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In this work, we investigate the multimode Brownian oscillators in nonequilibrium scenarios with multiple
reservoirs at different temperatures. For this purpose, an algebraic method is proposed. This approach gives
the exact time–local equation of motion for reduced density operator, from which we can easily extract not
only the reduced system but also hybrid bath dynamical information. The resulted steady–state heat current
is found numerically consistent with another discrete imaginary–frequency method followed by the Meir–
Wingreen’s formula. It is anticipated that the development in this work would constitute an indispensable
component to nonequilibrium statistical mechanics for open quantum systems.

I. INTRODUCTION

Open quantum systems play pivotal roles in di-
versed fields such as nuclear magnetic resonance,1–3

condensed matter and material physics,4–6 high energy
physics,7–9 quantum optics,10–12 chemical and biological
physics,13–15 and nonlinear spectroscopies.16–18 In most
of these studies, the system and its environment consti-
tute a thermodynamic composite. Thermal effects dic-
tate the system–environment entanglement, which is in-
timately related to the thermodynamic and transport
properties.19–23 Practically, these properties are under
focus in manipulating mesoscopic nanodevices.24–29

For example, the real-time evolution of heavy quarko-
nium in the quark-gluon plasma was investigated by
means of quantum Brownian motion theory to high-
light dynamical mechanism of the relative motion of the
quarkonium state.9 Another example is that when con-
sidering a point charge emitting radiation in an electro-
magnetic field, the internal degree of freedom of a moving
atom can be modeled by a harmonic oscillator coupled
to a scalar field. Following the same coupling way as
scalar electrodynamics, the pathologies of radiation re-
actions can be recast as non-Markovian dynamics of a
Brownian oscillator (BO) in an environment.24 In terms
of quantum decoherence and measurement, BO was also
introduced as one of toy models to study universalities in
the phenomenology of decoherence.25 These continuous
studies on BO indicate the significance of this model can
be never underestimated.

As a typical open quantum system, BO is the sim-
plest and exactly solvable model. It serves as an ele-
mentary consideration in various studies.30–36 Exact real-
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time dynamics of BO has been widely investigated.37–43

Concerning thermodynamics, properties of the reduced
BO system had been shown that the steady state could
be expressed as the Gibbs state with a renormalized
Hamiltonian.44 On the other hand, it should be noticed
that besides the reduced system, the hybrid bath prop-
erties need also be taken into account for the underlying
entangled effects.23,45,46

In this work, we develop an algebraic approach to ob-
tain the equation of motion (EOM) for the multimode
BO system, from which we can easily extract both the
reduced system and hybrid bath dynamical information.
Furthermore, we exploit the well-established EOM to
study the heat transport problem. We also propose an-
other discrete imaginary–frequency (DIF) method fol-
lowed by the Meir–Wingreen’s formula. Both the alge-
braic and DIF methods are consistent with each other in
evaluating the steady–state heat current.

The remainder of this paper is organized as follows.
In Sec. II we present the multimode BO system model
and the exact EOM for dynamics. Especially, we empha-
size how to extract the hybrid bath information and to
evaluate the heat current. More theoretical details are
given in Appendix. Numerical results are demonstrated
in Sec. III. We summarize the paper in Sec. IV. Through-
out this paper we set ~ = 1 and βα = 1/(kBTα) with kB
being the Boltzmann constant and Tα the temperature
of the α-reservoir.

II. MULTIMODE BROWNIAN OSCILLATOR

A. Hamiltonian and EOM

Let us start with the total system–bath Hamiltonian,
HT = HS+HSB+hB. The bath hB =

∑
α hα is assumed to

be non–interacting with different temperatures βα. The

ar
X

iv
:2

21
1.

04
13

1v
5 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  3

0 
Ju

n 
20

23



2

BO model adopts

HS =
∑

u

p̂2
u

2mu
+

1

2

∑

uv

kuv q̂uq̂v, (1)

and

HSB =
∑

αuj

καuj q̂ux̂αj ≡
∑

αu

Q̂uF̂αu, (2)

with

Q̂u = (mukuu)
1
4 q̂u. (3)

This is the dimensionless disspative system mode that
coupled to the random force F̂αu as specified in Eq. (2).

Note also P̂u = (mukuu)−
1
4 p̂u so that [Q̂u, P̂v] = iδuv.

