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We consider two-species random sequential adsorption (RSA) in which species A and B adsorb
randomly on a lattice with the restriction that opposite species cannot occupy nearest-neighbor
sites. When the probability xA of choosing an A particle for an adsorption trial reaches a critical
value 0.626441(1), the A species percolates and/or the blocked sites X (those with at least one A
and one B nearest neighbor) percolate. Analysis of the size-distribution exponent τ , the wrapping
probabilities, and the excess cluster number shows that the percolation transition is consistent with
that of ordinary percolation. We obtain an exact result for the low xB = 1− xA jamming behavior:
θA = 1 − xB + b2x

2
B + O(x3

B), θB = xB/(z + 1) + O(x2
B) for a z-coordinated lattice, where θA

and θB are respectively the saturation coverages of species A and B. We also show how differences
between wrapping probabilities of A and X clusters, as well as differences in the number of A and
X clusters, can be used to find the transition point accurately. For the one-dimensional case a
three-site approximation appears to provide exact results for the coverages.

I. INTRODUCTION

The random sequential adsorption (RSA) model has
been widely studied and has numerous applications to
physical problems of adsorption and reaction. RSA is of
interest in the study of adsorption on binary alloys [1],
polymer adsorption [2], and protein adsorption [3].In this
model, particles of a certain shape fall uniformly over a
surface, and adsorb (irreversibly) if and only if there is
no overlap with a previously adsorbed particle. Each re-
alization of RSA begins with an empty surface and even-
tually reaches a jammed configuration in which overlaps
are inevitable, so that no further deposition is possible
[4]. RSA is of interest in both continuous space and on
regular lattices; RSA of unit segments on the line, also
known as the “car-parking problem,” was introduced by
Rényi [5].

Percolation theory itself has a broad range of appli-
cations, not only in physics and mathematics, but in
materials science, ecology, biology, social sciences, and
others [6–8]. Recent applications include vaccine alloca-
tion for achieving herd immunity [9] and radiation oncol-
ogy [10].
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Percolation of the objects deposited in RSA has also
received much attention [11–13]. We note that, differ-
ent from usual Bernoulli percolation, which involves a
set of mutually independent random variables, percola-
tion in RSA is an intrinsically nonequilibrium, history-
dependent process.

Here we consider a variation of RSA with two single-
site species, A and B, such that A particles can be nearest
neighbors (and similarly for B particles), but A and B
particles cannot occupy neighboring sites. (These rules
correspond to RSA of particles in a Widom-Rowlinson
lattice gas [14].) If a site has at least one A and at least
one B nearest neighbor, it is permanently blocked (X) for
adsorption. The system reaches a maximum (jammed)
coverage that depends upon the relative rates of A and
B particles striking the surface.

Numerous other ‘AB’ models exist in the literature,
where A’s and B’s adsorb and may react and desorb if
they are nearest neighbors, for example. Those models
generally do not reach a frozen state except for the com-
plete coverage of the lattice by either A or B [15, 16].
In the model studied here, there is no reaction and the
system always reaches a frozen jammed state.

Let rA (rB) be the rates (per site) at which A (B) par-
ticles arrive at the surface. We define xA = rA/(rA+rB)
and xB = rB/(rA + rB) = 1 − xA as the probabilities
that the next arriving particle be A or B, respectively.
Note xA and xB are the probabilities of A or B depo-
sition attempts, not the probabilities of successful ad-
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sorption. As noted above, sites for adsorption attempts
are uniformly distributed over the lattice. Since the in-
teractions amongst particles are invariant under the ex-
change of A and B, it is clear that the coverages satisfy
θA(t; rA, rB) = θB(t; rB , rA), where θA(B) denotes the
fraction of sites occupied by A(B) particles (mean over
realizations of a given lattice size L), whilst the fraction of
blocked sites satisfies θX(t; rA, rB) = θX(t; rB , rA). Tak-
ing the limit t → ∞, we have, for the jammed coverages,
θA(xA) = θB(1− xA), and θX(xA) = θX(1 − xA). Anal-
ogous relations hold amongst the percolation thresholds.
Figures 1 and 2 show typical jammed configurations on

a 256×256 lattice at xA = 0.626441, which corresponds
to the critical threshold, as will be explained in Sec. IV.
While Fig. 1 shows A (red) and B (blue) particles, Fig. 2
highlights the blocked (X) sites. The largest X cluster
is highlighted in red and all other X clusters in blue,
while sites with A or B adsorbed species are shown in
white. Note that X sites can form horizontal or diagonal
neighbors, and occasionally make right angles and 2 × 2
squares, but cannot make larger solid blocks or assume a
“T” shape. In general, the X sites form the boundaries
between A and B clusters, and are therefore generally in
the form of hulls.
The remainder of this paper is organized as follows.

In section II, we define the algorithm used in this study.
In section III, we discuss the jamming coverages, includ-
ing an exact analysis of the small-xB behavior. In sec-
tion IV we analyze percolation, including methods to
obtain precise estimates for the thresholds, and study
wrapping probabilities, the cluster-size distribution, and
excess cluster number. Section V presents results for the
saturation coverages in the one-dimensional case. Section
VI contains our conclusions.

