ (log n)1/7, we have n/(2k) ≤ t ≤ n/k, and so

C(n, k) ≥ nα

25k+10k9k

(
log t

log log t

)k−⌊α⌋−3
= kk

25k+10 L(n, k) .

We have 25k+10 = O(kk), so we have C(n, k) = Ω(L(n, k)) in all cases and the result
follows. ◀

4.3.1 Defining the input graphs
Our first step in the proof of Theorem 67 shall be to define the random graphs G1 and G2
and prove that e(G2) ≥ 4e(G1) holds with probability at least 19/20. As in the uncoloured
lower bound (see Section 3.3), we will form G2 by adding a random set of “difficult-to-detect”
edges to G1, writing G1 = H1 and G2 = H1 ∪H2 for two independent random graphs H1 and
H2. Also as in Section 3.3, we will take H1 to be an Erdős-Rényi graph. Our choice of H2

74 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

will be heavily motivated by the following important bottleneck in our colourful approximate
counting algorithm Count.

Recall from Section 4.1 that the main subroutine of Count is the coarse approximate
counting algorithm ColourCoarse_New for k-partite k-hypergraphs. The key bottleneck in
ColourCoarse_New arises when the input graph G has an (I, ζ)-core for some |I| = ⌊αk⌋ + 1;
for technical convenience, we will instead take |I| = ⌊αk⌋ + 2. Writing V1, . . . , Vk for the
vertex classes of G, suppose for simplicity that I = {k−⌊αk⌋−1, . . . , k}, and that for all i ∈ I

there exists ri ∈ Vi such that every edge in G contains ri. In this case, the logΘ(k−αk) n oracle
cost arises in CoarseLargeCore (in Section 4.1.3) because we must “guess” a probability
vector (q1, . . . , qk) such that q1 · . . . · qk ≈ 1/e(G), and such that deleting vertices from each
Vi with probability 1 − qi is still likely to leave some edges in G. We know we should choose
qi ≈ 1 for i ≥ k − ⌊αk⌋ − 1 in order to avoid deleting the high-degree “root vertices” in the
colour classes Vk−⌊αk⌋−1, . . . , Vk, but we don’t know the degree distribution of vertices in
V1, . . . , Vk−⌊αk⌋−2. Since CoarseLargeCore only needs to return a coarse approximation,
roughly speaking the algorithm tries each tuple of qi’s in {1, 1/2, 1/4, . . . , 1/n}k−⌊αk⌋−2 for a
total of logΘ(k−αk) n possible probability vectors.

Motivated by this bottleneck, we will define H2 to be a randomly-chosen complete k-
partite graph. We define its parts in the “non-rooted classes” V1, . . . , Vk−⌊αk⌋−2 by binomially
removing vertices according to a random probability vector Q⃗ := (Q1, . . . , Qk−⌊αk⌋−2), and
we define its parts in the “rooted classes” Vk−⌊αk⌋−1, . . . , Vk to be uniformly random vertices
Rk−⌊αk⌋−1, . . . , Rk. This construction has the property that a random query of the form
used in CoarseLargeCore is likely to distinguish H1 from H1 ∪ H2 only if it deletes vertices
in the non-rooted classes with probabilities close to the “correct” probability vector Q⃗. More
formally, we take the following notation as standard throughout the remainder of Section 4.3.

▶ Definition 69. Let t and k be integers with k ≥ 2 and t ≥ t0, and let α ∈ [0, k − 3].
Everything in this definition will formally depend on the values of t, k and α; these values
will always be clear from context, so we omit this dependence from the notation. Let

p := 1/t(k+⌊α⌋+2)/2, x := pt⌊α⌋+2,

β := ⌊(log t)/(20k4 log log t)⌋, B := ⌊logx1/β ((24 log t)/t)⌋ . (4.3.3)

For all i ∈ [k], we write Vi = { (i, j) : j ∈ [t] }. We define H1 := H1(t, k, α) to be a
k-partite Erdős-Rényi k-hypergraph with vertex classes V1, . . . , Vk, where each edge with one
vertex in each Vi is present independently with probability p.

We say V1, . . . , Vk−⌊α⌋−2 are non-rooted classes, and Vk−⌊α⌋−1, . . . , Vk are rooted classes.
For each rooted class Vi, let Xi be a singleton subset of Vi containing a single uniformly
random vertex Ri ∈ Vi; we call Ri the root of Vi. Let Q⃗ := (Q1, . . . , Qk−⌊α⌋−2) be chosen
uniformly at random from the set

{
(q1, . . . , qk−⌊α⌋−2) : qi ∈ {(25x)j/β : j ∈ [0, B] ∩ N} and

k−⌊α⌋−2∏
i=1

qi = 25(k−⌊α⌋−2)x

}
.

For each non-rooted class Vi, let Xi ⊆ Vi be sampled at random by including each vertex
of Vi independently with probability Qi. We then define H2 := H2(t, k, α) to be the complete
k-partite k-uniform hypergraph with vertex classes X1, . . . , Xk. Finally, we define G1 ∼ G1
and G2 ∼ G2 by

G1 := G1(t, k, α) = H1, G2 := G2(t, k, α) = H1 ∪ H2 .

H. Dell, J. Lapinskas and K. Meeks 75

We first observe that these graphs G1 and G2 have tk vertices. By α ≤ k − 3 we always
have x = t(⌊α⌋+2−k)/2 ≤ t−1/2 < 1. Moreover, by t ≥ t0, the fact that t 7→ β(t, k) is
non-decreasing, and k ≥ 2, we always have

β ≥ ⌊400k6/(20k4 log(400k6))⌋ = ⌊20k2/ log(400k6)⌋ ≥ 2k .

Finally, by x = t(⌊α⌋+2−k)/2, we have

B ≥ β log((24 log t)/t)
log x

− 1 = 2β log(t/(24 log t))
(k − ⌊α⌋ − 2) log t

− 1

≥ 3β log t

2(k − ⌊α⌋ − 2) log t
− 1 ≥ β

k − ⌊α⌋ − 2 .

The second inequality follows from log(24 log t) ≤ 1
4 log t for t ≥ t0 and k ≥ 2, and the third

inequality follows from β/(k − ⌊α⌋ − 2) ≥ 2k/(k − ⌊α⌋ − 2) ≥ 2. Since B ≥ β/(k − ⌊α⌋ − 2)
holds, there is a choice of k − ⌊α⌋ − 2 integer values of j ∈ [0, B] which sum to β; hence
there is at least one valid choice q⃗ ∈ supp(Q⃗). We also make some remarks to motivate the
definitions of (4.3.3).
▶ Remark 70. In Definition 69:

(i) The value of x is chosen, so that the following holds for all q⃗ ∈ supp(Q⃗):

E
H2

(
e(H2) | Q⃗ = q⃗

)
=

k−⌊α⌋−2∏
i=1

E
H2

(
|Xi| | Q⃗ = q⃗

)
=

k−⌊α⌋−2∏
i=1

(qit)

=
(

25(k−⌊α⌋−2)x
)

· tk−⌊α⌋−2 = 25(k−⌊α⌋−2)ptk

= 25(k−⌊α⌋−2) E
H1

(
e(H1)

)
.

(ii) The value of B is chosen to be the largest integer with xB/β ≥ (24 log t)/t; this ensures
that, for all possible values q⃗ ∈ supp(Q⃗) and all i ∈ [k − ⌊α⌋ − 2], we have

E
H2

(
|Xi| | Q⃗ = q⃗

)
= qit ≥ 24 log t ,

which will allow us to show concentration of |Xi| conditioned on Q⃗.
(iii) The values of p and β are chosen to ensure that there are (log t)Ω(k−α) possible values

of Q⃗; we will discuss this in more detail when it becomes relevant.

The following lemma establishes Theorem 67(i) for G1 and G2.

▶ Lemma 71. We have

P
(G1,G2)∼(G1,G2)

(
e(G2) ≥ 4e(G1)

)
≥ 19/20 .

Proof. It suffices to demonstrate that, with probability at least 19/20, the following events
occur simultaneously:

E1, the event that e(H1) ≤ 2ptk holds; and
E2, the event that e(H2) ≥ 8ptk holds.

