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Effective Diffusion and transport coherence in presence of inhomogeneous

temeprature: Piecewise linear potential

Ronald Benjamin
Institut für Theoretische Physik II, Universität Düsseldorf,

Universitätsstraße 1, 40225 Düsseldorf, Germany

We compute the effective diffusion coefficient of a Brownian particle in a piece-wise linear periodic
potential and subject of spatially inhomogeneous temperature, otherwise known as the Büttiker-
Landauer motor. We obtain analytical expressions for the current and diffusion coefficients and
compare with numerical results.

I. INTRODUCTION

A Brownian particle moving in a periodic potential and
subected to a spatially non-uniform temperature profile
gives rise to a net current, acting like a Brownian motor.
This device is autonomous since it is entirely driven by
thermal fluctations. Several properties of such a Brow-
nian motor, such as current, heat and thermodynamic
eficiency have been studied.

Another important performance characteristic of such
a Brownian device is the transport coherence as measured
by the Peclet number, which is the ratio of the thermal
velocity times the period of the substrate potential and
the effective diffusion coefficient of the motor. It is de-
sirable to design motors which produce the maximum
velocity with the minimum dispersion i.e. small diffusion
coefficient.

While the net current of such a Brownian ratchet has
been derived for an overdamped system in the works of
Landauer, Van Kampen and Büttiker the determination
of the effective diffusion coefficient had remained a chal-
lenging task until the early twenty-first century. Reimann
et al. first determined the effective diffusion coefficient
for

In the past decade several studies have appeared re-
garding the coherent transport of Brownian motors.
Most studies have been carried out based on uniform tem-
perature. In this work we obtain analytical expressions
for current, effective diffusion coefficient analytically and
numerically. In the low temperature regime, we deter-
mine the transition rates and from that the current and
effective diffusion coefficient.

II. SYSTEM

The potential and temperature profile are
respectively:-

U(x) =











U0x
αL , for 0 ≤ x < αL

U0(L−x)
(1−α)L for αL ≤ x < L

T (x) =











TH , for 0 ≤ x < αL

TC for αL ≤ x < L

Both Potential and Temperatue profiles are periodic i.e.
U(x+ L) = U(x) and T (x+ L) = T (x).

FIG. 1: (Color online)Schematic of piecewise linear potential
alternately sujected to hot and cold baths.

α is the potential asymmetry parameter, U0 is the bar-
rier height and L is the spatial period of the potential.
Without loss of generality we consider U0 = 1 and L = 1.
The Langvin equation used to study the motion of the

Brownian particle is given by,

mẍ = −γẋ− U ′(x) +
√

2kBT (x)γξ(t) (1)

We set kB = 1 and γ = 1.
In the overdamped limit, we ignore the inertial term.

However, for temperature dependent on position, an ad-
ditional term needs to be added as pointd out in earlier
works. As per the Stratonovich interpretation, the over-
damped Langevin equation is given by,

ẋ = −U ′(x)− 1

2

dT (x)

dx
+
√

2T (x)γξ(t) (2)

Here, < ξ(t) >= 0 and < ξ(t)ξ(t′) >= δ(t − t′). We set
γ = 1. This equation will be understood according to the
Stratonovivh interpretation.
The Fokker-Planck equation corresponding to this

overdamped Langevin equation is given by,

http://arxiv.org/abs/2211.04421v1
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FIG. 2: (Color online) U(x), ψ(x), and φ(x).

∂P (x, t)

∂t
=

∂

∂x
[U ′(x)P (x, t)] +

∂2

∂x2
[T (x)P (x, t)] (3)

The current is given by,

< ẋ >=
x(tf )− x(ts)

tf − ts
(4)

where, ts ≫ 1 is the time taken to reach the steady state
and tf is the final time upto which the simulations are
carried out.
The effective diffusion coefficient is computed as per

the following relation:

Deff =
< (x(tf )− x(ts))

2 > − < x(tf )− x(ts) >
2

2(tf − ts)
(5)

Our numerical calculations are carrier out as per the
Stochastic Euler-Maruyama algorithm.
The analytical calculation were carried out as per the

following formulas provided in Ref. [? ].