II. ALGORITHMS

In the simplest (näıve) algorithm, a site is chosen ran-
domly, and an A-adsorption attempt is performed with
probability xA, and a B-adsorption attempt otherwise.
The attempt succeeds if the chosen site is empty and has
no nearest-neighbors occupied by the opposite species.
This algorithm will be rather inefficient because sites al-
ready occupied by a particle will be tried again, and it
will require many trials to find the last empty (“O”) sites.
To know that we have reached the jammed state, we mark
a site by X if it has at least one A and at least one B
nearest neighbor when visited, and stop the simulation
when the number of empty sites, n0 = n−nA−nB−nX ,
is zero, where the ni are the numbers of sites in state i.
A more efficient algorithm and nearly as simple to pro-

gram employs a list of all empty (O) sites; the site j for
the next adsorption attempt is chosen at random from
the list, and check for the presence of A- and B-particles
at the nearest-neighbor sites. If we find that site j is
blocked, we mark the site as X and remove it from the
list by swapping the final entry of the list to the position

FIG. 1. A (red) and B (blue) sites at the critical point for
A percolation: xA = 0.626441 on a lattice of size 256×256.
Blocked sites are represented by empty (white) spaces.

FIG. 2. Blocked sites (X) at the threshold, xA = 0.626441,
showing the largest X cluster in red, and all other X clusters
in blue. Sites occupied by A or B particles are shown in white.

held by the site j, thereby shortening the by one. If, by
contrast, site j is not blocked, we attempt A or B adsorp-
tion with the appropriate probabilities. If the attempted
adsorption is successful, site j is removed from the list.
If adsorption of the selected species is not allowed, site
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j remains on the list of O sites, and may become oc-
cupied at a later trial, assuming the neighborhood does
not change to prevent it. Although this algorithm is not
maximally efficient in the sense that each site is visited
only once, the extra work revisiting sites is small and the
bookkeeping is simple. We find the number of trials per
site is about 1.41, independent of system size. As before,
each realization of the RSA process halts when the list
of O sites is empty.
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FIG. 3. Number of trials per site needed to saturate a 256 ×
256 system. Note the different scales on the y-axis. Left
labels correspond to the näıve algorithm (black dots), while
right labels to the algorithm employing a list of empty sites
(red).
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FIG. 4. Lattice size dependence of the average number of
trials per site at xA = 1/2 (semi-log scale). Comparison be-
tween the näıve algorithm and that employing a list of empty
sites.

The performance of the two algorithms is compared in
Figs. 3 and 4. For xA = 1/2 and L = 256 for example, the

näıve algorithm visits each site an average of ≈ 21 times
before the jammed state is reached. For other values
of xA, the number of trials is even higher, attaining a
maximum of ≈ 40 for xA ≈ 0.09. On the other hand, for
the single-list algorithm, the number of trials increases
monotonically from 1 at xA = 0 to xA = 1/2, for which
the number of trials per site ≃ 1.41.
Figure 4 shows, in semi-log scale, the lattice size de-

pendence of the average number of trials per site T until
saturation occurs, at xA = xB = 1/2. For a system of
size L × L, we find that T grows as lnL, if the näıve
algorithm is used, while T remains independent of L for
the single-list algorithm.
Finally, a rejection-free algorithm can also be con-

structed in which one keeps two lists – one of the sites
in which an A particle can adsorb, the other of those at
which a B particle can adsorb. After an A is successfully
adsorbed, the four neighbors are searched, and if any O
are found, those sites are removed from the B adsorption
list, and likewise for B adsorption. However, we can also
create an X site if after an adsorption, a neighboring O
site is itself the neighbor of a site of the opposite species,
and the X sites must be removed from both the A and B
lists. Since this method requires substantial bookkeep-
ing following each adsorption, we opted for the single-list
algorithm described above.

III. JAMMING COVERAGES

The coverages of A, B, and X in the jammed state are
plotted versus xA in Fig. 5. For small xA, the surface
is mostly covered by B particles, as expected. Signifi-
cantly, however, as xA increases, the coverage of blocked
sites grows faster than that of A particles. In fact, as
we show below, the number of X sites is four times the
number of A sites in this regime. It is also interesting
to emphasize that for xA = xB = 1/2, the coverage of
X is slightly smaller than that of A or B, although this
is not apparent at first sight in Fig. 5. More precisely,
we find θA = θB = 0.33451(1) and θX = 0.33098(2).
At the threshold, xA = 0.626441, the coverages are
θA = 0.51516(1), θB = 0.18695(1), and θX = 0.29789(1),
independent of L, to within uncertainty. That percola-
tion occurs at a coverage far smaller than the thresh-
old for Bernoulli site percolation on the square lattice,
pc = 0.592746..., [17], highlights the fact that occupation
of nearby sites by the same species is highly correlated
in the present model. While we are unaware of exact ex-
pressions for the saturation coverages as functions of xA,
we describe below the behavior for small xB .