Thus Eq. (1) is recast as

HS =
1

2

∑

u

ΩuP̂
2
u +

1

2

∑

uv

VuvQ̂uQ̂v (4)

with

Ωu ≡
√
kuu
mu

and Vuv ≡
kuv

4
√
mumvkuukvv

. (5)

In order to investigate some system–bath entangled
properties such as the heat current, we introduce an aux-
iliary quantity

ρ̃αu(t) ≡ trB[F̂αuρT(t)]. (6)

By applying the Liouville equation to the total density
operator, ρ̇T(t) = −i[HT, ρT(t)], we obtain for the re-
duced ρS(t) = trBρT(t) the EOM as

ρ̇S(t) =− i[HS, ρS(t)]− i
∑

αu

[Q̂u, ρ̃αu(t)]. (7)

The above equation exists for any given HS. It leads
to the exact hierarchical equations of motion for general
systems.47 Focusing on the BO system, Eq. (7) can be
evaluated in a closed form with

ρ̃αu(t) =
∑

v

[
Γ̃αuv(t)Q̂

⊕
v + Γαuv(t)P̂

⊕
v

+ ζ̃αuv(t)Q̂
	
v − ζαuv(t)P̂	v

]
ρS(t) (8)

where

Â⊕Ô ≡ 1

2
{Â, Ô} and Â	Ô ≡ −i[Â, Ô]. (9)

Apparently, Eq. (7) is trace preserving for the reduced
density operator, since trSρ̇S(t) = 0. The EOM (7)–(9) is
exact and non-Markovian, fully taking account of the en-
vironmental temperature effects. As an exact approach,
it will guarantee the positivity of ρS. Determination of
the EOM (7)–(9) is detailed in Appendix.

B. Details of the time-dependent coefficients in the EOM

To specify the involved time-dependent coefficients in
Eq. (8), let us first introduce a key quantity

χ(t) ≡ χQQ(t) ≡ {χQQuv (t) ≡ i〈[Q̂u(t), Q̂v(0)]〉} (10)

with Q̂u(t) ≡ eiHTtQ̂ue
−iHTt and the average 〈· · · 〉 over

the steady state of total composite ρst
T which commutes

with HT. Similarly, we denote

χQP (t) ≡ {χQPuv (t) ≡ i〈[Q̂u(t), P̂v(0)]〉} = −χ̇(t)Ω−1,

χPQ(t) ≡ {χPQuv (t) ≡ i〈[P̂u(t), Q̂v(0)]〉} = Ω−1χ̇(t),

χPP (t) ≡ {χPPuv (t) ≡ i〈[P̂u(t), P̂v(0)]〉} = −Ω−1χ̈(t)Ω−1,

where Ω ≡ {Ωuδuv}. The associated initial values are
χ(0) = χ̈(0) = 0 and χ̇(0) = Ω.

The time evolutions of system coordinates and momen-
tums can be resolved as32,43,48

[
Q̂(t)

P̂ (t)

]
= T(t)

[
Q̂(0)

P̂ (0)

]
−
∑

α

∫ t

0

dτ T(t− τ)

[
0

F̂ B
α (τ)

]
.

(11)

For compactness, we have introduced vectors, P̂ ≡ {P̂u},
Q̂ ≡ {Q̂u}, F̂ B

α ≡ {F̂B
αu}, and the matrix

T(t) =

[
−χQP (t) χQQ(t)
−χPP (t) χPQ(t)

]
=

[
χ̇(t)Ω−1 χ(t)

Ω−1χ̈(t)Ω−1 Ω−1χ̇(t)

]
.

(12)

By taking the time derivative of Eq. (11) and eliminating
the initial values using itself, the time–local EOM can be
obtained as32,43,48

[
˙̂
Q(t)
˙̂
P (t)

]
= Λ(t)

[
Q̂(t)

P̂ (t)

]
−
∑

α

[
0

F̂ eff
α (t)

]
. (13)

Here, the matirx Λ(t) is resulted as

Λ(t) = Ṫ(t)T−1(t) =

[
0 Ω

−V − Γ̃(t) −Γ(t)

]
(14)

and (denoting Ṽ (t) ≡ Γ̃(t) + V )

F̂ eff
α (t) = F̂ B

α (t) +

∫ t

0

dτ
[
Ṽ (t)χ(t− τ)

+ Γ(t)Ω−1χ̇(t− τ) + Ω−1χ̈(t− τ)
]
F̂ B

α (τ),

(15)

where

ΩΓΩ−1 =
...
χ(χ̇χ−1χ̇− χ̈)−1 − χ̈(χ̇− χ̈χ̇−1χ)−1,

(16a)

ΩṼ =
...
χ(χχ̇−1χ̈− χ̇)−1 − χ̈(χ− χ̇χ̈−1χ̇)−1. (16b)

They are obtained from Eq. (14) by using the time deriva-
tive of Eq. (12) and

T−1(t) =

[
Ω(χ̇− χχ̇−1χ̈)−1 Ω(χ̈− χ̇χ−1χ̇)−1Ω
(χ− χ̇χ̈−1χ̇)−1 (χ̇− χ̈χ̇−1χ)−1Ω

]
.