Indeed, if these two events occur, then e(G2) ≥ e(H2) ≥ 4e(H1) = 4e(G1) as required.
We first show that E1 is likely. We have E(e(H1)) = ptk, so by the Chernoff bound of

Lemma 13 applied with δ = 1 we have

P(E1) = 1 − P
(

e(H1) > 2ptk
)

≥ 1 − 2e−ptk/3 .

76 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Since α ≤ k − 3, we have p ≥ 1/tk−1/2 and so since t ≥ 400 we have

P(E1) ≥ 1 − 2e−t1/2/3 ≥ 1 − 2e−20/3 > 99/100 . (4.3.4)

We now show that E2 is likely. Let q⃗ = (q1, . . . , qk−⌊α⌋−2) ∈ supp(Q⃗) be any possible
value of Q⃗. Then for all j ∈ [k − ⌊α⌋ − 2], we have E(|Xj | | Q⃗ = q⃗) = tqj , so by Lemma 13
applied with δ = 1/2 we have

P
(

|Xj | < tqj/2
∣∣∣ Q⃗ = q⃗

)
≤ 2e−tqj/12 .

By Remark 70ii about our choice of B, we have tqj ≥ txB/β ≥ 24 log t; thus

P
(

|Xj | < tqj/2
∣∣∣ Q⃗ = q⃗

)
≤ 2e−2 log t = 2/t2 .

By a union bound over j, it follows that

P
(

for all j ∈ [k − ⌊α⌋ − 2], we have |Xj | ≥ tqj/2
∣∣∣ Q⃗ = q⃗

)
≥ 1 − 2k/t2 .

If this event occurs, then since α ≤ k − 3, we have

e(H2) =
k−⌊α⌋−2∏

i=1
|Xi| ≥ (t/2)k−⌊α⌋−2 ·

k−⌊α⌋−2∏
i=1

qj = tk−⌊α⌋−2 · 25(k−⌊α⌋−2)

2k−⌊α⌋−2 · x ≥ 8ptk ,

and so E2 also occurs. Since t ≥ t0, it follows that

P(E2 | Q⃗ = q⃗) ≥ 1 − 2k/t2 ≥ 99/100 .

Since q⃗ was arbitrary, by a union bound with (4.3.4) we arrive at P(E1 ∩ E2) ≥ 19/20, and
the result follows as described above. ◀

4.3.2 A framework to distinguish G1 from G2

Throughout the rest of this section, let t, k, α, t0, A and C be as in the statement
of Theorem 67(ii), and let G1, G2, G1, G2, H1, H2, p, x, β, B, V1, . . . , Vk, X1, . . . , Xk,
Rk−⌊α⌋−1, . . . , Rk and Q⃗ be as in Definition 69. As in Remark 44 in the uncoloured case, we
first observe that we may assume without loss of generality that the number of queries made
by A on G1 is deterministic.
▶ Remark 72. Without loss of generality, we may assume that there is an N = Nn,k ∈ N
such that A(cIND(G)) makes exactly the same number N of queries for each n-vertex k-
hypergraph G. Moreover, we may assume that for some N ′(G) ≤ N , the first N ′(G) queries
have non-zero cost and the last N − N ′(G) queries have zero cost.

Proof. As in the proof of Remark 44, the result follows by first skipping zero-cost queries
and then “padding” the end of A’s execution with zero-cost queries to the empty set. ◀

We now reintroduce some notation from Section 3.3 to describe the sequence of oracle
queries executed by A on a given input graph; this is a precise analogue of Definition 45 in
the colourful setting.

▶ Definition 73. Let n := kt and recall that V1, . . . , Vk are disjoint sets of size t each. Let G

be an arbitrary n-vertex k-hypergraph on the vertex classes V1, . . . , Vk. Let S1(G), . . . , SN (G)
be the sequence of oracle queries that A makes when given input cIND(G). For all i ∈ [N],
write Si(G) =: (Si,1(G), . . . , Si,k(G)).

H. Dell, J. Lapinskas and K. Meeks 77

In the following, we outline the key idea of the proof of Theorem 67(ii). We first recall
from the assumption on A in Theorem 67(ii) that Si,j(G) ⊆ Vi holds for all i ∈ [N] and j ∈ [k].
As in the uncoloured case, in order for a query S to distinguish between G1 and G2, it
must contain at least one edge of H2 but no edges of H1; this means it must contain all
roots Rj ∈ Xj of each rooted class Vj of H2 and at least one vertex from Xj for each
non-rooted class Vj of H2. Roughly speaking, we will show that, with high probability, in
order for a query S = (S1, . . . , Sk) to be useful, it must satisfy the following criteria:
(C1) There cannot be too many “unexposed” possible edges of H1 in S(k), since otherwise

H1[S] is likely to contain an edge and the query S will not distinguish G1 from G2.
(Recall from Section 2.1.1 that we write S(k) = {{s1, . . . , sk} : sj ∈ Sj for all j ∈ [k]}
and H1[S] = H1[S1, . . . , Sk].)

(C2) For each rooted class Vj , the set Sj ⊆ Vj must be very large, since otherwise the
query S is likely to miss the root Rj of H2, in which case H2[S] will contain no edges
and the query S will not distinguish G1 from G2. In particular, we will see that this
criterion requires cost(S) to be at least roughly nα. (This is similar to Corollary 66.)

(C3) For each non-rooted class Vj , the set Sj ⊆ Vj must contain at least roughly 1/Qj

vertices, since otherwise Sj will contain no vertices of Xj , in which case H2[S] will
contain no edges and the query S will again not distinguish G1 from G2.

By combining these three properties, we will be able to show that, with high probability,
any query distinguishing G1 and G2 must be “accurately profiled” in the sense that, for all
non-rooted classes Vj , we have |Sj | ≈ 1/Qj . Intuitively, this shows that A has to guess the
value of Q⃗; there are logΘ(k−⌊α⌋) t possible values of Q⃗, and property (C2) says that each
useful query has cost at least roughly nα, so this leads naturally to the overall lower bound
on the oracle cost that we are claiming. Thus in a sense, the proof is based around showing
that the bottleneck of CoarseLargeCore described in Section 4.3.1 (in which the algorithm
essentially does guess an analogue of Q⃗) is necessary.

Turning these ideas into a rigorous argument is difficult, particularly since we work in
an adaptive setting where queries may depend on answers received in past queries, and
so we must be very careful with conditioning. We will first define formal terminology and
events corresponding to (C1)–(C3), as well as the idea of “accuracy”. We will then prove
(in Lemma 81) that if these events all occur and all queries are inaccurate, then A fails to
distinguish G1 from G2. Finally, in Section 4.3.3 we will show that these events are all likely
to occur, and apply a union bound to prove the result.

We first formalise the idea of “accuracy”.

▶ Definition 74. Let Si = (Si,1, . . . , Si,k) be a query.
We say Si is accurately rooted if Rj ∈ Si,j holds for all j with k − ⌊α⌋ − 1 ≤ j ≤ k, and
otherwise we say Si is inaccurately rooted.
We say Si is accurately profiled if, for all j with 1 ≤ j ≤ k − ⌊α⌋ − 2, we have |Si,j | ∈
(x1/2β/Qj , x−1/2β/Qj), and otherwise we say Si is inaccurately profiled.
We say Si is accurate if it is both accurately rooted and accurately profiled, and otherwise
we say Si is inaccurate.
We define Einacc to be the event that all queries S1(G1), . . . , SN (G1) are inaccurate.

We next formalise the notion of an “unexposed” edge from (C1), in a similar fashion to
the proof of Lemma 47 in the uncoloured setting.

▶ Definition 75. For all i ∈ [N], we define the set Fi of unexposed edges via

Fi := Si(G1)(k) \
⋃

ℓ≤i−1
e(G1[Sℓ])=0

Sℓ(G1)(k) .

78 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Note for intuition that, before the ith query, the algorithm has already performed the
queries Sℓ(G1) for ℓ ≤ i − 1. Each time it received e(G1[Sℓ(G1)]) = 0 as a response from the
query cIND(G1)Sℓ(G1), the algorithm can know for certain that none of the edges in Sℓ(G1)(k)

exist. Thus, Fi is the set of all possible, unexposed edges of G1 that the ith query can hope
to newly detect.

We next define three events which, if they occur, formalise (C1)–(C3) respectively.

