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Abstract. We present a general, constructive method to derive thermodynamically consistent models and consistent
dynamic boundary conditions hierarchically following the generalized Onsager principle. The method consists of two
steps in tandem: the dynamical equation is determined by the generalized Onsager principle in the bulk firstly, and then
the surface chemical potential and the thermodynamically consistent boundary conditions are formulated subsequently
by applying the generalized Onsager principle at the boundary. The application strategy of the generalized Onsager
principle in two-step yields thermodynamically consistent models together with the consistent boundary conditions
that warrant a non-negative entropy production rate (or equivalently non-positive energy dissipation rate in isothermal
cases) in the bulk as well as at the boundary. We illustrate the method using phase field models of binary materials
elaborate on two sets of thermodynamically consistent dynamic boundary conditions. These two types of boundary
conditions differ in how the across boundary mass flux participates in boundary surface dynamics. We then show that
many existing thermodynamically consistent, binary phase field models together with their dynamic or static boundary
conditions are derivable from this method. As an illustration, we show numerically how dynamic boundary conditions
affect crystal growth in the bulk using a binary phase field model.
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1. Introduction
Thermodynamically consistent models refer to the models that are derived from thermo-

dynamical laws and principles. In particular, they obey the second law of thermodynamics,
i.e., the entropy production rate is non-negative or equivalently the energy dissipation rate is
non-positive in isothermal cases. The generalized Onsager principle is a protocol in which the
Onsager linear response theory combined with the equilibrium maximum entropy principle is
used to derive thermodynamically consistent models [44, 45, 56, 61]. The generalized Onsager
principle warrants the second law of thermodynamics in the form of Clausius-Duhem inequal-
ity and has proven to be an effective modeling tool for developing thermodynamical models at
various time and length scales [39, 55, 61, 64, 65]. In the past, the Onsager principle and the
equivalent thermodynamical second law has been primarily used to derive dynamic equations
in the bulk while boundary effects are largely ignored by assuming adiabatic and static bound-
ary conditions or periodic boundary conditions. In this study, we present a general, hierarchical
method to derive thermodynamically consistent models with consistent dynamic boundary con-
ditions for material systems using the generalized Onsager principle in not only the bulk but
also the boundaries, where the dynamic boundary conditions reduce to static ones in the limit.
We illustrate the idea by deriving thermodynamically consistent phase field models and con-
sistent boundary conditions for binary materials in a piecewise smooth domain owing to their
abundance in the literature.

Phase field modeling has emerged as one of the powerful and versatile modeling paradigm
in dealing with multiphase materials in domains with complex interface geometries and com-
plex interfacial phenomena between distinct immiscible phases [52, 54, 59]. It is especially
useful and effective when handling dynamic phase boundaries in multiphase materials involv-
ing topological changes compared to other methods such as front tracking methods, level-set
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2 Thermodynamically Consistent Dynamic Boundary Conditions of Phase Field Models

methods, and volume of fluid methods etc [6,52,53]. By design, it is for diffuse interfaces with
certain interface thickness in which complex interfacial dynamics prevails. A quality phase field
model should be able to capture well-known sharp interface conditions (e.g Gibbs-Thomson
condition) in the vanishing thickness of the interface [22, 51]. This requires one to be mindful
when deriving the free energy of the system in the phase field model so that thermodynami-
cal laws and principles are followed faithfully and properly. Notice that the advantage of the
phase field model in dealing with diffuse interfaces may also limit its applicability to resolve
sharp interfaces [13]. In life science, materials science and engineering, there are multiphase
material systems with diffuse interfaces, which have kept multiphase field models popular and
practical [33, 42, 47, 53].

There are quite a number of phase field models in the literature today. However, not all are
thermodynamically consistent. In this study, we focus on the derivation of thermodynamically
consistent phase field models, which include the derivation of the transport equation in the bulk
as well as the consistent dynamic boundary conditions in fixed boundaries. We stress that it
is important to study multiphase material systems using a thermodynamically ”correct” model
that not only gives one a comprehensive description of the correct physics, but also gives one
a well-posed mathematical system to analyze and compute. Speaking of a thermodynamically
”correct” model, we insist that the model must be at least thermodynamically consistent. This
humble criterion would perhaps disqualify a host of existing phase field models. In addition,
we notice that most of the studies on phase field models are concentrated on equations in the
bulk with static or periodic boundary conditions at fixed boundaries, where the boundary con-
tributions to thermodynamical consistency are trivialized.

Given the recent technological advances in materials science and engineering, boundaries
of a material confining device can no longer be treated as passive. They can be made with
distinctive properties to interact or even control the material within the device [24, 49, 62]. For
instance, the newly discovered boundary effect to the existence of blue phases in cholesteric
liquid crystals in microscales across a quite large temperature range is one of the prominent
examples [5, 41, 48]. This requires one to derive a model for the material system to take into
account the potential dynamic contribution from the boundary. There have been a surge in
activities of this direction on phase field models recently [8,9,16,17,20,23,43]. Here, we briefly
review some existing thermodynamically consistent phase field models with various static and
dynamic boundary conditions.

