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Abstract

We present an equilibrium thermodynamic properties of binary hard-sphere mixtures from inte-

gral equation approach combined with the Percus-Yevick (PY) and the Martynov-Sarkisov (MS) ap-

proximations. We use the virial, the compressibility and the Boubĺık-Mansoori-Carnahan-Starling-

Leland (BMCSL) equations of state in the PY approximation, while the virial equation of state

is only employed in the MS approximation. We employ a closed-form expression for evaluating

the excess chemical potential. The excess Helmholtz free energy is obtained using the Euler re-

lation of thermodynamics. For a number of binary sets of the mixtures we compare our findings

for thermodynamic properties with previously obtained results in the literature. Generally, the

findings from the MS approximation show better agreement with the results than those from the

PY approximation.
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I. INTRODUCTION

The hard-sphere (HS) model plays a major role in the development of the modern theory

of liquids [1]. This system is often used as a standard reference system in the perturbation

approach of the liquids for studying the liquid-state properties [1, 2]. Mixtures of the HSs

of different size distributions can be employed to model the colloidal suspensions which play

an important role in chemical and bioengineering fields [3, 4].

The binary HS mixture is the simplest model of the multicomponent systems. Com-

puter simulations for its thermodynamic and structural properties began in the mid-1960s.

Adler [5] used the molecular dynamic (MD) simulation to solve the equation of state (EOS)

for the binary mixture. Rotenberg [6] performed the Monte-Carlo (MS) EOS calculation

for a mixture of HSs. An alternative approach to study a liquid is the integral equation

(IE) method in which the IE combined with approximate closures is solved to predict the

structure and to obtain thermodynamic properties. Mansoori et al. [7] investigated the EOS

for the mixture of the HSs using the MC and MD simulations, and proposed an analytical

expression for the EOS using the solution the PY integral equation [8]. Barošová et al. [9]

applied a test particle insertion method to obtain the excess chemical potential of the bi-

nary HS mixtures. Santos and his co-workers have investigated extensively thermodynamic

properties and structural nature for multicomponent HS fluids in terms of the analytical ap-

proaches from the IE method [10, 11] and MD simulation [12]. Moreover, Ballone et al. [13]

tested the PY approximation for the HS mixtures. Schmidt [14] and Malijevský et al. [15]

applied the Martynov-Sarkisov (MS) [16] closure for the binary mixtures as well.

In the present article our goal is to report on thermodynamic properties for binary HS

mixtures at equilibrium using the IE approach combined with the PY and the MS approx-

imations. We employ the virial and the compressibility routes, and the Boubĺık-Mansoori-

Carnahan-Starling-Leland (BMCSL) [7, 17] approach to calculate pressure in the PY approx-

imation. The virial EOS is used to obtain pressure in the MS approximation. In terms of the

IE methodology, the excess chemical potential can be obtained with an analytical expres-

sion based on the correlation functions [18, 19]. Such a closed-form expression is employed

for computing the excess chemical potential. The excess Helmholtz free energy is obtained

from thermodynamic relation. Then we compare our numerical results for thermodynamic

properties with those obtained with the MC [9] and the MD [11] simulations.
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The organization of this paper is as follows. In Section II we discuss theoretical formu-

lation of the IE method for multicomponent mixture and thermodynamic quantities which

we will compute. In Section III we present our results and discussion, which is followed by

conclusions.

II. INTEGRAL EQUATION THEORY

For multicomponent mixtures we consider the site-site Ornstein-Zernike (SSOZ) equation

which establishes a relation between the total correlation function and the direct correlation

function. For binary systems with the total number density ρ, the SSOZ equation has a

form

hij(r) = cij(r) + ρ
2

∑

k=1

xk

∫

dr′cik(r− r′)hkj(r
′) (1)

where hij(r) and cij(r) are the total and direct correlation functions, respectively, and xi =

ρi/ρ is the mole fraction for the component i with
∑2

i=1 xi = 1.

Since the SSOZ equation (1) contains two unknown correlation functions, it cannot be

solved directly. In order to solve for these functions, an another equation, called a closure

relation must be introduced, which couples the total and direct correlation functions with

the pair interaction potential. A general closure equation for the mixture may be written in

the form

hij(r) = exp[−βuij(r) + γij(r) +Bij(r)]− 1 (i, j = 1, 2). (2)

Here uij(r) is an interaction potential between particles in the system, γij ≡ hij − cij is an

indirect correlation function, Bij(r) is the bridge function, β = 1/kBT , kB is the Boltzmann

constant and T is the temperature for the system.

The total and direct correlation functions can be found by numerical solutions of equation

(1) and equation (2) provided that uij(r), T and Bij(r) are known.

