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Universal features of entanglement entropy in the honeycomb Hubbard model
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The entanglement entropy is a unique probe to reveal universal features of strongly interacting
many-body systems. In two or more dimensions these features are subtle, and detecting them
numerically requires extreme precision, a notoriously difficult task. This is especially challenging in
models of interacting fermions, where many such universal features have yet to be observed. In this
paper we tackle this challenge by introducing a new method to compute the Rényi entanglement
entropy in auxiliary-field quantum Monte Carlo simulations, where we treat the entangling region
itself as a stochastic variable. We demonstrate the efficiency of this method by extracting, for
the first time, universal subleading logarithmic terms in a two dimensional model of interacting
fermions, focusing on the half-filled honeycomb Hubbard model at T' = 0. We detect the universal
corner contribution due to gapless fermions throughout the Dirac semi-metal phase and at the
Gross-Neveu-Yukawa critical point, where the latter shows a pronounced enhancement depending
on the type of entangling cut. Finally, we observe the universal Goldstone mode contribution in the

antiferromagnetic Mott insulating phase.

The entanglement entropy (EE) quantifies the infor-
mation shared between a subsystem and its environment
in a quantum many-body wavefunction. Remarkably,
the EE finite-size scaling form has contributions that de-
pend uniquely on universal physical quantities, making
it a powerful probe to characterize strongly correlated
systems. A famous example of this is found in one-
dimensional critical systems, where the EE grows log-
arithmically in the subsystem size with a prefactor given
by the central charge [1-4]. In two dimensions the EE
grows in proportion to the boundary of the subsystem,
the so-called “area law” [5], but critical ground states
display a subleading universal logarithmic contribution
when the subsystem contains sharp corners [6,7]. Ad-
ditionally, in the case of continuous symmetry breaking,
each Goldstone mode contributes a logarithmic term with
a coeflicient equal to one half [8-10]. In the absence of
symmetry breaking, topological states can be detected
by a universal negative constant term in the EE [11,12]
as well as other entanglement measures [13,14].

Despite a wide variety of numerical work investigat-
ing spin and boson systems [15], the universal features
of EE of 2D interacting fermions have largely remained
an unexplored frontier. Important exceptions have fo-
cused on the universal constant in gapped systems, as
in the case of the topological EE of fractional quantum
hall ground states [16,17] and angle dependent constant
of the v = 1/2 Laughlin wavefunction [18]. Addition-
ally, the flux dependence of the constant term for gapless
Dirac fermions was investigated in [19].

Since the pioneering work of Grover [20], auxiliary-field
determinental quantum Monte Carlo (DQMC) simula-
tions have offered a promising route to large-scale calcu-
lations of the Rényi EE of interacting fermions [20-28].
However, the universal features of EE in 2D have re-

mained out of reach for these methods. In the Grover
method, one samples from uncorrelated replica config-
urations and the Rényi EE estimator suffers from rare
events that dominate the statistical average. This prob-
lem becomes increasingly severe for larger entangling re-
gions and interaction strengths. More elaborate DQMC
methods of computing the Rényi EE [22,24] offer bet-
ter controlled statistical errors. However, this comes at
the price of increasing the effective number of degrees
of freedom, making simulations more costly, and further
requires special numerical stabilization techniques. The
lack of adequate techniques has even sparked interest in
alternative probes of fermion entanglement that offer su-
perior efficiency [29,30].

In this work, we develop an improved method to com-
pute the Rényi EE in DQMC that solves the above
mentioned sampling problem and enables us to achieve
unprecedented precision. To do so, we leverage recent
advancements in computing the Rényi EE in quantum
spin systems via nonequilibrium work [31-34], originally
inspired by [35], to develop an improved equilibrium
method for DQMC simulations. Our approach harnesses
the power of importance sampling by introducing an ex-
tended ensemble of Monte Carlo configurations in which
the entangling region is allowed to fluctuate. Remark-
ably, the original formulation by Grover admits such an
extended ensemble that can be simulated eficiently using
standard DQMC techniques.

