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Understanding the phase behavior of mixtures with many components is important in many
contexts, including as a key step toward a physics-based description of intracellular compartmen-
talization. Here, we study the instabilities of a mixture model where the second virial coefficients
are taken as random Gaussian variables. Using tools from free probability theory we obtain the
exact spinodal curve and the nature of instabilities for a mixture with an arbitrary composition,
thus lifting the assumption of uniform mixture component densities pervading previous studies. We
show that, by controlling the volume fraction of only a few components, one can systematically
change the nature of the spinodal instability and achieve demixing for realistic scenarios by a strong
composition imbalance amplification. This results from a non-trivial interplay of entropic effects
due to non-uniform composition and complexity in the interactions. Our approach allows for the
inclusion of any finite number of structured interactions, leading to a competition between different
forms of demixing as density is varied.

Phase separation is an important phenomenon and is
especially rich in mixtures with many components. In
particular, biological mixtures such as the cytoplasm
show a complex phase behavior believed to be a key
driver in the formation of nucleoli and other intracellu-
lar structures [1–5]. Typically, these systems demix into
liquid droplets with different compositions, where each
phase is enriched in a number of components and de-
pleted in others [4, 6].

Within a mean-field approach, previous studies have
explored the rich behavior of complex mixtures by inves-
tigating the number of phases formed for appropriately
tuned [7], evolutionarily optimized [8] and random [9, 10]
interactions. Within the latter approach [11] dynamical
properties have also been investigated, including early
time instabilities using random matrix theory [11] and
direct numerical simulations [12] of continuum field the-
ories (model B).

Although these studies have been able to illuminate
some of the behavior of complex mixtures, a key restric-
tive assumption common to all of them is uniform com-
position, meaning all species are present in the system
in equal amounts. However, biological mixtures rarely
satisfy this condition [13–15], and the size of intracellular
structures is in fact heavily dependent on the composition
of the cytoplasmic pool [16, 17]. In addition, experimen-
tal protocols often rely on controlling the composition of
the mixture to study its phase behavior [14, 18–20].

With this in mind, our aim in this letter is to open the
door to exploring the full composition-dependent com-
plexity of multi-component mixtures. To achieve this,
we build on the model of Sear and Cuesta [11] but lift
the drastic simplification of uniform composition. We
show that systematically changing the number density of
only a few components enables one to control the nature
of the instabilities and, as a consequence, the phases that
can be formed.

Model and general results : Following [11] we study a
mixture of M different components, labeled by Greek
letters, with interactions described by the second virial
coefficients ǫαγ . The mean-field free energy density f is
given by [21]

f =
1

2

M
∑

α,γ=1

ραǫαγργ + T

M
∑

α=1

ρα ln ρα + Tρ0 ln ρ0 (1)

where ρα = Nα/V is the number density of species α,
T is temperature and we use kB = 1. The last term
in (1) is the entropic contribution of an implicit solvent,
interacting only via volume exclusion. We define the total
density as ρ =

∑

α ρα, the average density per component
as ρ̄ = ρ/M , and work with units such that ρ0 = 1− ρ ≥
0.
From (1) we obtain the M ×M Hessian matrix Hαγ =

∂2f/(∂ρα∂ργ) as H = (T/ρ0)uu
T+(T/ρ̄)diag (1/yα)+ǫ

with u = (1, 1 . . . , 1)T the constant vector and diag(1/yα)
a diagonal matrix with entries determined by the relative
densities yα = ρα/ρ̄; by definition the latter have average
M−1

∑

α yα = 1. Thermodynamic stability requires all
eigenvalues ofH to be non-negative. Otherwise, i.e. if the
lowest eigenvalue λmin is negative, the system is unstable
to phase separation by spinodal decomposition.
The phase diagram in the (ρ,T )-plane for a fixed com-

position {yα} splits into stable and unstable regions, sep-
arated by a spinodal line determined by the condition
λmin = 0 [22]. The nature of the spinodal instability is
determined by the eigenvector v corresponding to λmin.
We will be interested in instabilities of condensation type
(v ∼ u), where the densities of all species change by sim-
ilar amounts, and of demixing type (vTu ≈ 0), where
some species are enhanced while others are depleted. We
will show that the demixing case can be further split into
delocalized or random, where all components of v are of
similar order, and localized where a few species have much
larger entries in v and thus dominate the demixing.
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Following Ref. [11], we model the second virial coeffi-
cients ǫαγ as Gaussian random variables of mean −b and
variance s2, drawn independently except for the symme-
try constraint ǫαγ = ǫγα. The Hessian matrix then reads

