
ar
X

iv
:2

21
1.

04
78

9v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  9

 N
ov

 2
02

2

Towards a robust criterion of anomalous diffusion

Vittoria Sposini,1 Diego Krapf,2, 3 Enzo Marinari,4, 5 Raimon Sunyer,6 Felix Ritort,7 Fereydoon Taheri,8

Christine Selhuber-Unkel,8 Rebecca Benelli,9 Matthias Weiss,9 Ralf Metzler∗,10, 11 and Gleb Oshanin12

1Faculty of Physics, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
2Department of Electrical and Computer Engineering,

Colorado State University, Fort Collins, CO 80523, USA
3School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
4Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, I-00185 Roma, Italy

5INFN, Sezione di Roma 1 and Nanotech-CNR,
UOS di Roma, P.le A. Moro 2, I-00185 Roma, Italy

6Unitat de Biofísica i Bioenginyeria, Departament de Biomedicina Facultat de Medicina,
Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

7Small Biosystems Lab, Condensed Matter Physics Department, Facultat de Física,
Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

8Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM),
Heidelberg University, INF 225, 69120 Heidelberg, Germany

9Experimental Physics I, University of Bayreuth, D-95440 Bayreuth, Germany
10Institute of Physics and Astronomy, University of Potsdam,
Karl-Liebknecht-Str 24/25, 14476 Potsdam-Golm, Germany∗

11Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
12Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (UMR 7600),

4 Place Jussieu, 75252 Paris Cedex 05, France†

Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the tra-
ditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter
and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g.,
trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynam-
ics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or
vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have
far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that
a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applica-
tions. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral
analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-
Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the
presence of two types of measurement errors. In particular, we find that our criterion is very robust
for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise
demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept
based on diverse experiments exhibiting both normal and anomalous-diffusion.

I. INTRODUCTION

The exploration of the dynamic properties of complex
systems has been massively boosted by modern micro-
scopic techniques allowing single-particle tracking (SPT)
of micron- and submicron-sized tracers or even single mo-
lecules. SPT is routinely used to probe the local proper-
ties of materials and even live biological cells and tissue
by passive and active microrheology [1]. SPT by now is
a key tool to interrogate the structure–function relation-
ships in biophysical applications [2, 3], and it plays a cent-
ral role in uncovering thermal and energy-fuelled intra-
cellular transport of tracer particles or single molecules in
biological cells and tissues [4]. SPT is thus at the heart of
the new emerging era of quantitative life sciences [2–31].

∗Electronic address: rmetzler@uni-potsdam.de
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Specifically, SPT unveiled different intracellular motion
patterns of virus particles [5], Cajal bodies [6], molecu-
lar motor-driven transport [7–9], the motion of telomeres
[10], green fluorescent proteins [11], DNA-binding pro-
teins [12, 13], mRNA molecules [14–16], membrane pro-
teins [17–19], or endogenous granules [20, 21] and vesicles
[29]. SPT has also revealed protein interactions [22] as
well as key details of submicron tracer motion in mam-
malian cells [23] and in the movement ecology of larger
animals [31, 32].

In contrast to pre-averaged data such as those ob-
tained from fluorescence correlation spectroscopy (FCS)
or fluorescence recovery after photobleaching (FRAP),
SPT provides high resolution "unprocessed" data: As
raw data of test particle trajectories, SPT offers the
best possible basis for statistical analysis [33]. Indeed,
a large toolbox of methods are available for analysing
position time series Xt. Frequently, these data have re-
vealed that particles exhibit an anomalous diffusion be-
haviour, defined by the power-law dependence 〈X2

t 〉 ≃ tα
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of the mean squared displacement (MSD), where the
angular brackets denote averaging over different realisa-
tions of recorded trajectories. The anomalous diffusion
exponent α is commonly used to tell whether normal
(Brownian, α = 1) or anomalous diffusion (α 6= 1) is
observed. Here, the regimes of sub- and superdiffusion
correspond to 0 < α < 1 and α > 1, respectively. Dis-
tinguishing normal from anomalous diffusion is vital for
predicting various characteristics of the systems under
investigation—e.g., the diffusion-control of molecular re-
actions or the relaxation dynamics after manipulating the
system—eventually allowing us to understand the actual
physical mechanisms underlying the observations.

Fitting the scaling exponent α to finite measured time
series is known to be a major challenge. For instance,
contamination of the true trajectories by measurement
noise was shown to lead to the erroneous conclusion to ob-
serve anomalous diffusion (α 6= 1) [34]. There exist meth-
ods to alleviate this problem, e.g., the mean-maximal
excursion statistics [35]. Moreover, Bayesian-maximum
likelihood methods [36–38], deep learning strategies [39–
43], or feature-based methods [42–45] also provide best
estimates for α. However, all these methods have their
shortcomings. Quite severely, α values (along with D
values [46, 47]) retrieved from fitting the MSD 〈X2

t 〉 will
vary from one trajectory to the next due to finite stat-
istics within single trajectories. Indeed, trajectories from
real experiments display different regimes with different
scaling exponents [36, 37, 48], or due to the spatial het-
erogeneity of the environment [49, 50]. This leads to
strong variability in the scaling exponents measured for
different trajectories and renders predictions based on
such fitting procedures even less accurate. Moreover, for
realistic situations with α values closer to the Brownian
value α = 1 it becomes increasingly difficult to distin-
guish anomalous from Brownian motion [43]. This lat-
ter caveat is further exacerbated when considering the
unavoidable experimental sources of error in many SPT
setups, especially when based on fluorescence microscopy
methods.