(17)
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Note that all the involved elements in χ(t) and the re-

lated Γ(t) and Γ̃(t) are real.
For the investigation on the heat transport, we shall

identify the contribution of each hybridized α–bath to

the key functions Γ̃(t) and Γ(t) in terms of

Γ̃(t) =
∑

α

Γ̃α(t) and Γ(t) =
∑

α

Γα(t). (18)

Here, Γ̃α(t) ≡ {Γ̃αuv(t)} and Γα(t) ≡ {Γαuv(t)}
[cf. Eq. (8)]. They can be attained by

[
Γ̃α(t) Γα(t)

]
= −

∫ t

0

dτ
[
φα(t− τ) 0

]
T(τ)T−1(t).

(19)

Here φα(t) ≡ {φαuv(t)} with

φαuv(t) ≡ i〈[F̂B

αu(t), F̂B

αv(0)]〉B (20)

and F̂B
αu(t) ≡ eihαtF̂αue

−ihαt. The average is defined
as 〈· · · 〉B ≡ trB[· · · ρcano

B ] with ρcano
B = ⊗αρB

α(βα) and
ρB
α(βα) = e−βαhα/trB(e−βαhα) over the canonical ensem-

bles of baths. We shall also introduce the hybrid bath
correlation function

cαuv(t) ≡ 〈F̂B

αu(t)F̂B

αv(0)〉B. (21)

With the symmetry property c∗αuv(t) = cαvu(−t), we
have φαuv(t) = i[cαuv(t) − c∗αuv(t)] = −2Imcαuv(t) =
−φαvu(−t). Denote also rαuv(t) ≡ Re[cαuv(t)] =
rαvu(−t) for later use. Note that the cross correlations
between different baths do not exist. More details for
obtaining Eq. (19) are given in Appendix.

Turn now to ζ̃α(t) ≡ {ζ̃αuv(t)} and ζα(t) ≡ {ζαuv(t)}
in Eq. (8). Their evaluations can be summarized as

[
ζα(t) ζ̃α(t)

]

=
[
Ṽ (t) Γ(t)Ω−1 Ω−1

]


k00
α (t) k01

α (t)Ω−1

k10
α (t) k11

α (t)Ω−1

k20
α (t) k21

α (t)Ω−1


 (22)

where (with T denoting the transpose)

kijα (t) =

∫ t

0

dτ
[
Diuα(τ)DjχT (τ) +Diχ(τ)DjuTα(τ)

]
,

(23)
with

uα(t) ≡
∫ t

0

dτ χ(τ)rα(t− τ), (24)

and the notation Dm for the derivative dm/dτm. De-
tailed derivations are given in Appendix. For the condi-
tion of a single oscillator coupled to a single bath, Eq. (22)
will recover the results in the APPENDIX C of Ref. 43,
where the expressions had been reorganized via integral
by parts. The asymptotic behaviors had been found there
associated with the thermal phase space variances.

C. Entangled system–bath properties and heat transport

Consider the heat transport from the α–reservoir to
the local impurity system. The heat current operator
reads

Ĵα ≡ −ḣα = −i[HT, hα] = −i
∑

u

Q̂u[F̂αu, hα]

= −i
∑

u

Q̂u[F̂αu, HT] =
∑

u

Q̂u
˙̂
Fαu. (25)

Denote 〈Ô〉t = Tr[ÔρT(t)]. We can evaluate the heat
current via

〈Ĵα(t)〉t = −i
∑

u

〈Q̂u[F̂αu, HT]〉t

= −i
∑

u

Tr
{

[HT, ρT(t)]Q̂uF̂αu
}

− i
∑

u

Tr
{
ρT(t)[HT, Q̂u]F̂αu

}

=
∑

u

[ ˙̃
Qαu(t)− ΩuP̃αu(t)

]
, (26)

where [cf. Eqs. (8) and (A.13)]

Q̃αu ≡ trS

[
Q̂uρ̃αu(t)