In order to demonstrate the power of this technique,
we use it to perform a comprehensive study of the loga-
rithmic corrections to the area law in the half-filled hon-
eycomb Hubbard model at T'= 0. We first demonstrate
the validity of our method by comparing to quasi-exact
results obtained by density matrix renormalization group
simulations (DMRG) [36]. Next we study the finite size



Figure 1. (a) A triangular region on a 6 x 6 lattice with a
zigzag edge. (b) A triangular region with a bearded edge.

scaling for two different triangular regions, see Fig. (1),
in the semi-metal phase and at the Gross-Neveu-Yukawa
(GNY) critical point, where the latter shows an enhanced
logarithmic contribution that depends on the type of en-
tanglement cut. This is further demonstrated by track-
ing the logarithmic contribution as a function of the in-
teraction strength throughout the semi-metal phase and
through the GNY point. Finally, we compute the half-
system Rényi EE at large interaction strength deep in the
Mott insulating phase, revealing the distinct logarithmic
contribution due to Goldstone modes.

General method: We consider the general framework
of auxiliary-field DQMC simulations, which map inter-
acting fermionic systems to free fermions coupled to a
fluctuating Hubbard-Stratonovich (HS) field [37,38]. For
a given HS field configuration s, one has access to the
equal-time Green’s function G}; = (cic;r-)s. In Grover’s
method [20], the second Rényi EE, S5' = — In Tr(p% ), can
be computed considering two independent replica DQMC
simulations with Green’s functions G7}, G;? and taking
the average:

e 52 = 3 Py Pydet(GHGF + (1 -G - GF)).

{s1},{s2}

(1)
Here G¥ refers to the Green’s function matrix that is re-
stricted to the spatial region A, and Py is the probability
of configuration s. As previously mentioned, rare pairs
of configurations (s1,s2) give large contributions to Eq.
(1). To avoid this, we now show how to build correlations
between the replica configurations such that the relevant
phase space is better sampled, and in the process identify
an improved Monte Carlo estimator for S3'.

Consider the distribution

Za= Y W,W,detgy ™, (2)
{s1}{s2}

where we define the Grover matrix g5 "> = G4 G3 +(1—
G5 (1—G7) and Wy is the standard DQMC weight (un-
normalized) of configuration s. Eq. (1) can now be writ-
ten as e~55 = Z A/ Zs, where ¢ refers to the empty set,
containing a zero dimensional Grover matrix with unit
determinant. A highly efficient prescription for comput-
ing such partition function ratios was put forward in Ref.

[31]. Following this, we now consider a generalized en-
semble made up of entangling regions C, which are proper
subsets of the region A [39]. Furthermore, we control the
distribution with an external field A that couples to the
number of sites in the region C, denoted by N¢:

Z() = > AN - n)NaNezg, (3)
CCA

where Z¢ is given by Eq. (2) with A replaced by C. The
ensemble in Eq. (3) is designed such that Z(0) = Z, and
Z(1) = Za.

Given this, the ratio at two different values of A can
be computed via a simple reweighting

() (=) w

s

where the only stochastic variable here is N¢o and the
average is taken in the distribution according to \;. In
this way we may introduce many intermediate values of
A in order to break up the overall exponentially small

factor Z—‘: = ZZ((’\(]l)) ;832(2)\(2) into computationally

manageable pieces [39].

A fundamental ingredient of our algorithm involves
imbedding the Grover factor det(gg**) directly into the
DQMC configurational weight, as required to sample
from the distribution in Eq. (3). The inclusion of this fac-
tor is what effectively allows for importance sampling of
the otherwise exponentially rare configurations appear-
ing in Eq. (1). However, to include this factor in a man-
ner that is both computationally efficient and numeri-
cally stable requires the resolution of a serious technical
challenge, as we now describe.