Likely the most notorious source of uncertainty is the
static localisation error that arises from the finite number
of fluorescence photons garnered during an image of the
particle from which its position will be retrieved by elab-
orate tracking schemes: Each of these photons is emit-
ted from a point-like source in the sample (the emitting
fluorophore) and will hence be captured on a locus of the
camera sensor according to the microscope’s point-spread
function (PSF). In other words, individual photons are
stochastically recorded on the camera sensor, with a dis-
tribution of positions around the actual particle location
determined by the PSF [51]. As a consequence, record-
ing only a few photons will yield a poor estimate for the
actual particle position, and the characteristic deviation
is determined by the standard error. The latter scales
with the inverse root of the number of photons, i.e., for a
large number of photons the static localisation error can
be as small as a few nanometres [52]. However, for very

large numbers of photons another perturbation becomes
visible, the so-called dynamic localisation error: Record-
ing an image to determine a particle’s position takes a
finite time during which particles are constantly on the
move. As a result, many different positions are visited
during the acquisition of a single image and only the tem-
poral mean of these is retrieved from the acquired image
as the, apparent, particle position. This dynamic loc-
alisation error effectively adds a negative offset to 〈X2

t 〉
whereas the static localisation error adds a positive off-
set [53, 54]. Both sources of error will therefore perturb
the analysis of the scaling behaviour on short time scales
for which experimental trajectories typically yield best
statistics. Thus, determining the value of α and decid-
ing whether diffusional anomalies are present is indeed a
major challenge.

The aim of this article is the analysis of a robust and
easy to implement method that allows one to decide
on the type and significance of an apparent anomaly,
without being spoiled by localisation errors. We concen-
trate here on the situation when Xt belongs to a wide,
experimentally-relevant class of anomalous diffusions—
the so-called fractional Brownian motion (FBM) [55].
Note, however, that the methodology we develop here
will be amenable to generalisation to any anomalous–
diffusion process. FBM is a Gaussian stochastic process
characterised by a zero mean value and the covariance
function

〈Xt1Xt2〉 = D
(

t2H1 + t2H2 − |t1 − t2|2H
)

, (1)

where D is a proportionality factor with physical units
of length2/time2H commonly referred to as generalised
diffusion coefficient and H ∈ (0, 1) is the traditionally
used Hurst index, such that the anomalous diffusion ex-
ponent is α = 2H . FBM thus describes a process that
can be subdiffusive (H < 1/2), diffusive (H = 1/2), or
super-diffusive (H > 1/2). From a physical point of view,
FBM is well suited to model diffusion in viscoelastic me-
dia [16, 20, 56–58], but it also governs observed motion
patterns in movement ecology [30], the density profiles
of serotonergic brain fibres [59], or roughness in financial
data [60].

As mentioned before, localisation errors are usually di-
vided into two kind of contributions [53, 61]: the static er-
ror, due to intrinsic properties of the experimental setup,
and the dynamic one, due to the finite time needed for
data acquisition, i.e., the exposure time. From a math-
ematical point of view the former is generally treated
as an independent additive noise source whereas the lat-
ter is defined via temporal integration over the finite ex-
posure time. The effect of measurement error in SPT
has been investigated mainly by focusing on the MSD
[53, 62, 63]. Few results are also present in literature con-
cerning correlation functions and power spectra [53, 54],
but with a small range of applicability. Spectral analysis
of stochastic processes can be very helpful in their char-
acterisation, however the power spectrum, according to
the text-book definition, is a property that relies on the
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measurement time going to infinity and on a very large
statistical ensemble. Both of these assumptions are typ-
ically not met when dealing with state-of-the-art SPT
data, and this is why the spectral analysis of individual
trajectories was only recently introduced [64]. The study
of single-trajectory spectral densities has been carried out
for different stochastic processes [19, 65–70] and is based
on the study of the random variable [64, 65]

S(f, T ) =
1

T

∣

∣

∣

∣

∣

∫ T

0

dteiftXt

∣

∣

∣

∣

∣

2

=
1

T

∫ T

0

dt1

∫ T

0

dt2 cos (f(t1 − t2))Xt1Xt2 , (2)

where f is the frequency, T is the finite observation time,
and Xt is an individual realisation of a given stochastic
process. We will refer to this quantity as the single-
trajectory power spectral density (PSD).

When the parental process Xt is Gaussian, the prob-
ability density function (PDF) of the random variable
S(f, T ) is, likewise, entirely defined by its first moment
and variance

µ(f, T ) = 〈S(f, T )〉 , (3)

σ2(f, T ) =
〈

S2(f, T )
〉

− 〈S(f, T )〉2 . (4)

Note that by taking the limit limT→∞ µ(f, T ) = µ(f),
we recover the standard definition of the power spectrum.
Interestingly it was shown that the characteristic trend of
the ensemble averaged power spectrum µ(f, T ) of several
stochastic processes at high frequencies can be inferred
already from a single-trajectory PSD [19, 64–69].

