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Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a
wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest
is to decipher the physical mechanisms encoded in the data and thus to better understand the probed
systems. We here augment recently proposed machine-learning techniques for decoding anomalous-
diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid
the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-
Gaussian is used to train models for both the classification of the diffusion model and the regression
of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we
find that these models can achieve a well-calibrated error estimate while maintaining high prediction
accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the
underlying diffusion models, thus providing insights into the learning process of the machine and
the relevance of the output.

I. INTRODUCTION

In 1905 Karl Pearson introduced the concept of the
random walk as a path of successive random steps [1].
The model has since been used to describe random mo-
tion in many scientific fields, including ecology [2, 3],
psychology [4], physics [5], chemistry [6], biology [7] and
economics [8, 9]. As long as the increments (steps) of
such a random walk are independent and identically dis-
tributed with a finite variance, it will, under the Central
Limit Theorem (CLT) [10], lead to normal diffusion in
the limit of many steps. The prime example of this is
Brownian motion, which describes the random motion
of small particles suspended in liquids or gases [11–14].
Amongst others, normal diffusion entails that the mean
squared displacement (MSD) grows linearly in time [15–
17], 〈r2(t)〉 ∝ K1t.

In practice however many systems instead exhibit a
power law behaviour 〈r2(t)〉 ∝ Kαt

α of the MSD [18–
33], indicating that one or several conditions of the CLT
are not fulfilled. We refer to such systems as anoma-
lous diffusion. A motion with anomalous diffusion ex-
ponent 0 < α < 1 is called subdiffusive, whereas for
α > 1 it is referred to as superdiffusive (including bal-
listic motion with α = 2). In order to describe such
systems mathematically, many models have been pro-
posed, in which one or multiple conditions of the CLT
are broken [24, 25, 34]. Some important examples (see
section IVA for details) of such models are continuous-
time random walk (CTRW) [35–37], fractional Brown-
ian motion (FBM) [38], Lévy walk (LW) [39–42], scaled
Brownian motion (SBM) [43, 44] and annealed transient
time motion (ATTM) [45]. Sample trajectories for these
are shown in figure 1.

As each of these models correspond to different sources
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FIG. 1: Sample trajectories of normal (a) and anomalous (b)
diffusion. All shown trajectories are corrupted by white Gaus-
sian noise.

of anomalous diffusion, determining the model underly-
ing given data can yield useful insights into the physical
properties of a system [18–22, 46, 47]. Additionally one
may wish to determine the parameters attributed to these
models, the most sought-after being the anomalous diffu-
sion exponent α and the generalised diffusion coefficient
Kα [18, 48]. The used experimental data typically con-
sist of single particle trajectories, such as the diffusion of
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FIG. 2: Illustration of the problem of reliability in deep learning. The illustration depicts the use of a neural network to predict
the anomalous exponent α for two sample trajectories. Despite receiving severely different inputs, a classical neural network
may still predict the same output (anomalous diffusion exponent α = 1) for both cases. The difference between the outputs
only becomes clear when predicting not just the output itself but a distribution over all possible outputs, as it is done, for
example, in Bayesian Deep Learning.

a molecule inside a cell [7, 30–33, 47, 49], the path of an
animal [2, 3, 50] or the movement of stock prices [8, 51].

Plenty of techniques have been developed to tackle
these tasks, usually through the use of statistical observ-
ables. Some examples include the ensemble averaged or
time averaged MSD to determine the anomalous diffusion
exponent and/or differentiate between a non-ergodic and
ergodic model [52], the p-variation test [53], the velocity
auto correlation for differentiation between CTRW and
FBM [28], the single trajectory power spectral density to
determine the anomalous diffusion exponent and differ-
entiate between models [54, 55], the first passage statis-
tics [56] and the codifference [57]. Such techniques may
struggle when the amount of data is sparse and, with its
rise in popularity, successful new methods using machine
learning have emerged in recent years [58–60].

In an effort to generalise and compare the different ap-
proaches the Anomalous Diffusion (AnDi) Challenge was
held in 2020 [61, 62]. The challenge consisted of three
tasks, among them the determination of the anomalous
diffusion exponent α and the underlying diffusion model
from single particle trajectories. The entries included a
wide variety of methods ranging from mathematical anal-
ysis of trajectory features [63, 64], to Bayesian Inference
[65–67], to a wide variety of machine learning techniques
[59, 68–77]. While the best results were achieved by deep
learning (neural networks), this approach suffers from the
so-called Black Box Problem, delivering answers without
providing explanations as to how these are obtained or
how reliable they are [78]. In particular, outputs are gen-
erated even in situations when the neural network was
not trained for the specific type of motion displayed by
the system under investigation. In this work, we aim
at alleviating this problem by expanding the deep learn-
ing solutions to include an estimate of uncertainty in the
given answer, as illustrated in figure 2. This is a fea-
ture that other techniques like Bayesian Inference can
intrinsically provide [65–67].

Such a reliability estimation is a well known problem
in machine learning. For neural networks the solutions
vary from the calibration of neural network classifiers [1–
3, 79], to using an ensemble of neural networks and ob-
taining an uncertainty from the prediction spread [83],
to fully modelling the probability distribution of the out-
puts in Bayesian Neural Networks [84]. In recent years
the latter has been expanded to be applicable to deep
neural networks without resulting in unattainable com-
putational costs. These Bayesian Deep Learning (BDL)
techniques approximate the probability distribution by
various means, for instance, by using drop out [85, 86]
or an ensemble of neural networks [83]. We here decided
on using a method by Maddox et al. named Stochas-
tic Weight Averaging Gaussian (SWAG), in which the
probability distribution over the network weights is ap-
proximated by a Gaussian, obtained by interpreting a
stochastic gradient descent as an approximate Bayesian
Inference scheme [87, 88]. We find that these methods
are able to produce well calibrated uncertainty estimates,
while maintaining the prediction performance of the best
AnDi-Challenge solutions. We show that analysing these
uncertainty estimates and relating them to properties of
the diffusion models can provide interesting insights into
the learning process of the machine.