Standard implementations of DQMC maintain an effi-
cient computational complexity of O(N, N2, ) by avoid-
ing the explicit computation of fermionic determinants
[37,38]. This technique relies on access to the equal-time
Green’s function G7;(7) located at the imaginary time
slice that is being updated. However, the Grover factor is
always expressed in terms of Green’s functions at a fixed
imaginary time slice Gi7;(0), where observables are com-
puted. Naively it would appear that the dependence of
the configurational weight (including the Grover factor)
on two different sets of Green’s functions would render
the standard fast update formulas inapplicable, making
simulations prohibitively costly. In the supplementary
material [39] we show how this crucial technical hurdle
is overcome by making use of imaginary time displaced
Green’s functions [40], a standard object in most DQMC
simulations.

Model: As a benchmark system for our new method we
select a classic model of interacting fermions in two di-
mensions: the Hubbard model on the honeycomb lattice



at half filling. The Hamiltonian is given by
H=—t Z (CI,JCJJ + hC) + UZ(’I%ﬁ — %)(ni7l — %)

(i.3),0 i

()
The restriction to half filling ensures the absence a sign
problem, which equally applies to our generalized ensem-
ble in Eq. (3). This model is known to host a semi-metal
phase with a gapless Dirac spectrum up to U, =~ 3.8
[41,42], beyond which the system enters a Mott insulat-
ing antiferromagnetically ordered phase with Goldstone
modes from the spontaneous breaking of spin rotation
symmetry. The critical point at U, = 3.8 is in the GNY
chiral Heisenberg universality class [43].

In the gapless semi-metal (SM) phase it is known that
the Rényi EE of a triangular region with three sharp
corners, depicted in Fig. (1a) and (1b), scales according
to [6,7]

Sy = AL — 3a3™(n/3) In(L) + const. (6)

Here a$M(7/3) &~ 0.1324 [44] is the universal coefficient
from one 7/3 corner with four free Dirac fermions (two
spin and two valley). A similar scaling form is also ex-
pected to hold at the GNY critical point, albeit with an
unknown value for the corner coefficient. We point out
that unbiased numerical simulations are the only means
of estimating universal corner contributions at interact-
ing fixed points, as was previously done for the 2+41d
Ising, XY, and Heisenberg universality classes [45-50].
These studies support the notion of the corner coefficient
as a measure of the number of effective low-energy de-
grees of freedom [51,52]. We are therefore interested in
comparing the value at the GNY point to that of free
Dirac fermions.

In the Mott insulating phase, the contribution from
Goldstone modes to the Rényi EE for a smooth entan-
gling cut, as depicted in Fig. (5), has a similar form [10]:

Sy = AL+ % In(L) + const. (7)

Here the logarithmic piece counts the number of Gold-
stone modes Ny, and comes with the opposite sign. Since
the honeycomb Hubbard model exhibits a known corner
term in the semi-metal phase, an unknown corner term
at the critical point, and an expected contribution from
Ny = 2 Goldstone modes in the Mott insulating phase,
it serves as the perfect testbed to extract universal logs
for the first time with our technique.

DQMC results: We implemented the 7' = 0 projector
DQMC algorithm (though our method can also be ex-
tended to finite temperature) with a symmetric Trotter
decomposition and an SU(2) invariant HS transforma-
tion [37,38,53]. The calculations presented here used a
Trotter step of A; = 0.1 unless otherwise noted [39].