III.1. Small-xB behavior

For small xB = 1− xA, one expects the jamming cov-
erages to follow power-series, i.e.,

θA = 1− a1xB − a2x
2
B − . . .
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FIG. 5. Jammed coverages of species A and B, and of blocked
sites X, on a 256×256 lattice.

θB = b1xB + b2x
2
B + . . .

θX = c1xB + c2x
2
B + . . . (1)

Since θA+θB+θX = 1 at jamming, we have a1 = b1+ c1
and a2 = b2 + c2.

We carried out extensive simulations at xA = 0.995,
0.996, 0.997, 0.998, and 0.999 on a square lattice of size
1024×1024, with 3.5 × 106 trials for each value of xA.
Fitting the results to a cubic polynomial in xB with in-
tercept zero or one, we find a1 = 1.00012, a2 = 0.708,
b1 = 0.20002, b2 = 0.298, c1 = 0.80009, and c2 = 0.414.
These results suggest that a1 = 1, b1 = 1/5, and
c1 = 4/5; in fact, we can prove that these values are
indeed exact.

Consider a system with xB ≪ 1, and follow a single
B among the A particles arriving at the surface, which
is initially empty (all O sites). In order for the B to ad-
sorb, that site and the four neighboring sites must remain
empty until the B reaches the surface—that is, no A can
hit any of these five sites before the B arrives. Because
xB is assumed to be very low, there will be no B sites
nearby on the surface to block any of the A’s from ad-
sorbing, so any A arriving at one of these five sites before
the central B will certainly adsorb.

Think of the particles raining down on the surface at a
fixed rate r of one particle per time unit (r = 1), and con-
sider the possible adsorption of the B particle at a given
instant t. The probability that a column of incoming
particles is devoid of A particles is e−λ, where λ = xArt
is the mean of the Poisson process, which corresponds to
the expected number of A particles falling down until the
instant t. Now, we must have all five columns (below the
B particle and its four neighbors) devoid of A particles,
so the probability of adsorbing the B at time t is

P(t) = e−5txA (2)

Clearly, the probability is greatest when t = 0, and de-
creases as t increases. Integrating this from t = 0 to ∞ to
account for all possible deposition times of the first B, we
obtain the total probability that a B will adsorb (given
that B was chosen to land, which occurs with probability
xB):

∫ ∞

0

P(t)dt =

∫ ∞

0

e−5txAdt =
1

5xA
(3)

For small xB, we have xA ≈ 1, showing that the prob-
ability that a single B will adsorb is xB/5 and proving
b1 = 1/5. Each adsorbed B site will cause the four neigh-
boring sites (still empty) to become blocked, implying
that θX = 4θB for small θB, and therefore c1 = 4/5.
Finally, it follows that a1 = b1 + c1 = 1, as observed
numerically.
The fact that a1 = 1 has the interesting implication

that for small xB , θA ≈ xA. This result is not obvious
because it says that the net number of A’s on the surface
is the same as xA, even though the actual adsorption
process is more complicated (some B’s adsorb while most
are blocked).
To illustrate the adsorption behavior, we considered

the case of an L × L lattice for L = 256 with xB =
1/1024 = 64/L2. For each of the L2 attempts at adsorb-
ing a particle, a B species is chosen 64 times, on average.
That corresponds to 64/5 = 12.8 successful B landings.
Figure 6 compares the probability of having exactly nB

adsorbed B particles at saturation (obtained from sim-
ulation) with the Poisson distribution with mean 12.8.
The agreement is excellent. Thus, as one might expect,
the overall B adsorption in the case of low xB is a Pois-
son process because for low xB , the adsorption events
can be considered independent. For a lattice with coor-
dination number z, by similar arguments it follows that
b1 = 1/(z + 1) and c1 = z/(z + 1). For example, for the
triangular lattice, b1 = 1/7.
The above results can also be derived by a simple argu-

ment, formulated here on the square lattice (z = 4). For
small xB , the chance that two B’s strike the surface near
each other is small, so we can focus on a single B striking
the surface. Consider the particles coming down on the
surface above a central site and the four sites around it.
The probability that the first particle to strike the surface
at the central site is a B is equal to xB , and the prob-
ability that the four neighboring sites are all A’s is x4

A.
Now, the 5 particles can strike the surface in the order
(B,A,A,A,A), (A,B,A,A,A), (A,A,B,A,A), (A,A,A,B,A),
and (A,A,A,A,B), and only in the first case will the B
adsorb, so the probability is 1/5. (More precisely, we
should multiply each by 4! for the permutation in the
order of the A’s landing, and then divide all by 5! per-
mutations, so again we get 1/5 as the probability that a
B lands before an A strikes one of the neighboring sites.)
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As mentioned, for low xB, we are assuming there are no
nearby B’s to forbid one of the A’s to adsorb.
In summary, we find that when a single B particle is

among the A particles striking a surface of size L2, we
get average numbers of each species adsorbed on an L×L
system are given by

n
(1)
A = L2 − 1

n
(1)
B = 0.2

n
(1)
X = 0.8 (4)

The last result follows from the fact that an adsorbed B
particle will block all four nearest-neighbors from adsorp-

tion, and the results for n
(1)
B and n

(1)
X implies the result

for θA, since n
(1)
A + n

(1)
B + n

(1)
X = L2.