The paper is structured as follows. A detailed analysis
of our results for regression and classification is presented
in section II. These results are then discussed and put
into perspective in section III. A detailed explanation
of the utilised methods is provided in section IV. Here
we provide a brief introduction to the different anoma-
lous diffusion models in subsection IVA and the used
SWAG method in subsection IVB. Subsequently the neu-
ral network architecture and training procedure used in
our analysis is presented in subsection IVC. The Sup-
plementary Information details the reliability assessment
methods and provides supplementary figures.
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II. RESULTS

In the following we employ the Methods detailed in
section IV to construct the Multi-SWAG [88] models and
use these to determine the anomalous diffusion exponent
α or the diffusion model of computer generated trajecto-
ries. We also provide detailed error estimates to qualify
the given outputs. These estimates consist of a standard
deviation for regression and model probabilities for clas-
sification. The trajectories are randomly generated from
one of the five diffusion models: continuous-time ran-
dom walk (CTRW) [35–37], fractional Brownian motion
(FBM) [38], Lévy walk (LW) [39–42], scaled Brownian
motion (SBM) [43, 44] or annealed transient time mo-
tion (ATTM) [45], as detailed in section IVA. We evalu-
ate the performance of the uncertainty estimation for the
regression of the anomalous diffusion exponent (section
II A) and the classification of the diffusion model (section
II B). We find that for both classification and regression
the added error estimate does not diminish performance,
such that we can still achieve results on par with the best
AnDi-Challenge competitors. The added error estimate
proves to be highly accurate even for short trajectories,
an observation that merits a detailed investigation of its
behaviour. We analyse the error prediction behaviour
depending on the diffusion model, anomalous diffusion
exponent, noise and trajectory length in order to ob-
tain insights into the learning process of the machine.
To differentiate between error predictions due to model
uncertainties and those inherent in each model, we fur-
ther analyse the predicted uncertainties for the inference
of the anomalous diffusion exponent with known ground
truth diffusion model in section II A 1. We show that
the observed dependencies can be attributed to specific
properties of the underlying diffusion models.

A. Regression

In order to quantify the performance of our Multi-
SWAG [88] models we test them on a new set of com-
puter generated trajectories using the andi-datasets

package. For the general prediction of the anomalous
diffusion exponent α we obtain results comparable to the
best participants in the AnDi-Challenge [59, 62, 63, 65–
77]. The achieved mean average error for different tra-
jectory lengths in figure 3a shows an expected decreasing
trend with trajectory length.

To analyse the performance of the error prediction we
use a reliability diagram [1, 2, 79] in figure 3b. The figure
depicts the observed root mean squared error (RMSE)
from the ground truth exponent as a function of the pre-
dicted root mean variance (RMV) (see Supplementary
Information for detailed definitions). Grouping together
predictions within a range of 0.02, we see results close
to the ideal of coinciding predictions and observations.
As is to be expected, longer trajectories show smaller
predicted errors, yet, the higher errors for very short tra-

jectories of only 10 time steps are still predicted remark-
ably well. The results of the reliability diagram can be
summarised using the Expected Normalised Calibration
Error (ENCE) [3], which calculates the normalised mean
deviation between observed and predicted uncertainty.
Figure 3c shows a low ENCE between 0.6% and 2.3%,
which increases with trajectory length. This increase can
be attributed to the decrease in predicted standard de-
viations, which results in a higher normalised error due
to the fact that the unnormalised expected calibration
error (ECE) only shows a slight decrease with trajectory
length, as can be seen in figure 3d.

In order to better understand how the network ob-
tained these predictions, it proves useful to observe the
frequency of predicted standard deviations in figure 3e.
The histograms there show how often which error is pre-
dicted for different ground truth models.

For very short trajectories (T = 10) we observe a
split of the predictions into two peaks. This obser-
vation can be attributed to the different priors of the
ground truth models. If the network can confidently
identify the trajectory as belonging to one of the only
sub-/superdiffusive models (CTRW/LW/ATTM), it can
predict (and achieve) a smaller error due to the reduced
range of possible α-values. From the different heights
of this second peak, we can also conclude that, for very
short trajectories, LW is easier to identify than CTRW
or ATTM. This is likely due to the fact that LWs have
long structures without a change in direction, that can
be fairly easily identified, while CTRWs with long resting
times will be particularly camouflaged by the noise and
ATTMs without jumps in the diffusivity will be indistin-
guishable from normal diffusion. Other than identifying
the model the network does not seem to gain much infor-
mation from these short trajectories as the two peaks are
close to the maximum predicted errors one would expect
with respect to the priors. FBM trajectories, however,
are an exception to this, as one may already see a small
amount of very low predicted errors, which will be further
studied in section II A 1.

When increasing the trajectory lengths we see lower
error predictions for all models. Both FBM and SBM
achieve lower predicted errors than the other three mod-
els, despite the larger range of α, which may be attributed
to the fact that they do not rely on hidden waiting times,
in contrast to the other three models. While we see
FBM’s accuracy increasing faster than SBM’s at the be-
ginning for T = 100, we obtain similar predicted errors
for the two models for T = 500. This may be caused by
SBM being highly influenced by noise (see section II A 1)
and thus easier to be confused with ATTM, since both
feature a time dependent diffusivity. The errors intro-
duced by model confusion can also be observed in the
persisting second peak. As we will see below, this peak
can be understood as a property of ATTM. An ATTM
trajectory with no jumps in diffusivity, which will oc-
cur more often for very subdiffusive trajectories (small
α), will be indistinguishable from normal diffusion with



4

10 100 500
Trajectory Length T

0.15

0.20

0.25

0.30

0.35

0.40
M
AE

a

0.0 0.2 0.4 0.6
predicted RMV

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ob
se
rv
ed
 R
M
SE

b
T=10
T=100
T=500

10 100 500
Trajectory Length T

0.75

1.00

1.25

1.50

1.75

2.00

2.25

EN
CE

 %

c

10 100 500
Trajectory Length T

2.6

2.8

3.0

3.2

3.4

EC
E

1e−3d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
predicted error (std)

0

5

10

15

20

25

30

co
un

t %

e T=10
attm
ctrw
fbm
lw
sbm

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
predicted error (std)

T=100
attm
ctrw
fbm
lw
sbm

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
predicted error (std)