A very interesting quantity to study when performing
single-trajectory spectral analyses is the so-called coeffi-
cient of variation of the associated PDF, P (S(f, T )),

γ(f, T ) =
σ(f, T )

µ(f, T )
. (5)

In particular, when dealing with FBM-like motion the
limiting value of γ(f, T ) at high frequencies (or for a
fixed frequency but for long T ) turns out to be dis-
tinctly different in the cases of subdiffusion (γ(f, T ) ∼ 1),

normal diffusion (γ(f, T ) ∼
√
5/2) and superdiffusion

(γ(f, T ) ∼
√
2) [65]. This quantity was proposed in [65]

as criterion of anomalous diffusion. Here, we go a sig-
nificant step further and study how its trend towards
specific limiting values is affected by the experimentally
unavoidable presence of localisation errors in tracked tra-
jectories. In particular, we show that: (i) this criterion is
very robust for subdiffusion; (ii) in the case of superdiffu-
sion the limiting value of γ(f, T ) is affected by the static
measurement error and not by the dynamic error; (iii)
for normal diffusion both static and dynamic errors in-
troduce correction terms in the limiting value of γ(f, T ).
Knowledge of these results allows a reliable determina-
tion of the anomalous nature of measured signals.

II. RESULTS AND DISCUSSION

As already mentioned above, for pure FBM trajectories
it was shown [65] that the coefficient of variation at high
frequencies reaches the limiting values: (i) γ = 1 for

subdiffusion, regardless of the value of H , (ii) γ =
√
5/2

for normal diffusion, and (iii) γ =
√
2 for superdiffusion,

regardless of the value of H . Here, we analyse the case of
FBM trajectories in the presence of localisation errors.

A. Analytical predictions

Let us start by introducing the mathematical descrip-
tion of the two localisation errors:

(i) The static error is usually modelled as an additive
noise term, thus we denote with Yt the joint stochastic
process of the form

Yt = Xt + et, (6)

where Xt is a pure FBM trajectory and et is the static
error due to an imperfect measurement. In a standard
fashion [61, 62], we stipulate that et is given by the sta-
tionary Ornstein-Uhlenbeck (OU) process

et =

∫ t

−∞

dτe−(t−τ)/τ0ζτ , (7)

where τ0 is the characteristic relaxation time and ζt is
a Gaussian white noise with zero mean and covariance
ζtζt′ = 2σ2

eδ(t − t′). Moreover, it is commonly assumed
that τ0 ≪ ∆t, where ∆t is the temporal resolution of the
trajectory. In other words, we suppose that each time
when an instantaneous position Xt is recorded, the latter
is specified up to a random "error" with the distribution

P (et) =

√

1

4πσ2
eτ0

exp

(

− e2t
4σ2

eτ0

)

, (8)

and is independent of the previous measurements.
(ii) The dynamic error depends on the acquisition or

exposure time τe, such that the acquired position Yt can
be written as Xt = (1/τe)

∫ τe
0

Xt−ξdξ, meaning that we
cannot resolve the particle motion below τe.

Note that the parameters σe and τ0 for the static er-
ror and τe for the dynamic error are characteristic of
the experimental setup and thus they are usually known
quantities when analysing SPT experiments.

As treating the dynamic error within the single-
trajectory PSD framework is quite tedious and involved,
we limit our analytical study to the joint process (6) in
which only the static error is present and leave the dy-
namic error for numerical study, see "Simulations" sub-
section in Methods.

Selecting the process in (6) and performing the single-
trajectory spectral analysis as described above we obtain
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our central result,

γ2
Y (f, T ) =

σ2
Y (f, T )

µ2
Y (f, T )

=
σ2
X + σ2

OU + 2µXµOU

(µX + µOU)
2 , (9)

expressing the coefficient of variation of the single-
trajectory PSD of the joint process Yt via the first mo-
ments and the variances of the spectral densities of its
constituents. In particular, for the OU process under
the assumption stated above, we have µOU ∼ 2σ2

eτ
2
0 and

σ2
OU ∼ 4σ4

eτ
4
0 (see Supplementary Note 1). The results

for the FBM process are dependent on H and are in gen-
eral quite involved. We report here just the asymptotic
trends and refer the interested readers to [65] for more
details,

H < 1/2 : µX(f, T ) ∼ 2cHD

f2H+1
, (10a)

H = 1/2 : µX(f, T ) ∼ 4D

f2
, (10b)

H > 1/2 : µX(f, T ) ∼ 2D

f2
T 2H−1, (10c)

and σ2
X(f, T ) ∼ 4D2

(

c4H
f4H+2 + 2cH

f2H+3T
2H−1 + 2

f4T
4H−2

)

,

where cH = Γ(2H + 1) sin(πH), and Γ(z) is the Gamma
function [65]. Note that in the case of superdiffusion
for fixed T the 1/f2 trend could erroneously lead us to
the conclusion of having standard diffusion. In addition,
the superdiffusive result also shows a dependence on T ,
a clear feature of ageing, that helps in differentiating it
from normal diffusion.