When one studies dynamics of a phase field model in a fixed domain with adiabatic bound-
ary conditions, no-flux boundary conditions are normally adopted as sufficient adiabatic condi-
tions which contribute to a zero energy flux across the boundary. The most commonly studied
phase field models are the Allen-Cahn and the Cahn-Hilliard model, respectively [1, 3]. We
consider a binary material system in a domain Ω with the free energy given by

E=
∫

Ω
[ ε2 |∇φ|

2 + 1
ε f(φ)]dx, (1.1)

where φ is a mass or volume fraction of one material’s component, boundary ∂Ω is piecewise
smooth, ε is the strength of the conformational entropy and 1

ε f(φ) is the bulk free energy den-
sity. For simplicity, we refer to φ as the mass fraction throughout the paper.

The Allen-Cahn equation [1] for dynamics of φ is given by

φt=−M (1)
b µ, µ=

δE

δφ
, (1.2)

where M (1)
b is the positive semi-definite mobility operator and µ is known as the chemical

potential. For adiabatic boundaries, one uses the following homogeneous Neumann boundary
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condition (HNBC) to ensure that the energy dissipation of the system is dictated exclusively by
bulk energy dissipation

n ·∇φ=∇nφ= 0. (1.3)

The energy dissipation rate in the model is given by the bulk integral without any boundary
contributions

d
dtE=−

∫
Ω
µM

(1)
b µdx. (1.4)

Notice that this model doesn’t conserve mass. To conserve mass, one uses another one known as
the Cahn-Hilliard model with homogeneous Neumann boundary condition (HNBC-CH model).

The Cahn-Hilliard equation [3] for dynamics of φ is given by

φt=∇·M(2)
b ·∇µ, µ=

δE

δφ
, (1.5)

where M
(2)
b is the positive semi-definite mobility coefficient matrix. The following homoge-

neous Neumann boundary conditions ensure the mass conservation and energy dissipation for
the model simultaneously

n ·M(2)
b ·∇µ= 0, n ·∇φ= 0, (1.6)

where the first equation is called the no mass flux condition, resulted from the variation in the
energy dissipation rate, and the second condition ensures that no boundary energy fluxes result
from the conformational entropy. Note that all these are static boundary conditions so that there
is no boundary dynamics in this model. This is by far the most widely studied phase field model
in the literature [7,28,50]. Besides the Cahn-Hilliard model, non-local constraints can be added
to the Allen-Cahn model to enforce the mass conservation to yield the Allen-Cahn model with
nonlocal constraints [28, 29].

If there are material and/or energy exchange across the boundary or there exists dynamics
on the boundary, dynamics of materials in the bulk can be affected. Next, we list several binary
phase field models with dynamic boundary conditions studied recently. The free energy of the
binary material system of these models consists of two parts: the bulk free energy Eb and the
surface free energy Es, respectively,

E=Eb+Es, Eb=
∫

Ω
ε
2 |∇φ|

2 + 1
ε f(φ)dx, Es=

∫
∂Ω

δ
2 |∇sφ|

2 + 1
δ g(φ)ds, (1.7)

where ∇s=∇−(n ·∇)n= (I−nn)∇ is the surface gradient operator [2, 10], δ is the strength
of the conformational entropy at the boundary and g(φ) is the surface energy density at the
boundary [14, 15, 32].

Gal et al derived a set of dynamic boundary conditions for the Cahn-Hilliard model in [18]
(Gal model),

∂φ
∂t =M

(2)
b ∆µ, µ=−ε∆φ+ 1

ε f
′(φ), x∈Ω,

∂φ
∂t =−µs−βM (2)

b ∇nµ, x∈∂Ω,

µs=−δ∆sφ+ 1
δ g
′(φ)+ε∇nφ, µ=βµs, x∈∂Ω,

φ(x,0) =φ0(x), x∈Ω∪∂Ω,

(1.8)
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where∇n =n ·∇, and ∆s is the Laplace-Beltrami operator [10,27]. In this model, the mobility
operator is given byM (2)

b ∆ with a constant mobility coefficientM (2)
b and the energy dissipation

rate is given by

d

dt
E=−M (2)

b

∫
Ω

|∇µ|2dx−
∫
∂Ω

|µs|2ds. (1.9)

At the boundary, the chemical potential from the bulk is stipulated to be proportional to the
chemical potential at the surface with proportionality parameter β; the effective chemical po-
tential at the surface includes a flux contribution from the bulk; the dynamic equation of the
mass fraction on the surface follows Allen-Cahn dynamics with an additional flux from the
bulk so that it does not conserve any quantities as seen in other models below. Neither mass of
the bulk nor mass of the boundary is conserved in this model. If we choose g= δ= 0 and let
β→∞, the Gal model reduces to the HNBC-CH model.