T=500
attm
ctrw
fbm
lw
sbm

FIG. 3: Performance evaluation for the regression of the anomalous exponent α. (a) Mean Absolute Error (MAE), (b) reliability
diagram and Expected (c) Normalised and (d) non-normalised Calibration Error (ENCE/ECE)[3] achieved by Multi-SWAG (see
Supplementary Information for detailed definitions). Results are plotted for different trajectory lengths T by averaging over 105

test trajectories each. The MAEs (a) show a decreasing trend with trajectory length, with results close to those achieved in the
AnDi-Challenge, reaching an MAE of 0.14 for T = 500. To judge the error prediction performance, the reliability diagram (b)
depicts the observed root mean squared error (RMSE) as a function of the predicted root mean variance (RMV), showing that
even for very short trajectories T = 10 an error prediction close to the ideal (grey line) is achieved. The reliability diagram can
be summarised in a single value using the ECE/ENCE. The ENCE/ECE characterises the mean difference between predicted
and observed errors, either normalised to obtain a relative error (ENCE) or as an absolute (ECE). As visible in (b), we obtain
good error predictions with an ENCE between 0.6 − 2.3% depending on the trajectory length. The increase in ENCE with
trajectory lengths can be attributed to the decrease in MAE (and therefore predicted errors), while the unnormalised ECE only
shows a slight trend of decreasing with trajectory length. The low ECE for T = 10 is due to the high number of trajectories
predicted with near maximal error.
(e) Predicted error histogram for inferring the anomalous diffusion exponent α when the underlying model is unknown. The
figure shows the distribution of the error as predicted by Multi-SWAG trained on all models. Each subplot shows the results
for a different trajectory length T , as obtained from predictions on 105 trajectories.

α = 1, thereby introducing a large error. Due to the
uncertainty in the underlying model this predicted error
is also present for both FBM and SBM, both exhibiting
ordinary Brownian Motion for α = 1.

Analogously to the other models the predicted error for
LW and CTRW reduces with increased trajectory length.
CTRW shows less error than LW for T = 100, which may
be attributed to the smaller prior used for the CTRW
trajectories 0.05 ≤ α ≤ 1 compared to LW 1 < α ≤ 2.
For T = 500 this difference vanishes, as the importance
of different priors decreases with better accuracy, and we
even see a slightly lower predicted error for LW.

1. Single Model Regression

In order to differentiate between errors originating
from the model uncertainty and errors specific to an indi-
vidual model, it proves useful to perform a regression of
the anomalous diffusion exponent α on only a single dif-
fusion model with networks trained on only that model.
As before we are able to obtain small ENCEs below 3%,
as seen in figure 4. Due to this low calibration error the
achieved MAEs in figure 4 largely resemble the predicted
errors in the histograms in figure 5, which will be dis-
cussed in detail in the following. In addition we analyse
the change in predicted errors with respect to the ground
truth exponent and the noise, using the histograms in fig-
ures 6a to 6e for trajectories of length T = 100, as well
as supplementary figure S1 for lengths T = 10 and 500.
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FIG. 4: Performance evaluation for regression when the un-
derlying model is known. (a) Mean Absolute Error (MAE)
and (b) Expected Normalised Calibration Error (ENCE)[3]
achieved by the Multi-SWAG models trained on only one
model, plotted for different trajectory lengths T by averaging
over 5 × 104 (FBM, SBM) or 4 × 104 (ATTM, LW, CTRW)
test trajectories each. The ENCE characterises the mean dif-
ference between predicted and observed errors. As was the
case for the unknown ground truth model (figure 3), we can
achieve a small calibration error below 3%. The MAE shows
the expected results with regards to the histograms in figure
5.

a. FBM. As one expects, due to the larger prior,
FBM’s error predictions for very short trajectories (T =
10) are larger than the three exclusively sub- or superdif-
fusive models. Compared to SBM and the performances
for unknown ground truth models in figure 3e, these er-
rors are, however, remarkably low, showing that, while
the correlations for very short trajectories were not no-
ticeable enough to identify them as FBM above, they are
enough to significantly improve the performance when
they are known to be FBM trajectories. Additionally
one may also notice a small percentage of trajectories
assigned with very low predicted error, which can also
be seen for longer trajectories but is less noticeable. As
before, we see that the predictions quickly improve for
longer trajectories and ultimately reach better results
than for ATTM, LW, or CTRW.

By studying the dependence of the predicted error on
the ground truth exponent in figures 6a and S1, we can
attribute the low error predictions to the very super-
/subdiffusive trajectories, for which correlations are ap-
parent. This feature occurs despite of the fact that for
short trajectories only the superdiffusive trajectories con-
tribute, which is likely caused due to anticorrelations
in short trajectories being similar to noisy trajectories.
Concerning the dependence on noise we only see a slight
increase in the predicted accuracy for lower noise regard-
less of the trajectory length, although the possibility of
high noise likely influences the predictions, as explained
above.

b. SBM. Similar to FBM, due to the large prior,
SBM trajectories start with high error predictions for
very short trajectories in figure 5. In contrast to FBM,
however, these predictions are much higher, since a
change in diffusivity will be hard to detect for few time
steps. When increasing the lengths, the predictions im-

prove, getting close to those for FBM for T = 500. Sim-
ilar to above, we also observe a noticeably broad distri-
bution of errors, this time however to the right side of
the peak. We can explain this broadness by examining
the noise dependence of the predictions in figure 6b (and
S1). We see a large difference between predicted errors
depending on noise. For example, for length T = 100 we
obtain a mean predicted standard deviation of ≈ 0.032
for low noise (snr = 10) and ≈ 0.082 for high noise
(snr = 1), more than doubling the error. We can at-
tribute this effect due to the influence of static noise on a
trajectory, whose increments increase/decrease over time
for super-/subdiffusive trajectories. This will effectively
hide part of the data under high noise, reducing the num-
ber of effectively useful data points.

When observing the dependence of the predicted error
on the ground truth exponent in figure 6b we can see
better predictions for the more pronouncedly sub- and
superdiffusive cases for length T = 100, showing that de-
spite the fact that part of these trajectories are hidden
under the noise, the large increase/decrease in diffusiv-
ity still makes these trajectories easier to identify. One
should also keep in mind that while these will be very
noisy at one end, they will also be less noisy at the other
end. The network does, however, assign a lower predicted
error for subdiffusive trajectories than for superdiffusive
ones, for which the difference increases for larger snr.
This may indicate, that the subdiffusive decrease in dif-
fusivity (∝ 1/t1−α → 1/t for α → 0) is easier to identify
than the superdiffusive increase (∝ tα−1 → t for α → 2).
The former will have a larger portion of the trajectory
hidden under the noise with a steep visible decrease at
the beginning, while the latter will increase more slowly,
leading to a smaller hidden portion but also making the
non-hidden part less distinct and the transition between
more ambiguous.

c. ATTM. In figure 5 we see a behaviour for ATTM
similar to what was discussed in the previous section.
This time the histogram starts for short trajectories as
a single peak close to the maximum prediction possible
with respect to the prior. With increasing length the
peak splits into two peaks, where the second peak, as
discussed above, originates from subdiffusive ATTM tra-
jectories with few or no jumps in the diffusivity. This sec-
ond peak decreases in volume for very long trajectories,
since observing no jumps becomes rarer and it becomes
easier to identify the still occurring, albeit small, jumps
in normal-diffusive (α = 1) ATTM trajectories. The sec-
ond point should also be the reason why the right peak is
less pronounced than in the case of unknown underlying
model in figure 3e, as it is easier to confuse subdiffu-
sive ATTM with normal-diffusive FBM/SBM than with
normal-diffusive ATTM.