We begin by comparing our method to quasi-exact re-
sults obtained by the DMRG method [36] on an L = 3
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Figure 2. The new DQMC computation of Sz as compared
to DMRG [36] for the system pictured. Here we use open
boundaries in the x-direction. The inset shows a closer look
at the precise agreement at U = 8 using only a single value
of A = 0.5 and Ngeea independent simulations.

open cylinder as a function of U, shown in Fig. (2). Here
we use a small Trotter step of A, = 0.01 and a ground
state projection of § = 10 (2000 total Trotter slices).
We find perfect agreement with the DQMC results, and
already at this system size we can see the qualitative fea-
ture of the semi-metal to Mott insulator transition near
U, = 3.8. We note that on larger system sizes more val-
ues of A are needed such that adjacent distributions of
N¢ have good overlap. Details of the A values used in
this work are given in the supplementary material [39].

We now move on to confirm the expected behavior at
U = 1. In the left panel of Fig. (3) we show DQMC re-
sults using the two different triangular regions depicted
in Fig. (la) and (1b). We have found that the ground
state convergence of S in the semi-metal phase is heavily
affected by the proximity to the Dirac point. We there-
fore use twisted boundary conditions in the z-direction,
where hoppings that wrap the z-boundary get multi-
plied by the phase ¢?™® with ¢ = 0.1 in order to shift
the Dirac point [39]. We use projection times up to
@ = 2L on our largest system sizes to ensure conver-
gence. We find that both triangles give subleading log-
arithmic contributions that are consistent with the field
theoretic value a5™(7/3) &~ 0.1324 [44], namely we find
asM(m/3) = 0.126(4),0.136(2) for the zigzag and bearded
triangles, respectively. This is shown in the inset, where
the fit to the area law term is subtracted away and the
result is plotted versus In(L).

Next in the right panel of Fig. (3) we perform the same
analysis but with U = 3.8, at the GNY point. Here we
find that ground state convergence is easier than in the
semi-metal phase and so we set ¢ = 0 but still use § = 2L
on the largest system sizes. We interestingly find a differ-
ence in the logarithmic contributions between the zigzag
and bearded triangles. The zigzag triangle gives a simi-
lar value to free Dirac fermions: aS§NY (7/3) = 0.124(5),
while the bearded triangle shows an enhanced logarith-
mic contribution with a§NY (7/3) = 0.187(12). It is ap-



Figure 3. Left panel: S2 computed for both kinds of trian-
gular regions depicted in Fig. (la) and (1b) at U = 1 and
twisted boundary conditions with ¢ = 0.1. The inset shows
the result of a three parameter fit to a linear plus log scal-
ing and subtracting away the area law piece (a shift of ¢ =1
is given to the bearded triangle for clarity of comparison).
The blue dashed line shows the field theory prediction for the
semi-metal phase. Right panel: the same analysis but for with
U = 3.8 at the GNY point with ¢ = 0. The bearded triangle
shows an enhanced logarithmic contribution in this case. This
is compared to the field theory value for free fermions plus a
three component boson shown by the grey dotted-dashed line
in the inset.

propriate to compare this with what is expected from
free Dirac fermions plus a three component gapless boson
(f+ b) representing the Néel order parameter. The field
theoretic value in this case gives ab™(7/3) ~ 0.1764 [44],
in the same range as the bearded triangle. While it is dif-
ficult to estimate the true value at the GNY point, which
we expect to be less than the previously quoted field the-
ory value [54], the fact that our finite size data produces
a comparable value is encouraging and motivates us to
investigate this logarithmic term in more detail.