The limiting value at high frequencies of the coefficient
of variation obtained in (9) is then given by

H < 1/2 : γ2
Y (f, T ) ∼ 1, (11a)

H = 1/2 : γ2
Y (f, T ) ∼ 1 +

1

4

(

1 +
σ2
eτ

2
0

2D
f2

)−2

, (11b)

H > 1/2 : γ2
Y (f, T ) ∼ 1 +

(

1 +
σ2
eτ

2
0

D

f2

T 2H−1

)−2

.(11c)

Thus, γY is completely independent of the static noise
for subdiffusion, while for normal and superdiffusion cor-
rection terms enter. In these, the limit of zero frequency
leads us back to the values in absence of noise, that is
γ2
Y (f = 0) = 2 (see Supplementary Note 2 for more

details). Note that for superdiffusion the limit of long
measurement times also leads to the noise-independent
value of γY .

B. Analysis of simulation data

We start our discussion with results from analytical
predictions and simulations (see "Analytical predictions"
and "Simulations" subsections in Methods). Results
from 1D simulations are shown in Fig. 1. The main goal
of this analysis is to elucidate the separate contributions

of the two localisation errors, i.e. static and dynamic, in
the study of the coefficient of variation γ. Results from
simulations in 2D are reported in Fig. 2. The latter are
obtained following a procedure that imitates a real ex-
periment (see "Simulations" subsection in Methods for
more details) and thus provide more realistic results to
be compared with the ones showed below from experi-
ments.

In Fig. 1, panels (a)-(b) we immediately observe that
the limiting value of γ in the case of subdiffusive FBM
(H = 1/3) is not affected by any of the two measurement
noises. In the presence of static error only this result was
proved also analytically in Eq. (11a).

For the normal diffusive case (H = 1/2), in Fig. 1,
panels (c)-(d), the situation differs distinctly from the
subdiffusive case. Namely, the limiting value of γ is af-
fected by both types of measurement noise, resulting in
two opposite effects. On the one hand, the static localisa-
tion error leads to a drop in the value of γ (Fig. 1, panel
(c)). In particular, from the analytical result Eq. (11b)
one can see that when the ratio σ2

e/D grows, γ decreases,
approaching the new limiting value γ = 1 at very high fre-
quencies. On the other hand, from our numerical study
in Fig. 1, panel (d) one can see that the dynamic local-
isation error causes an increase in the limiting value of γ.
The greater τe the smaller the value of fT at which we
observe a deviation from the pure value γ =

√
5/2.

For superdiffusive FBM, the results are reported in
Fig. 1, panels (e)-(f), showing that the limiting value of
γ is mostly affected by the presence of static localisation
errors. The latter, similarly to the diffusive case, leads to
a drop in the limiting value of γ. In particular, if we look
at the explicit analytic expression reported in Eq. (11c)
we see that upon increasing the ratio σ2

e/D the coefficient
of variation drops, until it reaches the new limiting value
γ = 1, as for BM (α = 1). Moreover, in this case the
trajectory length T also turns out to be a key parameter
in determining the final trend of γ: for very long traject-
ories the presence of static measurement noise becomes
less and less influential. For the dynamic error instead we
see from Fig. 1, panel (f) that, regardless of the value of
τe, the trend of γ does not present any relevant change.

In general, we observe that localisation errors affect
the trend of γ for normal diffusion and superdiffusive
FBM only. For both cases (α = 1 and α > 1), when
the variance σe of the static error increases, the drop of
γ to the ultimate value 1 occurs at progressively lower
values of fT . Instead, when changing the key parameter
of the dynamic error (τe), the trend of γ is affected only
in the case of normal diffusion, showing an increase in its
limiting value.

The analysis of numerically obtained FBM data in 2D
with different localisation errors is reported in Fig. 2. As
can be seen, these results agree with the discussion for
the case of the 1D simulations. On the one hand, in the
case of subdiffusive FBM the coefficient of variation is
insensitive to any of the localisation errors, always con-
verging to the prediction γ = 1. Therefore, this meas-



5

Figure 1: One-dimensional fractional Brownian motion (FBM) trajectories. We show the coefficient of variation from Monte
Carlo simulations of one-dimensional FBM trajectories in the presence of localisation noise. We set the generalised diffusion
coefficient to D = 1 and the Hurst exponent to (a)–(b) H = 1/3 (subdiffusion), (c)–(d) H = 1/2(normal diffusion) and (e)–(f)
H = 2/3 (superdiffusion). Panels (a), (c) and (e): n = 10

4 realisations consisting of N = 2
23 discrete time steps with ∆t = 1

from the joint process defined in (6), for static error only. The dashed lines represent the expected high-frequency asymptotic
trend reported in Eqs. (11a) to (11c) for the different values of σe and τ0 = 1. Panels (b), (d) and (f): n = 10

