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Abstract

This work obtains the efficiency at maximum power for a stochastic heat engine performing

Carnot-like, Stirling-like and Ericsson-like cycles. For the mesoscopic engine a Brownian particle

trapped by an optical tweezers is considered. The dynamics of this stochastic engine is described

as an overdamped Langevin equation with a harmonic potential, whereas is in contact with two

thermal baths at different temperatures, namely, hot (Th) and cold (Tc). The harmonic oscillator

Langevin equation is transformed into a macroscopic equation associated with the mean value

〈x2(t)〉 using the original Langevin approach. At equilibrium stationary state this quantity satisfies

a state-like equation from which the thermodynamic properties are calculated. To obtained the

efficiency at maximum power it is considered the finite-time cycle processes under the framework

of low dissipation approach.

PACS numbers: 05.10.Gg, 05.40.Jc
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I. INTRODUCTION

With the use of nano-technology, physicists and engineers attempt to overcome the chal-

lenge of building artificial mesoscopic machines capable of extracting energy from their

environment, and convert it into useful work. The main characteristic of these micro- or

nano engines is that the magnitude of the fluctuations generated by their environment is

comparable to the average flow of energy produced by such engines. Then, the performance

of a mesoscopic engine strongly depends on the properties of its surroundings. For instance,

the so-called Brownian Motors [1–3] are devices capable of rectify fluctuations to produce

useful work; they have a ratchet-like design in which a spatial anisotropic or asymmetric

potential is involved, and an additional ingredient that takes the system out of equilibrium.

The ratchet model proposed by Feynman has been used as an inspiration for the study of

a significant number of theoretical and experimental works on Brownian motors and other

devices [1–14] like the stochastic heat engines in the construction of microscopic devices.

The first experimental realization of a microscopic heat engine, comprising a single colloidal

particle subject to a time-dependent optical trap was reported in [15]. In this experiment,

the Brownian particle performs a Stirling-like cycle, in which the particle and the trapping

potential replace the working gas and the piston of its macroscopic counterpart. The tech-

nique of trapping particles using optical tweezers has been shown to provide a precise control

over the confinement and temperature of the colloidal particle [16, 17].

The stochastic heat engines can operate cycles between isothermal baths; however, recent

experiments have been made with colloidal engines that operate in cycles between different

thermal baths including non-isothermal processes, both in active and passive media [15, 17–

20]. The two fundamental quantities used to characterize the thermodynamic properties

of macroscopic and microscopic heat engines are both the power and efficiency. The main

difference between both devices is that in the latter the stochastic fluctuations play a funda-

mental role. At these days, stochastic thermodynamics has been the appropriate theoretical

framework to characterize the energetics of microscopic heat engines in which the concepts

of work, heat, internal energy, etc., have been defined along a single stochastic trajectory

[21].

It is well known that for macroscopic heat engines the Carnot efficiency can be achieved

when the cyclic process is quasistatic, which also means a large cycle time and zero power
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output. The so-called finite-time thermodynamics is related to the study of the efficiency of

heat engines when the cyclic process is performed at finite-time. It seems that the pioneering

work related to the efficiency at maximum power of an endoreversible engine operating

at finite-time was reported by Novikov [22]. However, the work by Curzon and Ahlborn

[23] is more cited in the literature in which the efficiency at maxium power is shown to

satisfy η
CA

= 1−
√

Tc/Th, which is less than the Carnot efficiency η
CA

< η
C
, for an engine

operating between two heat baths at temperatures Th and Tc (Tc < Th). Since then, a

significant number of papers related to Finite-Time Thermodynamics have been reported in

the literature [24–27], and all references there in.

In this context, it is worth to comment the paper by Esposito et al. [28], related to the

efficiency at maximum power for macroscopic heat engines performing finite-time Carnot

cycles and operating under low dissipation conditions. According to the authors, the start-

ing point of low-dissipation approach is a Carnot engine which operates under reversible

conditions when the system always remains close to equilibrium and the cycle time become

very large. If the cycle processes are no longer reversible but irreversible at finite-time, then

the dissipative processes play an important role being the low-dissipation limit an interest-

ing theoretical approach to characterize them. This approach establishes that, if τc (τh)

are the time in which the system is in contact with the cold (hot) reservoir along a cycle,

then the entropy production per cycle along the cold (hot) part of the cycle is proposed to

behave as Σc/τc (Σh/τh), where Σ contains information about the dissipation or irreversibil-

ity present at isothermal branches. Therefore, the amount of heat per cycle incoming to

the system from the cold (hot) reservoir are given by Qc = Tc(−∆S − Σc/τc + · · · ) and

Qh = Th(∆S − Σh/τh + · · · ), being Qc
∞ = −Tc∆S and Qh

∞ = Th∆S, the amount of heat

exchanged with the cold (hot) reservoir under reversible conditions. Whereas that the adia-

batic processes are considered as instantaneous and therefore the irreversible effects are only

taken into account in the two isothermal processes.