]

= −ζαuu(t) +
∑

v

Γ̃αuv(t)
[
WQQ
uv (t) +Qu(t)Qv(t)

]

+
∑

v

Γαuv(t)
[
WQP
uv (t) +Qu(t)Pv(t)

]
, (27a)

and

P̃αu ≡ trS

[
P̂uρ̃αu(t)

]

= −ζ̃αuu(t) +
∑

v

Γ̃αuv(t)
[
WPQ
uv (t) + Pu(t)Qv(t)

]

+
∑

v

Γαuv(t)
[
WPP
uv (t) + Pu(t)Pv(t)

]
. (27b)

Involved in Eqs. (27a) and (27b) are also the first or-
der moments, {Qu(t)} and {Pu(t)}, and the second or-
der moments, {WQQ

uv }, {WQP
uv }, {WPQ

uv }, and {WPP
uv }.

Their definitions are given in Eq. (A.11) and Eq. (A.13),
respectively. Thus Eq. (26) can be recast in terms of

〈Ĵα(t)〉t = trace
[
J̇α;Q(t)−ΩJα;P (t)

]
(28)

with

Jα;Q(t) = Γ̃α(t)
[
WQQ(t) +QT (t)Q(t)

]
− ζα(t)

+ Γα(t)
[
W PQ(t) + P T (t)Q(t)

]
, (29a)

Jα;P (t) = Γ̃α(t)
[
WQP (t) +QT (t)P (t)

]
− ζ̃α(t)

+ Γα(t)
[
W PP (t) + P T (t)P (t)

]
. (29b)

The steady–state heat current is obtained by t→∞.
An alternative approach to evaluate the steady–state

heat current is via

Jα ≡ 〈Ĵα(t)〉t
∣∣
t→∞ = −2 Im

∫ ∞

0

dτ tr
[
ċα(τ)C(τ)

]
. (30)
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Here, C(t) ≡ {Cuv(t)} and

Cuv(t) ≡ 〈Q̂u(t)Q̂v(0)〉. (31)

This is the time–domain Meir–Wingreen’s formula49 for
general systems. This formula can be derived via such
as the nonequilibrium Green’s function method50 or the
dissipaton thermofield approach.23 In the frequency do-
main, it can be recast as

Jα =
2

π

∑

uv

∫ ∞

−∞
dω

ωΦαuv(ω)

1− e−βαωRe[C̃vu(−ω)], (32)

with the hybrid bath spectral density

Φαuv(ω) ≡ 1

2i

∫ ∞

−∞
dt eiωtφαuv(t), (33)

and the system correlation resolution

C̃uv(ω) ≡
∫ ∞

0

dt eiωtCuv(t). (34)

The hybrid bath correlation function is related to
its spectral density via the fluctuation–dissipation
theorem32,33

cαuv(t) =
1

π

∫ ∞

−∞
dω

e−iωtΦαuv(ω)

1− e−βαω . (35)

To evaluate Eq. (32) for the present multimode BO sys-
tem, we propose a discrete imaginary–frequency (DIF)
method. This method is based on three ingredients as
follows. (i) The exponential decomposition of the hybrid
bath correlation functions (with γαk assumed real),

cαuv(t) =
∑

k

gαkuve
−γαkt. (36)

This can be readily achieved with some sum–over–pole
schemes51–56 or the time–domain Prony fitting decom-
position scheme.57 (ii) The relation of entangled system–
bath correlations [cf. Eq. (A.6)]

C̈uv(t) = −Ωu
∑

u′

Vuu′Cu′v(t)− Ωu
∑

α

Xαuv(t)

+ Ωu
∑

αu′

∫ t

0

dτ φαuu′(t− τ)Cu′v(τ), (37)

where Xαuv(t) ≡ 〈F̂B
αu(t)Q̂v(0)〉. In terms of the Laplace

transform f̃(ω) ≡
∫∞

0
dt eiωtf(t), it reads

C̃(ω) =

[
ΩV − ω2I−Ω

∑

α

φ̃α(ω)

]−1[
Ċ(0)− iωC(0)

−Ω
∑

α

X̃α(ω)

]
. (38)

(iii) The system–bath entanglement theorem [cf. the
Eq.(17) of Ref. 23]

Xα(t) = 2 Im

∫ ∞

0

dτ cTα(t+ τ)CT (τ). (39)

Here, (ii) is from the BO algebra while (iii) exists for
general systems.