III.2. Second-order behavior

We carried out simulations in which exactly two B par-
ticles attempt to adsorb at randomly chosen sites of an
L×L system, with the rest of the particles As. These two
B particles are included in the list with the (L2−2) A par-
ticles, employing the list algorithm described in Sec. II.
If a B does not successfully adsorb, then on the next ran-
dom trial at that site, an A adsorption is attempted if
the site is not blocked.
Fitting the results for L = 32, 64 and 128, we find for

the expected numbers of each species adsorbed:

n
(2)
A = L2 − 2−

1.370

L2

n
(2)
B = 0.4 +

0.556

L2

n
(2)
X = 1.6 +

0.814

L2
(5)

which adds up to L2 as required. The leading terms rep-
resent the results from Eq. (4) for independent adsorp-
tion, while the final terms reflect interactions (enhance-
ment for B and X, depletion for A).
Now, we allow for different numbers of B’s in the in-

coming stream, for low xB . The probability of choosing
exactly n B particles among the L2 particles striking the
surface is given by the Poisson distribution

P (n) =
λn

n!
e−λ (6)

with λ = xBL
2 equal to the mean, which we assume to

be small compared to 1. Then we have for θi, where i =
A, B, or X:

L2θi = P (1)n
(1)
i + P (2)n

(2)
i + . . .

= xBL
2e−xBL2

n
(1)
i +

(xBL
2)2

2
e−xBL2

n
(2)
i + . . .

= xBL
2(1 − xBL

2)n
(1)
i +

(xBL
2)2

2
n
(2)
i + . . .

= xBL
2n

(1)
i +

(xBL
2)2

2
[n

(2)
i − 2n

(1)
i ] + . . . (7)

up to order x2
B . Using our expressions for n

(1)
B and n

(2)
B ,

we find for θB

L2θB = xBL
2(0.2) +

(xBL
2)2

2

0.556

L2

= 0.2xBL
2 + 0.278x2

BL
2 (8)

or

θB = 0.2xB + 0.278x2
B + . . . (9)

which agrees fairly well with the simulation results of Eq.
(1).
We can actually derive the expressions for nB in Eqs.

(5) directly and by considering the various cases where
two B particles arrive to the surface close to each other.
By running our simulation with the relevant initial states,
we can deduce the numerical values of the net adsorbed
particles apparently exactly.
To begin, consider the vase in which the two B particles

are set to arrive on nearest-neighbor sites; all remaining
particles striking the surface are A’s. As above, if a B
does not adsorb, and the site is not blocked, the next
particle to strike that lattice site will be an A. We find
that the average number ni of particles of species i to
adsorb is equal to

nA = L2 − 2.3375
nB = 0.4925
nX = 1.8450 (10)

In this case, the probability pB(n) that exactly n B par-
ticles adsorb is given by pB(0) = 0.5700, pB(1) = 0.3675,
and pB(2) = 0.0625, and the average number of B clus-
ters 〈NB〉 is equal to 0.4300.
Second, consider the case in which the two B particles

are attempt to adsorb at a pair of second-neighbor sites,
e.g., (0, 0) and (1, 1). Here we find:

nA = L2 − 2
nB = 0.43333
nX = 1.56666 (11)

Also pB(0) = 0.6500, pB(1) = 0.26666, and pB(2) =
0.08333, and 〈NB〉 = 0.43333, the same as nB because
each adsorbed B is a distinct cluster.
Third, consider the case of the two B particles attempt-

ing to adsorb at third neighbors, e.g., (0, 0) and (0, 2); we
find:

nA = L2 − 2
nB = 0.41111
nX = 1.58888 (12)

Here pB(0) = 0.64444, pB(1) = 0.3, and pB(2) =
0.05555, and 〈NB〉 = 0.41111, the same as nB because
each adsorbed B is a distinct cluster.
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When the two sites for attempted B adsorption are
farther than third neighbors, we have simply

nA = L2 − 2
nB = 0.4
nX = 1.6 (13)

The above results Eqs. (10,11,12) were found numeri-
cally to high precision and appear to be exact. In fact,
we have verified some of these results rigorously by argu-
ments related to the probabilities of the relevant A’s and
two B’s landing in the various combinatorial orderings,
as an extension of the argument above proving that one
B will adsorb with probability 1/5.
Now consider sending two B’s randomly over the entire

L × L system. For the coverage of B, we get a term of
0.4L2 assuming the B’s are independent, and a correction
arising from the 12 ways that the B’s can be in the three
patterns above. (Fixing one of the Bs at the origin, there
are four positions each where the second B can attempt
to adsorb at a first, second, or third neighbor.) For these
cases, we subtract 0.4 because we want the difference
from the independent result. Thus we find,

L2n
(2)
B = 0.4L2 + 4(0.0925 + 0.033333+ 0.011111) (14)

or,

n
(2)
B = 0.4 + 0.54777/L2 (15)

in agreement with Eq. (5). Finally, inserting this result in
Eq. (7), we find that b2 = 0.273888, slightly lower than
the fitted value b2 = 0.298, which was rather approxi-
mate and depended significantly upon the order of the
polynomial used to do the fitting. We believe the value
b2 = 0.273888 = 493/1800 to be exact.
Similar results can be found for the cubic and higher-

order terms in Eq. (5), with somewhat more complicated
considerations. Results for nA and nX can also be found.