For the α-dependence in figures 6c and S1 we can see
that, as expected, the right peak is more pronounced
for sub- and normal-diffusive trajectories. For length
T = 500 (figure S1) we also see that the lowest errors
originate from close to normal-diffusive trajectories, as
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FIG. 5: Predicted error histogram for inferring the anomalous diffusion exponent when the underlying model is known. The
figure shows the distribution of the error as predicted by neural networks trained individually for each model. The histograms
are obtained from predictions on 5× 104 (FBM/SBM) or 4× 104 (ATTM/LW/CTRW) trajectories.

these will exhibit more jumps and thereby allow to iden-
tify more waiting times. As for the influence of the noise,
in figure 6c (S1) we see a slight increase of the uncer-
tainty with higher noise, as well as the right peak being
more pronounced for higher noise, likely due to the fact
that the noise obscures the smaller jumps occurring in
normal-diffusive ATTM.

d. CTRW. As seen in figure 5 CTRW shows a sin-
gle peak, whose location shifts to lower predicted errors
with increasing trajectory length. When examining the
dependence on the ground truth α value and noise in fig-
ures 6d and S1, one can see that an increase in the noise
will have little effect on the predictions, only leading to a
slight increase in the predicted error. The largest differ-
ence is observed for very short trajectories in figure S1,
likely for the fact that the low noise here allows one to
detect the very few jumps in the short trajectories. The
exponent α, however, has a higher influence on the error
predictions. One can observe that the predicted error
will be smaller for exponents closer to normal diffusion,
arguably as more jumps occur in this case.

e. LW. The LW evaluation in figure 5 exhibits simi-
lar behaviour to the CTRW, showing a single peak shift-
ing toward lower predicted errors. As discussed above the
predictions for LW are slightly worse than for CTRW in
the beginning, which we attribute to the difference in the
prior. In figures 6e and S1, we see little to no influence of
the noise on the error predictions. From these figures one
may also obtain a similar, though much less pronounced,
behaviour in dependence of the ground truth α as for
CTRW. As was the case there we see lower predictions
for exponents close to normal diffusion, as more hidden
waiting times can be observed. Interestingly in figure
S1 we see that for long trajectories the predicted error
will also be reduced for very superdiffusive trajectories.
In part, this can be attributed to the distinct ballistic
α = 2 LW, but should also be caused by the noise as
superdiffusive LW with a few very long jumps is, in con-

trast to CTRW with few jumps, not highly influenced by
noise.

B. Classification

Complementing the discussion of the regression in sec-
tion II A, we now evaluate the trained Multi-SWAG mod-
els on the test data set. The achieved accuracies depicted
in figure 7a are in line with the best performing partic-
ipants of the AnDi-Challenge [59, 62, 63, 65–77]. As
one would expect the achieved accuracy increases with
trajectory length, starting from 44.9% for T = 10 and
reaching 91.7% for T = 500. In figure 7b we also see a
very good performance for error prediction, the expected
calibration error only ranging from 0.3 to 0.6 percentage
points. The ECE generally shows a decreasing trend with
increasing trajectory length, although very short trajec-
tories of T = 10 also achieved a low ECE, likely due to a
high number of trajectories predicted with very low con-
fidences. Remarkably even the confidences of the lower-
ranked predictions, relating to those models that were
not assigned the highest confidence, achieve similarly low
ECEs in figure 7c.

To further analyse the performance and error predic-
tion, we show the confusion matrices in figure 8a and the
mean predicted confidences in figure 8b. The confusion
matrices depict how often a model is predicted given a
specific ground truth models, thereby showing how often
and with which model each model is confused. As such
matrices do not consider the predicted confidences and
have already been thoroughly examined in other works
[59, 62, 63, 65–77], we will focus our investigation on the
second figure 8, which illustrates the mean predicted con-
fidences of each model for different ground truth models
in dependence of the true anomalous diffusion exponent
α. Note that while the mean confidence will in part re-
flect the predictions in the confusion matrix, this quan-



7

0.0 0.1 0.2 0.3 0.4 0.5 0.6
predicted error (s d)

0

5

10

15

20

25

30

35
co

un
  %

a a  m, T=100
0.0<α≤0.4
0.4<α≤0.8
0.8<α≤1

0.0 0.1 0.2 0.3 0.4 0.5 0.6
predic ed error (s d)

a  m, T=100
snr=10
snr=2
snr=1

0.0 0.1 0.2 0.3 0.4 0.5 0.6
predic ed error (s d)

0

10

20

30

40

50

60

co
un

  %

b c rw, T=100
0.0<α≤0.4
0.4<α≤0.8
0.8<α≤1

0.0 0.1 0.2 0.3 0.4 0.5 0.6
predic ed error (s d)

c rw, T=100
snr=10
snr=2
snr=1

0.0 0.1 0.2 0.3 0.4 0.5 0.6
predic ed error (s d)

0

5

10

15

20

25

30

co
un

  %

c fbm, T=100
0.0<α≤0.4
0.4<α≤0.8
0.8<α≤1.2
1.2<α≤1.6
1.6<α≤2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
predic ed error (s d)

fbm, T=100
snr=10
snr=2
snr=1

0.0 0.1 0.2 0.3 0.4 0.5 0.6
predic ed error (s d)

0

10

20

30

40

co
un

  %

d lw, T=100
1.0<α≤1.2
1.2<α≤1.6
1.6<α≤2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
predic ed error (s d)

lw, T=100
snr=10
snr=2
snr=1

0.0 0.1 0.2 0.3 0.4 0.5 0.6
predic ed error (s d)