Substituting Eq. (36) into Eq. (39), we obtain the fol-
lowing frequency–domain expression

X̃α(ω) =
∑

k

2

γαk − iω
Im
[
C̃(iγαk)gαk

]T
. (40)

We find that once {C̃(iγαk)} is known, X̃α(ω) [Eq. (40)]

and hence C̃(ω) [Eq. (38)] will be readily obtained. On

the other hand, {C̃(iγαk)} can be solved by Eqs. (38) and
(40) in a self-consistent manner, i.e.

C̃(iγα′k′) =

[
ΩV + γ2

α′k′I−Ω
∑

α

φ̃α(iγα′k′)

]−1[
Ċ(0)

+ γα′k′C(0)−Ω
∑

α

X̃α(iγα′k′)

]
, (41a)

X̃α(iγα′k′) =
∑

k

2

γαk + γα′k′
Im
[
C̃(iγαk)gαk

]T
. (41b)

Note that for the multimode BO system in this paper,
φαuv = φαvu. The steady–state heat current can then be
obtained from Eq. (32) via

Jα = − 2

π

∑

uv

∫ ∞

−∞
dω

ωΦαuv(ω)

eβαω − 1
Re[C̃vu(ω)]. (42)

By far, we have proposed two different methods to eval-
uate the steady–state heat current of the multimode BO
system. One is the algebraic method with the aid of the
EOM of the density matrix. The other is the DIF method
followed by the Meir–Wingreen’s formula. These two ex-
act methods are numerically consistent in our calcula-
tions. As tested, the simulation results are also found
consistent with those via the dissipaton theory.23,58 Note
that there is

∑
α Jα = 0 in the steady state, which is also

confirmed in our calculations.

V11 V22

V12

TL

TR

ηL1

ηL2

ηR1

ηR2

1 2

FIG. 1. Schematic diagram of the model for numerical demon-
strations.
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III. NUMERICAL DEMONSTRATIONS

For numerical demonstrations, we adopt [cf. Eq. (33)]

Φα(ω) = ηαIm
Ω2

B

Ω2
B − ω2 − iωγB

, (43)

with ηα ≡ {ηαuv; ηαuv = ηαuδuv} specifying the system–
bath coupling strengths. Exemplified are the calculations
on transient dynamics and heat currents. Selected is a
two–mode BO system embedded in two (left and right
with α=L and R respectively) reservoirs at different tem-
peratures. The schematic diagram of the model is shown
in Fig. 1. From an application point of view, this setup
can be experimentally realized via, for example, molec-
ular junctions.59–62 The system–bath coupling strength
{ηαu} can be experimentally adjusted via manipulating
the distances between molecules. We select the param-
eters Ω1 = Ω2 = V11 = V22 = ΩB = 1600 cm−1 and
γB = 4ΩB. Other parameters are specified in the caption
of each figure.

0 2 4 6 8 10

Time (in unit of π/ω+)

0

1

2

3

4

5

6

7

E
n
er
gy

(i
n
u
n
it
of

16
00

cm
−
1
)

ES

E+

E−
E1

E2

FIG. 2. Evaluations on the transient two–mode BO dynamics
in terms of the energies of the system oscillators. See text for
details. Parameters are selected as V12 = V21 = 800cm−1,
ηL1 = ηR2 = 320cm−1, ηL2 = ηR1 = 160cm−1, TL = 50K and
TR = 500K.

Figure 2 depicts the transient dynamics of the system
energies, ES = 〈HS〉, Ei=1,2 = (Ωi/2)〈P̂ 2

i 〉+ (Vii/2)〈Q̂2
i 〉,

and E± = 〈p̂2
±〉/2+(ω2

±/2)〈q̂2
±〉 of the normal modes. We

select V12 = V21 = 800cm−1 resulting in ω+ = 1960cm−1

and ω− = 1130cm−1. The ω+ plays the dominate role in
realistic observations. The system is initially at the fac-
torized state, ρS(0)⊗ ρcano

B , with ρS(0) = ⊗i=1,2ρi where
ρi is the ground state of the ith isolated oscillator but
with a dimensionless position displacement of d = −2.
To be specific, ρi = |ψ(i)〉〈ψ(i)|, with

ψ(i)(Qi) =

(√
Vii/Ωi
π

)1/4

exp

[
−
√
Vii/Ωi

2
(Qi + 2)2

]
.

Apparently, ES = E+ + E− 6= E1 + E2.