We wish to now study the bearded triangle corner co-
efficient in detail as a function of U. In order to do this
we use a much larger Trotter time step A, = 0.5, since
we have found the logarithmic terms to be independent
of of the Trotter step [39]. We further fix 8 = L (except
L = 3 where we use § = 2L) and ¢ = 0.15. The left panel
of Fig. (4) shows the resulting Sy data as a function of
U. For each value of U we perform a fit as a function
of L, then in the middle panel we reveal the logarithmic
contribution by subtracting off the fitted area law piece.
The resulting slopes are plotted in the rightmost panel,
where we see clear agreement with the free fermion re-
sult throughout the semi-metal phase with a pronounced
enhancement at the GNY point followed by a sharp drop
into the Mott insulating phase. The values at the GNY
point are consistent with Fig. (3) even though here we
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Figure 4. Left panel: S» for bearded triangles depicted in Fig.
(16) using A; = 0.5 and ¢ = 0.15 as a function of U. Middle
panel: The fit as a function of L performed for each value of
U with the area law piece subtracted away, with a constant
shift of U added for clarity. Right panel: The extracted corner
coefficient as a function of U, showing an enhanced value at
the GNY point.
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Figure 5. Half-system entropy Sz on rectangular systems as
depicted, with U = 8. This plot is similar to Fig. (3), but
now the subleading log term has the opposite sign, as can
be seen by the slope in the inset. The thin line in the main
panel helps to visualize the bend in the data coming from
the logarithmic term. The coefficient of the log term counts
the Goldstone modes with the coefficient Ng/2, here giving
0.95(5).

have used twisted boundary conditions and a much larger
Trotter step.

Finally, we further increase U into the antiferromag-
netic Mott insulator phase where we expect to see a
positive subleading logarithmic contribution coming from
Goldstone modes, given by Eq. (7). Fig. (5) shows the
half-system entropy on rectangular systems as shown in
the figure with U = 8. We see a clear positive log with a
coeflicient in agreement with the contribution from two
Goldstone modes.

Conclusions: We introduced an equilibrium Monte
Carlo estimator for the Rényi EE in interacting fermion
systems that allows for importance sampling of the origi-
nal estimator by Grover. We used this method to detect,



for the first time, logarithmic corrections to the area law
in a 2D model of interacting fermions. Importantly, we
find that such logarithmic terms can be sensitive to the
type of entanglement cut that is used.

Note added: Since our method first appeared, it has
been independently implemented and applied to several
different fermionic models [55-57]. Additionally, building
on our methodology, an even more efficient protocol was
developed in [58] that obviates the need to sample over
subset entangling regions.
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SUPPLEMENTAL MATERIAL

Efficient Green’s function updates

Here we show how the Green’s function at time slice
f, at the center of the wavefunction overlap, is updated
after flipping a HS field at time slice 7. Following the
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notation of [38], the imaginary time displaced Green’s
functions are given by

GS(TQ,Tl) :BS(TQ,Tl)GS(Tl)
GS(TQ,Tl) = —(]l - GS(TQ))BS(Tl,TQ)il

To > T1

Ty < T1

where B*®(79,71) is the imaginary time evolution (the
Trotter slice matrices) from 7y to 7o with HS field config-
uration s. Changing the HS field at time slice 7 changes
the Green’s function at time slice 6 as follows:

G¥(0) = G*(0) + v:G*(0, 7)v;v] G*(7,0). (9)

In the SU(2) invariant HS decomposition v; = (1/(1 —
e 20%) — G5 (7)) with a = arccos(e*%U), and &; is
the new HS field value on site i at time slice 7. wv; is a
column vector that is one at element ¢ and zero elsewhere,
so G*(0) is obtained by a simple rank-1 update.
Changing the HS field also changes the imaginary time
displaced greens functions. These get updated as follows

Q

50, 7) = G5(0, 7) + 7G5 (0, T)vivl (1 — G*(7))

Gg(’l', 0) = G°(r,0) + ’inS(T)’Ui’UZ-TGS(T, 0). (10)

And finally we perform the standard update of G*(7)

G*(1) = G°(7) = %G (T)viv] (L - G*(7)).  (11)

Efficient HS field flips

An essential ingredient of the DQMC algorithm is the
efficient evaluation of the weight ratio upon flipping a HS
field value.