In 2011, Goldstein et al [26] modified the boundary transport equation of the mass fraction
in the Cahn-Hilliard model to give the following governing system of equations (GMS model)

∂φ
∂t =M

(2)
b ∆µ, µ=−ε∆φ+ 1

ε f
′(φ), x∈Ω,

∂φ
∂t =M

(2)
s ∆sµs−βM (2)

b ∇nµ, x∈∂Ω,

µs=−δ∆sφ+ 1
δ g
′(φ)+ε∇nφ, µ=βµs, x∈∂Ω,

φ(x,0) =φ0(x), x∈Ω∪∂Ω,

(1.10)

where M (2)
s is the mobility coefficient for the transport equation at the boundary. This model

differs from the above model in the transport equation of φ at the boundary, where an Allen-
Cahn equation is replaced by a surface Cahn-Hilliard equation. This modification results in the
following mass equality

β
∫

Ω
φ(t)dx+

∫
∂Ω
φ(t)ds=β

∫
Ω
φ(0)dx+

∫
∂Ω
φ(0)ds, (1.11)

where β can be viewed as a weight of the bulk mass compared to the surface mass.
The energy dissipation rate equation is given by

d
dtE=−M (2)

b

∫
Ω
|∇µ|2dx−M (2)

s

∫
∂Ω
|∇sµs|2ds. (1.12)

Note that this model differs from the Gal model in one dynamic boundary condition so that they
yield different dynamics at the boundary and thereby different energy dissipation rates.

By setting ∇nµ= 0 instead of enforcing βµs=µ at the boundary, Liu and Wu derived an-
other set of boundary conditions for the Cahn-Hilliard model with dynamic boundary conditions
(LW model) [40] :

∂φ
∂t =M

(2)
b ∆µ, µ=−ε∆φ+ 1

ε f
′(φ), x∈Ω,

∂φ
∂t =M

(2)
s ∆sµs, µs=−δ∆sφ+ 1

δ g
′(φ)+ε∇nφ, ∇nµ= 0, x∈∂Ω,

φ(x,0) =φ0(x), x∈Ω∪∂Ω.

(1.13)

In this model, mass conservation laws in the bulk and in the boundary are held respectively,∫
Ω
φ(x,t)dx=

∫
Ω
φ(x,0)dx,

∫
∂Ω
φ(x,t)ds=

∫
∂Ω
φ(x,0)ds. (1.14)
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The energy dissipation rate is analogous to that in the GMS model, given by (1.12). This
model dictates that there is no material loss through the boundary and the mass in the bulk
and on the boundary are conserved, respectively, shown in (1.14). Although energy dissipation
rates in these two models are identical, their numerical values may be different because of the
difference in the dynamic boundary conditions.

In 2019, Knopf and Lam presented yet another set of dynamic boundary conditions for
the Cahn-Hilliard equation by extending LW model at the boundary (KL model) [34]. The
governing equation system and the boundary conditions are given by

∂φ
∂t =M

(2)
b ∆µ, µ=−ε∆φ+ 1

ε f
′(φ), x∈Ω,

∂ψ
∂t =M

(2)
s ∆sµs, µs=−δ∆sψ+ 1

δ g
′(φ)+εH ′(ψ)∇nφ, x∈∂Ω,

εK∇nφ=H(ψ)−φ, ∇nµ= 0, x∈∂Ω,

φ(x,0) =φ0(x), x∈Ω, ψ(x,0) =ψ0(x), x∈∂Ω,

(1.15)

where H(ψ) is a prescribed function of ψ. The mass in the bulk and on the boundary are
conserved respectively.

Here, a new function H(ψ) is introduced into the chemical potential at the boundary sur-
face. The modified free energy is given by

E=
∫

Ω
ε
2 |∇φ|

2 + 1
ε f(φ)dx+

∫
∂Ω

[ δ2 |∇sψ|
2 + 1

δ g(ψ)]ds+
∫
∂Ω

(H(ψ)−φ)2

2K ds, (1.16)

If K→0 and H(ψ) =ψ, the KL model reduces to the LW model. The last term in the free
energy is a term penalizing the difference between H(ψ) and φ when K→0. Recently, Knopf
and Signori derived nonlocal models with dynamic boundary conditions and analyzed their
well-posedness [36], extending their work in this direction using distinct variables for the bulk
and surface respectively.

In 2019, Knopf et al. derived a set of boundary conditions for the Cahn-Hilliard model
(KLLM model) [35] as follows

∂φ
∂t =M

(2)
b ∆µ, µ=−ε∆φ+ 1

ε f
′(φ), x∈Ω,

∂φ
∂t =M

(2)
s ∆sµs−βM∇nµ, µs=−δ∆sφ+ 1

δ g
′(φ)+ε∇nφ, x∈∂Ω,

α∇nµ=βµs−µ, x∈∂Ω,

φ(x,0) =φ0(x), x∈Ω∪∂Ω,

(1.17)

where α is a relaxation length parameter. Instead of forcing µ=βµs or ∇nµ= 0 at the bound-
ary, a relaxation mechanism is introduced along the external normal direction of the boundary
via a Robin boundary condition on the chemical potential µ: α∇nµ=βµs−µ. This relaxation
introduces an additional energy dissipation effect (term) to the energy dissipation rate:

d
dtE=−M (2)

b

∫
Ω
|∇µ|2dx−M (2)

s

∫
∂Ω
|∇sµs|2ds−

M
(2)
b

α

∫
∂Ω

(βµs−µ)2ds. (1.18)

The time rate of change of the total mass in the bulk and on the surface follows the same
equation as (1.11).