< ẋ >= L
1− exp(ψ(L))
∫ L

0 dxI+(x)/g(x)
(6)

where, g(x) =
√

T (x) and

I+(x) = exp(−ψ(x))
∫ x+L

x

dy exp(ψ(y))/g(y) (7)

The analytical expression for the effective diffusion co-
efficient is,

Deff = (L2)

∫ L

0
dxI+(x)

2I−(x)/g(x)

[
∫ L

0 dxI+(x)/g(x)]3
(8)

where,

I−(x) = exp(ψ(x))

∫ x

x−L
dy exp(−ψ(y))/g(y) (9)

We can also determine the Peclet number which deter-
mines the coherence of transport. It’s given by,

Pe = L < ẋ > /Deff (10)

We also carried out numerical simulations to test
the validity of our analytical results using the Euler-
Mayuram algorithm. The time-step chosen was h =
0.001 and he number of relizations was 5000.

III. EXACT EXPRESSIONS

The first step to solve this model is to recognize that
the non-uniform temperature breaks the symmetry and
simultaneously results in a non-equilibriun condition, the
minimal ingredient to produce directed motion. In order
break the left right symmetry there should be a phase
difference between them. Due to the spatial dependence
of the temperature profile the noise term is multiplica-
tive and Brownian particles subject to such a tempera-
ture profile move under the influence of the generalized
potential given by,

ψ(x) =

∫ x

0

dx′[U ′(x′) + (1/2)T ′(x′)]/T (x′) (11)

The condition to achieve directed transport (< ẋ > 6= 0)
is for this potential to have an effective bias such that
ψ(L = 1)− ψ(0) 6= 0.

For the piecewise linear potential and piecewise con-
stant temperature profile, it is simple to calculate ψ(x),
which is given by,
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ψ(x) =























































































U0

TC
+ U0(x+1−α)

αTH
, for − 1 ≤ x < −1 + α

−U0x
(1−α)TC

+ 1
2 log(

TC

TH
) for − 1 + α ≤ x < 0

U0x
αTH

for 0 ≤ x < α

U0

TH
− U0(x−α)

(1−α)TC
+ 1

2 log(
TC

TH
) for α ≤ x < 1

U0

TH
− U0

TC
+ U0(x−1)

αTH
for 1 ≤ x < 1 + α

2U0

TH
− U0

TC
− U0(x−1−α)

(1−α)TC
+ 1

2 log(
TC

TH
) for 1 + α ≤ x < 2

Using a suitable transformation of variables one can
convert the overdamped LAngevin equation with multi-
plicatie noise to one with additive noise. The required
transformation is given by,

y(x) =

∫ x

0

dz/
√

T (z) (12)

and the corresponding Langevin equation is given by,

ẏ = ẋ/
√

T (x) = −dφ(y)
dy

+
√
2ξ(t) (13)

where,

φ(y) =

∫ y

0

dy∗
U ′[x(y∗)] + (1/2)T ′[x(y∗)]

√

T [x(y∗)]
(14)

and φ(y) = ψ[x(y)] .
For our potential and temperature profiles, the relation

between the original and transformed coordinates is given
by,

y =























































































α−1√
TC

− α−x−1√
TH

, for − 1 ≤ x < −1 + α

x√
TC

for − 1 + α ≤ x < 0

x√
TH

for 0 ≤ x < α

1√
TH

+ x−α√
TC

for α ≤ x < 1

1√
TH

+ 1−α√
TC

+ (x−1)√
TH

for 1 ≤ x < 1 + α

2α√
TH

+ 1−α√
TC

+ (x−1−α)√
TC

for 1 + α ≤ x < 2

Finally, the effective potential in the transformed co-
ordinates is given by,

φ(y) =



























































































U0

TC
+ U0(y+[(1−α)/

√
TC ])