0

5

10

15

20

25

co
un

  %

e sbm, T=100
0.0<α≤0.4
0.4<α≤0.8
0.8<α≤1.2
1.2<α≤1.6
1.6<α≤2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
predic ed error (s d)

sbm, T=100
snr=10
snr=2
snr=1

FIG. 6: Predicted error histogram for known ground truth model, split by exponent and noise for trajectories of length T = 100.
Each of the figures [(a) FBM, (b) SBM, (c) ATTM, (d) CTRW, (e) LW] shows the results for one of the five different ground
truth models, obtained from predictions on 5× 104 (FBM/SBM) or 4× 104 (ATTM/LW/CTRW) trajectories.

tity also provides additional, complemtary information,
as the confusion matrix only considers the models with
the highest membership score. In the following we anal-
yse the results for different ground truth models.

a. ATTM. ATTM trajectories generally show the
worst classification performance of the range of models
studied here. For very short trajectories (T = 10) we see
that the mean confidence splits among all models with
the lowest probabilities being assigned to the exclusively
superdiffusive LW. Reflecting the confusion matrix, the
confidences for SBM are the highest, likely due to both
SBM and ATTM featuring a time dependent diffusivity.
For longer trajectories we see the confidences for FBM
and SBM rise for lower α, which, as explained above,
can be attributed to that fact that ATTM without jumps
is indiscernible from ordinary Brownian motion. The

confusions for CTRW, which are most present for mod-
erately subdiffusive to normal-diffusive trajectories, can
be attributed to the fact that both models feature hid-
den waiting times and short periods of high diffusivity in
ATTM appear, similar to jumps in CTRW.

b. CTRW. Reflecting the high accuracies in the con-
fusion matrices, we observe high confidences for CTRW
for longer trajectories (T ≥ 100). For very subdiffusive
trajectories we see an increase in the predicted proba-
bility for FBM, which can be explained by the fact that
CTRWs without jumps solely consist of noise, which cor-
responds to an FBM trajectory with α = 0. We can also
observe a similar confusion behaviour between ATTM
and CTRW as was described for ATTM. For very short
trajectories (T = 10) the confidences for CTRW are rela-
tively high as compared to the other ground truth mod-



8

10 100 500
Trajectory Length T

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

EC
E

b

10 100 500
Trajectory Length T

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac
cu
ra
cy

a

1 2 3 4 5
Model Prediction Rank

0.000

0.001

0.002

0.003

0.004

EC
E

c
T=10
T=100
T=500

FIG. 7: Performance evaluation for the classification of the diffusion model. (a) Total accuracy and (b) Expected Calibration
Error (ECE) [1, 2] (see Supplementary Information for detailed definitions) achieved by Multi-SWAG, plotted for different
trajectory lengths T by averaging over 105 trajectories each. The ECE describes the difference one may expect between the
predicted confidence and the observed accuracy. As before we achieve a low calibration error between 0.3% and 0.6%. The
classification accuracy improves the longer the trajectory, achieving results similar to the best scoring models in the AnDi-
Challenge [62].
(c) Expected Calibration Error (ECE) [1, 2] achieved for lower-ranked predictions, meaning those models that were not assigned
the highest confidence. A prediction of rank i corresponds to the output with the ith highest confidence. Even these predictions
show low calibration errors below 0.5%. The vanishing ECE for the 4th and lower ranked predictions of long trajectories are
caused by them being correctly assigned a 0% probability.

els, and they increase with higher anomalous diffusion
exponent, which we attribute to the increase in jump
frequency with higher α. Here confidences for models
other than CTRW are split between ATTM, FBM, and
SBM with only small confidences assigned to the solely
superdiffusive LW.

c. FBM. Similarly to what we described in section
II A, for shorter trajectories, we see a large difference in
FBM confidences for very sub- and superdiffusive α. We
there hypothesised this difference to be caused by the
inability to discern very subdiffusive trajectories from
noise. This can be confirmed here, as subdiffusive tra-
jectories show the highest confusion with CTRW, which
without jumps solely consists of noise. For very short
trajectories we see an increase in LW confidence with
increasing α, likely due to highly correlated, very short
FBM trajectories looking similar to LW trajectories with-
out jumps. For longer trajectories one can observe low
FBM confidence at and around α = 1, which is caused
by FBM’s convergence to normal diffusion and leads to
split uncertainties between FBM, SBM, and ATTM. One
should note that the ATTM confidences here would not
correspond to a normal-diffusive ATTM but rather to a
strongly subdiffusive ATTM without jumps in diffusiv-
ity, as is evidenced by the mean confidences for ATTM
ground truth trajectories.

d. LW. In accordance to the high accuracies ob-
served in the confusion matrices, the mean confidences
for LW are high even for relatively short trajectories.
These high confidences occur, as LW is easily identifiable
even with few jumps. In fact the increase in confidence
with rising anomalous diffusion exponent suggests that
LW trajectories are easier to identify when fewer jumps
occur, which is in contrast to ATTM/CTRW, which both

feature a decrease in model confidence with fewer jumps.
One should also note the jump in confidence caused by
ballistic LW (α = 2).

e. SBM. As was the case for FBM, for longer SBM
trajectories we see the same confusion pattern between
SBM, ATTM, and FBM at and around normal diffusion
α = 1. However, we also see relatively high assigned con-
fidences for ATTM for subdiffusive trajectories, which we
again attribute to both models featuring time dependent
diffusivities. We see low confidences for SBM for very
short trajectories, likely due to a change in diffusivity
not being noticeable for so few data points.

In the supplementary figures S2a-c we include error
histograms similar to those used for regression. These
resemble the already discussed behaviour and indicate
in addition that the distribution of predicted errors of-
ten features a large number of trajectories predicted with
high confidences of 95% to 100%.

III. DISCUSSION

The AnDi-Challenge demonstrated the power of a rich
arsenal of successful machine learning approaches to anal-
yse anomalous diffusion trajectories. These proposed
models, however, all suffered from a lack of explainability
due to the Black Box problem, providing answers with-
out explanation, which also leads to an uncertainty in the
reliability and usefulness of the approaches for real-world
systems.