Clearly, the dynamic boundary conditions in the above models are related, yielding differ-
ent energy dissipation rates and mass conservation or transfer mechanisms between the bulk
and the boundary. We briefly unwind the relations below.
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• If β→∞ and Es= 0, (1.17)-2 implies µs= 0 and ∇nφ= 0. Analogously, if α→∞,
(1.17)-2 deuces ∇nµ= 0. So, the HNBC-CH Model can be viewed as a limiting case
of the KLLM model.

• In (1.17)-2, βµs−µ is explained as the difference of weighted surface chemical poten-
tial βµs and bulk chemical potential µ. We define 1

α as the relaxation rate, the system
reaches the ”equilibrium” at βµs=µ when α→0. So, the KLLM model reduces to
the GMS model at α= 0.

• If α→∞, there is no relaxation and mass transfer between the boundary and bulk,
leading to ∇nµ= 0. Thus, the KLLM model reduces to the LW model.

In the analysis, we note that the KLLM model is a fairly general model which includes three
others as special cases. However, it’s not general enough to include the Gal Model and the KL
model. Recently, Hao Wu reviewed the derivation and analysis of the classical Cahn-Hilliard
equation with static and dynamic boundary condition [58]. In addition, all the above mentioned
boundary conditions are valid in flat boundaries where the curvature vanishes. However, when
the domain boundary has a non-negligible curvature, its can affect the dynamic boundary condi-
tions. For arbitrarily shaped domain boundaries, we must include the curvature contribution to
the boundary dynamics. In many real-world applications, the boundary of the materials domain
is not flat and it has non-negligible curvature. When the curvature effect is taken into account,
the dynamic boundary conditions alluded to earlier must be modified to take into account the
important geometric effect. This study will attempt to address this issue for a family of free
energies.

In addition, the above reviewed phase field models are for purely dissipative systems. There
are analogous phase field models for systems that allow both irreversible and reversible pro-
cesses. One class of the phase field models includes the inertia effect to allow wave propaga-
tion [21]. For example, the phase field model in [4] is given by

φt=∇2µ−ε0φtt, µ=−∇2φ+f ′(φ)+α0φt, x∈Ω, (1.19)

where ε0 is a measure of inertia and α0>0 is a viscosity coefficient. Apparently, there is an un-
derlying unified framework available to derive models that are consistent with thermodynamical
principles.

In this paper, we aim to develop such a general framework to derive thermodynamically
consistent models together with boundary conditions for nonequilibrium materials systems in
any domains with piecewise smooth boundaries, where boundary dynamics and the boundary
curvature effect are fully accounted for. We derive the general dynamic boundary condition as
a constitutive relation by applying the generalized Onsager principle at the boundary analogous
to what one does in the bulk. We elaborate on two types of such dynamic boundary condi-
tions specifically by prescribing two distinct energy dissipation mechanisms under the unified
assumption that the mass flux at the boundary is dictated by the imbalance between the bulk
chemical potential and the surface one. We show that most of the above reviewed boundary
conditions are special cases of the two type boundary conditions. We illustrate the impact of
boundary dynamics on the bulk structure using a phase field model for crystal growth in the end
numerically.

The rest of the paper is organized as follows. In §2, we present a general model in domains
with smooth boundaries, whose free energy depends on gradients of the phase field variable up
to the second order, and discuss its various limits. In §3, we discuss the extension to phase field
models with a general free energy with high order spatial derivative and a nonlocal free energy.
In §4, we show the effect of surface dynamics on the crystal growth in a phase field model for
crystal growth by numerical simulations. We summarize the results in §5.
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2. Thermodynamically consistent phase field models with consistent dynamic bound-
ary conditions

We present a general framework for deriving transport equations and consistent dynamic
boundary conditions for a phase field model that yields a negative energy dissipation or a pos-
itive entropy production rate when all dynamics are accounted for. We illustrate the approach
using the scalar phase field model for a binary material system with a free energy of up to second
order spatial derivatives of the phase field variable. Then, we elucidate the path for extending
it to the more general free energy functional including the nonlocal free energy later. We make
contact with the models mentioned in the introduction by examining limiting cases of the model
and showing that many of those models are special cases of the general model. We discuss the
derivation in the isothermal case in this paper so that the free energy is the proper potential to
work with.

2.1. Generalized Onsager principle
The classical Onsager linear response theory on which the Onsager principle for dissipative

systems is based provides a viable way to calculate dissipative forces in relaxation dynamics
in an irreversible nonequilibrium process [44–46]. In a general setting, the linear response
theory states that given a chemical potential in an isothermal system, the generalized flux φt is
proportional to the generalized force or chemical potential µ̂

φt=−Mµ̂, (2.1)

where M is called the mobility. In general, M is an operator. For dissipative systems where
dynamics are irreversible, the additional Onsager reciprocal relation dictates that M is symmet-
ric; for conservative systems where dynamics are reversible, M is antisymmetric [56]. We note
that when M is a differential operator, like in the Cahn-Hilliard equation system, the property
of M is affected by the boundary conditions of the system. For a system where inertia is non-
negligible and there coexist irreversible and reversible dynamics in the nonequilibrium process,
we extend the force balance equation to a generalized Onsager principle [56, 61]

−M−1φt=ρφtt+ µ̂⇔φt=−M(ρφtt+ µ̂), (2.2)

where ρφtt represents the inertia force, ρ is a measure of mass and M is the mobility operator
which is not necessarily symmetric. We next use the generalized Onsager principle to derive the
general phase field model along with its consistent boundary conditions for a binary material
system.