IV. PERCOLATION

We considered percolation of A, B, and X clusters. A
and B clusters are defined in the usual manner, i.e., per-
colation of nearest neighbors of the same species, while
for X we allow both nearest and next-nearest neighbors,
so that the coordination number for blocked-site cluster-
sis z = 8. We consider the following events: wrapping
in the horizontal direction R(h), in the vertical direction
R(v), either R(e), both R(b), and in one direction but not
in the other R(1h) and R(1v). The theoretical values of
these wrapping events on the torus at the critical point
are known exactly [18–20].
Figure 7 shows the average wrapping probabilities

Ri = (R
(h)
i + R

(v)
i )/2 for two lattice sizes (L = 32

and 256) at jamming. For xA = 0, where the surface
is fully covered by B particles, one has RB = 1 and
RA = RX = 0. For small values of xA, as discussed

0 10 20 30
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B
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P
(n

B
)

from simulations
Poisson ( λ = 12.8 = 64/5)

p
B
 = 1/1024 = 64/65536

L = 256; 10
6
 runs

FIG. 6. Simulations for L = 256 at xB = 1− xA = 1/1024 =
64/L2; on average, for each L2 adsorption attempts, a par-
ticle of species B is chosen 64 times, leading to 64/5 = 12.8
successful B adsorptions. The plot shows the probability of
having nB B particles at saturation. Black dots show the re-
sults from simulations with 106 runs each. The red line is a
guide to the eye for the Poisson probability distribution with
λ = 〈nB〉 = 12.8.
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(green). Solid lines correspond to L = 32 and dashed lines to
L = 256.

in Sec. III.1, the number of blocked sites (X) is approx-
imately 4 times the number of A particles. As xA in-
creases towards 1/2, the coverage of blocked sites grows
faster than the coverage of A particles (see Fig. 5), which
results in a growing RX . At the same time, RB de-
creases and becomes equal to RX at xA = 0.373559 or
xB = 0.626441. This value corresponds to the perco-
lation threshold of the B clusters, as will be explained
further below. For xA = xB = 1/2, only a very small
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fraction of realizations yield percolating A or B clusters
(i.e., clusters that wrap the lattice), while the wrapping
probability for blocked sites is close to unity. Due to the
symmetry mentioned in the Introduction, an equivalent
behavior occurs for xA > 1/2, with the A percolation
transition occurring at xA = 0.626441. For larger lat-
tices, the wrapping probability curves are steeper in the
critical region, and in the limit L → ∞ one expects a
step function for RA and RB and a double step function
for RX .

We consider three different ways to determine the
percolation threshold. The first employs the wrapping
probabilities, which are known to provide very accurate
thresholds [20]. In particular, if a given lattice (primary)
is analyzed together with its corresponding matching lat-
tice (the same lattice in which all polygons of more than
three sides is made into a clique or complete graph), the
threshold estimates converge extremely rapidly with in-
creasing lattice size. If only the primary lattice is used,
one expects |pc(L) − pc(∞)| ∼ L−2−1/ν = L−2.75 [20],
which is already a very rapid convergence. For some sys-
tems, however, considering both primary and matching
lattices, one has |pc(L) − pc(∞)| ∼ L−w, with w = 4
or even higher [17, 21, 22]. Here, xA,c takes the place
of pc. The matching lattice of the square lattice (with
nearest neighbors) is the square lattice with next-nearest
neighbors. In the model considered here, we assume
the blocked (X) sites can percolate through next-nearest
neighbors (z = 8), while clusters of A and B species are
formed considering only nearest neighbors (z = 4). Thus,
A and X form a matching pair near the transition point
for A clusters, with the B clusters representing a kind of
impurity, and B and X form a matching pair near the B
cluster transition, with the A clusters forming an impu-
rity.

Figure 8 shows our results for A and X wrapping. We
performed extensive Monte Carlo runs in the neighbor-
hood of the A critical point, requiring several months
of CPU time. As an example, for each value of xA

shown in the plot, we averaged over 109 realizations. The
mean wrapping probabilities Ri(p) were obtained for A
(in blue) and X clusters (in red). In this case, the inter-
cept is located at xA = 0.626441(1) and R = 0.521029(1)
[18, 20].

The results for all L are shown in Table I. The values
of xA at the crossing points are independent of L for
L ≥ 64 to the precision of our work, and imply a value
xA,c = 0.626441(1). The value of xA for L = 32 is only
slightly higher (0.626445(1)), and suggests a very rapid
convergence, such as L−4. Note that for smaller systems
there will be occasional wrapping of B clusters which
affects the results, so smaller systems should be used with
caution to study the convergence of this estimate.