For HS mixture, a form of an interaction potential in this work is given by

uij(r) =











∞, r < σij ,

0, r ≥ σij ,
(3)

with σij =
1
2
(σi + σj) and σii = σi is the hard sphere diameter for the component i.
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Since there is not an exact known expression for the bridge function, an approximated

functions can be used for it, such the PY and MS approximations. In the PY approxima-

tion [8] the bridge function is approximated by

Bij(r) = ln(1 + γij)− γij, (4)

and in the MS approximation [16] by

Bij(r) = (1 + 2γij)
1/2 − γij − 1. (5)

A. Thermodynamic quantities

1. Pressure

For binary HS mixture, we use a following virial (v) EOS

βpv
ρ

= 1 +
2π

3
ρ

2
∑

i,j=1

xixjσ
3
ijgij(σij), (6)

where gij(σij) are the contact values of the radial distribution functions. In the PY approx-

imation the pressure from the compressibility (c) route can be computed with an analytical

expression [20]

βpPYc
ρ

= 1 +
1

2ρ

2
∑

i,j=1

ρiρj

∫

drcij(gij − 2) (7)

+
1

8π3

1

ρ

∫

dk[Tr(RĈ) + ln det|I − RĈ|],

where R is a diagonal matrix based on density of each component and Ĉ is 2 × 2 matrix

whose element is ĉij(k). Here ĉij(k) is the Fourier transform of the direct correlation function

cij(r) and I is an identity matrix. A det means the determinant of the matrix.

In the PY approximation one may also employ a rather accurate BMCSL EOS [7, 17]

which is basically an interpolation between above two expressions:

βpBMCSL

ρ
=

1

3

βpPYv
ρ

+
2

3

βpPYc
ρ

. (8)
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2. An excess chemical potential

For the excess chemical potential for the component i, we use a closed-form expression

[18, 19]

βµe
i ≈ βµHNC

i +
2

∑

j=1

ρj

∫

dr
(

Bij +
2hij

3
Bij

)

, (9)

where βµHNC
i is the hypernetted chain (HNC)-type expression for the excess chemical po-

tential with appropriate bridge function Bij ,

βµHNC
i =

2
∑

j=1

ρj

∫

dr
(1

2
h2
ij − cij −

1

2
hijcij

)

. (10)

Note that an analytical expression (9) for the excess chemical potential can be used for any

bridge functions since it does not require the explicit forms of them.

3. An excess free energy

Once we have the values of the compressibility factor Z ≡ βp/ρ and the excess chemical

potential βµe
i , we can compute the excess Helmholtz free energy per particle using a following

Euler equation of thermodynamics

βae =
2

∑

i=1

xiβµ
e
i − Z + 1. (11)

III. RESULTS AND DISCUSSION

In our calculation we chose a component 1 with a diameter σ1 as a reference particle,

which is a larger component of binary HS mixture, that is, (σ1 > σ2), and a packing fraction

η is given as η = (π/6)ρ(x1σ
3
1+x2σ

3
2). A simple Picard iterative method for solving the SSOZ

equation (1) was employed, and the numerical tolerance for the root-mean-squared residual

of the indirect correlation functions during successive was set at 10−8σ1. All calculations

were performed with the same number of grid points, N = 16384, and a length parameter,

L = 32σ1. We note that since the IE approach is an implicit method of the statistical

mechanics, we do not consider the number of particles involved in the system.

We first performed numerical calculations for binary mixtures at values of η = 0.15, 0.25, 0.35

and 0.45, and for σ2/σ1=0.5 and x1 = 0.5 values. In Table I shows numerical result for the
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EOSs and their comparisons with an accurate MD values [11]. Looking at the PY values

in columns 2 and 3 the virial EOS underestimates the MD values (last column), while the

compressibility EOS overestimates them. However, the BMCSL interpolation technique

presents very good values (column 4). Column 5 shows the virial EOS values from the MS

approximation, which are quite comparable against the BMCSL EOS and MD values.

TABLE I. Values of virial, compressibility, and BMCSL EOSs from the PY and MS approximations

at various values of a packing fraction η, and x1 = 0.5, and σ2/σ1 = 0.5 and MD results [11].

η βpPY
v

/ρ βpPY
c

/ρ βpBMCSL/ρ βpMS
v

/ρ MD [11]

0.15 1.77 1.78 1.78 1.77 1.7773

0.25 2.70 2.80 2.77 2.74 2.7642

0.35 4.23 4.67 4.54 4.47 4.5362

0.45 7.09 8.43 7.99 7.77 7.9623

In Table II we have compared our numerical values of the excess chemical potential for

two components with the MD values [11]. In both approximations our values were obtained

with the analytical expression (9). The MS values (columns 3 and 6) are better than the PY

ones (columns 2 and 5), and are close to the MD values (columns 4 and 7) with an increase

of η.