2.2. Models with free energy of up to second spatial derivatives
Let the bulk free energy in a fixed material domain Ω be given by

Eb[φ] =

∫
Ω

eb(φ,∇φ,∇∇φ)dx, (2.3)

where eb is the energy density per unit volume. We consider a binary material system with a
boundary that may have its distinctive properties than the bulk and possesses its own surface
energy of derivatives up to the second order in space

Es[φ] =

∫
∂Ω

es(φ,∇sφ,∇s∇sφ)ds, (2.4)

where es is the surface energy density per unit area, the phase field variable in the surface energy
density is defined by

φ=φ(x,t)|∂Ω, (2.5)
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and ∇s is the surface gradient operator over piecewise smooth boundary ∂Ω as that in the
introduction. We note that (2.5) is a critical assumption we adopt throughout the paper, which
states that the phase field variable is continuous up to the boundary. The case where the phase
field variable on the surface may not be the limit of the phase field variable in the bulk on the
surface will be discussed in a sequel. Hence, we will not introduce a new notation for the phase
field variable on the surface in this paper.

The free energy of the system is given by

Ef [φ] =

∫
Ω

eb(φ,∇φ,∇∇φ)dx+

∫
∂Ω

es(φ,∇sφ,∇s∇sφ)ds. (2.6)

We add the kinetic energy in the bulk and on the boundary to account for the inertia effect
in the system such that the total free energy is given by

E[φ] =

∫
Ω

[
ρ

2
φt

2 +eb(φ,∇φ,∇∇φ)dx+

∫
∂Ω

[
ρs
2
φ2
t +es(φ,∇sφ,∇s∇sφ)]ds, (2.7)

where φt is the invariant time derivative of φ, ρ and ρs are two mass densities that measure the
inertia in the bulk and on the surface, respectively. We calculate the time rate of change of the
free energy as follows, assuming domain Ω is fixed,

dE
dt =

∫
Ω

(ρφtt+µ)φtdx+
∫
∂Ω

[ρsφtφtt+
∂es
∂φ φt+

∂es
∂∇sφ∇sφt+

∂es
∂∇s∇sφ∇s∇sφt+

n · ∂eb∂∇φφt+
∂eb

∂∇∇φ :n∇φt−n∇ : ∂eb
∂∇∇φφt]ds

=
∫

Ω
(ρφtt+µ)φtdx+

∫
∂Ω

[ρsφtφtt+
∂es
∂φ φt−∇s ·

∂es
∂∇sφφt−2Hn · ∂es∂∇sφφt

−∇s · ∂es
∂∇s∇sφ ·∇sφt−2Hn · ∂es

∂∇s∇sφ ·∇sφt
+n · ∂eb∂∇φφt+

∂eb
∂∇∇φ :n∇φt−(n∇ : ∂eb

∂∇∇φ )φt]ds

=
∫

Ω
(ρφtt+µ)φtdx+

∫
∂Ω

[ρsφtφtt+µsφt+
∂eb

∂∇∇φ :nn(n ·∇φt)]ds,

(2.8)

where H is the mean curvature of the boundary, n is the unit external normal of ∂Ω, the bulk
and surface chemical potential are given respectively by

µ= ∂eb
∂φ −∇·

∂eb
∂∇φ +∇∇ : ∂eb

∂∇∇φ ,

µs= ∂es
∂φ −∇s ·

∂es
∂∇sφ−2Hn · ∂es∂∇sφ +n · ∂eb∂∇φ−n∇ : ∂eb

∇∇φ

+∇s∇s : ∂es
∂∇s∇sφ +2Hn∇s : ∂es

∂∇s∇sφ +∇s ·(2Hn · ∂es
∂∇s∇sφ )

+4H2nn : ∂es
∂∇s∇sφ−∇sn : ∂eb

∂∇∇φ−2Hnn : ∂eb
∂∇∇φ .

(2.9)

Note that (i) the surface chemical potential includes contributions from the surface free energy
as well as that from the bulk energy confined to the boundary; (ii) the mean curvature shows up
in the surface chemical potential, indicating that curvature of the boundary affects the dynamics
at the boundary; and (iii) more surface terms can appear if the free energy density function
depends on higher order spatial derivatives. We adopt the Einstein notation for tensors, denote
tensor product of vector n and v as nv=nivj , use one dot · to represent inner product n ·v=
nivi and two dots : to represent contraction of two second order tensor A :C=AijCij , where
n,v are vectors, A,C are second order tensors, and the Einstein notation is adopted.