In contrast to the rapid convergence of xA,c(L) to
its asymptotic value as L increases, the wrapping prob-
abilities at the crossing point RA and RX approach
their limiting values more slowly. Figure 9 displays
the scaling behavior of RA(xA,c, L), and is consistent

TABLE I. Crossing points for (R
(h)
i +R

(v)
i )/2 wrapping for A

and X clusters, from plots like Fig. 8.

L Nruns xA RA

32 2 · 109 0.6264449 0.5198968
64 2 · 109 0.6264408 0.5207177
128 109 0.6264407 0.5209613
256 109 0.6264406 0.5210317

with |RA(xA,c, L) − R∞(xA,c)| ∼ L−1.75; this exponent,
1.75 = 1+1/ν appears in some percolation convergences
[20]. The intercept of the linear fit is consistent with
the exact critical value R∞(xA,c) = 0.521058289[18, 20],
and a log-log plot of (0.521058289 − RA(xA,c, L) vs. L
suggests an exponent of 1.78. This compares with an ex-
ponent of ≈ 2 found in Ref. [20] for a similar quantity in
site percolation (the wrapping probability at the critical
point).

0.62640 0.62642 0.62644 0.62646
x

A

0.519

0.520

0.521

0.522

0.523

R
A
, R

X

A
X

FIG. 8. Percolation threshold obtained from the intercept be-
tween the horizontal wrapping probabilities RA of A particles
and RX of blocked sites for systems of size L = 256, from a
long run of 109 samples. The equations of the lines are R =
−38.6231xA +24.7161 (upper) and R = 38.6136xA − 23.6681
(lower), and the intercept is listed in table I.

A second approach to finding the transition point is

via the peak in R
(1h)
i + R

(1v)
i = R

(e)
i − R

(b)
i , the wrap-

ping probability in one direction but not in the other
one, equal to “either” minus “both” crossings. It has
the advantage that it peaks near the transition point,
and it applies to individual species rather than having
to consider the difference between two matching species
such as A and X. However, the data near the peak show
fairly large fluctuations, and in order to obtain a good
parabolic fit we used a wider range in xA values, such
as xA = 0.621, 0.622, . . . , 0.632 as shown in Fig. 10 for
L = 128. The values and locations of the peaks are
shown in Table II; here a weak dependence of xA on L
is evident, but the precision is not sufficient to deduce
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0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

L
-1.75

0.5200

0.5204

0.5208

0.5212

R
(h

) (x
A

,c
 , L

)

FIG. 9. Scaling of the wrapping probabilities at the criti-
cal point from Table I, vs. L−1.75. The extrapolation gives
R∞(xA,c) = 0.521064(10) in agreement with the exact value
0.521058. The exponent 1.75 was found empirically, and pro-
vides a much better fit than say exponent 2.

the scaling. The value at the peak appears to approach
the theoretical limiting value 0.16941544... as L−1.75, as
can be seen in Fig 11. Note an exponent of −2 is also
possible here.

0.622 0.624 0.626 0.628 0.630
x

A

0.1680

0.1685

0.1690

(R
(e

)  -
 R

(b
) )/

2

FIG. 10. Either minus both crossing divided by 2, equaling
(R(1h) +R(1v))/2, as a function of xA for L = 64. The values
at the maximum for different L are listed in table II

.

Finally, the third way that we can locate the threshold
is via analysis of the density NA of clusters of A minus
the density NX of clusters of X, using second-nearest-
neighbor connectivity for X. This quantity, on a pair of
matching lattices, reaches an L-independent value, de-
termined for regular lattices by the Euler characteristic
χ(p), which here is the number of vertices, minus the

0.0000 0.0005 0.0010 0.0015 0.0020

L
-1.75

0.1686

0.1688

0.1690

0.1692

0.1694

(R
(e

)  -
 R

(b
) )/

2

FIG. 11. Maxima of either minus both of A clusters (di-
vided by 2) vs. 1/L1.75. The intercept of the line at L = ∞
is 0.169428(14), consistent with the theoretical value for is
0.16941544.

TABLE II. Maxima of (R(e) − R(b))/2 = (R(1h) + R(1v))/2,
with a theoretical value of 0.169415435 [18, 20], from mea-
surements at xA of values in the range (0.621, 0.630).

L Nruns xA RA

32 2 · 109 0.626484 0.168673
64 2 · 109 0.626447 0.169217
128 109 0.626433 0.169352

number of edges, plus the number of elementary (1 × 1)
faces, per site [7, 22]. For example, for site percolation on
square lattices, χ(pc) = pc− 2p2c + p4c = 0.0134956 [22] at
pc = 0.59274608. The procedure is depicted in Fig. 12,
which shows NA −NX as a function of xA for three dif-
ferent lattice sizes. The curves nearly cross at a common
point, giving xA,c ≈ 0.62645, with NA − NX ≈ 0.01739
at criticality. As NA−NX is a non-universal quantity, its
value differs from the one given by the Euler character-
istic for random percolation because of the correlations
of the adsorbed particles. The crossing points for some
lattice sizes are listed in Table III, and the values of xA

are consistent with the threshold xA,c = 0.626441 deter-
mined by other methods.