The study of the efficiency at maximum power has also been extended to stochastic heat

engines, as can be corroborated in the recent literature [15, 29–32]. Due to the aforemen-

tioned features of a stochastic heat engine, the theoretical model used for its description is

the Langevin equation in which the optical trap is represented by a harmonic potential. The

model also considers the engine (the particle) in contact with two thermal baths at different

temperatures Th (hot) and Tc (cold), with Th > Tc, and the internal noise intensity changes
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in time from the hot to cold values. The stochastic efficiency is also defined as the ratio of

the stochastic work extracted in a cycle and the stochastic heat transferred from the hot

bath to the particle in a cycle [17].

In a work published by Blickle [15], it was shown that at thermodynamic level the mean

efficiency 〈η(τ)〉 is less than the Carnot efficiency η
C

= 1 − Tc/Th, that is 〈η(τ)〉 =

〈W (τ)〉/〈Q(τ)〉 < η
C
, where τ is the cycle time, 〈W (τ)〉 the average work and 〈Q(τ)〉

the average heat flux. Also, the experiments [15, 17] show that for shorter cycle times,

the dissipation effects become important, and the mean work per cycle can be written as

〈W 〉 = 〈W∞〉+ 〈Wdis〉, where 〈W∞〉 is the mean quasistatic work for longer cycle times and

〈Wdis〉 the mean irreversibly dissipated work per cycle. This latter can be written to first

order as 〈Wdis〉 = Σ/τ where the coefficient Σ, contains information about the irreversibili-

ties present in the cycle, for instance, time-dependent protocol and the coupling mechanism

between the particle and the thermal environment. In other words, Σ/τ accounts for an

amount of energy dissipated in a cycle. In [15] it has also been commented that, in the

experiment at small scales it is very difficult to keep hot and cold reservoirs thermally iso-

lated, so rather than coupling the colloidal particle periodically to different heat baths, the

temperature of the surrounding liquid is suddenly changed.

The purpose of the present contribution is to apply the low-dissipation considerations

to obtain the efficiency at maximum power of a Brownian heat engine, which can operate

in three finite-time irreversible cycles between a hot and a cold reservoir at temperatures

Th and Tc, respectively. Three different cycles namely, Carnot-, Stirling-, and Ericsson-

like are considered. The theoretical analysis is formulated in the context of a Langevin

approach for a Brownian particle in a harmonic trap with time-dependent stiffness κ(t).

The strategy is as follows: first, the Langevin equation is transformed into a macroscopic

one for the average value 〈x2(t)〉, in which the time-dependent temperature T (t) is also taken

into account (both the stiffness and temperature are externally controlled [33]). Instead of

solving the macroscopic deterministic equation for specific protocols κ(t), and T (t), the

advantage from the system equilibrium thermodynamic properties is taken into account

by means of the state-like equation associated with the average value 〈x2〉eq. This allows

to obtain the work, heat and efficiency under quasistatic conditions, and the irreversible

effects, coming from both the control of the stiffness potential and bath temperature, can

be taken into account through the dissipation parameter Σ [15]. Once this is done, the
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efficiency at maximum power characterized by finite-time cycles can be obtained using the

low-dissipation approach.

This work is organized as follows: Section II obtains the macroscopic equation (ensemble

property) for the overdamped harmonic oscillator associated with the mean value 〈x2(t)〉,

using the original method proposed by Langevin in 1908 [34–36]. Then, by means of the

state-like equation, the equilibrium thermodynamic properties for the Carnot-, Stirling-,

and Ericsson-like cycles are calculated. Section III focuses on the study of low-dissipation

approach to calculate the efficiency at maximum power of each heat engine, and the the-

oretical results are compared with other reported results. Our conclusions and comments

are given in Section IV.

II. STOCHASTIC HEAT ENGINE

The mathematical model proposed to describe the dynamics of a Brownian heat engine

in contact with a thermal bath is given by a Langevin equation for a Brownian harmonic

oscillator with time-dependent stiffness κ(t), that is

m
d2x

dt2
= −α

dx

dt
− κ(t)x+ ξ(t), (1)

where m is the particle mass, α = 6πζa the friction coefficient, being ζ the fluid viscosity and

a the radius of the particle assumed to be a sphere. In the overdamped regime it becomes

α
dx

dt
= −κ(t)x+ ξ(t). (2)

This stochastic differential equation rules a process well known as Ornstein-Uhlenbeck and

it becomes stationary in long time limit, t → ∞, for which κ(t) → κ =const. This stochastic

differential equation can be transformed into a macroscopic one following Langevin’s strategy

as reported in [36]. From Eq. (2) it is straightforward to obtain the equation

α
d〈x2〉

dt
= −2κ(t)〈x2〉+ 2〈xξ(t)〉. (3)

This equation becomes:

α
d〈x2〉

dt
= −2κ(t)〈x2〉+ 2k

B
T. (4)
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where 〈xξ(t)〉 = k
B
T , being k

B
T the intensity of thermal noise and T the equilibrium bath

temperature. However, we can also suppose that the correlation function is not a constant

but a time-dependent function through the temperature, that is, 〈xξ(t)〉 = k
B
T (t), and thus

the macroscopic Langevin equation can be written as

α
d〈x2〉

dt
= −2κ(t)〈x2〉+ 2k

B
T (t). (5)

It is clear that in the equilibrium stationary state 〈x2〉st = k
B
T/κ, because T (t) → T as

the time gets large. In several and recent papers [11, 31, 32, 37, 38], the amount of work,

the interchange heat with the thermal bath as well as the efficiency at maximum power

performed by a Brownian heat engine during a cycle are calculated along a single stochastic

trajectory taking into account a specific form of the time-dependent protocol κ(t).