2.2.1. Dynamics in the bulk
We apply the generalized Onsager principle firstly to the bulk integral in (2.8) to obtain the

transport equation for φ in Ω

−M−1
b φt=ρφtt+µ⇔φt=−Mb(ρφtt+µ), x∈Ω, (2.10)
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where Mb is the mobility operator and M−1
b is the friction operator which is positive semi-

definite to ensure energy dissipation. We consider the mobility operator in the following form
in this study

Mb=M
(1)
b −∇·M

(2)
b ·∇, (2.11)

where M (1)
b ≥0 is a scalar function of φ and M

(2)
b ∈R3×3 is a semi-definite positive matrix

which can be a function of φ as well. If M
(2)
b =M

(2)
b I and M (2)

b is also a scalar function
of φ, then such a special case ∇·M(2)

b ·∇=∇·(M (2)
b ∇) can be obtained. We note that the

derivation applies to a more general mobility operator with high order derivatives as well, which
we will not pursue in this study. The presence of spatial derivatives in the mobility indicates the
nonlocal interaction is accounted for in the friction operator M−1

b . This is shown in the form of
pseudo-differential operators. With this, the energy dissipation rate reduces to

dE
dt =−

∫
Ω

[(µ+ρφtt)M
(1)
b (µ+ρφtt)+∇(µ+ρφtt) ·M(2)

b ·∇(µ+ρφtt)]dx

+
∫
∂Ω

[(µs+ρsφtt)φt+µc∇nφt+(µ+ρφtt)n ·M(2)
b ·∇(µ+ρφtt)]ds,

(2.12)

where µc= ∂eb
∂∇∇φ :nn. We denote the generalized chemical potential in the bulk by µ̃=µ+

ρφtt and in the surface by µ̃s=µs+ρsφtt, respectively. We remark that n ·M(2)
b ·∇(µ+ρφtt)

is the inward mass flux across the boundary. This physical quantity is determined by the balance
between the surface and bulk chemical potential. We next derive thermodynamically consistent
boundary conditions.

2.2.2. Dynamics on boundaries
We first recognize that the boundary energy flux density is a quadratic form and then ap-

ply the Onsager principle the second time to the energy flux density to establish a dynamic
constitutive equation at the boundary:

φt

fm

∇nφt

=−M3×3 ·


µ̃s

µ̃

µc

, (2.13)

where fm=n ·M(2)
b ·∇µ̃ is the inward mass flux andM3×3≥0 is the surface mobility operator,

a 3×3 matrix or second order tensor. M3×3≥0 means that its symmetric operator is semi-
positive definite. Then,

dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx

−
∫
∂Ω

[(µ̃s,µ̃,µc)(M3×3)(µ̃s,µ̃,µc)
T ]ds≤0,

(2.14)

which indicates the system is dissipative. We examine two special cases that include most of
the models and boundary conditions mentioned in the introduction below.
Case 1: a purely dissipative boundary condition.

We define a symmetric mobility operator as follows

M3×3 =


Ms+ β2

α −
β
α 0

−β
α

1
α 0

0 0 Mc

, (2.15)
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where Ms is a semi-definite positive operator, α≥0 is a friction coefficient, 1/β≥0 is a length
parameter, and Mc is a semi-definite positive mobility operator. We note that these mobility
operators can be differential operators. When Mc is a scalar in a simple example and Mc→∞,
µc= ∂eb

∂∇∇φ :nn= 0; while Mc→0, ∇nφt= 0.
This constitutive equation establishes a balance between the inward mass flux at the bound-

ary and the generalized chemical potential difference between the bulk and the surface: it as-
sumes the inward mass flux is proportional to the difference between the chemical potential in
the bulk and the weighted one at the boundary. When the weighted surface energy is higher
than the bulk energy confined to the boundary, the mass flux is inward; otherwise, the mass flux
flows outward. In either case, the total energy dissipates when M3×3≥0.

The governing equation together with the boundary conditions in this model is given as
follows

∂φ
∂t =−Mbµ̃, x∈Ω,

∂φ
∂t =−(Ms+ β2

α )µ̃s+ β
α µ̃, x∈∂Ω,

αn ·M(2)
b ·∇µ̃=−µ̃+βµ̃s, ∇nφt=−Mcµc, x∈∂Ω,

φ(0) =φ0, x∈Ω∪∂Ω.

(2.16)

The corresponding energy dissipation rate is given by

dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µcMcµc]ds

+
∫
∂Ω

[µ̃s(φt+βn ·M(2)
b ·∇µ̃)]ds− 1

α

∫
∂Ω

(βµ̃s− µ̃)2ds.
(2.17)

The surface transport equation of φ can be rewritten into an alternative form on boundary ∂Ω

∂φ

∂t
=−Msµ̃s−βfm, x∈∂Ω, (2.18)

where

fm=n ·M(2)
b ·∇µ̃=

1

α
(βµ̃s− µ̃). (2.19)

This indicates that the time rate of change of mass fraction φ is proportional to the outward
mass flux and the generalized surface chemical potential.
Case 2: a dissipative and transportive boundary condition

In the second case, we propose another mobility operator as follows

M3×3 =


Ms

β
α 0

−β
α

1
α 0

0 0 Mc

=


Ms 0 0

0 1
α 0

0 0 Mc

+


0 β

α 0

−β
α 0 0

0 0 0

 , (2.20)

which includes an antisymmetric component, contributing to transport dynamics at the bound-
ary, in addition to the positive semi-definite operator in M3×3. The antisymmetric mobility
component represents an energy exchange between the bulk and the boundary without inducing
any dissipation.
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The governing equation together with the boundary conditions in this model is summarized
as follows

∂φ
∂t =−Mbµ̃, x∈Ω,

∂φ
∂t =−Msµ̃s− β

α µ̃, x∈∂Ω,

αn ·M(2)
b ·∇µ̃=−µ̃+βµ̃s, ∇nφt=−Mcµc, x∈∂Ω,

φ(x,0) =φ0, x∈Ω∪∂Ω.