Here we expanded the successful machine learning so-
lutions featuring in the AnDi-Challenge by adding a
reliability estimate to the predictions of the machine.
This estimate was obtained by modelling aleatoric and
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epistemic uncertainties in the model, the latter by us-
ing a Bayesian machine learning techniques called Multi
Stochastic Weight Averaging Gaussian. We showed that
the resulting model is able to provide accurate error es-
timates even for very uncertain predictions when tested
on separate, but identically distributed, test data sets.
It was also demonstrated that these uncertainty predic-
tions provide an additional tool to understand how ma-
chine learning results are obtained. By analysing the pre-
diction behaviour with respect to diffusion model, noise,
anomalous diffusion exponent, and trajectory length, we
were able to relate its cause to the properties of the un-
derlying anomalous diffusion models. This analysis also
indicated that a network trained to predict the anoma-
lous diffusion exponent will already learn to differentiate
between the anomalous diffusion models. In our study
we also introduced the mean confidence diagrams and
showed that they provide vital information complemen-
tary to confusion matrices.

For future works testing the Multi-SWAG models on
diffusion data whose dynamics are not included in the
training set will be an interesting field of study. Such data
may include trajectories generated with different diffu-
sion models, a subordination or superposition of mod-
els or with changing models. Results here will indicate,
what behaviour one should expect when using these mod-
els on experimental data, as such data will rarely ex-
actly follow the theoretical models. Naturally though
this can and should not replace the need to test the de-
veloped methods here as well. Similarly it might be of
interest to analyse the results obtained when applying
these methods to “poisoned” (faulty) test data, e.g., when
non-Gaussian errors contaminate the data, non-trained
stochastic mechanisms are included, or the analysed time
series have missing points. As one would expect, this
leads to a higher predicted error due to the epistemic un-
certainty, as described in section IVB. Quantifying such
errors systematically will be an interesting question for
the future. We also mention that applying the used BDL
methods to the feature-based approaches for decoding
anomalous diffusion data brought forth recently [60, 75–
77] and analysing error prediction performance as well as
the impact of the different features on these error pre-
dictions, could also provide interesting insights. Another
interesting avenue could be provided by the third task
of the AnDi-Challenge, which consisted of predicting the
change point of a diffusion trajectory switching models
and/or exponent. Recent studies suggest that sequence
to sequence networks, predicting trajectory properties at
each time step, are suited to solve this task [62]. Here
BDL might provide an advantage in addition to the error
estimate, as one would expect the predicted uncertainty
to maximise at the change point and thereby simplify its
determination.

IV. METHODS

A. Anomalous Diffusion Models

For comparability the models considered in this work
are the same as those in the AnDi-Challenge [61, 62].
The trajectories are generated from one of the 5 models
below, all producing an MSD of the form 〈r2(t)〉 ∝ Kαt

α.
Examples for each model are shown in figure 1.

CTRW. The continuous-time random walk (CTRW)
is defined as a random walk, in which the times between
jumps and the spatial displacements are stochastic vari-
ables [35–37]. In our case, we are considering a CTRW
for which the waiting time distribution Ψ(τ) features
a power law tail Ψ(τ) ∝ τ−1−α with scaling exponent
0 < α < 1, thereby leading to a diverging mean waiting
time

∫

∞

0
τΨ(τ)dτ = ∞. The spatial displacements follow

a Gaussian law.
LW. The Lévy walk (LW) is a special case of a

CTRW. As above we consider power law distributed wait-
ing times Ψ(τ) ∝ τ−1−σ , but the displacements are cor-
related, such that the walker always moves with constant
speed v in one direction for one waiting time, randomly
choosing a new direction after each waiting time. One
can show that this leads to an anomalous diffusion expo-
nent α given by [42]

α =

{

2 if 0 < σ < 1 (ballistic diffusion)
3− σ if 1 < σ < 2 (superdiffusion).

(1)

FBM. Fractional Brownian motion (FBM) is char-
acterised by a long-range correlation between the incre-
ments. It is created by using fractional Gaussian noise
for the increments given by

〈ξfGn(t)ξfGn(t+ τ)〉 ∼ α(α− 1)Kατ
α−2 (2)

for sufficiently large τ , where α is the anomalous diffusion
exponent and Kα is the generalised diffusion constant
[38].

SBM. Scaled Brownian motion (SBM) features the
time dependent diffusivity K(t) = αKαt

α−1, equivalent
to the Langevin equation

dx(t)

dt
=

√

2K(t)ξ(t), (3)

where ξ(t) is white, zero-mean Gaussian noise [44].
ATTM. Similar to SBM, the annealed transient time

motion (ATTM) features a diffusion coefficient D vary-
ing over time. But in contrast to SBM, the change in
diffusivity is random in magnitude and occurs instanta-
neously in a manner similar to the jumps in a CTRW.
Here we consider diffusion coefficients sampled from the
distribution P (D) ∝ Dσ−1 and use a delta distribution
of waiting times P (τ) ∝ δ(τ −D−γ), with σ < γ < σ+1.
As shown in [45], this leads to subdiffusion with α = σ/γ.

We use the andi-datasetsPython package for the im-
plementation of these models [89]. In an effort to simu-
late conditions closer to experimental situations, all data
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are corrupted by white Gaussian noise with the signal to
noise strength ratio snr ∈ {1, 2, 10}. Given the trajectory
xt, we obtain the noisy trajectory x̃(t) = x(t)+ ξ(t) with
the superimposed noise

ξ(t) ∼
σ∆x

snr
N (0, 1), (4)

where σ∆x is the standard deviation of the increment
process ∆x(t) = x(t + 1) − x(t). We consider tra-
jectories generated with anomalous diffusion exponents
α ∈ {0.05, 0.10, ..., 1.95, 2}. Note however that only SBM
is applied to the whole range of α values. CTRW and
ATTM are only sub- or normal-diffusive (α ≤ 1), LW
is superdiffusive (α > 1) and ballistic (α = 2) FBM is
not considered here. This entails that data sets with
a mixture of models cannot be equally distributed with
respect to the anomalous diffusion exponents and un-
derlying models at the same time. In this work we
choose the prior distributions of models and exponents
such that they conform with those used in the AnDi-
Challenge, where the priors were chosen to simulate no
prior-knowledge for the given task. This entails that the
data set used for the classification tasks is equally dis-
tributed with respect to models but not among anoma-
lous diffusion exponents, and vice versa for the data set
used for the regression of α. Subdiffusive trajectories are
therefore overrepresented in the classification data sets,
while FBM and SBM will be overrepresented for regres-
sion.

B. Uncertainties in Deep Learning

In short, a neural network in deep learning is a func-
tion approximator, where the output fθ(xi) of the neural
network given inputs xi is optimised to minimise some
loss function L. This is achieved by fitting the function
parameters (weights) θ of the neural network, usually by
utilising the stochastic gradient descent algorithm or a
variation of it [90].