▶ Definition 76 (Formalisation of (C1)). Let Eedge be the event that, for all i ∈ [N] with
|Fi| ≥ (logk3

t)/(2p), we have e(G1[Si(G1)]) > 0.

▶ Definition 77 (Formalisation of (C2)). We say a query S = (S1, . . . , Sk) is safely rooted if

min{ |Sj | : k − ⌊α⌋ − 1 ≤ j ≤ k } > t/ log2k t .

Let Eroot be the event that, for all i ∈ [N], the query Si(G1) is safely rooted or inaccurately
rooted.

▶ Definition 78 (Formalisation of (C3)). Let ξ := x−1/(2kβ). Let Enonroot be the event that,
for all i ∈ [N] such that Si(G1) is safely rooted and such that there exists j ∈ [k − ⌊α⌋ − 2]
with |Si,j(G1)| ≤ 1/(ξQj), we have e(H2[Si(G1)]) = 0.

Note that ξ > 1 holds, since x < 1 and β ≥ 1. Finally, recall from the assumption on A

in Theorem 67(ii) that A(cIND(G1)) has expected oracle cost at most C/2. We now define
an event for the cost of A(cIND(G1)) not being too much larger than this expectation.

▶ Definition 79. Let Ecost be the event that cost(A, G1) ≤ C holds.

Our next goal is to prove Lemma 81, which says that, if Einacc, Eedge, Eroot, Enonroot,
and Ecost all occur, then A fails to distinguish G1 from G2, as required by Theorem 67(ii). To
this end we first prove an ancillary lemma, which says that any sequence of individually-cheap
queries cannot “cover” many possible tuples of root locations in Vk−⌊α⌋−1, . . . , Vk.

▶ Lemma 80. Let γ ∈ (0, 1], and let S1, . . . , Sz be a sequence of queries of total cost at
most C. Further suppose |Si,k−⌊α⌋−1| + · · · + |Si,k| ≤ γkt for all i ∈ [z]. Then∑

i∈[z]

|Si,k−⌊α⌋−1 × · · · × Si,k| ≤ C(γkt)⌊α⌋+2−α .

Proof. Note first that, by the AM-GM inequality, for all i ∈ [z] we have

k∏
j=k−⌊α⌋−1

|Si,j | ≤

(∑k
j=k−⌊α⌋−1 |Si,j |

⌊α⌋ + 2

)⌊α⌋+2

≤
(k∑

j=k−⌊α⌋−1

|Si,j |
)⌊α⌋+2

.

Setting si := |Si,k−⌊α⌋−1| + · · · + |Si,k|, this gives∑
i∈[z]

|Si,k−⌊α⌋−1 × · · · × Si,k| ≤
∑
i∈[z]

s
⌊α⌋+2
i . (4.3.5)

By assumption, we have
∑

i∈[z] sα
i ≤

∑
i∈[z] cost(Si) ≤ C and si ∈ [0, γkt] for all i ∈ [z].

Moreover, ⌊α⌋ + 2 > α. We now apply Karamata’s inequality in the form of Corollary 22,
taking W = C, c = γkt, t = z and r = ⌊α⌋ + 2. This yields:∑

i∈[z]

s
⌊α⌋+2
i ≤ C(γkt)⌊α⌋+2−α ,

and so the result follows from (4.3.5). ◀

H. Dell, J. Lapinskas and K. Meeks 79

We now prove the main lemma of this subsection: If the five key events defined above
occur simultaneously, then the algorithm A is unable to distinguish the two possible input
graphs G1 and G2 from each other.

▶ Lemma 81. If Einacc, Eedge, Eroot, Enonroot, and Ecost all occur, then we have A(cIND(G1)) =
A(cIND(G2)).

Proof. Throughout, we assume that Einacc, Eedge, Eroot, Enonroot and Ecost occur and work
deterministically. For all i ∈ [N], let Si be the value of Si(G1).

We will prove by induction that, for all i ∈ [N], we have cIND(G1)Si = cIND(G2)Si ; since
A is deterministic, this immediately implies A(cIND(G1)) = A(cIND(G2)). Fix i ∈ [N], and
suppose that cIND(G1)Sℓ

= cIND(G2)Sℓ
holds for all ℓ ∈ [i − 1].

We first define some useful notation. Let

Yi = { Sℓ : ℓ ∈ [i − 1] and e(G1[Sℓ]) > 0 } ,

Ni = { Sℓ : ℓ ∈ [i − 1] and e(G2[Sℓ]) = 0 } .

Recall that G1 is a subgraph of G2; thus Yi is the set of all queries in {S1, . . . , Si−1} which
return that an edge exists, regardless of whether the input graph is G1 or G2; and Ni is the
set of all queries which return that no edge exists, regardless of whether the input graph is
G1 or G2. By our induction hypothesis, we have [i − 1] = Yi ∪ Ni.

Since Einacc occurs by assumption, Si is inaccurate. We now consider three cases depending
on how Si fails to be accurate: by definition, either it is inaccurately rooted (Case 1), or it is
inaccurately profiled and there is at least one vertex class whose intersection with the query
is small (Case 2), or it is inaccurately profiled and the intersection of every vertex class with
the query is reasonably large (Case 3).

Case 1: Si is inaccurately rooted. In this case, by definition of H2, we have e(H2[Si]) = 0.
Since G2 = G1 ∪ H2, it follows that e(G1[Si]) = e(G2[Si]), and we have cIND(G1)Si =
cIND(G2)Si

as required.
Case 2: Si is accurately rooted and there exists a non-rooted class Vj such that |Si,j | ≤

1/(ξQj). In this case, since Enonroot occurs, we again have e(H2[Si]) = 0 and thus
cIND(G2)Si

= cIND(G1)Si
as required.

Case 3: Si is accurately rooted and, for all non-rooted classes Vj , we have |Si,j | ≥ 1/(ξQj).
This is the difficult case of the proof. Our aim is to prove Fi ≥ (logk3

t)/(2p), which
by Eedge implies e(G1[Si]) > 0; since G1 is a subgraph of G2, this immediately implies
cIND(G1)Si = cIND(G2)Si = 0.

We divide the queries in Ni into two sets according to their size; let

N +
i =

{
Sm ∈ Ni : max

{
|Sm,j | : j ∈ [k]

}
≥ t/(log t)4k2/(⌊α⌋+2−α)

}
,

N −
i = Ni \ N +

i .

Observe that by the definition of Fi, we have

Fi = S
(k)
i \

⋃
Sm∈Ni

S(k)
m = S

(k)
i \

(
S

(k)
i ∩

⋃
Sm∈Ni

(
S(k)

m \
⋃

Sr∈Nm

S(k)
r

))
,

80 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

and thus by Ni = N −
i ∪ N +

i , we have

|Fi| ≥
∣∣S(k)

i

∣∣−

∣∣∣∣∣S(k)
i ∩

⋃
Sm∈N −

i

S(k)
m

∣∣∣∣∣−

∣∣∣∣∣ ⋃
Sm∈N +

i

(
S(k)

m \
⋃

Sr∈Nm

S(k)
r

)∣∣∣∣∣
≥
∣∣S(k)

i

∣∣−

∣∣∣∣∣S(k)
i ∩

⋃
Sm∈N −

i

S(k)
m

∣∣∣∣∣−
∑

Sm∈N +
i

∣∣∣∣∣S(k)
m \

⋃
Sr∈Nm

S(k)
r

∣∣∣∣∣ . (4.3.6)

We will show that the second and the third term each are at most 1
4
∣∣S(k)

i

∣∣. We will bound
each term of (4.3.6) in turn.