Wy det(gé’l’sz)

1T, o™

(12)

Remarkably, the inclusion of the new Grover factor only
slightly modifies the standard ratio formula. For one spin
species this is proportional to (neglecting an overall fac-
tor)

RT =1+ (62ia5i _ 1)(1 — Gf,ll(T) - F), (13)
where all correlations between the replicas are contained
in

D= Glo(r,0)(1 = 2GE (0)(ge ™) G, (0.7). (14)

Here the parts of the matrices are in the subscript and
a single subscript means a square matrix in that region.
Provided that the Grover inverse (g¢*?) ! is stored and
maintained, this factor is computed with O(NZ) multipli-
cations. This is still efficient since the standard Green’s
function update upon acceptance requires O(NZ,,) mul-

tiplications.

Updating the Grover inverse

Since we need to maintain the Grover inverse to ef-
ficiently compute weight ratios, we need to know how
to update it when the HS field gets flipped. Assuming
we accept the move in the previous section, the rank-1
update is given by

(g¢™) ™1 = (g¢™) " + piaib] (15)
where
ai = (95°) 7' Gg,(0,7)
b =G (T, 0)(1 - 2G2(0))(g2*)~" (16
pi=(1/(1 = e %) = Gy(r) =)\,

Again, this is an efficient O(NZ) update, and one can
make use of the fact that b7 was already evaluated when
computing the ratio.

Updating the entangling region

If a site 7 is in A but has not yet joined the dynamical
entangling region C', we can ask it to join with probability
A det( gélff) }

Pioin = min {1 —_—

T—Adet(gg ™) {4

Likewise if a site 4 is in C' we can ask it to leave with
probability

1— Adet(g%) } (1)

Psplit = min {1, TW
Though not essential, we find improved performance by
avoiding the calculation of Grover determinants as we
will conceptually outline here.

The idea is to use the block structure of g¢i;?, for in-
stance, in order to express the determinant in terms of the
determinant in the sub-block C', which can be cancelled
out. Again this improved formula involves the Grover
inverse, which is held in memory, and the probability
can be computed in O(NZ) multiplications. Intermedi-
ate calculations on the blocks can then be used to obtain
the enlarged Grover inverse (g¢i;%?) ! without having to
recompute it from scratch. A similar procedure goes for
splitting a site.

Details on computing the equilibrium S; estimator

Here we would like to explain in a bit more detail how
the second Rényi entanglement entropy is computing us-
ing the formula that we have introduced in the main text:

() (=) L w

Ai




In the formula the stochastic variable is N, or the size
of the subset entangling region. The Monte Carlo will
stochastically sample all possible regions C' that are sub-
sets of the region of interest A according to their weight
in the generalized ensemble (Eq. (3) in the main text).
Eq. (19) is used to compute each of the ratios appearing

o 8A  za 2O Z()  ZQ) )
ine %2 = 72 = z(ol) Z(/\f)...z(/\m). For all factors ex-

cept the first one, this formula can be straightforwardly
applied, and in fact we store a histogram of the N¢ values
encountered in all simulations and compute the ratio in
post processing. When computing the first factor Zz%l)),

the formula cannot be applied as such. Instead one can
z
z ((/\01)) ’
In Fig. (6) we depict what typical configurations of the
subset region C' look like for different values of A. The
sites that are in the current region C are shown in black,
while the box encloses all sites in the region A. As A is
increased, the number of sites in the region C'(N¢) begins
to increase, eventually populating the A region entirely
as A — 1.

use Eq. (19) to compute the inverse of this factor

Numerical stability

It is important to emphasize that the interaction be-
tween the two DQMC replicas only manifests itself when
choosing to flip a HS spin. Apart from this, they can
be regarded as normal configurations and therefore they
can be stabilized using the standard techniques. This in-
volves chains of QR matrix decompositions [37] to avoid
exponentially large and small values appearing in the
product of Trotter slice matrices.

However, two additional concerns are raised with this
new algorithm. Firstly, the imaginary time displaced
Green’s functions are always needed to flip HS spins,
so they need to be maintained to high precision arbi-
trarily far from the center slice at 7 = 6. Secondly, in
the traditional algorithm for computing So, the determi-
nant of the Grover matrix becomes exponentially small,
which signals severe ill conditioning that would prevent
accurate computations of the inverse. However we find
that neither of these concerns cause problems in both
the finite temperature and ground state formulations of
DQMC (we have implemented both).