In the present work, instead of solving Eq. (5) for specific protocols for κ(t) and T (t), a

different strategy related to low-dissipation approach to obtain the efficiency at maximum

power for three stochastic heat engines. In our case, the irreversible average work and

irreversible average heat will be given respectively by 〈W 〉 ≈ 〈W 〉∞ + Σ
τ
and 〈Q〉 ≈ 〈Q〉∞ −

TΣ
τ
, where 〈W 〉∞ and 〈Q〉∞ are the average work and average heat, respectively, under

equilibrium conditions. Here the parameter Σ takes into account all information coming

from any of irreversibility sources including the time-dependent protocols.

A. Quasistatic description of Brownian heat engines

The thermodynamics properties of the Brownian heat engine, can be calculated by means

of the equation of state in a similar way as in the case of an ideal gas in classical thermo-

dynamics. A state-point is characterized by (〈x2〉, κ, T ) as thermodynamic variables, and

the stiffness of the optical trap as well as the bath temperature can be considered as time-

independent quantities (in what follows we consider 〈x2〉st ≡ 〈x2〉). Likewise, the average of

the total energy 〈E〉 ≡ E, is proposed to satisfy the equation [31]

E =
1

2
κ〈x2〉+

1

2
k

B
T, (6)

and therefore Eeq = k
B
T . Once defined the energy available by the system, different

thermodynamic-like processes can be explored whereas the Brownian particle is in con-

tact with to thermal baths at different temperatures, hot Th and cold Tc [15, 18, 39, 40].
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To calculate the efficiency at quasistatic conditions for the three aforementioned stochastic

heat engines, we proceed as follows. According to Sekimoto [21], the thermodynamic first

law-like along a stochastic trajectory reads, in the overdamped regime, as dE = d′Q+ d′W ,

where dE = dU , being U the potential energy and d′W = ∂U
∂λ
dλ, with λ an external param-

eter. In our case λ = κ, U(x, κ) = 1
2
κ x2 and d′W = 1

2
x2dκ. However, the average work as

well the average heat are the same as the thermodynamic quantities, that is, W = 〈W 〉 and

Q = 〈Q〉, and according to Eq. (6) it can be shown that d′Q = 1
2
κd〈x2〉+ 1

2
k

B
dT .

The total work W and heat Q exchanged with the surroundings along a quasistatic

trajectory, from a one state A to another state B, are given by, respectively

WAB =
1

2

∫ B

A

〈x2〉 dκ, (7)

QAB =
1

2

∫ B

A

κd〈x2〉+
1

2
k

B
(TB − TA). (8)

The Brownian particle free energy can be obtained from the partition function given

by Z(κ, T ) =
√

2πk
B
T/κ. The free energy F (κ, T ) thus becomes F (κ, T ) =

−k
B
T ln

√

2πk
B
T/κ. Likewise, in analogy to the differential form of the thermodynamic

potential for a ideal gas, dF = −SdT − pdV there is a correspondence with ensembles of

a single-confined colloidal particle in the form: dF = −SdT + Φdκ, where the entropy S

reads S = −
(

∂F
∂T

)

κ
= (k

B
/2)[ln(2πk

B
T/κ) + 1], and the auxiliary conjugate thermodynamic

variable Φ, also satisfies the state-like equation Φ =
(

∂F
∂κ

)

T
=

k
B
T

2κ
= 〈x2〉

2
. In this equation

the trap stiffness is analogous to the inverse of the effective volume in the state equation of

an ideal gas p ∼ T/V , while the intensive variable Φ, related to the variance of the particle

trajectories can be seen as a kind of effective macroscopic pressure. We complement our the-

oretical study with the calculation of the adiabatic-like equation associated with the system,

which is easily obtained from the condition d′Q = 0, yielding to κ = const T 2 consistent

with what was previously reported in [17, 41]. These guidelines specify the thermodynamic

processes analogous to those established in macroscopic systems. Two thermodynamic vari-

ables are usually considered to characterize the performance of those types of robust heat

engines, the extracted work W and the conversion efficiency η.

In analogy with real-macroscopic heat engines, the energy conversion efficiency of ther-

modynamic protocols with single particles in suspension is constrained by the second law of
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FIG. 1: Φ-κ thermodynamic diagram of a Carnot-like cycle where (i) an isothermal expansion (red

path); (ii) an adiabatic expansion (B-C green path); (iii) an isothermal compression (blue path)

and (iv) an adiabatic compression (D-A green path).

thermodynamics [29, 41, 42], that is,

η ≡
〈W (τ)〉

〈Qh(τ)〉
≤ η

C
, (9)

where η
C
is the Carnot efficiency. In thermal equilibrium conditions, i.e, in the quasistatic

limit (τ → ∞), the efficiency for these types of block-thermodynamic cycle models are closed

to ηC , under this condition the power output is zero.