Having determined the percolation threshold, one can
plot the total number of A and X clusters vs. L2 at
criticality, as shown in Fig. 13. The slopes, which rep-
resent the density of clusters, yield NA = 0.02053 and
NX = 0.003138 with NA − NX ≈ 0.01739 independent
of L. At the threshold, the number of B clusters per site
is NB = 0.057561. The y-axis intercept gives the excess
number, which is universal for systems of a given shape,
having the theoretical value 0.883576... for a square crit-
ical system [23, 24]. Our result of 0.883 supports the
conclusion that the transition is in the ordinary percola-
tion universality class. Another confirmation of univer-
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sality comes from the cluster size distribution at critical-
ity, which behaves according N(s) ∼ s−τ , where s is the
cluster size, N(s) is the number of clusters (per site) of
size s, and τ is the Fisher exponent (τ = 187/91 in two
dimensions). The number of clusters within the range
(s, 2s) is obtained by integration and behaves as s−τ+1.
This behavior is clearly observed in Fig. 14, which ex-
hibits the logarithm of the number of clusters with size
in bins (2n, 2n+1 − 1) vs. ln s = ln 2n, for A and X clus-
ters at xA,c = 0.626441 on a system of size 16384 ×
16384 and 104 runs. For both species, the slope in the
linear region is close to the ordinary percolation value
1 − τ = −96/91 = −1.055. Note the smaller finite-size
corrections for small s in the X-cluster case.
At the A-cluster transition point, the B clusters act

as impurities. In fact, if we combine the B clusters with
the X clusters, we find that the number of X clusters
does not change—the B’s are always entirely surrounded
by X sites, and can simply be counted as part of the X
clusters. Thus, the number of X clusters is the number of
matching lattice clusters to the A clusters. In Ref. [22],
it is shown that for regular site percolation

N(p)−N∗(p) = χ(p) + f((p− pc)L
1/ν)/L2 (16)

where N(p) is the number of lattice clusters per site,
N∗(p) is the number of matching lattice clusters per site
for lattice occupancy p, χ(p) = (〈V 〉 − 〈E〉 + 〈F0)/L

2

gives the average number of edges, vertices, and primal
faces (1 × 1 faces) in the graph connecting all nearest-
neighbor occupied sites, and f(z) goes from −1 to +1
as z goes from −∞ to ∞ with f(0) = 0. f(z) is the
wrapping probability on the lattice minus the wrapping
probability on the dual lattice. Expanding f(z) by a
Taylor series, we get

N(p)−N∗(p) = χ(p) + (p− pc)L
1/ν−2f ′(0) (17)

Thus, N(p) −N∗(p) is a function that is weakly depen-
dent upon L and equal to χ(pc) at p = pc, for all L. That
is, all curves cross at the threshold point. (We have ig-
nored weak higher-order corrections that lead to small
deviations in the crossing point.)
Analogously, we consider NA − NX , where as men-

tioned above NX is effectively N∗
A, shown in Fig. 12.

(Here, we subtract a linear function to all the curves in
order to make the crossing point more visible.) Indeed,
we find a crossing point at the threshold xA,c = 0.62646.
The value of χ at the threshold is 0.17388, different from
the random value for site percolation, because here the
number of vertices, edges, and primal faces is not simply
related to p as it is in random percolation. Again, we
find behavior consistent with percolation, but some dif-
ferent parameter values (χ(pc)) due to the correlations
in the system. But in general the quantity NA −NX be-
haves very much like the corresponding quantity (clusters
minus matching-lattice clusters) in ordinary percolation
[22]—because the X and B together represent the match-
ing system to the A clusters.

0.622 0.624 0.626 0.628 0.630
x

A

0.15140

0.15142

0.15144

0.15146

0.15148

N
A
 -

 N
X

32
64
128

FIG. 12. Number of A clusters minus number of X clusters,
plus 0.214xA, added to make the slope of the middle curve
close to zero for clarity, for L = 32, 64, and 128. The crossing
points are listed in Table III, and all three cross nearly at a
common point xA ≈ 0.62646, NA − NX ≈ 0.017388. Look-
ing at cluster numbers is another way to find the percolation
threshold for ordinary (uncorrelated) percolation [22], and it
apparently is valid here as well.
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FIG. 13. A plot of the number of A and X clusters vs. L2

at criticality (pA,c), both yielding an excess cluster number of
0.883 at the y−axis intercept (not really visible on this plot),
consistent with the ordinary percolation universality class for
a system with a square boundary.

V. ONE DIMENSION

We also carried out a study of the model in one di-
mension. Details will be given in another publication
[25]; here we summarize some of the main results.
We consider a three-site approximation in which we

focus on groups of neighboring sites (σi, σj , σk) where
σi ∈ {0, A,B}, where 0 is an empty site that may be
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TABLE III. Crossing points for the number of A clusters mi-
nus the number of X clusters, from the data shown in Fig.
8.