4 realisations
consisting of N = 2

14 final steps with ∆t = 1 obtained for pure FBM (black) and in the presence of dynamic error with τe.
The dashed lines represent the limiting value at high-frequencies for pure FBM. Note that γ is reported as a function of fT ,
thus the limiting values obtained here for high-frequencies are also valid for the case of fixed f and large T .

ure is a very robust mean to explore whether tracking
data indeed show a subdiffusive behaviour. On the other
hand, diffusive and superdiffusive FBM data do not ap-
pear to be very sensitive to the presence of dynamic noise,
but their results change dramatically when static noise
is present, causing a clear drop in the value of γ at high

frequencies.
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1.4

γ dynamic localization error

fT

1.0

1.2

1.4

γ
static localization error

fTτ [s]

α=0.6

α=1.0 (shift ×7)

α=1.4 (shift ×50)

⟨r
2(τ)⟩

t
[μm

2]

(a) (b)

Figure 2: Two-dimensional fractional Brownian motion (FBM) trajectories. We show the time-averaged mean squared dis-
placements (TA-MSDs) and the coefficient of variation from Monte Carlo simulations of two-dimensional FBM trajectories
in the presence of localisation noise. (a) Representative time-averaged mean squared displacements (TA-MSDs) of individual
two-dimensional FBM trajectories created with H = 0.3 (red circles), H = 0.5 (black diamonds), and H = 0.7 (blue squares)
follow the anticipated power-law scaling (grey dashed lines) for sufficiently long lag times τ . Ensemble averages of TA-MSDs
are superimposed as coloured full lines. For short lag times, significant deviations due to a dominant dynamic localisation error
(np = 900, filled symbols) or a dominant static localisation error (np = 50, open symbols) are visible. These may signific-
antly perturb the extraction of the TA-MSD’s scaling exponent, α = 2H . (b) The coefficient of variation γ, for the case of a
dominant dynamic localisation error (filled symbols) converges towards the predicted values γ = 1,

√

5/2 and
√

2 (highlighted
by the coloured dashed lines). While the subdiffusive case (red) converges rapidly, normal diffusion and superdiffusion (black
and blue, respectively) may need longer trajectories to eventually reach the predicted value. In contrast, for a dominant static
localisation error (open symbols) only the subdiffusive case (red) is in agreement with the predicted value γ = 1 whereas normal
diffusion and superdiffusion (black and blue) are very sensitive to this perturbation.

C. Analysis of experimental data

Analytical and numerical results are nicely confirmed
by the analysis of experimental data. Fig. 3 shows res-
ults from subdiffusive tracking data on (i) telomeres in
the nucleus of mammalian culture cells [72], and (ii) p-
granules in the cytoplasm of C. elegans embryos [71], all
distinctly displaying a convergence to γ = 1, fully con-
sistent with our predictions.

Experimental data obtained by tracking the motion
of beads in water, reported in Fig. 4, show some nice
results for the normal-diffusion regime. For the pure ex-
perimental data (base-line) we can see an increase in the
value of γ at high frequencies. We showed that this devi-
ation from the expected value is due to the effect of the
dynamic error. Moreover, if in a post-analysis we arti-
ficially increase the static localisation error, we observe
that the value of γ starts decreasing upon increase of σe,
approaching the new limiting value γ = 1 (red dashed
line in Fig. 4). These observations are fully in line with
our predictions.

We now move to the analysis of superdiffusive exper-
imental data. Cytoskeleton fluctuations were measured
by attaching RGD-coated beads to the surface of human
alveolar epithelial cells (see sketch in Fig. 5, panel (a)).
The beads were connected to the actin cytoskeleton and
rearranged by internal molecular motors. Given that mo-
lecular motor activity depends on temperature, the data
show a marked superdiffusive behaviour at high temper-
atures (≥ 29◦C, green triangles and blue circles in Fig. 5,

1.0

1.5

2.0

γ

fT101 102

Figure 3: Coefficient of variation obtained from experimental
subdiffusive trajectories with a marked anti-persistence. Res-
ults from two datasets are shown: experimental tracking of
p-granules in C. elegans embryos (open red circles) and te-
lomeres in the nucleus of mammalian culture cells (filled red
circles). They both comply with the expectation for sub-
diffusive data that γ converges to unity (indicated by the
black dashed line). In both cases, the MSDs contained a
non-negligible static localisation error.

panel (b)). Interestingly, at low temperatures (≤ 21 ◦C)
the data show that cytoskeleton fluctuations transition
from a subdiffusive behaviour at short timescales to a su-
perdiffusive behaviour at longer timescales (black squares
in Fig. 5, panel (b)). This crossover can be explained
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g

Figure 4: Coefficient of variation obtained from diffusive data
of beads in water. The base-line is marked in blue. Static
localisation errors are artificially added to the data to obtain
the other two curves. The red and black dashed lines indicate
γ = 1 and

√

5/2, respectively, which are the values to which
γ converges in the case of subdiffusion and normal diffusion,
when no error is present.

by the Arrhenius dependence of the activity of molecu-
lar motors on temperature [73]. Using the coefficient of
variation γ to assess the diffusion regime, we observe that
cytoskeletal fluctuations obtained at high temperatures
(29 and 37 ◦ C) display a robust superdiffusive behaviour
at all different timescales. The subdiffusive to superdif-
fusive crossover at 13 and 21 ◦ C is well captured as γ
approaches 1 for frequencies > 20 rad/s (Fig. 5, panel
(c)). At longer timescales the value of γ indicates super-
diffusive behaviour, showing that at low temperatures,
molecular motors are active at longer timescales. From
the analysis of this dataset we can draw two conclusions.
First, we see that there is no statistically relevant effect
due to localisation errors. Second, we observe that the
value of γ is very sensitive to crossovers between different
diffusive regimes, confirming that this quantity is useful
for the statistical analysis of experimental data.