H = R1 +D + sη with

R1 =

(

−b+ T

ρ0

)

uuT, D =
T

ρ̄
diag

(

1

yα

)

(2)

and η a Wigner matrix with entries of zero mean and unit
variance [23]. Understanding thermodynamic instabili-
ties then requires us to obtain the eigenvalue distribution
or spectrum of H , and specifically its lower edge λmin;
we focus throughout on the interesting multi-component
limit M ≫ 1.
The sη term in H produces a continuous spectrum of

eigenvalues, and this extends to D + sη [24]. The first
term R1 can be viewed as a rank one perturbation; due
to the so-called interlacing property of eigenvalues [25],
the spectrum of H for largeM is then either the same as
the spectrum of D + sη, or R1 may give rise to a single
outlier [26], which separates from the continuous bulk
spectrum of eigenvalues. We therefore have two regimes:
if an outlier exists to the left of the bulk, then it is the
lowest eigenvalue λmin. Otherwise the lowest eigenvalue
is given by the lower edge of the bulk itself.
Free probability [23, 27] is a powerful tool to obtain

the statistics of eigenvalues and eigenvectors of large ran-
dom matrices, provided they obey the so-called freeness
criteria. A key insight is that freeness generically holds
between D, sη and R1 (see Supplemental Material at []
for discussion). We can thus use free probability to ana-
lyze the spectrum of the scaled Hessian H/M ; adopting
also the scaling s =M1/2s̃ [11] ensures that all matrices
involved have eigenvalues of O(1). We find (see Sup-
plemental Material at [] for this and subsequent deriva-
tions) for the spinodal equation, which determines where
λmin = 0,

ψ(−ρs̃2z/T ) = s̃2z2 . (3)

Here ψ(x) = 〈xyα/(1 − xyα)〉 with the angular brackets
denoting an average over the distribution p(yα) of yα,
which specifies the mixture composition. Equation (3) is
to be solved for T as a function of the total density ρ. The
difference between the two regimes discussed above, i.e.
outlier and bulk, lies in the way z = z(ρ, T ) is determined
as we explain next.
First, in the outlier regime one has z = θ−1, where

θ = T/ρ0 − b is the non-zero eigenvalue of R1/M ; notice
that θ has to be negative to give rise to an outlier to
the left of the bulk. We can also determine the overlap
between the (normalized) instability vector v and the
normalized uniform vector û = u/

√
M as

|vTû|2 = max

{

− s̃
2

θ2

[

1 +
T 2

ρ2s̃2G′(−ρs̃2θ−1/T )

]

, 0

}

(4)

where G(x) = 〈(x − 1/yα)
−1〉 is the so-called resolvent,

the prime denotes derivative and all quantities, i.e. θ,
T for a given ρ, are evaluated on the spinodal curve.
Following Ref. [11] we shall refer to instabilities with non-
vanishing overlap between v and û as condensation (C),
and as demixing otherwise. Equation (4) thus provides
information on the nature of the instability and is one of
our key results.
Turning next to the bulk regime, we have already writ-

ten Eq. (4) in a form that applies also there. The first
argument of the max function in (4) is then negative
and we have demixing behavior, with the lowest eigen-
value of the bulk D + sη determining thermodynamic
stability. For the restricted case of uniform composition,
D = (T/ρ̄)I is proportional to the identity matrix and
just shifts the spectrum of sη by T/ρ̄; the entire demix-
ing regime is then described by a linear spinodal line
T ∝ ρ̄ [11]. For non-uniform composition, on the other
hand, the spread of eigenvalues in D can dominate at
high enough T [28] as illustrated in Fig. 1. The edge of
the bulk of the spectrum is then determined by D and
in the spinodal condition (3) one has z = −T/(s̃2ρymax),
where ymax = maxα yα. The corresponding eigenvector
ofD only has a single non-zero entry, and we find as a re-
sult that the instability direction v becomes concentrated
on a few species. For low enough T , on the other hand,
the sη term dominates in D+sη and z has a larger value
maximizing F (g) = −s̃2g+(1/g)ψ(−ρs̃2g/T ), i.e. z = g∗

with g∗ determined from F ′(g∗) = 0. The threshold tem-
perature T ∗ separating these two cases (see Fig. 1) is the
one where F ′(−T/s̃2ρymax) = 0, and is given explicitly
by