In Bayesian Deep Learning, one differentiates between
two major types of uncertainty named aleatoric and epis-
temic uncertainty [91, 92].

Aleatoric Uncertainty

Aleatoric uncertainty refers to the uncertainty inherent
in the system underlying the data, caused, for example,
by noise or an inherent stochasticity of the system. This
kind of uncertainty needs to be included in the output of
the neural network model. We then minimise the nega-
tive log likelihood loss

Lnll = −
∑

i

log p(ŷi|fθ(xi)), (5)

where ŷi is the target output and fθ(xi) is the prediction
of the neural network given input xi and weights θ [93].

For regression problems, the commonly used models
output only a predicted value and optimise the network
to minimise either the mean absolute error or the mean
squared error [94]. In order to model aleatoric uncer-
tainty we modify the network to output mean and vari-
ance of a Gaussian predictive distribution, instead of just
predicting a single value (while a Gaussian distribution
will often not be a precise approximation, it suffices to
obtain well calibrated estimates for the standard devia-
tion). When p(ŷi|fθ(xi)) ∼ Nµi,σi

(ŷi), we minimise the
negative log likelihood, which becomes the Gaussian neg-
ative log likelihood loss

Lgnll =
∑

i

1

2

(

log(σ2
i ) +

||µi − ŷi||
2

σ2
i

)

+ const, (6)

where µi and σi are the mean and variance outputs of
the neural network for input xi [95].

The commonly used models for classification already
output an aleatoric error. We train the model to output
membership scores for each class in a so called logit vector
zi = fθ(xi), from which the class probabilities can be
obtained via a normalised exponential (softmax ) function

pi,k =
exp zi,k

∑

k exp zi,k
, (7)

where pi,k is the predicted probability of class k given
input xi. From the negative log likelihood loss we then
obtain the cross entropy loss

Lcel = −
∑

i,k

ŷi,k log(pi,k), (8)

where ŷi,k is a binary indicator ŷi,k = δjik of the true
class ji of input xi.

Epistemic uncertainty and stochastic weight averaging
Gaussian (SWAG)

Epistemic uncertainty refers to the uncertainty caused
by an imperfect model, for example due to a difference
between training and test data or insufficient training
data. In Bayesian Deep Learning we model this error by
assigning an uncertainty to the inferred neural network
weights. If p(θ|D) is the probability distribution over the
weights θ given data D, we obtain

p(y|xi,D) =

∫

dθp(y|xi, θ)p(θ|D). (9)

In practice this integral is approximated by Monte Carlo
(MC) integration [96]

p(y|xi,D) ≈
1

M

M
∑

m=1

p(y|xi, θm), (10)
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where the weights θm are sampled from the posterior
p(θ|D) and M is the number of MC-samples. Mathe-
matically this posterior is given by Bayes’ rule [97]

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (11)

However as calculating the posterior becomes intractable
for large networks and data sets, we need to approximate
it. For this purpose Maddox et al. proposed a method
named Stochastic Weight Averaging Gaussian (SWAG)
[87], which we will use in a combination with Deep En-
sembles [83] leading to Multi-SWAG as proposed by Wil-
son et al [88]. In SWAG one interprets the stochas-
tic gradient descent (SGD) algorithm, used to optimise
the neural network given a loss function, as approximate
Bayesian inference. SWAG estimates the first and sec-
ond moment of the running SGD iterates to construct a
Gaussian distribution over the weights p(θ|D) ∼ Nθ̄,Σ(θ).
Maddox et al. show that this Gaussian approximation
suffices to capture the local shape of the loss space around
the obtained minimum. When training a pre-trained neu-
ral network for T SWAG updates, the mean value and
sample covariance are given as [87]

θ̄ =
1

T

T
∑

i=1

θi (12)

Σ =
1

T − 1

T
∑

i=1

(θi − θ̄)(θi − θ̄)T . (13)

As computing the full covariance matrix is often in-
tractable, SWAG approximates by splitting it into a diag-
onal covariance Σdiag, only containing the diagonal vari-

Algorithm 1 SWAG [87]

θ0 pre-trained weights; η learning rate; T number of train-
ing steps; c moment update frequency; K maximum num-
ber of columns in deviation matrix D̂; M number of Monte
Carlo samples in Bayesian model averaging
Train SWAG

θ̄ ← θ0, θ2 ← θ20 ⊲ initialise moments
for i← 1 to T do

θi ← θi−1 − η∇θL(θi−1) ⊲ SGD update
if mod(i, c) = 0 then

n← i/c

θ̄ ← nθ̄+θi
n+1

, θ2 ← nθ2+θ2
i

n+1
⊲ update moments

if number of columns(D̂) = K then

remove first column in D̂
append column (θi − θ̄) to D̂ ⊲ deviation matrix

return θSWA = θ̄,Σdiag = θ2 − θ̄2, D̂

Test Bayesian Model Averaging

for i← 1 to M do

draw θ̃i ∼ N (θSWA,
1
2
Σdiag + D̂D̂T

2(K−1)
)

p(y|Data) += 1
M
p(y|θ̃i)

return p(y|Data)

FIG. 9: Architecture of the used Neural Network. For both
regression and classification the network first consists of three
stacked long short-term memory (LSTM) layers [98] of sizes
128, 128 and 64. For regression the last LSTM is directly
fully connected into the output layer returning a mean µ and
variance σ, while for classification the output layer is preceded
by another fully connected layer of size 20. The architecture
is inspired by the successful applications of recurrent neural
networks during the AnDi-Challenge [62, 68, 71, 74].

ances, and low-rank covariance Σlow-rank, which approx-
imates the full matrix by only using the last few update
steps. The diagonal covariance is given as

Σdiag = diag(θ2 − θ̄2), (14)

where θ2 = 1
T

∑T
i=1 θ

2
i and the squares in θ2i , θ̄

2 are ap-
plied element-wise. For the low-rank covariance we first
approximateΣ using the running estimate θ̄i after i steps:

Σ ≈ 1
T−1

∑T

i=1(θi − θ̄i)(θi − θ̄i)
T = DDT

T−1
, where D is the

deviation matrix consisting of columns Di = (θi − θ̄i).
Further we only use the last K columns of D in order to
calculate the low rank covariance matrix. Defining D̂ as
the matrix comprised of columns T −K +1, . . . , T of D,
we obtain

Σlow-rank =
D̂D̂T

K − 1
. (15)

Thus one only needs to keep track of θ̄, θ2 and D̂ and can
sample the weights used in equation (10) from the Gaus-
sian N (θ̄, 1

2
(Σdiag + Σlow-rank)). The full SWAG proce-

dure is shown in algorithm 1.
In Multi-SWAG one combines this SWAG algorithm

with deep ensembles by training multiple SWAG models
and taking an equal amount of samples from each [88].