Isothermal paths can be defined as thermodynamic processes where the temperature of

the surroundings remains constant in time. In optically trapped particle systems immersed

in a fluid, isothermal processes are associated with the so-called breathing optical parabola

[43, 44]. That is, as the stiffness of the trap is decreased (increased) space for the particle

increases (decreases). Thus, the free energy change ∆F stands for the useful reversible

work that thermodynamic protocols can performed during the expansion and compression

processes at fixed temperatures.

B. Carnot-like cycle

The Carnot Cycle represents the paradigm of thermal cycles, it consists of two adiabatic

and two isothermal branches, whose maximum efficiency is, ηC = 1−Tc/Th, under reversible
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conditions. The Carnot-like cycle for a Brownian particle can be implemented modifying

the stiffness κ and the bath temperature T [17], see Fig. 1. The idealized Carnot cycle

involves two quasistatic isothermal processes where T is kept constant but κ also changes

quasistatically, and two reversible adiabatic processes where T and κ change, but along the

adiabatic path, κ = const ∗ T 2. The energetic description of this Carnot-like cycle can be

summarized as follows:

i) Isothermal expansion process (A → B): In this process the stiffness potential trap

decreases from κ4 → κ3 (κ3 < κ4) at Th = const. Besides, (∆E)AB = 0 and QAB = −WAB,

WAB =
k

B
Th

2

∫ κ3

κ4

dκ

κ
=

k
B
Th

2
ln

(

κ3

κ4

)

< 0, (10)

QAB = −
k

B
Th

2
ln

(

κ3

κ4

)

=
k

B
Th

2
ln

(

κ4

κ3

)

> 0. (11)

ii) Adiabatic expansion process (B → C): An amount of work is performed from κ3 → κ1,

(κ1 < κ3), while T change from Th → Tc. As QBC = 0 then WBC = (∆E)BC = k
B
(Th − Tc)

iii) Isothermal compression process (C → D): This process takes place now for increasing

values of κ from κ1 → κ2 (κ2 > κ1), while the system is in contact with thermal bath at

T = Tc, where QCD = −WCD; therefore,

WCD =
k

B
Tc

2

∫ κ2

κ1

dκ

κ
=

k
B
Tc

2
ln

(

κ2

κ1

)

> 0, (12)

QCD = −
k

B
Tc

2
ln

(

κ2

κ1

)

< 0. (13)

iv) Adiabatic compression process (D → A): The last amount of work is extracted from

κ2 → κ4 (with κ4 > κ2), in which QDA = 0, and thus WDA = (∆E)DA = k
B
(Th − Tc).

The total work performed by this block-thermodynamic cycle becomes Wtot = WAB +

WBC +WCD +WDA, and according to Eq. (9) the efficiency reads

η =
Wtot

Qin

=

k
B

2

[

Th ln
(

κ4

κ3

)

− Tc ln
(

κ2

κ1

)]

k
B

2
Th ln

(

κ4

κ3

) , (14)

being Qin = QAB. However, from adiabatic equation and according to Fig. (1), its

κ3

T 2
h

=
κ1

T 2
c

κ4

T 2
h

=
κ2

T 2
c

thus
κ3

κ1
=

κ4

κ2
, (15)
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FIG. 2: Φ-κ thermodynamic diagram of a Stirling-like cyclewhere (i) an isothermal expansion (red

path); (ii) an isocoric cooling process B-C (green path) ; (iii) an isothermal compression (blue

path) and (iv) an isocoric heating process (D-A green path).

and therefore the Carnot-like efficiency becomes

η
C
=

Th − Tc

Th

= 1−
Tc

Th

, (16)

which is an expected result. As in the thermodynamic case, the efficiency only depends on

the temperatures of the thermal baths.

C. Stirling-like Cycle

In this subsection the analysis of a Stirling-type cycle is presented. The first reported

experimental micro-size heat engine was built inspired in this cycle [15]. Analogously to

the macroscopic case, this cycle is composed of two isothermal linked through two isochoric

processes (two pair of symmetric processes at κ = const., as shown in Fig. 2). Each path is

swept in a quasistatic way going between two equilibrium states. For a Brownian particle

in a harmonic trap, the process is carried out under certain conditions of stiffness and

temperature. The energetic in each trajectory can be stated as follows:

i) Isothermal expansion process (A → B): During this process the stiffness of the trap
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changes from κ2 to κ1 (κ1 < κ2) and Th = const. Besides, ∆EAB = 0 and QAB = −WAB,

with

WAB =
k

B
Th

2
ln

(

κ1

κ2

)

(17)

ii) Isochoric process (B → C): In this case the stiffness remains constant (κ1 = const.) and

the potential does not change; the work vanishes WBC = 0, and the heat is QBC = (∆E)BC ,

such that

QBC = k
B
(Tc − Th) < 0. (18)

iii) Isothermal compression process (C → D): During this process the stiffness of the trap

changes from κ1 to κ2 and Tc = const., the colder temperature. In this case, (∆E)CD = 0

and QCD = −WCD, where

WCD =
k

B
Tc

2
ln

(

κ2

κ1

)

. (19)

iv) Isochoric process (D → A): Similarly to the second branch, the stiffness remains

constant (κ2 = const) and the potential does not change; the work vanishes WDA = 0, and

the heat is QDA = (∆E)DA, such that

QDA = k
B
(Th − Tc) > 0. (20)