Finally, we consider the diffusion of nanoparticles in
the cytoplasm of human Mesenchymal stem cells. In
Fig. 6, panel (a) we report the MSD showing a mildly
superdiffusive (α = 1.23) regime, in agreement with the
fact that the nanoparticles are embedded into the act-
ive intracellular environment. However, the MSD trend
is strongly affected by the presence of the static localisa-
tion error, making the fit less reliable. By calculating the
coefficient of variation, reported in Fig. 6, panel (b), we
clearly confirm the superdiffusive trend, as γ converges
nicely to the analytical value for superdiffusion regime,
that is

√
2, without displaying large deviations due to the

static error.

III. CONCLUSIONS

Departures from the Brownian behaviour of diffusive
processes are observed in a wide variety of systems of
practical interest across many disciplines, and these phe-
nomena call for explanations and understanding of the
underlying physical processes and microscopic mechan-
isms. Without such a knowledge one cannot fully com-
prehend and reach a full picture of the phenomena. Con-
currently, a conclusion that the dynamics is indeed an-
omalous relies on proper data treatment, the size of stat-
istical samples, blurring measurement errors and errors
incurred by the fitting procedures, or due to transients
obscuring the true scaling exponents. It is therefore in-
dispensable to have at hand robust methods allowing one
to reach justified, sound conclusions on the dynamics.

In this work we test the coefficient of variation γ of the
single-trajectory power spectral density and show that it
represents a valuable method towards a robust criterion
for anomalous diffusion. We combine analytical, numer-
ical and experimental studies of diffusive dynamics in
very diverse systems, to demonstrate how the values of
γ for trajectories belonging to FBM are affected by the
presence of localisation errors. Within such a combined
effort, numerical simulations which imitate real experi-
ments performed here serve us to elucidate the relative
contributions of static and dynamic measurement noise in
a controllable way, and therefore to prove our theoretical
results and concepts. A further comparison with experi-
mental data obtained for rather diverse systems permits
us to verify the predicted trends and thus obtain a fully
comprehensive picture.

Apart from the case f → 0 in which the coefficient
of variation γ(f, T ) converges to the universal value

√
2,

we found that our results vary depending on the specific
diffusive regime and on the kind of localisation error. In
particular, the coefficient of variation represents a very
robust way to define whether tracking data show a sub-
diffusive behaviour. This can be of decisive help in data
analysis, in particular, when the deviation of the anom-
alous exponent from unity is small and thus the fitting of
the MSD can produce misleading results. Conversely, dif-
fusive and superdiffusive data are more sensitive to meas-
urement noise. In these regimes the value of γ displays a
clear drop at high frequencies in the presence of a static
localisation error, which is corroborated by both numer-
ical and experimental data, while the effect of a dynamic
error appears to be relevant for the normal-diffusive re-
gime only, causing an increase in the limiting value of γ
at high frequencies. As well, this theoretical prediction
is confirmed by our numerical and experimental results.
Thus, in the case of superdiffusion the criterion remains
very robust in the presence of dynamic error while in
general it is not when static localisation error is present.
Nevertheless, the analytical expression obtained for the
correction term still allows us to control the effect of the
measurement error in this case. Finally, the criterion ap-
pears to be the least robust for normal diffusion, which is
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Figure 5: Cytoskeleton fluctuations of living cells exhibit superdiffusive behaviour. (a) Sketch of the experimental system
for microbeads attached to the surface of epithelial cells (see the "Experiments" subsection in the Methods for more details)
together with a representative experimental trajectory. (b) MSD at varying temperatures. The straight lines show that the
dynamics are superdiffusive with 2H between 1.5 and 1.7, depending on temperature. (c) Coefficient of variation of the power
spectrum of the motion of the surface-bound microbeads. The dashed lines indicate γ = 1,

√

5/2, and
√

2, the predicted
limiting values of γ for the different diffusion regimes.

(a) (b)

Figure 6: Mean squared displacement (MSD) and coefficient of variation for superdiffusive nanoparticles in hMSCs. (a) MSD
showing a superdiffusive regime with large deviations due to the presence of the static localisation error. (b) The coefficient of
variation confirms the superidffusive trend.

affected by both static and dynamic localisation errors.
Arguably, the observed trends in γ can be used also to
post-process the data by adding static and dynamic er-
ror to explore the limiting values of γ as function of noise
intensity.