T ∗ = s̃ρymax

√

〈y2α/(ymax − yα)2〉. (5)
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FIG. 1. Exemplary realization of eigenvalue distributions of
D and sη. The sum D + sη becomes dominated by the
interaction complexity for T < T ∗, and by the composition
p(yα) for T > T ∗. We used for p(yα) a Beta distribution. For
visualization purposes the spectra have been shifted to have
matching means.

Finally, the transition between condensation (outlier)
and demixing (bulk) regimes occurs when the two solu-
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tions meet each other, namely when g∗ = θ−1. Along the
spinodal curve this condition defines a threshold density
ρ∗ such that, for ρ < ρ∗, the spinodal is condensation-like
and otherwise of demixing type.
Taken together, our results give a complete character-

ization of the spinodal line for any composition p(yα) via
equation (3), and of the nature of the spinodal instabil-
ity via (4). In addition to the condensation-demixing
transition [11] Eq. (5) reveals the novel possibility of
composition-driven demixing. We show below that this
is not a simple entropic effect, but arises instead from an
interplay between the composition and the complexity in
the interactions.
Example 1: Uniform composition. The case p(yα) =

δ(yα − 1), where all mixture components have the same
density, has been studied in [11, 29]. We revisit it
briefly in order to illustrate the formalism developed so
far. Starting from Eq. (3), straightforward algebra yields
T/ρ+z−1+zs̃2 = 0. In the condensation regime, z = θ−1

with θ = T/(1 − ρ) − b, giving a quadratic [30] equa-
tion for the spinodal line T (ρ). In the demixing regime,
T ∗ from Eq. (5) diverges so that thermodynamic sta-
bility is always governed by the interaction complexity
sη. One then finds from the condition F ′(g∗) = 0 that
s̃g∗ = 1− T/(ρs̃), and inserting z = g∗ into the spinodal
equation yields T = 2s̃ρ.
To understand the nature of the instabilities we refer

to Eq. (4). In the uniform distribution case we have
G′(−ρs̃2θ−1/T ) = −(s̃2θ−1+T/ρ)−2T 2/ρ2 and the term
in brackets equals −θ by the spinodal equation. This
yields |vTû|2 = max{1 − s̃2/θ2, 0} so that we are in the
condensation regime as long as −θ = b − T/(1− ρ) > s̃.
This is always the case at low densities, where T and
hence T/(1 − ρ) vanishes along the spinodal, provided
that b > s̃. Therefore, at low densities |vTû| = O(1) with
densities of all species changing by similar amounts at the
spinodal instability. As the total density is increased,
−θ decreases and can approach s̃; v and û then become
orthogonal, resulting in random demixing (RD), with a
delocalized instability vector v [26].
Example 2: One dominant species. Next, we investi-

gate the case of one single dominant species (α = 1) with
relative concentration y1 > 1, while all other species have
y2 = (M − y1)/(M − 1) < 1 (see Supplemental Material
at[] for M -dependent effects). This example will show
how tuning the density of a few species can change the
nature of the spinodal instability at high densities.
As a consequence of the single distinct entry in D, two

possibilities exist for the demixing regime, depending on
whether the lowest eigenvalue of D+ sη is controlled by
sη or by the distinct entry in D. Solving the spinodal
equation (3) and computing the nature of the instability
(See Supplemental Material at []) yields three different
regimes depending on y1. At low densities, the spinodal
is dominated by the average interaction −b and by en-
tropic effects, yielding condensation behavior. Increasing