The efficiency of this cycle is given by

η =
Wtot

Qin

,

=

k
B

2

[

Th ln
(

κ1

κ2

)

− Tc ln
(

κ1

κ2

)]

k
B

2
Th

[

ln
(

κ1

κ2

)

+ 2(1− ρ
S
)
(

1− Tc

Th

)] =

(

1− Tc

Th

)

ln
(

κ1

κ2

)

ln
(

κ1

κ2

)

+ 2(1− ρ
S
)
(

1− Tc

Th

) (21)

with Qin = QAB + (1 − ρ
S
)k

B
(Th − Tc) where the parameter ρ

S
considers a possible re-

generation mechanism, when ρ
S
= 1 there is a perfect regeneration and, ρ

S
= 0, implies

non-regeneration. As in the macroscopic model, when there is ideal regeneration the Carnot

efficiency is recovered, otherwise, η < ηC .

D. Ericsson-like Cycle

Another cycle that can be constructed using a pair of isotherms is one that includes a

pair of isobaric processes, so-called as Ericson cycle. For the system that concerns us in this

work, an Ericsson-like cycle can be implemented as indicated in the figure 3. Two quasistatic
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FIG. 3: Φ-κ thermodynamic diagram of an Ericcson-like cycle where (i) an isothermal expansion

(red path); (ii) an isobaric expansion process (BC green path); (iii) an isothermal compression

(blue path) and (iv) an isobaric compression process (DA gray path).

isothermal processes, where κ changes but T remains constant, and two quasistatic isobaric

processes where both κ and T change simultaneously. The four stages of the Ericsson cycle

can be stated as follows:

i) Isothermal expansion process (A → B): The optical trap expansion-space is heated at

Th = const, changing from κ4 → κ3 (κ3 < κ4). Besides, (∆E)AB = 0 and QAB = −WAB,

see Eqs. (10) and (11).

ii) Isobaric expansion process (B → C): The expanded space for a Brownian particle

changes from κ3 → κ1, (κ1 < κ3) and picks up heat at a high constant-Φu value from

Th → Tc. Then, from Eqs. (7) and (8)

WBC = Φu

∫ κ1

κ3

dκ = Φu (κ1 − κ3) =
k

B

2
(Tc − Th) < 0, (22)

QBC =
k

B

2

∫ Tc

Th

dT =
k

B

2
(Tc − Th) < 0. (23)

where the equation-like state 2Φ = 〈x2〉, has been used to obtain Eq. (23).

iii) Isothermal compression process (C → D): The compression space for the colloidal

particle is cooled at Tc = const, modifying κ from κ1 → κ2 (κ2 > κ1), as well as QCD =

−WCD, see Eqs. (12) and (13).

iv) Isobaric compression process D → A): The compressed space of the optical trap
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κ2 → κ4 (κ4 > κ2) is carried out by decreasing the thermal environment at low constant- Φl

value from Tc → Th. Thus,

WDA = Φl

∫ κ4

κ2

dκ = Φl (κ4 − κ2) =
k

B

2
(Th − Tc) > 0, (24)

QDA =
k

B

2

∫ Th

Tc

dT =
kB
2

(Th − Tc) > 0. (25)

For this cycle, the total work performed is: Wtot = WAB +WBC +WCD +WDA. The total

heat input to the cycle is Qin = QAB + 1
2
kB(Th − Tc), the one absorbed in the hot isotherm

and in the isobaric branch, in this case, as in the Stirling cycle, a possible heat regeneration

mechanism can be proposed, in such a way that Qin = QAB + 1
2
(1− ρ

E
)kB(Th − Tc), where

ρ
E
is associated with the efficiency of the regenerator between isobaric branches. Thus, the

expression for the efficiency for this Ericsson-like cycle reads:

η =
Wtot

Qin

=

kB
2

[

Th ln
(

κ1

κ2

)

− Tc ln
(

κ4

κ3

)]

kB
2
Th

[

ln
(

κ1

κ2

)

+ (1− ρ
E
)
(

1− Tc

Th

)] =

(

1− Tc

Th

)

ln
(

κ1

κ2

)

ln
(

κ1

κ2

)

+ (1− ρ
E
)
(

1− Tc

Th

) , (26)

since κ1 = (T 2
c /T

2
h )κ3 and κ2 = (T 2

c /T
2
h )κ4. Additionally, as in the Stirling cycle, 0 ≤ ρ

E
≤ 1,

where ρ
E
= 1 would emulate an ideal regeneration, while ρ

E
= 0 implies null regeneration

at the isobaric processes.

III. LOW-DISSIPATION METHODOLOGY

Once we have obtained from Eq. (4) the equilibrium properties of the above three cycles,

we proceed to obtain the efficiency at maximum power for each out of equilibrium cycle,

in which dissipative processes inevitably appear. The newly state-of-the-art for optical

trapping techniques use the pressure radiation and a focused beam of light to hold in place,

or move small-scale objects inside low-density thermal environments [45, 46]. Despite the

efforts through standard ways to control the temperature of environments [47, 48], the kinetic

contribution for the transport of colloids typically presents drift-diffusion processes, whose

nature is purely dissipative. For a heat engine, if τ is the cycle duration, the average of

extracted work is proposed as 〈W 〉 = 〈W∞〉 + 〈Wdis〉, where 〈W∞〉 is the mean quasistatic

work for longer cycle times and 〈Wdis〉 is the mean irreversibly dissipated work per cycle.