First term of (4.3.6): We bound
∣∣S(k)

i

∣∣ below. Since Einacc occurs, Si is an inaccurate
query; as we are assuming in Case 3 that Si is accurately rooted, it must be inaccurately
profiled, so that there exists ℓ ∈ [k − ⌊α⌋ − 2] with |Si,ℓ| /∈ (x1/(2β)/Qℓ, x−1/(2β)/Qℓ).
Moreover, in Case 3 we have |Si,ℓ| ≥ 1/(ξQℓ). Note that 1/ξ = x1/(2kβ) > x1/(2β) holds
by x < 1, which implies |Si,ℓ| > x1/(2β)/Qℓ; due to the inaccuracy of |Si,ℓ|, we must have
|Si,ℓ| ≥ x−1/(2β)/Qℓ. Moreover, since Eroot occurs and we are assuming that Si is accurately
rooted, Si must also be safely rooted; thus |Si,j | ≥ t/ log2k t for all j ≥ k − ⌊α⌋ − 1. Putting
these three bounds together, it follows that

∣∣S(k)
i

∣∣ =
k∏

j=1
|Si,j | ≥ |Si,ℓ| ·

∏
j≤k−⌊α⌋−2

j ̸=ℓ

|Si,j | ·
k∏

j=k−⌊α⌋−1

|Si,j |

≥ x−1/(2β)

Qℓ
·

∏
j≤k−⌊α⌋−2

j ̸=ℓ

1
ξQj

·
k∏

j=k−⌊α⌋−1

t

log2k t

= x−1/(2β)

ξk−⌊α⌋−3 · t⌊α⌋+2

log2k(⌊α⌋+2) n
·

k−⌊α⌋−2∏
j=1

1
Qj

.

Thus by
∏

j Qj = 25(k−⌊α⌋−2)x ≤ 25kpt⌊α⌋+2 and ξ = x−1/(2kβ) > 1 and ⌊α⌋ + 2 ≤ k, we
have∣∣S(k)

i

∣∣ ≥ x−1/(2β)

ξk−2 · t⌊α⌋+2

log2k2
t

· 1
25kp · t⌊α⌋+2 = x−1/(kβ)

25kp log2k2
t

. (4.3.7)

Recall that x = pt⌊α⌋+2 = t(⌊α⌋+2−k)/2. Since α ≤ k − 3 we have k − ⌊α⌋ − 2 ≥ 1, so
x−1 ≥ t1/2. By the definition of β in Definition 69, it follows that

x−1/(kβ) ≥ t1/(2kβ) ≥ t(20k4 log log t)/(2k log t) = (log t)10k3
.

Since t ≥ t0 we have (log t)k3 ≥ 25k, and so by (4.3.7) we have

∣∣S(k)
i

∣∣ ≥ (log t)7k3

p
. (4.3.8)

Second term of (4.3.6): We show that the second term is at most 1
4
∣∣S(k)

i

∣∣, by showing
that almost all possible edges of G1 covered by Si intersect Vk−⌊α⌋−1, . . . , Vk at vertices not
covered by any query in N −

i .
Indeed, we will apply Lemma 80 with γ = 1/(log t)4k2/(⌊α⌋+2−α) to the queries in N −

i .
Note that the conditions of the lemma are met, because, by Ecost, the total cost of all queries

H. Dell, J. Lapinskas and K. Meeks 81

is at most C and, by definition of N −
i , the total size

∑k
j=1|Sm,j | of queries Sm ∈ N −

i is at
most γkt. Thus we get∣∣∣ ⋃

Sm∈N −
i

(Sm,k−⌊α⌋−1 × · · · × Sm,k)
∣∣∣ ≤

∑
Sm∈N −

i

|Sm,k−⌊α⌋−1 × · · · × Sm,k|

≤ C

(
kt

(log t)4k2/(⌊α⌋+2−α)

)⌊α⌋+2−α

.

By the definition of C in Theorem 67, we get∣∣∣ ⋃
Sm∈N −

i

(Sm,k−⌊α⌋−1 × · · · × Sm,k)
∣∣∣ ≤ C · t⌊α⌋+2−αk2

log4k2
t

≤ t⌊α⌋+2 logk t

log4k2
t

≤ t⌊α⌋+2

log3k2
t

. (4.3.9)

Next, we observe that since Eroot occurs and Si is accurately rooted by hypothesis of Case 3,
we have |Si,j | ≥ t/ log2k t for all j ≥ k − ⌊α⌋ − 1; thus by (4.3.9) we have

|Si,k−⌊α⌋−1 × · · · × Sk| =
k∏

j=k−⌊α⌋−1

|Si,j | ≥ t⌊α⌋+2

log2k2
t

≥ (logk2
t) ·
∣∣∣ ⋃

Sm∈N −
i

(Sm,k−⌊α⌋−1 × · · · × Sm,k)
∣∣∣ .

This implies that almost all k-tuples of S
(k)
i intersect Vk−⌊α⌋−1, . . . , Vk at vertices not covered

by any query in N −
i ; we therefore have∣∣∣∣∣S(k)

i ∩
⋃

Sm∈N −
i

S(k)
m

∣∣∣∣∣ ≤ 1
4
∣∣S(k)

i

∣∣ . (4.3.10)

Third term of (4.3.6): We show that the third term is at most 1
4
∣∣S(k)

i

∣∣. Observe that by
the definition of Fm, we conveniently have

∑
Sm∈N +

i

∣∣∣∣∣S(k)
m \

⋃
Sr∈Nm

S(k)
r

∣∣∣∣∣ =
∑

Sm∈N +
i

|Fm| . (4.3.11)

We proceed by proving an upper bound on |N +
i | as well as on each term |Fm|. By the

definition of N +
i , for each query Sm ∈ N +

i , we have

cost(Sm) ≥ (max
j

|Sm,j |)α ≥ (t/(log t)4k2/(⌊α⌋+2−α))α ≥ (t/ log4k2
t)α .

Since Ecost occurs, the total cost of all queries is at most C; by the definition of C, it follows
that

|N +
i | ≤ C

(t/ log4k2
t)α

≤ tα logk t

(t/ log4k2
t)α

≤ log5k3
t .

Moreover, since Eedge occurs, we have |Fm| ≤ (logk3
t)/(2p) for all queries Sm ∈ Ni. It

therefore follows from (4.3.11) that

∑
Sm∈N +

i

∣∣∣∣S(k)
m \

⋃
Sr∈Nm

S(k)
r

∣∣∣∣ ≤ (log t)5k3
· logk3

t

2p
≤ log6k3

t

p
.

82 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

By (4.3.8), it follows that

∑
Sm∈N +

i

∣∣∣∣S(k)
m \

⋃
Sr∈Nm

S(k)
r

∣∣∣∣ ≤ 1
logk3

n

∣∣S(k)
i

∣∣ ≤ 1
4
∣∣S(k)

i

∣∣ . (4.3.12)

Conclusion of the proof of Lemma 81. We are now essentially done. Combining (4.3.6),
(4.3.10), and (4.3.12) yields |Fi| ≥

∣∣S(k)
i

∣∣/2; applying (4.3.8) then yields

|Fi| ≥ 1
2
∣∣S(k)

i

∣∣ ≥ log7k3
t

2p
.

Since Eedge occurs, we have e(H1[Si]) > 0, and so cIND(G1)Si
= cIND(G2)Si

= 0 as required.
◀

4.3.3 Bounding probabilities

We are now going to separately bound the probability that each event Eedge, Eroot, Enonroot
and Einacc fails to occur in terms of the cost C. The event Ecost will be easy to handle using
Markov’s inequality. The final result then follows using Lemma 81 and the assumption
that A does distinguish G1 from G2 with probability at least 2/3; together, this shows that
the cost must be high.

For every event except Eedge, we will be able to work with H1 (and hence S1, S2, . . .)
exposed, using the fact that H1 and H2 are independent.

▶ Definition 82. For the rest of the section and as in the proof of Lemma 81, we write
Si := Si(G1) for all i ∈ [N].

▶ Lemma 83. We have

P(Ecost ∨ Eedge) ≥ 1 − Ce−(logk3
t)/2 .

Proof. For all i, let Eedge, i be the event that either |Fi| ≤ (logk3
t)/(2p) or e(G1[Si]) > 0.