α
√
TH

, for α−1√
TC

− α√
TH

≤ y < α−1√
TC

−U0y
(1−α)

√
TC

+ 1
2 log(

TC

TH
) for −1+α√

TC
≤ y < 0

U0y
α
√
TH

for 0 ≤ y < α√
TH

U0

TH
− U0(y−α/

√
TH )

(1−α)
√
TC

+ 1
2 log(

TC

TH
) for α√

TH
≤ y < α√

TH
+ 1−α√

TC

− U0

TC
+ U0(y+(α−1)/

√
TC)

α
√
TH

for α√
TH

+ 1−α√
TC

≤ y < 2α√
TH

+ 1−α√
TC

2U0

TH
− U0

TC
− U0(y−2α/

√
TH)

(1−α)
√
TC

+ 1
2 log(

TC

TH
) for 2α√

TH
+ 1−α√

TC
≤ y < 2α√

TH
+ 2(1−α)√

TC



4

The period of φ(y) is Ly =
α√
TH

+ 1−α√
TC

.

The effective diffusion coefficient computed as per the
transformed dynamics with additive noise is given by,

Deff,y =

∫ Ly

0
dx[I−(x)]

2I+(x)/Ly

[
∫ Ly

0 dxI−(x)/Ly]3
(15)

and

I±(x) = ∓e±φ(x)
∫ x∓Ly

x

dy e∓φ(y) (16)

The velocity in the transformed coordinates is given
by,

vy =
1− eφ(Ly)

[
∫ Ly

0
dx I−(x)/Ly]

(17)

The relation between the effective diffusion coefficient
and the particle current in the original and transformed
coordinates is given by,

Deff =
Deff,y

Ly
2 , < ẋ >=

vy
Ly

(18)

We will calculate the effective diffusion coefficient using
Eq. 8. The Integral in the denominatior is given by,

Id =

∫ α

0

dx
e−ψ(x)√
TH

∫ x+1

x

dy
eψ(y)
√

T (y)
+

∫ 1

α

dx
e−ψ(x)√
TC

∫ x+1

x

dy
eψ(y)
√

T (y)
= A+B (19)

such that

A =

∫ α

0

dx
e−ψ(x)√
TH

∫ x+1

x

dyeψ(y)/
√

T (y) (20)

and,

B =

∫ 1

α

dx
e−ψ(x)√
TC

∫ x+1

x

dyeψ(y)/
√

T (y) (21)

we find that,

A =

∫ α

0

dx
e
− U0x

αTH

√
TH





∫ α

x

dy
e

U0y

αTH

√
TH

+

∫ 1

α

dy
e

U0
TH

− U0(y−α)

(1−α)TC
+ 1

2 log
(

TC
TH

)

√
TC

+

∫ x+1

1

dy
e

U0
TH

− U0
TC

+
U0(y−1)

αTH

√
TH



 (22)

and,

B =

∫ 1

α

dx
e
−
[

U0
TH

− U0(x−α)

(1−α)TC
+ 1

2 log(
TC
TH

)
]

√
TC





∫ 1

x

dy
e

U0
TH

− U0(y−α)

(1−α)TC
+ 1

2 log
(

TC
TH

)

√
TC

+

∫ 1+α

1

dy
e

U0
TH

− U0
TC

+
U0(y−1)

αTH

√
TH

+

∫ x+1

1+α

dy
e

2U0
TH

− U0
TC

−U0(y−1−α)

(1−α)TC
+ 1

2 log(
TC
TH

)

√
TC





(23)

Here,

a11 =

∫ α

x

dy
e

U0y

αTH

√
TH

= −α
√
TH

U0

(

e
U0 x

αTH − e
U0
TH

)

(24)
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a12 =

∫ 1

α

dy
e

U0
TH

− U0(y−α)

(1−α)TC
+ 1

2 log
(

TC
TH

)