13



〈W 〉 = 〈W∞〉+ 〈Wirr〉 and the heat exchanged 〈Q〉 take into account the term (TΣ/τ) > 0,

related to the ratio of entropy production (positive dissipation) per cycle. That is,

〈Q〉 = 〈Q∞〉 −
TΣ

τ
, (27)

where the subscript ∞ represents the average observable quantities at the quasistatic limit.

In an analogous way to the irreversible phenomena that unavoidably takes place in macro-

scopic heat engines operating at finite cycle times, the parameter Σ represents the internal

irreversibilites due to the coupling between the optical trapped particle and the thermal

environment. The out of equilibrium process characterized by the macroscopic Eq. (5) with

time-dependent stiffness κ(t) and temperature T (t) can be quantified by a dissipation factor

Σ. This way to describe the performance of energy conversion processes matches the low

dissipation scheme for heat engines [28, 49].

A. Performance of an irreversible Carnot-like cycle

In the model of Carnot cycle, the heat exchanges with the thermal baths only take place

in the isothermal branches. In this work, following the idea of Esposito et al. [28], an

ensemble of colloidal particles in contact with thermal baths is now considered. But each

particle is in contact with the reservoirs for a time τ1 at the hot branch and τ2 at the cold

branch, with τ1 and τ2 being finite times. Under this scheme, there is an entropy production

per cycle equals to

Σ̇N =
Σ1

τ1
+

Σ2

τ2
(28)

The quasistatic regime is reached when τ1 → ∞ as well as τ2 → ∞. That is, there is total

exchanged heat due to an amount of dissipated energy for each process. Thus,

Q1 = Tc

(

−∆S −
Σ1

τ1

)

Q2 = Th

(

∆S −
Σ2

τ2

)

.

(29)

In the weak dissipation approximation Σ1 and Σ2 express the increase of dissipated energy

when the processes are carried out at finite time. Then, from eqs. (11) and (13) the power

output for this Brownian Carnot-like cycle is given by

P ≡
−W

τ
=

(Th − Tc)∆S −
(

TcΣ1

τ1
+ ThΣ2

τ2

)

τ1 + τ2
=

kB
2
(Th − Tc) ln

(

κ1

κ2

)

−
(

TcΣ1

τ1
+ ThΣ2

τ2

)

τ1 + τ2
. (30)
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Under these assumptions, a system can achieve the so-called maximum power output regime,

when the derivatives of P with respect to τ1 and τ2 equal to zero. After substituting Eqs.

(11) and (13) into Eq. (30), the physical attainable solution for τ1 and τ2 are

τ ∗1 =
2TcΣ1

(Th − Tc)∆S

(

1 +

√

ThΣ2

TcΣ1

)

τ ∗2 =
2ThΣ2

(Th − Tc)∆S

(

1 +

√

TcΣ1

ThΣ2

)

.

(31)

The same expressions founded by Esposito et al. [28] for a traditional heat engine performing

finite-time Carnot cycles. By considering Eqs. (29) and (31), as well as the expression for

the efficiency [see Eq. (14)], the efficiency at maximum power regime is obtained as follows:

η
MP

=
(Th − Tc)

(

1 +
√

TcΣ1

ThΣ2

)

Th

(

1 +
√

TcΣ1

ThΣ2

)2

+ Tc

(

1− Σ1

Σ2

)

. (32)

For a symmetric dissipation case (Σ1 = Σ2), the well-known Curzon-Ahlborn efficiency is

recovered.

η
MP

= 1−
√

1− η
C
= 1−

√

Tc

Th

≡ η
CA

. (33)

On the other hand, when asymptotic asymmetric cases are considered, Σ1/Σ2 → 0, lead ηMP

tends to an upper bound, namely ηu
MP

= ηC/2−ηC . Likewise, if Σ1/Σ2 → ∞ then ηMP tends

to a lower bound: ηlMP = ηC/2. Fig. 4 shows ηMP as function of θ (where θ = Tc/Th), and

the physically attainable region for the performance of these Brownian systems within the

weak dissipation approach in the same way as in [50, 51]. The experimental value (θ ≈ 0.57,

ηMP ≈ 0.25) obtained for the efficiency at maximum power of the Carnot cycle developed

with a Brownian particle [18] is also shown, and it is located in the physical attainable region

(see Fig. [4]). This shows that considering a low dissipation model, where all irreversibilities

are quantified through the isothermal branches and the adibatic branches as instantaneous,

is consistent with the experimental results.