Let Eedge, ≤i = Eedge, 1 ∧ · · · ∧ Eedge, i. Recall from Remark 72 that all queries have non-zero
cost — and hence cost at least 1 — except for a final segment of “padding” at the end of
the algorithm. Thus if Eedge, ≤⌊C⌋ occurs, then either Eedge occurs or the total query cost of
A(cIND(G1)) is greater than C; we therefore have

P(Ecost ∨ Eedge) ≥ P(Eedge, ≤⌊C⌋) = 1 −
⌊C⌋∑
i=1

P
(

Eedge, i ∧
i−1∧
j=1

Eedge, j

)

≥ 1 −
⌊C⌋∑
i=1

P
(

Eedge, i

∣∣∣∣ i−1∧
j=1

Eedge, j

)
. (4.3.13)

We will bound this sum term-by-term by exposing the results of past queries. Let i ≤ ⌊C⌋.
Let T<i(G1) = (S1, . . . , Si, cIND(G1)S1 , . . . , cIND(G1)Si−1) be the information to which A

has access after its (i − 1)uery to cIND(G1); thus T<i(G1) is a deterministic function of
G1. Let t<i(G1) = (s1, . . . , si, b1, . . . , bi−1) be any possible value for T<i(G1) consistent
with the conditioning of (4.3.13), and let fi be the value of Fi implied by conditioning on
T<i(G1) = t<i(G1). Let Yi = {sj : bj = 0} and Ni = {sj : bj = 1}; thus conditioned on

H. Dell, J. Lapinskas and K. Meeks 83

T<i(G1) = t<i(G1), we have sj ∈ Yi if e(G1[sj]) > 0 and sj ∈ Ni if e(G1[sj]) = 0. Then we
have

P
(
Eedge, i | T<i(G1) = t<i(G1)

)
= P

(
Eedge, i

∣∣∣ e(G1[sj]) > 0 for all sj ∈ Yi and e(G1[sj]) = 0 for all sj ∈ Ni

)
.

If |fi| ≤ (logk3
t)/(2p) then this probability is zero, so suppose |fi| > (logk3

t)/(2p). In
this case Eedge, i occurs if and only if e(G1[si]) = 0. This event is a monotonically decreasing
function of the indicator variables of G1’s (independently-present) edges, and for all j, the
events e(G1[sj]) > 0 are monotonically increasing functions of these variables. Thus by the
FKG inequality (Lemma 15), we obtain

P
(

Eedge, i | T<i(G1) = t<i(G1)
)

≤ P
(

e(G1[si]) = 0
∣∣∣ e(G1[sj]) = 0 for all sj ∈ Ni

)
= (1 − p)

∣∣∣s(k)
i

\
⋃

sj ∈Ni
s

(k)
j

∣∣∣
.

By the definition of fi, the term in the exponent here is simply |fi|; we therefore have

P
(

Eedge, i | T<i(G1) = t<i(G1)
)

≤ e−p|fi| ≤ e−(logk3
t)/2 .

By (4.3.13), it follows that

P(Ecost ∨ Eedge) ≥ 1 − ⌊C⌋e−(logk3
t)/2 ≥ 1 − Ce−(logk3

t)/2 ,

as required. ◀

We will next show that Eroot is likely to occur, in Lemma 86. In order to do so, we will
apply Karamata’s inequality to show in Lemma 85 that an arbitrary sequence of unsafely-
rooted queries cannot cover too many possible tuples of roots. In order to prove Lemma 85,
we first bound the effectiveness an unsafely-rooted query in terms of its cost when α ≥ 1 and
the query is large.

▶ Lemma 84. Suppose α ≥ 1. If Si is not safely rooted and there exists j ≥ k − ⌊α⌋ − 1 with
|Si,j | ≥ t/ logk t, then

∣∣Si,k−⌊α⌋−1 × · · · × Si,k

∣∣ ≤ cost(Si)(⌊α⌋+2)/α

logk t
.

Proof. Without loss of generality, suppose |Si,k−⌊α⌋−1| ≥ |Si,k−⌊α⌋| ≥ · · · ≥ |Si,k|. If
|Si,k| = 0, the claim is trivially true, so suppose |Si,k| ≥ 1. For brevity, let σ = |Si,k−⌊α⌋−1|α +
· · · + |Si,k|α. We now set out parameters for an application of Karamata’s inequality. To
this end, we define τj and σj for j ≥ k − ⌊α⌋ − 1 via

τj = 1
⌊α⌋ + 1

(
σ − tα

log2kα t

)
for all j ≤ k − 1 , τk = tα

log2kα t
,

σj = |Si,j |α for all j ≥ k − ⌊α⌋ − 1 .

Observe that
∑

j τj = σ =
∑

j σj , that σk−⌊α⌋−1 ≥ · · · ≥ σk, and that τk−⌊α⌋−1 = · · · =
τk−1 > τk since σ ≥ |Si,k−⌊α⌋−1|α ≥ (t/ logk t)α by hypothesis.

It remains to show that (σk−⌊α⌋−1, . . . , σk) majorises (τk−⌊α⌋−1, . . . , τk). Since Si is not
safely rooted, we have |Si,k| ≤ t/ log2k t. Hence σk ≤ τk, and so σk−⌊α⌋−1 + · · · + σk−1 ≥

84 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

τk−⌊α⌋−1 + · · · + τk−1. Since the σj ’s are decreasing and τk−⌊α⌋−1 = · · · = τk−1, it follows
that for all x ∈ {0, . . . , ⌊α⌋},

k−⌊α⌋−1+x∑
j=k−⌊α⌋−1

σj ≥ x + 1
⌊α⌋ + 1

k−1∑
j=k−⌊α⌋−1

σj ≥ x + 1
⌊α⌋ + 1

k−1∑
j=k−⌊α⌋−1

τj =
k−⌊α⌋−1+x∑
j=k=⌊α⌋−1

τj .

(Here the first inequality follows from the fact that the average of the x + 1 largest values
in a set is no smaller that the average of the entire set.) Thus (σk−⌊α⌋−1, . . . , σk) majorises
(τk−⌊α⌋−1, . . . , τk).

Finally, for all y ≥ 1, let ϕ(y) = − log(y1/α), and observe that ϕ is a convex function. It
now follows by Karamata’s inequality (Lemma 21) that

k∑
j=k−⌊α⌋−1

ϕ(τj) ≤
k∑

j=k−⌊α⌋−1

ϕ(σj) .

Substituting in the definition of ϕ and negating both sides yields

log
(k∏

j=k−⌊α⌋−1

σ
1/α
i

)
≤ log

(k∏
j=k−⌊α⌋−1

τ
1/α
i

)
.

Exponentiating both sides and substituting in the definitions of the σj ’s and τj ’s then yields

k∏
j=k−⌊α⌋−1

|Si,j | ≤ t

log2k t
·
(

σ − tα

log2kα t

)(⌊α⌋+1)/α

≤ tσ(⌊α⌋+1)/α

log2k t

Since σ ≥ tα/ logkα t by hypothesis and σ ≤ cost(Si) since α ≥ 1, it follows that
k∏

j=k−⌊α⌋−1

|Si,j | ≤ σ(⌊α⌋+2)/α

logk t
≤ cost(Si)(⌊α⌋+2)/α

logk t
,

and the result follows immediately. ◀

▶ Lemma 85. Writing X for the set of all unsafely-rooted queries in {S1, . . . , SN }, we have

∑
Si∈X

k∏
j=k−⌊α⌋−1

|Si,j | ≤ kkt⌊α⌋+2−α

logk t

∑
i∈X

cost(Si) .

Proof. We first split the terms of the sum according to the size of the largest part of the
corresponding query among rooted vertex classes. Let

X+ =
{

Si ∈ X : max{|Si,j | : j ≥ k − ⌊α⌋ − 1} > t/ logk t
}

, X− = X \ X+ ,

so that∑
Si∈X

k∏
j=k−⌊α⌋−1

|Si,j | =
∑

Si∈X−

k∏
j=k−⌊α⌋−1

|Si,j | +
∑

Si∈X+

k∏
j=k−⌊α⌋−1

|Si,j | . (4.3.14)

We first bound the X− term. By Lemma 80 applied with γ = 1/ logk t (which is less than
1 since t ≥ t0), we have

∑
Si∈X−

k∏
j=k−⌊α⌋−1

|Si,j | ≤
(kt

logk t

)⌊α⌋+2−α ∑
Si∈X−

cost(Si) ≤ kkt⌊α⌋+2−α

logk t

∑
Si∈X−

cost(Si) .

H. Dell, J. Lapinskas and K. Meeks 85

(4.3.15)

We next bound the X+ term, splitting into two cases depending on the value of α.

Case 1: α ≤ 1. For all Si ∈ X+, we have cost(Si) ≥ (maxi |Si|)α ≥ (t/ logk t)α; since Si is
safely rooted, it follows that

k∏
j=k−⌊α⌋−1

|Si,j | ≤ t

log2k t
· t⌊α⌋+1 = t⌊α⌋+2

log2k t
≤ t⌊α⌋+2−α

log2k−αk t
cost(Si) ≤ t⌊α⌋+2−α

logk t
cost(Si) .