C. Neural Network Architecture and Training

Inspired by its success in the AnDi-Challenge [62] we
chose a recurrent (LSTM [98]) neural network as depicted
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in figure 9 as our network architecture. We train sepa-
rate networks for different trajectory lengths, but use the
same architecture for each. Regardless of the trajectory
length, all networks are trained on a total of 106 trajec-
tories from all 5 models. As stated above, for regres-
sion, the data set is equally distributed with respect to
the anomalous diffusion exponents but not among ground
truth models, and vice versa for classification. Later we
also train networks on data sets consisting of only a sin-
gle anomalous diffusion model and only 3 × 105 trajec-
tories. The neural network hyper-parameters, consisting
of learning rate, weight decay [99], batch size, training
length (epoch number), and SWAG moment update fre-
quency, are tuned using a separate validation set of 104

trajectories, and final performance results are obtained
from a third testing data set varying in size between
4 × 104 and 1 × 105, depending on the task. Data are
generated using the andi-datasets python package [89],
shorter trajectories are obtained from the same data set
by discarding later data points. Noise, as specified in
equation (4), is added after cutting off the data points be-
yond the desired length, as otherwise the signal to noise
ratio (snr) on the long trajectories may not represent the
snr of the shortened trajectories, especially when dealing
with models using a changing diffusivity like SBM.

Before training, the trajectory data sets consisting of
time series of positions xt are pre-processed by conver-
sion to increments ∆xt = xt+1−xt and normalising these
increments to a standard deviation of unity for each tra-
jectory. Rescaling the data in this manner speeds up
the training process and, since we are not interested in a
prediction of the diffusion coefficient, which would be al-
tered by this step, it will not hinder the neural network’s
performance.

The networks are trained using the Adam optimiser
[100] for 65 to 85 epochs with the last 10 to 15 epochs
used for SWAG training, where one epoch corresponds

to one full iteration through the training set. The ex-
act epoch number as well as the other hyper-parameters
are fine-tuned individually for each task and trajectory
length using the validation data set. Once an optimal
set of hyper-parameters is found, we use them to train
20 SWAG models and choose the 5 best performing net-
works for Multi-SWAG, as measured by their achieved
loss on the validation set. This choice is necessary as
some training processes may get trapped in suboptimal
minima. To obtain the final output, we sample 10 net-
works from each SWAG model for a total of 50 Monte
Carlo samples and combine these into a single output of
model probabilities for classification or mean and vari-
ance for regression in accordance to equation 10.

Data availability

The data resulting from applying the
model on the test data sets are available at
https://github.com/hseckler/BDL-for-AnDi. The
training and test data sets were randomly generated
using the andi-datasets python package [89].

Code availability

All software used in this study is available at
https://github.com/hseckler/BDL-for-AnDi.
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S1. SUPPLEMENTARY METHOD 1

For the regression of the anomalous diffusion exponent
α we evaluate the mean absolute error (MAE), defined
as

MAE =
1

N

N
∑

i=1

|αi,gt − αi,pred|, (1)

where αi,gt and αi,pred are the ground truth and pre-
dicted anomalous diffusion exponent of the ith of the N
trajectories contained in the test data set.

To quantify classification performance we use the ac-
curacy, which is the fraction of correct classifications.

Reliability diagram and calibration error In or-
der to assess the quality of uncertainty predictions we use
reliability diagrams [1]. In these one illustrates observed
errors as a function of predicted uncertainties. For clas-
sification tasks we divide the interval [0, 1] into M bins
Im = (m−1

M
, m
M
]. If Bm is the set of trajectories with

predicted confidences pi ∈ Im, then the accuracy in this
interval is given as

acc(Bm) =
1

|Bm|

∑

i∈Bm

1(ŷi = yi), (2)

where ŷi,yi are the ground truth and predicted model of
input i. The mean predicted confidence of this set is

conf(Bm) =
1

|Bm|

∑

i∈Bm

pi, (3)

where pi is the predicted confidence of the model pre-
diction of the ith input. In a perfectly calibrated model
accuracy and confidence coincide for all bins, which corre-
sponds to the diagonal in the reliability diagram. Any de-
viations from the identity represent miscalibration, which
we summarise using the expected calibration error (ECE),
defined as [1, 2]

ECE =

M
∑

m=1

|Bm|

N
|acc(Bm)− conf(Bm)| , (4)

where N is the number of samples in the test set.
Similarly, we can construct a reliability diagram for the

regression of the anomalous diffusion exponent [3]. Here
the roles of the mean confidence and the accuracy are
taken by the predicted root mean variance (RMV) and
the observed root mean squared error (RMSE). By intro-
ducing a binning of the predicted standard deviation into

intervals Im = ((m − 1)∆σ,m∆σ] of size ∆σ, we define
Bm as the set of trajectories with a predicted standard
deviation σi,pred ∈ Im and obtain

RMSE(Bm) =

√

1

|Bm|

∑

i∈Bm

(αi,gt − αi,pred)2 (5)

RMV(Bm) =

√

1

|Bm|

∑

i∈Bm

(σi,pred)2. (6)

As above, coinciding RMSE and RMV in all bins rep-
resent a perfectly calibrated model. Deviations from the
ideal error prediction are represented by the expected cal-
ibration error (ECE)

ECE =
∑

Bm

|Bm|

N
|RMV(Bm)− RMSE(Bm)|, (7)

which can be modified to obtain the expected normalised
calibration error (ENCE) [3]

ENCE =
∑

Bm

|Bm|

N

|RMV(Bm)− RMSE(Bm)|

RMV(Bm)
. (8)

S2. SUPPLEMENTARY FIGURES

Here we provide additional figures with details refer-
enced in the main text.
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FIG. S1: Predicted error histograms split by exponent and noise for each model for lengths T = 10 and T = 500. The
used networks were trained on data sets only containing the one respective diffusion model and the results are obtained from
predictions based on 5× 104 (FBM,SBM) or 4× 104 (ATTM,LW,CTRW) trajectories.
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FIG. S2: Error histograms for classification split by (a) ground truth model, (b) ground truth exponent, and (c) by the used
noise.
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