The application of our method to diverse experimental
systems presented in our paper evidences that it provides
a very robust tool for the analysis of the anomalous
character of random motion. In conjunction with the
MSD analysis, it will permit to make conclusive state-
ments on the actual departures from standard diffusive
motion, even in the presence of unavoidable errors in
experimental measurements, and thus to point towards
the necessity to understand the actual underlying phys-
ical mechanisms. Apart from a stand-alone criterion our
power spectral method will also represent an important
ingredient in decision trees and feature-based neural net-
work approaches.

IV. METHODS

A. Simulation methods

We perform simulations of FBM trajectories in 1D and
2D in order to complement and support our analytical
predictions as well as the analysis of experimental data.
The simulations are performed in Python for the 1D case
and in Matlab for the 2D case.

1. 1D case

FBM trajectories of length T = N ×∆t, where N cor-
responds to the total number of time steps and ∆t to
the discretisation time step, are generated for different
values of the Hurst index H to explore all 3 regimes via
the fbm package in Python. In order to include the dy-
namic error, given a fixed exposure time τe correspond-
ing to ne = τe/∆t time steps, we first simulate longer
FBM trajectories with a total number Ne = N × ne of
time steps. Then, from each of these trajectories a new
trajectory is obtained, whose points are given by the av-
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erage over ne subpoints of the original trajectory, i.e.,
X(ti) =

1
ne

∑ne−1
j=0 X(ti − j∆t). As far as the static er-

ror is concerned we use its definition (7) and generate
stationary OU trajectories with relaxation time τ0 = ∆t
and varying noise amplitude σe.

2. 2D case

An ensemble of M = 100 two-dimensional FBM tra-
jectories, each with N = 2500 positions covering a total
time T = N ×∆t with ∆t = 0.1 s was created with the
Matlab routine wfbm for the Hurst coefficients H = 0.3,
0.5, and 0.7, hence exploring FBM from the subdiffusive
to the superdiffusive regimes. Mean step sizes within ∆t
along each coordinate were chosen to be 0.01 µm. To ac-
count for the dynamic and static localisation errors, each
time step was subdivided into ne = 10 substeps dur-
ing each of which np positions according to a diffraction-
limited Gaussian PSF, centred at the particle position
at that time, were calculated. To this end, initial FBM
tracks had a length i = 1, . . . , Nne and at each substep
location xi, a total of j = 1, . . . , np positions xi,j = xi+ξj
were produced, where ξj are Gaussian random numbers
with zero mean and standard deviation σ = 0.220 µm.
From this, track positions were determined via

Xk = X(k∆t) =
1

nenp

kne
∑

i=(k−1)ne+1

np
∑

j=1

xi,j . (12)

For np < 100, this procedure creates a dominant static
localisation error whereas for np ≫ 100 only a dynamic
localisation error is seen.

B. Experimental systems

To assess the applicability to experimental data of the
coefficient of variation analysis in the presence of local-
isation errors, we analysed experimental data displaying
different diffusive regimes. In what follows we report a
short description of the experimental systems.

1. Subdiffusive data

Experimental tracking data for p-granules in C. eleg-
ans embryos. The data were obtained and analysed as
described in [71]. As shown before, p-granule trajector-
ies have a noticeable static localisation error that per-
turbs, e.g., the velocity autocorrelation function. Here,
only trajectories with N = 100 positions at a time in-
crement ∆t = 210 ms with a subdiffusive TA-MSD scal-
ing were considered. Trajectories with scaling exponents
α ∈ [0.7, 0.9], α ∈ [0.5, 0.7], and α ∈ [0.3, 0.5] were
grouped into three distinct sets. For each, γ was cal-
culated as a function of fT , and the average of these was

used for Fig. 3 to soften fluctuations induced by the fairly
short trajectories.

Trajectories for telomeres in the nucleus of mammalian
culture cells. The data were obtained similar to our pre-
vious work [72]: U2OS cells (DSMZ Cat# ACC-785,
RRID:CVCL_0042) were cultured as described and te-
lomeres were highlighted by transient transfection with
a plasmid for GFP-tagged TRF-2 (24 h prior to micro-
scopy, using Lipofectamine3000 according to the manu-
facturer’s protocol). For live-cell microscopy, cells were
plated 24 h prior to transfection in 4-well µ-slide micro-
scopy chambers; 15 min prior to imaging, the medium
was changed to MEM without phenol red supplemen-
ted with 5% FCS and 5% HEPES. Imaging was per-
formed with a customised spinning-disk confocal micro-
scope based on a DMI 4000 stand (Leica Microsystems,
Germany) with a custom-made incubation chamber, a
CSU-X1 spinning-disk unit (Yokogawa Microsystems, Ja-
pan), an HC PL APO 100x/1.40NA oil immersion object-
ive, and an Evolve 512 EMCCD camera (Photometrics,
USA). Samples were illuminated at 488 nm and fluores-
cence was detected in the range 500-550 nm. Traject-
ories were recorded at a time increment ∆t = 110 ms
and only trajectories with at least N = 1000 positions
were retained (and trimmed to the same length if tra-
jectories were longer). In line with our previous finding,
trajectories featured an anti-persistent subdiffusion with
an average scaling exponent of α ≈ 0.55.