L xA NA −NX

32 & 64 0.626451 0.017390
64 & 128 0.626469 0.017386

0 5 10 15 20
ln s

-25

-20

-15

-10

-5

0

ln
 N

bi
n(s

)

A
X

FIG. 14. Logarithm of the number of clusters with size in bins
(2n, 2n+1−1) vs. ln s = ln 2n, for A clusters (upper curve) and
X clusters (lower curve) at xA,c = 0.626441 on a system of
size 16384 × 16384 and 104 runs. For both species, the slope
in the linear region (-1.046 for A and -1.051 for X) is close to
the value for ordinary percolation 1− τ = −96/91 = −1.055.
Note the smaller finite-size corrections for small s in the X-
cluster case compared to the A-cluster case.

blocked or not. In order to write closed time-dependent
rate equations for the three-site probabilities, it is nec-
essary to write four-point probabilities in terms of those
for three points. We use the factorization approximation

p(σi, σj , σk, σℓ) ≃
p(σi, σj , σk)p(σj , σk, σℓ)

p(σj , σk)
(18)

where p(.) is the time-dependent probability that the
given events occur. There are seventeen possible triplets:
(000), seven combinations of 0 and/or A sites, an
equal number of combinations of 0 and B, and the two
mixed cases (A0B) and (B0A) in which the central sites
are blocked. The seventeen equations, including the
above factorization approximation, are integrated using
a fourth-order Runge-Kutta scheme, subject to the ini-
tial condition p(000; t = 0) = 1. Taking xA = 1/2, we
found the final coverage of A and B particles of θ∞ =
0.816060279, which we recognize as simply 1− 1/(2e).

As a second approach, we studied the jamming cover-
age for small periodic systems of length L = 4, 5, 6... to
high precision at xA = 1/2 and found strong numerical

0.5 0.6 0.7 0.8 0.9 1.0
x

A

0.0

0.2

0.4

0.6

0.8

1.0

θ A
±

θ B

θ
A

+ θ
B

θ
A

− θ
B

FIG. 15. Jamming coverage in one dimension, obtained from
event-driven Monte Carlo simulations.

evidence for the closed-form expression

θ∞(L) = 1−
1

2

L∑
k=0

(−1)k

k!
+

L− 1

2L!
(19)

which also implies the limiting behavior θ∞ = 1− 1/(2e)
for L → ∞. Note that the last two terms above, equal to
(1− θ∞(L)), represent the number of “derangements” of
L elements with an even number of cycles [26], divided
by L!.
Finally, we carried out extensive event-driven Monte

Carlo simulations on systems with L up to 50000, using
a two-list algorithm (those sites where an A can adsorb,
and those sites where a B can adsorb), to find θ∞ =
0.816060(1) at xA = 1/2, in excellent agreement with
the results of the above two methods. Figure 15 shows
the total coverage for other values of xA.
Thus, it appears that the three-site approximation is

exact, in spite of the fact that there are undoubtedly cor-
relations beyond that distance. In one dimension there is
always blocking, in that once a particle is adsorbed, the
behavior on one side is independent of the behavior on
the other site, and this can be used to study this system.
We also studied the small-xB behavior and verified

that θB = (1/3)xB + . . . consistent with the arguments
in subsection III.1 above for z = 2. Additional details of
these results will be given in [25].

VI. CONCLUSIONS

In conclusion, we find that the AB RSA model shows
intricate, interconnected adsorption and percolation be-
havior. For RSA, we derive exact expressions for the
coverages at low and high values of xA, proving ex-
actly the leading correction terms by a simple argument.
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In terms of percolation, we show that the universal-
ity class is consistent with ordinary percolation, as one
might expect because of the absence of long-range cor-
relations. There are two percolation transition points,
one at xA = 0.626441(1) where A and X clusters per-
colate, and one at xA = 0.373559(1), where B and X
clusters percolate. We find the thresholds precisely from
the crossing points of A (or B) wrapping, and X wrap-
ping, and these predicted thresholds evidently show very
small finite-size corrections.
We find that the total number of A clusters minus the

number of X clusters, NA −NX , has a universal lattice-
size-independent value 0.01739 at the transition point,
consistent with the behavior found for ordinary perco-
lation, although with a different crossing value because
the occupation of the sites here is not random [22]. Here
we have effectively a correlated model of percolation, and
this study shows that the analysis based on cluster num-
bers can be applied to correlated percolation also.

The excess cluster number at criticality gives the iden-
tical value (0.883) as in ordinary percolation. This is
because the excess is related to large clusters in the
system which are evidently unaffected by the correla-
tions contained in the cluster growth process. At the
percolation transition, the cluster-size distribution also
shows the behavior of standard percolation with expo-
nent τ = 187/91.

Possible directions for future study are series-
expansion analyses for the time-dependent and jam-
ming RSA coverages, behavior on different lattices and
in different dimensions, and the transport properties of
blocked-site clusters as models for porous media.
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