(2.21)

Notice that the mobility matrix has an antisymmetric component which does not contribute
to the energy dissipation. This set of boundary conditions has the following interpretation: the
time rate of change of the phase field variable at the boundary is proportional to both the surface
chemical potential and the inward flux across the boundary.

The corresponding energy dissipation rate is given by

dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s+ 1
α µ̃

2 +µcMcµc]ds. (2.22)

The two types of dynamic boundary conditions are derived from two different consider-
ations of the mobility operator, which contribute to distinct energy dissipation mechanisms,
following the generalized Onsager principle under a unified assumption that the boundary mass
flux is proportional to the difference of the bulk energy confined at the boundary and a weighted
surface energy. In the first case, the time rate of change of mass fraction ( phase field variable)
is proportional to the surface chemical potential and the outward mass flux. As a result, the
distinctive surface energy dissipation rate is directly linked to the magnitude of the mass flux
across the boundary surface. In the second case, the time rate of change of mass fraction is
proportional to the surface chemical potential and the inward mass flux. Consequentially, the
distinctive surface energy dissipation rate is measured by the bulk chemical potential confined
to the surface. Two different dissipative mechanisms define two different dynamic models at
the boundary. There are more cases that one can elaborate on by specifying specific form of
operator M3×3, which we will not enumerate in this study.

In general, mobility operator in the bulk Mb=Msym
b +Manti

b in (2.2) can be decomposed
into symmetric and antisymmetric part, where Msym

b is semi-definite positive. There can be
many more thermodynamically consistent boundary conditions that are compatible to the given
bulk transport equation. For the mobility operators at the boundary, we consider the following
forms, analogously to the bulk,

Ms=M (1)
s −∇s ·M(2)

s ·∇s, Mc=M (1)
c −∇s ·M(2)

c ·∇s, (2.23)

where M (1)
c ≥0, M (1)

s ≥0, and M
(2)
s and M

(2)
c are 3×3 positive semi-definite matrices. Then,

−
∫
∂Ω

[µ̃sMsµ̃s]ds=−
∫
∂Ω

[µ̃sM
(1)
s µ̃s+∇sµ̃s ·M(2)

s ·∇sµ̃s]ds

−
∫
∂Ω

[2Hµ̃sn ·M(2)
s ·∇sµ̃s]ds,

(2.24)

−
∫
∂Ω

[µcMcµc]ds=−
∫
∂Ω

[µcM
(1)
c µc+∇sµc ·M(2)

c ·∇sµc]ds

−
∫
∂Ω

[2Hµcn ·M(2)
c ·∇sµc]ds.

(2.25)

Whether or not the energy dissipation rate at the boundary is nonpositive depends on the last
terms in (2.24) and (2.25), which are linearly proportional to the mean curvature.
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If M(2)
s =M

(2)
s I and M

(2)
c =M

(2)
c I, where M (2)

s ≥0 and M (2)
c ≥0 are scalar functions of

φ, the last terms in (2.24) and (2.25) vanish and the energy dissipation rate at the boundary are
nonpositive due to n ·∇sµs=n ·∇sµc= 0. Of course, H= 0 is also a sufficient condition for
non-positive energy dissipation rates.

It follows from (2.16) that

d
dt [

∫
Ω
βφdx+

∫
∂Ω
φds]

=−β
∫

Ω
M

(1)
b µ̃dx−

∫
∂Ω

[M
(1)
s µ̃s+2Hn ·M(2)

s ·∇sµ̃s]ds.
(2.26)

If M(2)
s =M

(2)
s I or H= 0,

d

dt
[

∫
Ω

βφdx+

∫
∂Ω

φds] =−β
∫

Ω

M
(1)
b µ̃dx−

∫
∂Ω

M (1)
s µ̃sds. (2.27)

If M (1)
b = 0,M

(1)
s = 0,

d

dt
[

∫
Ω

βφdx+

∫
∂Ω

φds] = 0. (2.28)

This indicates a weighted mass in the bulk and the mass over the surface is conserved under this
dynamic boundary condition. In this case, parameter β in the dynamic boundary condition can
be interpreted as the weighted mass at the bulk to that over the surface.

Model (2.16) and (2.21) give a general phase field model with two different dynamic bound-
ary conditions, where the surface transport equation of φ at the boundary sets the two models
apart. In the first one, the across boundary mass flux contributes directly to the energy dissipa-
tion on the surface; while in the second, it is the bulk chemical potential limited to the boundary
contributes to the energy dissipation on the surface directly. We next examine various limiting
cases to show that most models mentioned in the introduction are special cases of model (2.16)
and (2.21), respectively. Specifically, when the across boundary mass flux is forbidden, i.e.,
α=∞ and β= 0, we show that the two types of dynamic boundary conditions are identical.