ρ results in a transition to demixing. We find explic-
itly for the instability direction in the demixing regime
|vTû| = 0 and

|vTe1|2 = max

{

y1 − 2

y1 − 1
, 0

}

(6)

where e1 = (1, 0, 0, . . . , 0)T is the direction of the
dominant species. The O(1) overlap between v and
e1 demonstrates that, whenever y2 > 2, we have
composition-driven demixing (CD) controlled by the
dominant species. If, on the other hand, y2 < 2 the in-
stability is controlled by s and the mixture will undergo
random demixing. The transition from C to CD happens
at ρ∗ = 1− y1s̃/(b

√
y1 − 1 + s̃) and the CD-spinodal for

ρ > ρ∗ follows T = y1s̃ρ/
√
y1 − 1.

 0

 0.1

 0.2

 0.3

 0  0.2  0.4  0.6  0.8  1

RD

C

CD

T

�

y1=2  
5  
20

 0

 0.3

 0.6

 0.9

 0.5  0.7  0.9

C

RD|vTû  |2 
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FIG. 2. One dominant species case. Spinodal lines for dif-
ferent y1 = ρ1/ρ̄ at fixed M = 100, s = 1 and b = 1 (lines:
theory, symbols: average over 50 numerical realizations of
Hessian matrix). For y1 > 2 the demixing is controlled by
the dominant species. Insets: Projection of instability di-
rection onto the constant vector û and the dominant species
direction e1, showing the transitions from condensation (C)
to random (RD) and composition-driven demixing (CD), re-
spectively. We keep the M -dependence of θ to account for
finite-size effects when comparing to numerics.

In Fig. 2 we compare the predictions for the spin-
odal curves for different y1 and the corresponding in-
stability direction; the comparison to results from nu-
merical realizations of the Hessian matrix shows excel-
lent agreement. For y1 > 2 the instability vector is
strongly concentrated on the dominant species at high
densities, with v1/v2 = O(

√
M). What is striking in

this CD region is the fact that the share of the dominant
species in the instability direction is much larger than ex-
pected from entropic considerations, which would predict
v1/v2 ∼ y1/y2 = O(1). This strong composition imbal-

ance amplification is our key insight into instabilities in
complex mixtures. It results from an interplay of entropic
effects and complexity in the interactions (s̃ > 0); indeed
the CD regime would be absent in the limit s̃→ 0 (where
ρ∗ → 1).
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FIG. 3. (a) Beta distribution p(y) with ymin = 0, r = 0 and t = ymax − 2. The inset shows the complement of the cumulative
distribution function CDF(y), highlighting the different tail behaviors. (b) Spinodal line at fixed M = 600, b = 1.0, s = 1.5 for
same distribution parameters (corresponding colors) as in (a). Inset: inverse participation ratio (IPR), showing the localization
transition to CD on the right (ymax = 10). (c) Spinodal lines for Beta distribution with ymax = 5 and systematic interactions,
for different values of δ = s̃/

√
Varσ + s̃2. Inset: projection of instability direction onto the two principal interaction directions,

i.e. the uniform vector û resulting from the volume exclusion and the remaining systematic interaction σ̃ = σ−〈σ〉u; for small
enough δ a new regime with instability direction dominated by systematic interactions appears.

Example 3: Beta distribution. We now turn our atten-
tion to a continuous distribution p(yα) and show how its
shape affects instabilities. We focus on the Beta distri-
bution defined by

p(y) = Z−1
r,t (y−ymin)

r(ymax−y)t, y ∈ [ymin, ymax] (7)

with Zr,t = (ymax− ymin)
r+t+1B(r+1, t+1) and B(x, y)

the Beta function. The requirement 〈y〉 = 1 reduces the
number of free parameters to three.
The spinodal equation (3) can be solved numerically

in the condensation (C) regime. More interesting here
is the demixing regime. According to Eq. (5), for tem-
peratures greater than a threshold temperature T ∗, the
demixing instability changes from being determined by
the interaction complexity (RD) to being governed by
the composition (CD), i.e. the distribution of y. Insert-
ing (7) into (5) one finds

T ∗ = s̃ρymax

√

(Zr,t−2/Zr,t)〈y2〉r,t−2 (8)

where 〈·〉l,m denotes the average over the Beta distri-
bution (7) with exponent parameters l and m. For
T > T ∗ the spinodal equation (3) can be solved ana-
lytically, yielding