S
p
ec
tr
u
m

Re C̃11(ω)

Re C̃12(ω)

Re C̃22(ω)

(a)
V12 = 160 cm−1

V12 = 800 cm−1

−2 −1 0 1 2

ω (in unit of 1600 cm−1)

D
is
p
er
si
on

Im C̃11(ω)

Im C̃12(ω)

Im C̃22(ω)

(b) V12 = 160 cm−1

V12 = 800 cm−1

FIG. 3. The C̃(ω) evaluated with V12 = V21 = 160cm−1

(black) and 800cm−1 (red) at TL = TR = 275K. Other pa-
rameters are the same as in Fig. 2.

The two panels of Fig. 3 show the spectra and dis-

persions, i.e. the real and imaginary parts of C̃(ω), re-
spectively, evaluated via the DIF method proposed in
Sec. II C. Obviously, the splitting of peaks becomes larger
when V12 = V21 = 800cm−1, compared to the case of
V12 = V21 = 160cm−1. With the equal temperature of
both reservoirs, the detailed–balance relation has been
satisfied in our evaluations.

Shown in Fig. 4 is the steady–state heat current with
the temperature of the right bath, TR, varying from 25K
to 475K while that of the left bath, TL, fixed at 275K. Ap-
parently, the current increases with the inter-mode cou-
pling strength, V12. Also the current changes direction
at the condition TR = TL. The differential conductance
is found of similar behavior which is thus not shown ex-
plicitly. From Fig. 4, one can observe that there is an
asymmetry in magnitude of current between two scenar-
ios of TR < TL and TR > TL with the fixed temperature
difference. The mechanism can be interpreted as follows.
The heat current increases with not only the tempera-
ture difference but also the heat capacity. The phonon
frequency involved in our simulation is around 1600cm−1.
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FIG. 4. Heat current versus temperature, with V12 = V21 =
160cm−1 (black) and 800cm−1 (red). The temperature of the
right bath, TR, varies from 25K to 475K while that of the left
bath, TL, is fixed at 275K. Other parameters are the same
as in Fig. 2. The crosses marked along the curves are results
from the DIF method.

The corresponding Einstein temperature is over 2000K.
For the temperature range in Fig. 4, the heat capacity
increases with the temperature, leading to the observed
asymmetry.

IV. SUMMARY

To conclude, we develop an algebraic method to study
multimode Brownian oscillators connected to multiple
reservoirs at different temperatures. The algebraic ap-
proach directly gives the exact time–local EOM for the
reduced density operator. Based on this approach, we
can easily extract not only the reduced system but also
the hybrid bath dynamical informations. We exploit the
EOM to study the heat transport problem, i.e. the heat
current from the reservoir to the local impurity system.
On the other hand, we also adopt another different ap-
proach, the Meir–Wingreen’s formula which is for gen-
eral systems, together with the system–bath entangle-
ment theorem to evaluate the steady–state heat current.
For its application to the BO system, we propose a dis-
crete imaginary–frequency (DIF) self-consistent evalua-
tion scheme. Both approaches can serve as initial steps
to systematically include anharmonic effects. For more
generic (non-integrable) bosonic setups, the self-energy
term needs to be modified,63 which can be obtained via
self-consistent iteration approximately. Work in this di-
rection is in progress. It is anticipated that the methods
presented in this work would constitute basic components
for nonequilibrium statistical mechanics of open quantum
systems. Moreover, it is still difficult to compute the
fluctuation of heat current under the present theoretical
framework of Eqs.(7)–(9). However, it may be achieved
with the help of dissipaton theory.23,58 This constitutes

another direction of further development.
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Appendix: Related BO algebra and BO properties

The EOM (7)–(9) can be established by the Yan–
Mukamel method.17,43,48 Here we present another ap-
proach via undetermined coefficients. Both methods are
on the basis of the EOM of the first and second order mo-
ments, which fully characterize the Gaussian wave packet
(GWP). Let us start from the Heisenberg EOM for any

operator,
˙̂
O(t) = i[HT, Ô(t)]. We have

˙̂
Qu(t) = ΩuP̂u(t), (A.1a)

˙̂
Pu(t) = −

∑

v

VuvQ̂v(t)−
∑

α

F̂αu(t). (A.1b)

The solution to F̂αu(t) ≡ eiHTtF̂αue
−iHTt can be ob-

tained as [cf. the Eq. (7) of Ref. 63]

F̂αu(t) = F̂B

αu(t)−
∑

v

∫ t

0

dτ φαuv(t− τ)Q̂v(τ). (A.2)

From Eq. (A.1) we obtain

χ̇QQuv (t) = Ωuχ
PQ
uv (t), (A.3a)

χ̇QPuv (t) = Ωuχ
PP
uv (t), (A.3b)

and

χ̇PQuv (t) = −
∑

v′

Vuv′χ
QQ
v′v (t)− i

∑

α

〈[F̂αu(t), Q̂v(0)]〉,

(A.4a)

χ̇PPuv (t) = −
∑

v′

Vuv′χ
QP
v′v (t)− i

∑

α

〈[F̂αu(t), P̂v(0)]〉.