The last inequality holds since α ≤ 1. Summing over all Si ∈ X+, we obtain

∑
Si∈X+

k∏
j=k−⌊α⌋−1

|Si,j | ≤ t⌊α⌋+2−α

logk t

∑
Si∈X+

cost(Si) . (4.3.16)

Case 2: α > 1. In this case, by definition of X+, we can apply Lemma 84 to each term in
the sum; this yields

∑
Si∈X+

k∏
j=k−⌊α⌋−1

|Si,j | ≤ 1
logk t

∑
Si∈X+

cost(Si)(⌊α⌋+2)/α ≤ 1
logk t

∑
Si∈X+

cost(Si)⌊α⌋+2 .

We now apply Karamata’s inequality in the form of Corollary 22, taking si = |Si,1|+· · ·+|Si,k|,
W =

∑
Si∈X+ cost(Si), c = kt, and r = ⌊α⌋ + 2. This yields:

∑
Si∈X+

k∏
j=k−⌊α⌋−1

|Si,j | ≤ (kt)⌊α⌋+2−α

logk t

∑
Si∈X+

cost(Si) ≤ kkt⌊α⌋+2−α

logk t

∑
Si∈X+

cost(Si) . (4.3.17)

The result therefore follows from (4.3.14) and (4.3.15) combined with (4.3.16) and (4.3.17).
◀

▶ Lemma 86. We have

P(Ecost ∨ Eroot) ≥ 1 − Ckk

tα logk t
.

Proof. Let s1, . . . , sN be any possible sequence of values for the query sets S1, . . . , SN , and
let T be the event that (S1, . . . , SN) = (s1, . . . , sN) holds. We will prove P(Ecost ∧ Eroot |
T) ≤ Ckk/(tα logk t), from which the result follows immediately.

Note that Ecost is a function of S1, . . . , SN ; if Ecost occurs under T then we are done, so
suppose not. Let X ⊆ {s1, . . . , sN } be the set of all queries that are not safely rooted. Recall
that S1, . . . , SN are functions of G1, and that the roots Rk−⌊α⌋−1, . . . , Rk are independent
of G1; thus

P(Ecost ∧ Eroot | T) = P
(

Some si ∈ {s1, . . . , sN } is neither safely nor inaccurately rooted
)

≤
∑

si∈X

P
(
si is accurately rooted

)
=
∑

si∈X

k∏
j=k−⌊α⌋−1

P(Rj ∈ si,j)

= 1
t⌊α⌋+2

∑
si∈X

k∏
j=k−⌊α⌋−1

|si,j | .

86 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

Since Ecost occurs, the total cost of s1, . . . , sN is at most C; by applying Lemma 85, we arrive
at

P(Ecost ∧ Eroot | T) ≤ 1
t⌊α⌋+2

∑
si∈X

k∏
j=k−⌊α⌋−1

|si,j | ≤ Ckk/(tα logk t) . ◀

▶ Lemma 87. We have

P(Ecost ∨ Enonroot) ≥ 1 − C

tα log2k t
.

Proof. Let s1, . . . , sN be any possible sequence of values for S1, . . . , SN , let q⃗ be any possible
value for Q⃗, and let T be the event that (S1, . . . , SN) = (s1, . . . , sN) and Q⃗ = q⃗. We will
prove

P(Ecost ∧ Enonroot | T) ≤ C/(tα log2k t) .

From this, the result follows immediately.
If Ecost occurs under T then we are done, so suppose not; then

∑
i cost(si) ≤ C. Let

X be the set of all queries in s1, . . . , sN which are safely rooted and for which there exists
j ≤ k − ⌊α⌋ − 2 with |si,j | ≤ 1/(ξqj). Recall that S1, . . . , SN are deterministic functions of
G1, and that Q is independent of G1; thus

P(Ecost ∧ Enonroot | T) = P
(

Some si ∈ X has e(H2[si]) > 0 | Q⃗ = q⃗
)

≤
∑

si∈X

P
(

e(H2[si]) > 0 | Q⃗ = q⃗
)

.

We have e(H2[si]) = 0 whenever Xj ∩ si,j = ∅ for any j, so it follows that

P(Ecost ∧ Enonroot | T) ≤
∑

si∈X

min
j≤k−⌊α⌋−2

P
(
Xj ∩ si,j ̸= ∅ | Q⃗ = q⃗

)
.

By the definition of X, for all si ∈ X there exists j ≤ k − ⌊α⌋ − 2 such that |si,j | ≤ 1/(ξqj),
and each vertex in si,j lies in Xj with probability qj . It follows by a union bound over all
vertices in si,j that

P(Ecost ∧ Enonroot | T) ≤
∑

si∈X

1
ξqj

· qj = |X|
ξ

.

Now, since Ecost occurs under T , the total cost of s1, . . . , sN is at most C. Since each
query in X is safely rooted, it has cost at least (t/ log2k t)α. It follows that the total number
of queries in X is at most C/(t/ log2k t)α, and so

P(Ecost ∧ Enonroot | T) ≤ C log2kα t

ξtα
≤ C log2k2

t

ξtα
. (4.3.18)

By definition, and using the fact that k − ⌊α⌋ + 2 ≥ 1, we have

ξ = (pn⌊α⌋+2)−1/(2kβ) = t
k−⌊α⌋+2

4kβ ≥ t1/(4kβ) ≥ t
20k4 log log t

4k log t ≥ (log t)5k3
,

and the result follows from (4.3.18). ◀

H. Dell, J. Lapinskas and K. Meeks 87

▶ Lemma 88. We have

P(Ecost ∨ Einacc) ≥ 1 − 25kk7kC

tα
·
(

log log t

log t

)k−⌊α⌋−3
.

Proof. Let s1, . . . , sN be any possible sequence of values for S1, . . . , SN , and let T be the
event that (S1, . . . , SN) = (s1, . . . , sN). We will prove that

P(Ecost ∨ Einacc | T) ≥ 1 − 25kk3kC

tα
·
(

log log t

log t

)k−⌊α⌋−3
,

from which the result follows immediately.
If Ecost occurs under T then we are done, so suppose not; then

∑
i cost(si) ≤ C. Recall

that S1, . . . , SN are deterministic functions of G1, and that H2 is independent of G1; thus

P(Ecost ∨ Einacc | T) = 1 − P(some si is accurate) ≥ 1 −
N∑

i=1
P(si is accurate) . (4.3.19)

A given query si is accurate precisely when it is accurately rooted (which depends only on
R⃗ := (Rk−⌊α⌋−1, . . . , Rk)) and accurately profiled (which depends only on Q⃗). These events
are independent, so we have

P(some si is accurate) = P(si is accurately rooted) · P(si is accurately profiled) . (4.3.20)

Observe that si is accurately profiled for at most one choice of Q. Let m be the number of
ways in which β can be decomposed into a sum of k − ⌊α⌋ − 2 ordered integers in {0, . . . , B}.
Each such sequence of integers corresponds to the numerators of the exponents of a possible
value of Q, and so there are m possible values of Q in total. We therefore have

P(si is accurately rooted) = |si,k−⌊α⌋−1 × · · · × si,k|/t⌊α⌋+2 ,

P(si is accurately profiled) = 1/m .

It follows from (4.3.19) and (4.3.20) that

P(Ecost ∨ Einacc | T) ≥ 1 − 1
mt⌊α⌋+2

N∑
i=1

|si,k−⌊α⌋−1 × · · · × si,k| .

Recall that Ecost occurs and so s1, . . . , sN have total cost at most C; applying Lemma 80
with γ = 1, we obtain

P(Ecost ∨ Einacc | T) ≥ 1 − Ckk

mtα
. (4.3.21)

It remains to bound m below. We will first bound B below. Recall that x = pt⌊α⌋+2 =
t−(k−⌊α⌋−2)/2; thus by the definition of B, we have

B =
⌊ log((24 log t)/t)

log(x1/β)

⌋
=
⌊
−2β log((24 log t)/t)

(k − ⌊α⌋ − 2) log t

⌋
=
⌊2β(log t − log(24 log t))

(k − ⌊α⌋ − 2) log t

⌋
.