TABLE II. The same as shown in Table 1, but for the excess chemical potential.

η βµe

1
(PY) βµe

1
(MS) MD [11] βµe

2
(PY) βµe

2
(MS) MD [11]

0.15 2.07 2.08 2.1070 0.73 0.74 0.7378

0.25 4.37 4.48 4.5322 1.46 1.48 1.4684

0.35 8.19 8.57 8.6696 2.55 2.62 2.5924

0.45 15.6 16.3 16.1404 4.37 4.54 4.4099

Table III demonstrates numerical values of the excess Helmholtz free energy calculated in

the PY and MS approximations using the thermodynamic expression (11) against the MD

values [11]. In evaluating βae in the PY approximation, we used values of βpBMCSL/ρ. Our

results are in good agreement with the MD values up to η = 0.35. At η = 0.45 our PY value

is lower than the MD value, while the MS one is slightly higher than it. Note that our all

results shown in tables are independent on computational parameters N and L.

6



TABLE III. The same as shown in Table 1, but for the excess Helmholtz free energy.

η βae (PY) βae (MS) MD [11]

0.15 0.62 0.64 0.6451

0.25 1.15 1.24 1.2361

0.35 1.83 2.13 2.0939

0.45 3.00 3.67 3.3129

After above calculations, we continued our numerical experiments of thermodynamic

quantities for a number of binary sets of mixtures in which one of the three parameters

(diameter ratio σ2/σ1, mole fraction of a larger sphere x1, and a packing fraction η) was

varied while the remaining two were kept constant. Our findings as a function of σ2/σ1 at

η = 0.3 and x1 = 0.5 are presented in Figure 1, while those as functions of x1 at η = 0.3

and σ2/σ1 = 0.5, and η at σ2/σ1 = 0.5 and x1 = 0.5 have been exhibited in Figures 2 and

3 respectively. In all plots a dashed and solid curves are obtained from the PY and MS

respectively. Black cross in the plots denotes the MC result [9], while green ones presents

the MD data [11].
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FIG. 1. Results from the PY and MS approximations are shown with a solid and dashed curves,

respectively. Plots of the excess chemical potential βµi (a), and the excess Helmholtz free energy

(b) and the compressibility factor Z − 1 (b) as a function of a diameter ratio σ2/σ1 at η = 0.3 and

x1 = 0.5. Black and green crosses show the MC [9] and MD [11] simulations, respectively.

The plots of βµe
1 for component 1 from the PY approximation shown as dashed curves
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in all panels (1a-3a) show noticeable differences which look like an expected pattern shown

in Table 2. However, the PY values of βµe
2 follow the MD and MC simulations. The MS

values for excess chemical potential for two components are almost indistinguishable from

the MD and MC simulations. The compressibility factor Z − 1 obtained from the PY and

MS approximations closely follow the MD values (panels 1b-3b). Note that the plots of the

excess Helmholtz free energy βae from the PY approximation show very visible differences

which are related mostly to the underestimated values of βµe
1. However the MS values for

βae are generally in good agreement with the MD data, except for the case of a larger η

(panel 3b).
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FIG. 2. The same plots as shown in Figure 1, but for as a function of the mole fraction x1 at

η = 0.30 and σ2/σ1 = 0.5. Green crosses show the MD [11] simulations.

We say that a reason why the MS values for the excess chemical potential and compress-

ibility factor are in good agreement with those from the MD data can be connected to a

fact that the correlation functions obtained in this approximation might be as good as those

from simulation data [21]. We here note that a similar discussion had also been given by

Malijevsky et al. [15] in which they stated that when compared the pair distribution func-

tions from the MS, PY and HNC closures with the MC simulation data, the the MS closure

is the best among them.
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FIG. 3. The same plots as shown in Figure 1, but for as a function of the packing fraction η at

x1 = 0.5 and σ2/σ1 = 0.5. Green crosses show the MD [11] simulations.

IV. CONCLUSIONS

In this work we have solved the SSOZ integral equation for various binary sets of the

HS mixtures using the PY and the MS approximations. We have calculated the EOS with

a virial and compressibility ways and the BMCSL technique in the PY approximation.

Obviously, the BMCSL EOS has worked better than the virial and compressibility EOSs in

this approximation. We computed the virial EOS when the MS bridge function is used. The

excess chemical potential has been evaluated with an analytical expression while the excess

Helmholtz free energy for the system is computed with a thermodynamic expression. We

have compared our findings for thermodynamic quantities with the accurate MC and MD

values. From these comparisons, it has been shown that results from the MS approximation

are in better agreement with the MD values than those from the PY approximation. Finally,

we note that the IE theory has worked successfully not only at moderate and high densities

but also for asymmetric hard-sphere mixtures.
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