(A.4b)

Substituting Eq. (A.2) into Eq. (A.4), we get

χ̇PQuv (t) = −
∑

v′

Vuv′χ
QQ
v′v (t)

+
∑

αv′

∫ t

0

dτ φαuv′(t− τ)χQQv′v (τ), (A.5a)

χ̇PPuv (t) = −
∑

v′

Vuv′χ
QP
v′v (t)

+
∑

αv′

∫ t

0

dτ φαuv′(t− τ)χQPv′v (τ). (A.5b)
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The traditional Langevin equation can be recovered by
substituting Eq. (A.2) into Eq. (A.1) as

¨̂
Qu(t) = −Ωu

∑

v

VuvQ̂v(t)− Ωu
∑

α

F̂B

αu(t)

+ Ωu
∑

αv

∫ t

0

dτ φαuv(t− τ)Q̂v(τ). (A.6)

The solutions to it, i.e. Eq. (11) with Eq. (12), can be
proved by Eqs. (A.3) and (A.5) together with initial val-
ues χ(0) = χ̈(0) = 0 and χ̇(0) = Ω. Furthermore,
Eqs. (A.3) and (A.5) can be resolved in terms of the

Laplace transform f̃(ω) ≡
∫∞

0
dt eiωtf(t) as

χ̃QQ(ω) = [ΩV − ω2I−Ω
∑

α

φ̃α(ω)]−1Ω, (A.7a)

χ̃QP (ω) = iωχ̃QQ(ω)Ω−1, (A.7b)

χ̃PQ(ω) = −iωΩ−1χ̃QQ(ω), (A.7c)

χ̃PP (ω) = Ω−1 + ω2Ω−1χ̃QQ(ω)Ω−1. (A.7d)

Equations (A.3) and (A.5) can be recast into the matrix
form as

Ṫ(t) =

[
0 Ω
−V 0

]
T(t) +

∑

α

∫ t

0

dτ

[
0 0

φα(t− τ) 0

]
T(τ).

(A.8)

By the first identity of Eq. (14), we can recast the Λ(t)
matrix using Eq. (A.8) as

Λ(t) =

[
0 Ω
−V 0

]
+
∑

α

∫ t

0

dτ

[
0 0

φα(t− τ) 0

]
T(τ)T−1(t).

(A.9)

Equation (19) is resulted from the comparison of
Eq. (A.9) to the second identity of Eq. (14) with Eq. (18).

Consider the initial factorized state before the system
and baths interact, i.e.

ρT(0) = ρS(0)⊗
∏

α

ρB

α(βα). (A.10)

We have denoted the average 〈( · )〉t over the total com-
posite state with the above initial total GWP. That is
in the Schrödinger picture, 〈Ô〉t = Tr[ÔρT(t)], which is

equal to 〈Ô〉t = Tr[Ô(t)ρT(0)] in the Heisenberg picture.
From Eq. (13), the EOM of the first order moments,

Qu(t) ≡
〈
Q̂u(t)

〉
t

and Pu(t) ≡
〈
P̂u(t)

〉
t
, (A.11)

can be obtained as
[
Q̇(t)

Ṗ (t)

]
= Λ(t)

[
Q(t)
P (t)

]
. (A.12)

Note that
〈
F̂ eff
α (t)

〉
t

=
〈
F̂ B
α (t)

〉
t

= 0. Actually

for any system operator Â, there is
〈
F̂ eff
α (t)Â(0)

〉
t

=〈
F̂ B
α (t)Â(0)

〉
t

= 0.