The first issue is especially concerning in the ground
state formulation, since the imaginary time displaced
Green’s functions cannot be easily recomputed from
scratch. However, they can be stabilized very efficiently
since the equal-time Green’s function is a projector [40].
We therefore center our Monte Carlo sweeps around
7 = 0 (the center of the wavefunction overlap) and step
outwards. This way each sweep begins with a fresh cal-
culation of G*(,6) and G*(0, 7) (for both replicas), and
these are periodically stabilized while stepping outwards
according to the prescription in [40], while G*(7) and

Figure 6. Pictures of typical configurations for different values
of A\. The subset entangling region C' is given by the black
sites, whereas the entire A region (the one for which we are
computing the entanglement entropy) is enclosed by the box.

G*(0) are periodically recomputed from scratch using in-
termediate matrix decompositions. Since G*(6) is always
updated with G*(7,0) and G*(0,7) using Eq. (9), the
difference between the updated and recomputed G*(0)
tells us how well the imaginary time displaced Green’s
functions are maintained.

At U = 8, where numerical precision suffered the most,
we have the following average precisions (L, = 18, L, =
9): AG(1),AG(0) ~ 107131071 at A = 0.0006 where
the replicas are essentially independent, AG(1), AG(0) ~
1078,1077 at A = 0.5, and AG(7), AG() ~ 108,10~
at A = 0.9994 where the half system is essentially fully
joined. We stress that these are the worst average pre-
cisions (absolute value of the difference between matrix
elements of the current and recomputed Green’s func-
tions), which are still highly precise. Also we observe
little dependence on the system size.

The second concern regarding the ill-conditioning of
the Grover matrix does not arise. Heuristically, since
det(gg**) appears in the DQMC weight, the nearly sin-
gular configurations that appear with uncorrelated repli-
cas are suppressed in this formulation. One of the most
relevant tests for numerical stability is to monitor the
average complex part of the acceptance ratios using the
SU(2) invariant HS decomposition. Here we find the av-
erage complex part divided by min(1,real part) is never
larger than ~ 10~% and is generally orders of magnitude
smaller than this.

Ground state convergence

Here we provide additional data showing convergence
to the ground state, with special attention paid to the
semi-metal phase, which we found to be particularly chal-
lenging. Fig. (7) shows the ground state convergence at
U =1 for an L = 6 zigzag triangle with A, = 0.1.
Here the red points show the result of evolving the trial
wave function (obtained by diagonalizing the free Hamil-
tonian with a very small flux threading in order to lift
the degeneracy) according to the HS decomposed Hamil-
tonian with no flux. We see in this case very long con-
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Figure 8. Zigzag triangle convergence at U = 3.8 as a function
of 0 for two system sizes using no twist (¢ = 0) and A, =0.1.

vergence times before the ground state value of Sy is
reached. On the other hand, if we work with a finite flux
(twisted boundary conditions), we observe rapid conver-
gence to the ground state value as shown by the blue
points. Specifically, we choose the trial wave function as
the ground state of the noninteracting model with flux
threading, and evolve this state with the HS decomposed
interacting Hamiltonian with the same flux.

We found that ground state convergence away from
the semi-metal phase is easier, so typically we do not use
twisted boundary conditions here. This is shown in Fig.
(8) for different size zigzag triangles at the critical point
U = 3.8 using A, =0.1.