Since t ≥ t0 ≥ e640, it follows that

B ≥ 3
2 · β

k − ⌊α⌋ − 2 . (4.3.22)

88 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

We now exploit this bound on B in order to bound m below. For every choice of integers
z1, . . . , zk−⌊α⌋−3 in [(1 − 1

2k)β/(k − ⌊α⌋ − 2), (1 + 1
2k)β/(k − ⌊α⌋ − 2)], we have

k−⌊α⌋−3∑
ℓ=1

zℓ ≤ (k − ⌊α⌋ − 3)β
k − ⌊α⌋ − 2 + (k − ⌊α⌋ − 3)β

2k(k − ⌊α⌋ − 2) ≤ (k − ⌊α⌋ − 3)β
k − ⌊α⌋ − 2 + β

2(k − ⌊α⌋ − 2)

= β − β

2(k − ⌊α⌋ − 2) ,

and similarly

k−⌊α⌋−3∑
ℓ=1

zℓ ≥ β − 3β

2(k − ⌊α⌋ − 2) .

By (4.3.22), it follows that for all such choices of integers z1, . . . , zk−⌊α⌋−3 there is a unique
integer zk−⌊α⌋−2 ∈ [0, B] such that

∑
i zi = β. Thus

m ≥
∣∣∣∣Z ∩

[(
1 − 1

2k

) β

k − ⌊α⌋ − 1 ,
(

1 + 1
2k

) β

k − ⌊α⌋ − 1

]∣∣∣∣k−⌊α⌋−3
.

Since t ≥ t0, it follows that

m ≥
(β

2k(k − ⌊α⌋ − 2)

)k−⌊α⌋−3
.

Again since t ≥ t0, we have β ≥ 1, and so we can bound away the floor in its definition to
obtain

m ≥
(log t

40k5(k − ⌊α⌋ − 2) log log t

)k−⌊α⌋−3
≥ (log t)k−⌊α⌋−3

25kk6k(log log t)k−⌊α⌋−3 .

The result therefore follows immediately from (4.3.21). ◀

With these probability bounds in place, Theorem 67 now follows easily.

▶ Theorem 67. Let t, k ≥ 1, let α ∈ [0, k − 3], and let cost(x) = xα. Let t0 := 2400k6 ,
and suppose that t ≥ t0. There exist two correlated distributions G1 and G2 on k-partite
k-hypergraphs whose vertex classes V1, . . . , Vk each have size t with the following properties:

(i) We have P(G1,G2)∼(G1,G2)[e(G2) ≥ 4e(G1)] ≥ 19/20.
(ii) Let

C := tα

25k+7k7k
·
(

log t

log log t

)k−⌊α⌋−3
.

Suppose A is a deterministic cIND-oracle algorithm with

P
(G1,G2)∼(G1,G2)

(
A(cIND(G1)) ̸= A(cIND(G2))

)
≥ 2/3 , (4.3.1)

which only uses cIND-queries S = (S1, . . . , Sk) with Si ⊆ Vi for all i ∈ [k]. Then the
expected oracle cost of A (with respect to cost) under random inputs G1 ∼ G1 satisfies
EG1∼G1 [cost(A, G1)] ≥ C/2.

H. Dell, J. Lapinskas and K. Meeks 89

Proof. Part (i) of the theorem is immediate from Lemma 71. Suppose A is a deterministic
cIND-oracle algorithm with

P
(G1,G2)∼(G1,G2)

(
A(cIND(G1)) ̸= A(cIND(G2))

)
≥ 2/3 . (4.3.23)

By Lemma 81, it follows that

P(Ecost ∧ Eedge ∧ Eroot ∧ Enonroot ∧ Einacc) ≤ 1/3 . (4.3.24)

Observe that since k ≥ 2 and t ≥ t0 ≥ exp(640), we have logk3
t ≥ 2k(ln t + ln ln t), and

hence e−(logk3
t)/2 ≤ 1/(tα logk t). By Lemmas 83, 86, 87 and 88 together with a union bound,

it follows that

P
(

Ecost ∨ (Eedge ∧ Eroot ∧ Enonroot ∧ Einacc)
)

≥ 1 −
(

Ce−(logk3
t)/2 + Ckk

tα logk t
+ C

tα log2k t
+ 25kk7kC

tα
·
(log log t

log t

)k−⌊α⌋−3
)

≥ 1 − Ckk

tα

(
3

logk t
+ 25kk6k

(log log t

log t

)k−⌊α⌋−3
)

≥ 1 − 4C

tα
· 25kk7k

(log log t

log t

)k−⌊α⌋−3
.

By the definition of C, it follows that

P
(
Ecost ∨ (Eedge ∧ Eroot ∧ Enonroot ∧ Einacc)

)
≥ 31/32 ,

and hence

P
(
Ecost ∨ (Eedge ∧ Eroot ∧ Enonroot ∧ Einacc)

)
≤ 1/32 .

By (4.3.24), it follows that

P(Ecost) ≤ 1/32 + 1/3 < 1/2. (4.3.25)

By Markov’s inequality, with probability at least 1/2, cost(A, G1) is at most twice its
expected value. If E(cost(A, G1)) were at least C/2 then this would contradict (4.3.25), so
we must have E(cost(A, G1)) ≤ C/2 as required. ◀

References
1 Raghavendra Addanki, Andrew McGregor, and Cameron Musco. Non-adaptive edge counting

and sampling via bipartite independent set queries. In Shiri Chechik, Gonzalo Navarro, Eva
Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms,
ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 2:1–
2:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.2.

2 Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 2008.

3 Simon Apers, Yuvan Efron, PawełGawrychowski, Troy Lee, Sagnif Mukhopadhyay, and
Danupon Nanongkai. Cut query algorithms with star contraction. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), 2022, to appear. arXiv:2201.05674.

4 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,
and Makrand Sinha. Edge estimation with independent set oracles. ACM Trans. Algorithms,
16(4):52:1–52:27, 2020. doi:10.1145/3404867.

https://doi.org/10.4230/LIPIcs.ESA.2022.2
http://arxiv.org/abs/2201.05674
https://doi.org/10.1145/3404867

90 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

5 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Hyperedge estimation
using polylogarithmic subset queries. CoRR, abs/1908.04196, 2019. URL: https://arxiv.org/
abs/1908.04196, arXiv:1908.04196.

6 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Faster counting
and sampling algorithms using colorful decision oracle. In Petra Berenbrink and Benjamin
Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume
219 of LIPIcs, pages 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.STACS.2022.10.

7 Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh. Para-
meterized query complexity of hitting set using stability of sunflowers. In Wen-Lian Hsu,
Der-Tsai Lee, and Chung-Shou Liao, editors, 29th International Symposium on Algorithms
and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume
123 of LIPIcs, pages 25:1–25:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ISAAC.2018.25.

8 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow
sieves for parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017.
doi:10.1016/j.jcss.2017.03.003.

9 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 151–164. ACM, 2018. doi:10.1145/3188745.3188902.

10 Marco Bressan and Marc Roth. Exact and approximate pattern counting in degenerate
graphs: New algorithms, hardness results, and complexity dichotomies. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 276–285, 2022.
doi:10.1109/FOCS52979.2021.00036.

11 Karl Bringmann. Sampling from discrete distributions and computing Fréchet distances. PhD
thesis, Saarland University, 2015. URL: http://scidok.sulb.uni-saarland.de/volltexte/2015/
5988/.

12 Timothy Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Fredman’s trick meets
dominance product: Fine-grained complexity of unweighted APSP, 3SUM counting, and more.
CoRR, abs/2303.14572, 2023. URL: https://arxiv.org/abs/2303.14572, arXiv:2303.14572.

13 Xi Chen, Amit Levi, and Erik Waingarten. Nearly optimal edge estimation with independent
set queries. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
2916–2935. SIAM, 2020. doi:10.1137/1.9781611975994.177.

14 Holger Dell and John Lapinskas. Fine-grained reductions from approximate counting to
decision. ACM Trans. Comput. Theory, 13(2):8:1–8:24, 2021. doi:10.1145/3442352.

15 Holger Dell, John Lapinskas, and Kitty Meeks. Approximately counting and sampling
small witnesses using a colorful decision oracle. SIAM J. Comput., 51(4):849–899, 2022.
doi:10.1137/19m130604x.