B. Performance of irreversible Stirling and Ericsson-like cycles

The other two symmetric block-thermodynamic cycles (Stirling and Ericsson cycles), can

be also studied within the weak dissipation approximation. From [15], the experiment for

a stochastic Stirling heat engine, there is reported that it had been performed along two
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FIG. 4: Energetic performance map at maximum power of an irreversible Carnot-like cycle as

function of θ. The well-known Curzon-Ahlborn efficiency is denoted by the solid line. The upper

and lower bound for the asymmetric cases are marked by a dot-dashed line and a dashed line,

respectively.

isothermal processes and, due to the difficulties to keep hot and cold reservoirs thermally

isolated the temperature of the surrounding liquid is suddenly changed in the isochoric pro-

cesses. Therefore, considering the sources of irreversibilities only in the isothermal branches

is not an unviable assumption and the approach of a low dissipation model can be considered

for this cycle. Similarly, for the Ericcson cycle it will be assumed that the irreversibilities

come from the isothermal branches, while in the isobaric type the thermal bath and the

potential stiffness are changed simultaneously and instantaneously. On the other hand, the

total ratio of entropy production per cycle of the protocol evolution is expressed by Eq.(28).

Due to the symmetry along isochoric and isobaric processes, the same expression for

the entropy transfer as in the Brownian-Carnot cycle is recovered, and therefore the power

output for these Brownian Stirling-like and Ericsson-like cycle model [see Eq. (30)].

For the case of a Brownian Stirling cycle and after substituting Eqs. (29) and (31) into

Eq.(21), the efficiency at maximum power output reads:

ηS
MP

=
(Th − Tc)

(

1 +
√

ThΣ2

TcΣ1

)

Th

(

1 +
√

TcΣ1

ThΣ2

)2

+ Tc

(

1− Σ1

Σ2

)

+ 4(1−R
S
)(Th − Tc)

(

1 +
√

TcΣ1

ThΣ2

)

, (34)
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like processes (ρ
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= ρ
E

= 0.1), while (b) and (d) represent arbitrary high regeneration ones

(ρ
S

= ρ
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= 0.55). The efficiency for symmetric dissipation cases is denoted by the solid line.

Likewise, the upper and lower bound for the asymmetric cases are marked by a dot-dashed line

and a dashed line, respectively.

where (1 − R
S
) = (1 − ρ

S
) [ln (κ1/κ2)]. For the symmetric dissipation case (Σ1 = Σ2), the

efficiency at maximum power output of a Stirling-like cycle is:

ηSS
MP

=
η
CA

1 + 4(1− R
S
)η

CA

. (35)

The asymmetric cases for this cycle represent two limits, the first (Σ1/Σ2) → 0, leads to

the upper bound η+S
MP = ηC/[2(1+2(1−R

S
)ηC )−ηC]. On the other hand, when (Σ1/Σ2) → ∞, the

lower bound is η−S
MP = ηC/2[1+2(1−R

S
)ηC].

Figs. 5.a and 5.b depict the behavior of ηMP as function of θ. The energetic performance
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of these Brownian systems is sketched for two cases: In a) it is emulated a low regeneration

process (ρ
S
= 0.1) while in b) a high regeneration one (ρ

S
= 0.55). Now, the experimental

value (θ ≈ 0.82, ηSMP ≈ 0.075; denoted by blue and red diamonds) for a Stirling-like cycle

was obtained by [15], and it is in agreement with the physical attainable region for a low

regeneration process (Fig. 5.a).

Likewise, the efficiency at maximum power output regime for a Ericsson-like cycle is

obtained from Eqs. (26), (29) and (31),

ηEMP =
(T2 − T1)

(

1 +
√

T1Σ1

T2Σ2

)

T2

(

1 +
√

T1Σ1

T2Σ2

)2

+ T1

(

1− Σ1

Σ2

)

+ 2(1−R
E
)(T2 − T1)

(

1 +
√

T1Σ1

T2Σ2

)

, (36)

where (1−R
E
) = (1− ρ

E
) [ln (κ1/κ2)]

−1. By assuming the symmetric dissipation (Σ1 = Σ2),

the efficiency ηEMP is:

ηES
MP =

ηCA

1 + 2(1− R
E
)ηCA

. (37)

Now, the asymmetric cases can also be studied, the first (Σ1/Σ2) → 0, leads to the upper

bound η+E
MP = ηC/[2(1+(1−R

E
)ηC)−ηC ]. On the other hand, when (Σ1/Σ2) → ∞, the lower bound

is η−E
MP = ηC/2[1+(1−R

E
)ηC ].

In the same way, Figs. 5.c and 5.d also depict the behavior of ηMP as function of θ.

The energetic performance for a proposal of Brownian systems with a Ericsson-like cycle

can be sketched for the same two cases: In c), a low regeneration process (ρ
E
= 0.1), in d)

for a high regeneration one (ρ
E
= 0.55). Note, the general expressions for the performance

of Brownian engines at maximum power (see Eqs.(32), (34) and (36)) show an energetic

hierarchy namely, ηSMP < ηEMP < ηMP . The value (θ ≈ 0.69, ηEMP ≈ 0.16; denoted in purple

diamonds) shown in Figs. 5.c and 5.d has been inferred through a linear interpolation;

that is, as η = η(θ), it is possible to determine the equation of the line passing through

(θSMP , η
S
MP ) and (θMP , ηMP ); therefore, a qualitative (θEMP , η

E
MP ) can be obtained. Then,

by considering the same Brownian system in [[15, 18]], it can be determined the guidelines

to emulate an Ericsson-like cycle under analogous thermodynamics conditions to the Carnot

and Stirling-like ones.