Dependence on trotter step

We have also studied the dependence of universal terms
in the entanglement entropy on the Trotter step. This is
illustrated in Fig. (9), where we have used three different
Trotter steps with our four smallest system sizes at the
critical point U = 3.8 for zigzag triangles. We observe a
large Trotter error in our raw data at A, = 0.5, however
the numerical fit gives an extracted corner contribution
that is insensitive to the Trotter error. This extra data
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Figure 9. The Trotter dependence of our data at the critical
point U = 3.8 with the triangular regions in the main text.
At A, = 0.5 there is a noticeable Trotter error, however this
does not affect the fit to the universal corner piece, as shown
by the extracted value of az(7w/3) in the upper inset. The
black line in the inset is the field theory value for a single
Dirac fermion. Even on these small system sizes, we observe
very good fits to the scaling form, which we show in the inset
on the lower right.
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Figure 10. The fitted corner coefficients using a fit window
Lmin t0 Lmax = 60. We have extrapolated these values to
Lmin — o0 using a power law fit of all the points greater
than or equal to Lmin. The example fit in red uses Lmin = 6
with the extrapolated value given as the orange point. The
extrapolated values are given in the inset as a function of
Lnin. Even using a fixed Lmax = 60, we find remarkably
agreement with the field theoretic prediction for a free Dirac
fermion.

further supports the notion that the zigzag triangle pro-
duces a corner log corresponding to free fermions, and is
not enhanced at the critical point.



Additional algorithmic details and values of N, used

We use a checkerboard breakup of the kinetic term
in the Hamiltonian for efficiency and the trial state is
taken as the ground state of the free Hamiltonian with
infinitesimal flux threaded through the torus to lift the
degeneracy at the Dirac point. The symmetric Trotter
decomposition is used and the SU(2) symmetric HS de-
composition is used.

As mentioned in the main text, we must increase the
number of A values used as our lattices become larger.
Like any reweighting technique, we require good over-
lap of our histograms between adjacent values of A\. The
stochastic variable here is the number of sites in the en-
tangling region (N¢), so histograms of Ng should have
good overlap. We have not performed detailed studies
of the required number of different A values in order to
ensure statistically converged averages of Ss, but rather
we use an overabundance of caution and set this number
quite high. For the triangular regions in the main text we
typically used Ny = 8,16, 24,32,48,64 for system sizes
L = 3,6,9,12,15,18 respectively. With so many A val-
ues for these relatively small system sizes, the histograms
between adjacent values deviate only very slightly, so we
believe there to be no issue along these lines.

We did observe that using a linear ramp A; = i/(Nx +
1) produces a much larger error bar for the endpoints
1/(Nx + 1) and Ny/(Nx + 1) as compared to contribu-
tions from interior points. In order to avoid this we in-
stead choose a smooth ramp given by \; — sin®(7);/2),

10

where this new grid of A points shows stochastic error
contributions that taper off near the edges. We have
checked that the overall error bar is at least the same if
not better with the smooth grid.

Corner coefficient at U =0

Here we show an analysis of data that we have com-
puted in the free case (U = 0) using the zigzag triangle.
We wish to gauge the accuracy of the corner coefficient
upon extrapolation to the thermodynamic limit. To per-
form this analysis we first compute S; with zigzag trian-
gles for system sizes L = 3,6,9,...,60. Next we perform
a three parameter fit to a linear plus log form including
system sizes Lin, Lmin+3, Lmin+6, ..., 60 and extract the
logarithmic coefficient, which gives us an estimate of the
corner term ag(7/3). We then do this process many times
for different values of L,in, which is shown as the blue
points in Fig. (10). These points show a very nice looking
extrapolation to the true value az(7/3) =~ 0.03310 [44],
so we now use the blue points to fit to a power law scaling
form that we can use to extrapolate to 1/Ly,;, = 0. This
is shown as the red line, where the smallest L,;, value
used in the fit was Ly, = 6 in this case. This gives
an extrapolated value shown by the orange dot. Now
this process can be done many times, each time exclud-
ing more small values of Ly, from the power law fit.
The resulting extrapolated points are shown in the inset,
where we find extremely precise agreement.
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