√
TC

= − (α− 1)TC

U0

√
TH

e
U0 (TC−TH)

TC TH

(

e
U0
TC − 1

)

(25)

and,

a13 =

∫ x+1

1

e
U0
TH

− U0
TC

+
U0(y−1)

αTH

√
TH

=
α
√
TH

U0

(

e
U0 (α+x)

αTH − e
U0
TH

)

e
− U0

TC (26)

Similarly,

b11 =
(α− 1)TC

U0

√
TH

(

−e
U0 (TC α+TH x−TC−TH)

TH (α−1)TC + e
U0
TH

)

e
− U0

TC (27)

b12 =
α
√
TH

U0
e

U0 (TC−TH)
TC TH

(

e
U0
TH − 1

)

(28)

b13 =
(α− 1)TC

U0

√
TH

(

e
U0 (2TC α−αTH+TH x−2TC)

TH (α−1)TC − e
2

U0
TH

)

e
− U0

TC (29)

A = − α

U0
2

(

((−TC + TH − U0)α+ TC) e
U0 (TC−TH)

TC TH +

((TC − TH)α− TC) e
− U0

TC + ((TC − TH)α− TC) e
U0
TH + (−TC + TH + U0)α+ TC

)

(30)

B =
α− 1

U0
2

(

((−TC + TH − U0)α+ TC + U0) e
U0 (TC−TH)

TC TH +

((TC − TH)α− TC) e
− U0

TC + ((TC − TH)α− TC) e
U0
TH + (−TC + TH + U0)α+ TC − U0

)

(31)

Then Id is given by,

Id =
1

U0
2

(

((TC − TH + 2U0)α− TC − U0) e
U0 (TC−TH)

TC TH +

((−TC + TH)α+ TC) e
− U0

TC + ((−TC + TH)α+ TC) e
U0
TH + (TC − TH − 2U0)α− TC + U0

)

(32)

The numerator in the expression for effective diffusion coefficient can be written as,

num =

∫ α

0

dx
e
− U0x

αTH

√
TH

[

∫ x+L

x

dy
exp(ψ(y))
√

T (y)

]2(
∫ x

x−L
dy

exp[−ψ(y)]
√

T (y)

)

+

∫ 1

α

dx
e
−
[

U0
TH

− U0(x−α)

(1−α)TC
+ 1

2 log(
TC
TH

)
]

√
TC

[

∫ x+L

x

dy
exp(ψ(y))
√

T (y)

]2(
∫ x

x−L
dy

exp[−ψ(y)]
√

T (y)

)

(33)
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such that,

num =

∫ α

0

dx
e
− U0x

αTH

√
TH

[a11 + a12 + a13]
2

(

∫ x

x−L
dy

exp[−ψ(y)]
√

T (y)

)

+

∫ 1

α

dx
e
−
[

U0
TH

− U0(x−α)

(1−α)TC
+ 1

2 log(
TC
TH

)
]

√
TC

[b11 + b12 + b13]
2

(

∫ x

x−L
dy

exp[−ψ(y)]
√

T (y)

)

(34)

For 0 ≤ x < α,

P =

∫ x

x−1

dy
exp[−ψ(y)]
√

T (y)
= p11 + p12 + p13 (35)

where,

p11 =
α
√
TH

U0

(

e
U0 (α−x)

αTH − 1

)

e
− U0

TC (36)

p12 = −
√
TH (α− 1)

U0

(

e
U0
TC − 1

)

e
− U0

TC (37)

p13 = −α
√
TH

U0

(

e
− U0 x

αTH − 1
)

(38)

For α ≤ x < 1,

Q =

∫ x

x−1

dy
exp[−ψ(y)]
√

T (y)
= q11 + q12 + q13 (39)

where,

q11 =

∫ 0

x−1

dy
e

U0y

(1−α)TC
− 1

2 log(TC/TH )

√
TC

=
(α− 1)

√
TH

U0

(

e
− U0 (x−1)