The EOM of the second order moments,

WQQ
uv (t) ≡ 1

2

〈
{δQ̂u(t), δQ̂v(t)}

〉
t
, (A.13a)

WQP
uv (t) ≡ 1

2

〈
{δQ̂u(t), δP̂v(t)}

〉
t

= WPQ
vu (t) , (A.13b)

WPP
uv (t) ≡ 1

2

〈
{δP̂u(t), δP̂v(t)}

〉
t
, (A.13c)

with δQ̂u(t) ≡ Q̂u(t)−Qu(t) and δP̂u(t) ≡ P̂u(t)−Pu(t)
can also be derived from Eq. (13). For convenience, we
recast Eq. (A.13) in the matrix form as

W (t) ≡
[
WQQ(t) WQP (t)
W PQ(t) W PP (t)

]

=
1

2

〈{[
δQ̂(t)

δP̂ (t)

]
,

[
δQ̂(t)

δP̂ (t)

]T }〉
. (A.14)

We obtain from Eq. (13) that

Ẇ (t) = Λ(t)W (t) +W (t)ΛT (t)

+
∑

α

[
0

[
ζα(t)

]T

ζα(t) ζ̃α(t) +
[
ζ̃α(t)

]T

]
, (A.15)

where

ζα(t) = −Re
〈
F̂ eff
α (t)Q̂T (t)

〉
t
, (A.16a)

ζ̃α(t) = −Re
〈
F̂ eff
α (t)P̂ T (t)

〉
t
. (A.16b)

The evaluations of ζα(t) and ζ̃α(t) can be done by sub-
stituting Eqs. (11) and (15) into Eq. (A.16). Denoting

ξα(τ ; t) ≡ rα(τ) + Ṽ (t)

∫ t

0

dτ ′ χ(τ ′)rα(τ − τ ′)

+ Γ(t)

∫ t

0

dτ ′Ω−1χ̇(τ ′)rα(τ − τ ′)

+ Ω−1

∫ t

0

dτ ′ χ̈(τ ′)rα(τ − τ ′), (A.17)

we have

[
ζα(t) ζ̃α(t)

]
=

∫ t

0

dτ ξα(τ ; t)
[
χT (τ) χ̇T (τ)Ω−1

]
.

(A.18)

Equation (22) can now be obtained by noticing the fol-
lowing relation of double integrals

∫ t

0

dτ

∫ t

0

dτ ′ f(τ ′)g(τ − τ ′)h(τ)

=

∫ t

0

dτ

∫ τ

0

dτ ′ [f(τ ′)g(τ − τ ′)h(τ)

+ f(τ)g(τ ′ − τ)h(τ ′)]. (A.19)

Note in Eqs. (22)–(24)

u̇α(t) =

∫ t

0

dτ χ̇(τ)rα(t− τ), (A.20)

üα(t) = Ωrα(t) +

∫ t

0

dτ χ̈(τ)rα(t− τ). (A.21)
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Turn now to the EOM of the reduced density oper-
ator ρS(t). Concerning the Gaussian property and the
Liouville-von Neumann equation for the total density op-
erator, ρ̇T(t) = −i[HT, ρT(t)], the desired EOM is of the
form

ρ̇S(t) = −i
[
HS, ρS(t)

]
+
∑

αuv

Q̂	u
[
a⊕αuv(t)Q̂

⊕
v + b⊕αuv(t)P̂

⊕
v

+ a	αuv(t)Q̂
	
v + b	αuv(t)P̂

	
v

]
ρS(t), (A.22)

with the coefficients {a⊕αuv}, {b⊕αuv}, {a	αuv}, and {b	αuv}
to be determined. To do that, consider an arbitrary sys-
tem operator Â. We can obtain the EOM of 〈Â〉t =

TrS[ÂρS(t)] from Eq. (A.22) as

d

dt
〈Â〉t = i

〈[
HS, Â

]〉
t
−
∑

αuv

〈[
a⊕αuv(t)Q̂

⊕
v + b⊕αuv(t)P̂

⊕
v

− a	αuv(t)Q̂	v − b	αuv(t)P̂	v
]
Q̂	u Â

]〉
t
. (A.23)

We can now derive the EOM of the first and second or-
der moments from Eq. (A.23) and compare the results
to Eqs. (A.12) and (A.15). After some simple steps,
the coefficients {a⊕αuv}, {b⊕αuv}, {a	αuv}, and {b	αuv} can

be determined as {Γ̃αuv(t)}, {Γαuv(t)}, {ζ̃αuv(t)}, and
−{ζαuv(t)}, respectively. Thus the final EOM of ρS(t) is
obtained as Eqs. (7)–(9). The effect of the initial state
[Eq. (A.10)] vanishes when t → ∞. The asymptotic be-
haviors of the coefficients in Eq. (8) can refer to Ref. 43.
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