T = s̃ρymax

√

(Zr,t−1/Zr,t)〈y〉r,t−1. (9)

Comparing (8) and (9), we see that whenever
Zr,t−1〈y〉r,t−1 > Zr,t−2〈y2〉r,t−2 the demixing spinodal is
dictated by the mixture composition. This condition is
independent of the total density ρ and controlled only by
the shape of p(y). If e.g. we fix ymin = 0, this condition
for CD reduces to t > r+3, meaning that the upper edge
of the distribution has a much longer tail than its lower
edge. In other words, the transition occurs whenever a
small fraction of species has significantly larger density
than the average, mirroring our results from Example 2.

Regarding the nature of the instability, we can exploit
the results of Ref. [31] to show that the instability di-
rection is delocalized across species in the RD regime
(T < T ∗). In the CD regime, the instability direction
is concentrated on a few dominant species that have en-
tries of O(1) in v and will, therefore, dictate the nature
of the spinodal instability. Translating the results of [31]
further to our context, the contribution of the highest-
density species (denoted by e1) to the instability direc-
tion is |vTe1|2 = 1 − (T ∗/T )2, which is independent of
ρ along the CD spinodal. For the subsequent dominant
species (j > 1) one has |vTej |2 ∼ 1/(MγT 2|λj − λ1|2)
for some exponent γ > 0 that depends on the shape of
p(y).

The above results are the continuum analog of the ones
obtained in the single dominant species case: by changing
the upper edge of the distribution p(y) one can control
the nature of instabilities, from delocalized to partially
concentrated onto a few dominant species. Fig. 3 sum-
marizes this example by showing the complete spinodal
line in each regime. To demonstrate the localization of
the instability direction onto the few dominant species,
we also show the inverse participation ratio (IPR) along
the spinodal. The IPR is defined as IPR =

∑

α v
4
α and

so expected to be O(M−1) for delocalized instabilities,
while it reaches O(1) whenever the instability is concen-
trated on a few species.

Here again one observes composition imbalance am-
plification in the CD regime: if purely entropic effects
were at play, the components of the instability direction
v should be distributed according to p(y). This would
yield a much lower IPR (O(1/M) rather than O(1)) than
we find, cf. Fig. 3. The effect again requires s > 0, i.e.
complexity in the underlying interactions.

Finally, we illustrate in Fig. 3.c how the presence of
systematic interactions creates further competition be-
tween different forms of demixing. To illustrate this,
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we consider second virial coefficients of the form ǫαγ =
−b + sηαγ − σασγ , with an additional systematic term
parameterized by an interaction strength σα associated
with each species. We write 〈σ〉 and Varσ for the mean
and variance of the σα and introduce the parameter
δ = s̃/

√
Varσ + s̃2 measuring the relative strength of

the random and systematic interactions. As density is
increased, for sufficiently small δ, the systematic inter-
action now dominates the instability, cf. Fig. 3.c. The
inclusion of any finite number of similarly structured in-
teractions into our framework is straightforward and we
discuss the extension of existing models [32, 33] in the
Suppplemental Material [].

To conclude, we have provided a framework for un-
derstanding instabilities in mixtures of arbitrary compo-
sition, allowing also for the straightforward inclusion of
volume exclusion and systematic interactions. In partic-
ular we have obtained an exact equation for the spinodal
line in the limit of many components, M ≫ 1, for mix-
tures with complex interactions as proposed by Sear and
Cuesta [11]. In simple yet paradigmatic examples we
showed that a small number of higher-density mixture
components can strongly control the nature of instabil-
ities through a surprising interplay between entropic ef-
fects and the complexity of interactions, resulting in a
strong composition imbalance amplification. This new
form of instability is the main physical insight of the
present letter. Since in many biological mixtures dif-
ferent components are present in different amounts, we
expect instabilities to phase separation in such systems
to be strongly dictated by the components with the high-
est concentration, strongly influencing the structures and
phases found in the steady state. Our results thus also
point to a new route for biological systems to control pat-
terns of phase separation by fine-tuning mixture compo-
sition imbalances.
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