16 Martin Farach-Colton and Meng-Tsung Tsai. Exact sublinear binomial sampling. Algorithmica,
73(4):637–651, 2015. doi:10.1007/s00453-015-0077-8.

17 William Feller. An introduction to probability theory and its applications. Vol. II. Second
edition. John Wiley & Sons Inc., New York, 1971.

18 George S. Fishman. Sampling from the binomial distribution on a computer. Journal of the
American Statistical Association, 74(366):418–423, 1979. URL: http://www.jstor.org/stable/
2286346, doi:10.2307/2286346.

19 Jacob Focke, Leslie Ann Goldberg, Marc Roth, and Stanislav Zivný. Approximately count-
ing answers to conjunctive queries with disequalities and negations. In Proceedings of
the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,

https://arxiv.org/abs/1908.04196
https://arxiv.org/abs/1908.04196
http://arxiv.org/abs/1908.04196
https://doi.org/10.4230/LIPIcs.STACS.2022.10
https://doi.org/10.4230/LIPIcs.ISAAC.2018.25
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1145/3188745.3188902
https://doi.org/10.1109/FOCS52979.2021.00036
http://scidok.sulb.uni-saarland.de/volltexte/2015/5988/
http://scidok.sulb.uni-saarland.de/volltexte/2015/5988/
https://arxiv.org/abs/2303.14572
http://arxiv.org/abs/2303.14572
https://doi.org/10.1137/1.9781611975994.177
https://doi.org/10.1145/3442352
https://doi.org/10.1137/19m130604x
https://doi.org/10.1007/s00453-015-0077-8
http://www.jstor.org/stable/2286346
http://www.jstor.org/stable/2286346
https://doi.org/10.2307/2286346

H. Dell, J. Lapinskas and K. Meeks 91

PODS ’22, page 315–324, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3517804.3526231.

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

21 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1), mar 2007. doi:10.1145/1206035.1206036.

22 Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random graphs. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 2000. doi:10.1002/9781118032718.

23 Hung Le. Approximate distance oracles for planar graphs with subpolynomial error dependency.
In Proceedings of the 2023 annual ACM-SIAM symposium on discrete algorithms (SODA),
pages 1877–1904, 2023.

24 Daniel Lokshtanov, Andreas Björklund, Saket Saurabh, and Meirav Zehavi. Approximate
counting of k-paths: Simpler, deterministic, and in polynomial space. ACM Trans. Algorithms,
17(3):26:1–26:44, 2021. doi:10.1145/3461477.

25 Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Efficient computation of repres-
entative weight functions with applications to parameterized counting (extended version).
In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 179–198. SIAM, 2021.
doi:10.1137/1.9781611976465.13.

26 Colin McDiarmid. On the method of bounded differences. In J.Editor Siemons, editor, Surveys
in Combinatorics, 1989: Invited Papers at the Twelfth British Combinatorial Conference, page
148–188. Cambridge University Press, 1989. doi:10.1017/CBO9781107359949.008.

27 Kitty Meeks. The challenges of unbounded treewidth in parameterised subgraph counting
problems. Discrete Applied Mathematics, 198:170 – 194, 2016. doi:10.1016/j.dam.2015.06.019.

28 Kitty Meeks. Randomised enumeration of small witnesses using a decision oracle. Algorithmica,
81(2):519–540, 2019. doi:10.1007/s00453-018-0404-y.

29 Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: Sequential, cut-query,
and streaming algorithms. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, page 496–509, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384334.

30 Moritz Müller. Randomized approximations of parameterized counting problems. In Hans L.
Bodlaender and Michael A. Langston, editors, Parameterized and Exact Computation, Second
International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Pro-
ceedings, volume 4169 of Lecture Notes in Computer Science, pages 50–59. Springer, 2006.
doi:10.1007/11847250_5.

31 Pan Peng and Jiapeng Zhang. Towards a query-optimal and time-efficient algorithm for
clustering with a faulty oracle. In Proceedings of Machine Learning Research (COLT), volume
134, pages 1–19, 2021.

32 Josip Pec̆arić, Frank Proschan, and Y.L. Tong. Convex functions, partial orderings, and
statistical applications. Academic Press Inc., San Diego, 1992.

33 Cyrus Rashtchian, David P. Woodruff, and Hanlin Zhu. Vector-matrix-vector queries for
solving linear algebra, statistics, and graph problems. In Jaroslaw Byrka and Raghu Meka,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, volume
176 of LIPIcs, pages 26:1–26:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.APPROX/RANDOM.2020.26.

34 Jakub Tetek and Mikkel Thorup. Edge sampling and graph parameter estimation via vertex
neighborhood accesses. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022,
pages 1116–1129. ACM, 2022. doi:10.1145/3519935.3520059.

https://doi.org/10.1145/3517804.3526231
https://doi.org/10.1145/2886094
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1002/9781118032718
https://doi.org/10.1145/3461477
https://doi.org/10.1137/1.9781611976465.13
https://doi.org/10.1017/CBO9781107359949.008
https://doi.org/10.1016/j.dam.2015.06.019
https://doi.org/10.1007/s00453-018-0404-y
https://doi.org/10.1145/3357713.3384334
https://doi.org/10.1007/11847250_5
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.26
https://doi.org/10.1145/3519935.3520059

92 Nearly optimal independence oracle algorithms for edge estimation in hypergraphs

35 Marc Thurley. An approximation algorithm for #k-SAT. In Christoph Dürr and Thomas Wilke,
editors, 29th International Symposium on Theoretical Aspects of Computer Science, STACS
2012, February 29th - March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 78–87.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.STACS.2012.78.

36 Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor.
Comput. Sci., 47:85–93, 1986. doi:10.1016/0304-3975(86)90135-0.

37 R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018. doi:10.1137/15M1024524.

38 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018. doi:10.1145/3186893.

39 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In 18th Annual Symposium on Foundations of Computer Science, Provid-
ence, Rhode Island, USA, 31 October - 1 November 1977, pages 222–227. IEEE Computer
Society, 1977. doi:10.1109/SFCS.1977.24.

https://doi.org/10.4230/LIPIcs.STACS.2012.78
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1137/15M1024524
https://doi.org/10.1145/3186893
https://doi.org/10.1109/SFCS.1977.24

	1 Introduction
	1.1 Oracle results
	1.1.1 Our results for the uncoloured independence oracle.
	1.1.2 Our results for the colourful independence oracle.
	1.1.3 Approximate sampling results.
	1.1.4 A parameterised complexity motivation for our lower bound results.

	1.2 Reductions from approximate counting to decision
	1.3 Discussion of related work
	1.4 Proof techniques
	1.4.1 Colourful upper bound
	1.4.2 Colourful lower bound
	1.4.3 Uncoloured upper bound
	1.4.4 Uncoloured lower bound

	2 Preliminaries
	2.1 Notation and definitions
	2.1.1 Basic notation and conventions
	2.1.2 Oracle algorithms
	2.1.3 Requirements on cost functions for upper bounds

	2.2 Collected standard results
	2.2.1 Probabilistic results
	2.2.2 Algorithmic results
	2.2.3 Algebraic results

	2.3 Efficiently sampling small random subsets

	3 Independence oracle with cost
	3.1 Algebraic preliminaries
	3.2 Oracle algorithm for edge estimation
	3.2.1 SparseCount: Enumerate all edges in sparse hypergraphs
	3.2.2 UncolApprox: Approximately count all edges in hypergraphs
	3.2.3 Correctness of UncolApprox
	3.2.4 Running time and oracle cost of UncolApprox

	3.3 Lower bounds on oracle algorithms for edge estimation
	3.3.1 G_1 and G_2: Choosing a hard input distribution
	3.3.2 Bounding the cost of separating G_1 and G_2

	4 Colourful independence oracle with cost
	4.1 Oracle algorithm for edge estimation
	4.1.1 Coarse approximation: an overview
	4.1.2 Counting edges with a small core
	4.1.3 Counting edges with a large core

	4.2 Lower bounds on oracle algorithms for edge detection
	4.3 Lower bounds on oracle algorithms for edge estimation
	4.3.1 Defining the input graphs
	4.3.2 A framework to distinguish G_1 from G_2
	4.3.3 Bounding probabilities