Thus, Carnot, Stirling and Ericsson-like cycles exhibit different constrained performance

maps (see Fig. 5). These graphs explicitly show that the contribution of the absorbed

heat by the isochoric and isobaric paths limit the performance of the Brownian system.

Moreover, the existence of a controlled regeneration system would make it possible to
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compare the maximum power developed by both cycles with the Carnot one.

IV. CONCLUSIONS

In this paper, the strategy of low dissipation approach for macroscopic heat engines [28],

has been used to calculated the efficiency at maximum power of three Brownian heat en-

gines (Carnot, Stirling, and Ericsson-like cycles). In our case, the irreversible work and

heat averages exchanged by the system with the heat bath are proposed to satisfy that

〈W 〉 ≈ 〈W 〉∞ + Σ
τ
and 〈Q〉 ≈ 〈Q〉∞ − TΣ

τ
, where 〈W 〉∞ and 〈Q〉∞ are the work and heat

averages under equilibrium conditions, respectively. The equilibrium quantities are calcu-

lated through a state-like equation associated with 〈x2〉, coming from a macroscopic Eq. (5)

and this latter from Langevin Eq. (2). In our proposal we do not use a specific protocol for

κ(t) and T (t) to quantify the non-equilibrium thermodynamic quantities, instead, we take

advantage of low dissipation approach and use the dissipation parameter Σ to calculate the

efficiency at maximum power for the three aforementioned Brownian heat engines. Inspired

by the experiment carried out by Blickle and Bechinguer [15], we consider that the pair of

non-isothermal branches in each cycle are instantaneous. That is, for the Carnot-like cycle

the adiabatic ones, for the Stirling-like cycle the isochorics and for the Ericsson-like cycle

the isobarics. And therefore the irreversible effects are only taken into account in the two

isothermal processes.

Our proposal shows that in the case of a stochastic Carnot-like heat engine, the efficiency

at maximum power is quite similar to the one reported in [28] for macroscopic heat engines.

Also, in the case for which Σ1 = Σ2, it recovers the well known Curzon-Alborn efficiency.

While the limits for the asymmetric case an efficiency region is delimited (see Figs. 4 and

5), which in the cases of Stirling and Ericsson-like cycles depend on the possible so-called

regeneration mechanism (Fig. 5). From the experimental works that have been carried out

for the Carnot and Stirling-like cycles [15, 18], interpolates a possible experimental value that

would reproduce an Ericsson-like cycle within the interval 0.57 ≤ θ ≤ 0.82. Additionally, a

hierarchy for the efficiencies of the three cycles were found (ηSMP < ηEMP < ηMP ).
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[33] C. A. Plata, D. Guéry-Odelin, E. Trizac, and A. Prados. Building an irreversible carnot-like

heat engine with an overdamped harmonic oscillator. J. Stat. Mech. Theory Exp., 2020(9):

093207, 2020.
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[44] L. Dinis, I. A. Mart́ınez, É. Roldán, J. M. R. Parrondo, and R. A. Rica. Thermodynamics at

the microscale: From effective heating to the brownian carnot engine. J. Stat. Mech. Theory

Exp., 2016(5):054003, 2016. doi: 10.1088/1742-5468/2016/05/054003.

[45] A. Ashkin, J. M. Dziedzic, and T. Yamane. Optical trapping and manipulation of single cells

using infrared laser beams. Nature, 330(6150):769–771, 1987. doi: 10.1038/330769a0.

[46] A. Ashkin and J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria.

Science, 235(4795):1517–1520, 1987. doi: 10.1126/science.3547653.

[47] K. Svoboda, C. F. Schmidt, D. Branton, and S. M. Block. Conformation and elasticity

of the isolated red blood cell membrane skeleton. Biophys. J., 63(3):784–793, 1992. doi:

10.1016/S0006-3495(92)81644-2.

[48] M. C. Leake, D. Wilson, M. Gautel, and R. M. Simmons. The elasticity of single titin

molecules using a two-bead optical tweezers assay. Biophys. J., 87(2):1112–1135, 2004. doi:

10.1529/biophysj.103.033571.

[49] J. Gonzalez-Ayala, J. M. M. Roco, A. Medina, and A. Calvo Hernández. Carnot-like heat

engines versus low-dissipation models. Entropy, 19(4):182, 2017. doi: 10.3390/e19040182.

[50] L. Chen and Z. Yan. The effect of heat-transfer law on performance of a two-heat-source

endoreversible cycle. J. Chem. Phys., 90(7):3740–3743, 1989. doi: 10.1063/1.455832.

[51] B. Gaveau, M. Moreau, and L.S. Schulman. Stochastic thermodynamics and sustainable

efficiency in work production. PRL, 105(6):060601, 2010. doi: 10.1103/PhysRevLett.105.

060601.

23


	I Introduction
	II Stochastic heat engine
	A Quasistatic description of Brownian heat engines
	B Carnot-like cycle
	C Stirling-like Cycle
	D Ericsson-like Cycle

	III low-dissipation methodology
	A Performance of an irreversible Carnot-like cycle
	B Performance of irreversible Stirling and Ericsson-like cycles

	IV Conclusions
	 Acknowledgments
	 References