(α−1)TC − 1

)

(40)

q12 =

∫ α

0

dy
e

−U0y

αTH

√
TH

=
α
√
TH

U0

(

e
U0
TH − 1

)

e
− U0

TH (41)

q13 =

∫ x

α

dy
e

−U0
TH

+
U0(y−α)

(1−α)TC
− 1

2 log(
TC
TH

)

√
TC

=

− (α− 1)
√
TH

U0

(

e
U0 (α−x)

(α−1)TC − 1

)

e
− U0

TH

(42)

Finally, we have

num =

∫ α

0

dx
e
− U0x

αTH

√
TH

[a11 + a12 + a13]
2
(p11 + p12 + p13)+

∫ 1

α

dx
e
−
[

U0
TH

− U0(x−α)

(1−α)TC
+ 1

2 log(
TC
TH

)
]

√
TC

[b11 + b12 + b13]
2
(q11 + q12 + q13)

(43)

The final expression is obtained as,

num = num1 + num2 (44)

where,
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num1 =
1√
TH

(

ϕ0
3α+

αTH
U0

(

exp

(

U0

TH

)

− 1

)[

ϕ0
2ϕ̃1ϕc + ϕ1ϕc(2ϕ0

2 + ϕ1ϕ̃1ϕc
2 exp

(

U0

TH

)]

+2αϕ0ϕ1ϕ̃1ϕc
2 exp(U0/TH) + ϕ0ϕ1

2ϕc
2αTH
2U0

(exp(2U0/TH)− 1)

) (45)

num2 =
µ0

2λ0(1 − α)TC
2U0

[

exp

(

2U0

TC

)

− 1

]

+
ξ1(1 − α)TC

U0

[

exp

(

U0

TC

)

− 1

]

+ ξ0(1 − α)

+µ2λ1
α− 1

U0
TC

[

exp

(

−U0

TC

)

− 1

] (46)

The numerator is then given by num = num1+num2.
The effective diffusion coefficient then obtained as

Deff =
num

Id
3 (47)

The various terms are provided in the Appendix. The
current is calculated as,

< ẋ >= L
1− exp(ψ(L))

Id
(48)

In the low temperature limit, the particle current and
effective diffusion coefficient can be obtained in terms
of the transition rates in forward and reverse directions
given by,

rf =
1

α

1

αTHY 2 + (α− 1)TCZ
(49)

where,

Y = exp(
U0

2TH
)− exp(

U0

2TC
) (50)

and,

Z = (exp(
−U0

TC
)− 1)(exp(

U0

TH
)− 1) (51)

and,

rb =
1

1− α

1

αTHX + (1− α)TCR2
(52)

where,

X = (1− exp(− 1

TH
))(exp(

1

TC
)− 1) (53)

and,

R = exp(
U0

2TC
)− exp(− U0

2TC
) (54)

So, the current and effective diffusion coefficient are given
by,

< ẋ >= rfα− rb(1 − α) (55)

and,

Deff =
rfα+ rb(1− α)

2
(56)

Results.- In Fig. 2, we plot the current as a function of
the asymmetry parameter. In FIg. 3 we show the effec-
tive diffusion coefficient as a function of the temperature
of the hot bath. Fig. 4 shows the Peclet number. Good
agreement is obtained between theory and simulation re-
sult.

FIG. 3: (Color online) Effective diffusion coefficient as a func-
tion of the asymmetry parameter α.

Conclusion.- In this work, we have analytically and
numerically obtained the current and effective diffusion
coefficient of a Brownian particle in a piecewise linear po-
tential subject alternately to hot and cold baths. Good
agreement is obtained between our numerical and ana-
lytical results. In some parameter regimes transport is
enhanced.
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[6] M. Büttiker, Z. Phys. B 68, 161 (1987).
[7] R. Landauer, J. Stat. Phys. 53, 233 (1988).
[8] J. M. R. Parrondo and P. Español, Am. J. Phys. 64, 1125
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