In both cases, the generalised diffusion coefficients of
individual trajectories varied log-normally. To soften the
influence of this locus- and particle-dependent prefactor
in the PSD analysis, each trajectory was normalised in
each coordinate by its respective root-mean-squared step
taken within ∆t before calculating γ.

2. Diffusive data

We analysed the motion of 1.2 µm-sized polystyrene
beads in aqueous solution as representative experimental
data for Brownian motion. Namely, we suspended the
beads in phosphate-buffered saline with 1% bovine serum
albumin and 0.05% Tween 20 to avoid aggregation, and
introduced the suspension into a flow cell chamber. Sub-
sequently, the flow cell chamber was sealed for imaging.
The beads were imaged at 100 frames per second in
an inverted microscope with a 40x objective (Olympus
PlanApo, N.A. 0.95) and a sCMOS camera (Andor Zyla
4.2). Bead tracking in the plane was performed in Lab-
View using a cross-correlation based tracking algorithm.
A set of 150 trajectories, each consisting of 4096 frames,
was used in the analysis.

3. Superdiffusive data

Cytoskeleton fluctuations of living cells at different
temperatures [73]. Cytoskeleton fluctuations were meas-
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ured by tracking the trajectory of refractive microbeads
attached to the surface of human alveolar epithelial cells
(A549). The microbeads were previously coated with
Arginine-Glycine-Aspartic acid (RGD) containing pep-
tide (Peptide 2000, Integra life Sciences, San Diego, CA)
to link the probe to the actin cytoskeleton through integ-
rin membrane receptors. The movement of these beads
was sensitive to a wide range of cytoskeleton manipu-
lations including actin polymerisation/depolymerisation
drugs, actomyosin relaxation, cell stretching, temperat-
ure changes, and ATP depletion [74] indicating that spa-
tial fluctuations of microbeads linked to integrin mem-
brane receptors reflect intrinsic cytoskeleton dynamics.

Microbead positions were tracked at 40x magnification
using an inverted microscope (TE-2000E, Nikon, Japan)
equipped with a charge coupled device (CCD) camera
(Orca, Hamamatsu, Japan). The spontaneous microbead
movement was tracked for 200-400s at a sampling rate of
5 Hz. The position of the microbead was determined with
subpixel resolution by computing the microbead centroid
with an intensity-weighted average algorithm implemen-
ted with a custom-made software (LABVIEW, National
Instruments, U.S.). Data were corrected for the drift of
the stage of the microscope, which was computed as the
average change in the position of all microbeads within
the field of view.

The temperature dependence of cytoskeleton fluctu-
ations was measured by heating or cooling the micro-
scope stage with a microincubator system (HCMIS Mi-
croIncubator System, ALA Science, Westbury, NY) and
closed-loop control. The sample temperature was meas-
ured with a negative temperature coefficient thermis-
tor (332 Temperature Controller, Lakeshore, Westerville,
OH). Measurements were taken in n = 6 wells (∼ 20 mi-
crobead/well) per temperature.

Human alveolar epithelial cells (A549) (cell line CCL-
185 ATCC, Manassas, VA) were cultured in RPMI 1640
medium supplemented with 1 mM L-glutamine, 100
U/ml penicillin, 100 mg/ml streptomycin and 2 µg/ml
amphotericin B (all from GIBCO, Gaithersburg, MD),
10% inactivated fetal calf serum (Biological Industries,
Kibbutz Beit Haemek, Israel), and buffered with HEPES

(Sigma, St. Louis, MO). One day before experiments
cells were harvested with a brief exposure to trypsin-
EDTA (Sigma) and plated (900 cells/mm2) on collagen-
coated wells.

Diffusion of nanoparticles in the cytoplasm of hu-
man Mesenchymal stem cells. Here we tracked yellow-
green fluorospheres of size 100 nm injected carefully in
the cytoplasm of human mesenchymal stem cells (hM-
SCs). The fluorospheres (FluoSpheresTM ThermoFisher,
Cat. No: F8803) were negatively charged (carboxylated-
modified) polystyrene beads that are suitable for intra-
cellular tracking. Samples were prepared by diluting the
suspension to 2 mg/ml concentration after 20 minutes
sonication of the stock solution to ensure even disper-
sion of the particles in the solution. The diluted solution
subsequently was vortexed for two minutes for optim-
ised mixing and then loaded via a microloader pipette
(Eppendorf) in manufactured glass capillaries appropri-
ate for microinjection (Femtotips® Eppendorf Cat. Nr.:
5242952008). Their microinjection was executed at room
temperature using a micromanipulation system (Eppen-
dorf) at controlled pressure. Immediately after the in-
jection, imaging was performed 100 s at room temper-
ature with an Olympus IX81 inverted microscope using
a Olympus UPLSAPO40X/0.95 Objective and a Hama-
matsu Orca-2 camera. At each frame of the resulting
video files the particles were identified and their move-
ment were tracked using a publicly available Python
package which also provides tools to spot the candidate
features based on high intensity matches, filtering and
different type of corrections such as drift correction [75].
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