2.3. Limiting cases
Since (2.16) and (2.21) describe two different dynamics at the boundary, we examine them

closely in several limiting cases and make contact with the models alluded to in the introduction
and in the literature. Notice that when ρ=ρs= 0, the phase field model reduces to the over-
damped limit where the inertia force is neglected, µ̃=µ and µ̃s=µs. We present limits of
the under-damped case in the following, the results for the over-damped ones are obtained by
setting ρ=ρs= 0.

• Let β→0, the boundary conditions reduce to

αn ·M(2)
b ·∇µ̃=−µ̃, φt=−Msµ̃s, ∇nφt=−Mcµc, x∈∂Ω. (2.29)

The first equation states that the mass flux between the bulk and the boundary is com-
pletely dictated by the bulk chemical potential extrapolated (or confined) to the bound-
ary. The second one shows the relaxation dynamics of mass fraction at the surface are
dictated completely by the surface chemical potential. This indicates that the across
boundary mass flux does not interfere with the surface dynamics at the boundary. The
third one is necessary only when the free energy has second order spatial derivatives,
which represents the relaxation dynamics of the directional derivative of the volume
fraction.
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Then the energy dissipation rate reduces to

dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds

−
∫
∂Ω

[ 1
α µ̃

2 +µcMcµc]ds≤0.
(2.30)

Model (2.16) and (2.21) are identical and dissipative in this limit.
• Limit α→0 is a singular limit. We will conduct the limiting process in the following

order. Firstly, we substitute (2.16)-3 into (2.16)-2; secondly, we take the limit α→0
in (2.16)-3. The results are given by

φt+βn ·M(2)
b ·∇µ̃=−Msµ̃s, x∈∂Ω,

βµ̃s= µ̃, ∇nφt=−Mcµc, x∈∂Ω.
(2.31)

These conditions state that the bulk chemical potential and the weighted surface one
reach a balance at the boundary and the time rate of change in the phase field variable
at the boundary is given by the rate of change due to the outward mass flux and the
surface chemical potential. The energy dissipation rate reduces to

dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds

−
∫
∂Ω

[µcMcµc]ds.
(2.32)

The model is dissipative with the boundary conditions.
If we take the singular limit in (2.21), we end up with

µ̃= 0, µ̃s= 0, ∇nφt=−Mcµc, x∈∂Ω. (2.33)

and the energy dissipation rate is given by

dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µcMcµc]ds. (2.34)

The two models do not give the same set of boundary conditions. They indeed describe
two different dynamics in the limit.

• When α→∞, we have

φt=−Msµ̃s, n ·M(2)
b ·∇µ̃= 0, ∇nφt=−Mcµc, x∈∂Ω, (2.35)

and the energy dissipation rate is given by (2.32). The boundary conditions stipulate
that the mass flux at the boundary vanishes and the phase field dynamics at the bound-
ary is dictated by relaxation dynamics of the surface mass fraction exclusively. The
two models are once again identical and dissipative.

We summarize the dynamic boundary conditions and energy dissipation rates in table 2.1
and 2.2 in the limits. In the case α→0, the two models are not identical, whereas they are
the same in the other two cases. While both α and β are finite, we consider the limiting cases
with respect to boundary mobility operators Ms and Mc, respectively. The results are tabulated
in tables 2.3 and 2.4, respectively. Regardless what are the surface mobility operators, the
two boundary conditions are different in the cases, yielding two distinct thermodynamically
consistent phase field models with consistent dynamic boundary conditions. Note that the two
dynamic boundary conditions differ in how the mass flux transfers across the boundary and how
mass fraction dynamics on the surface are prescribed. In table 2.5, we demonstrate that most
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existing models mentioned in the introduction are special cases of the general model with the
first type dynamic boundary condition. It is obvious that none of these models are the special
case of the general model with the second type dynamic boundary condition. In fact, there are
also some progresses in the nonlocal model with dynamic boundary conditions recently [36],
which is also a special case of the general model with first type of dynamic boundary condition.
We discuss the general nonlocal models with two types of dynamic boundary conditions in
the next section. Notice that models (2.16) and (2.21) include all the models alluded to in
the introduction as special cases except for the KL model when the free energy is limited to
functionals of up to the first order spatial derivative. This is shown clearly in Table 2.5. Thus,
the phase field model presented here is indeed a general phase field model. Moreover, the
boundary conditions derived in this study include the curvature effect for an arbitrarily shaped
piecewise smooth boundary, which have not been considered in previous studies. Finally, we
note that any set of boundary conditions delineated here or their limiting cases may appear as
boundary conditions on a smooth piece of the piecewise smooth boundary so that the overall
boundary conditions can be a combination of the sets of dynamic boundary conditions.

Case I II

β→0 ∂φ
∂t =−Msµ̃s, αn ·M(2)

b ·∇µ̃=−µ̃, ∇nφt=−Mcµc

α→0 ∂φ
∂t +βn ·M(2)

b · µ̃=−Msµ̃s, βµ̃s= µ̃, ∇nφt=−Mcµc µ̃= 0, µ̃s= 0, ∇nφt=−Mcµc

α→∞ ∂φ
∂t =−Msµ̃s, n ·M(2)

b ·∇µ̃= 0, ∇nφt=−Mcµc

TABLE 2.1. Dynamical boundary conditions in three limiting cases.

Case I

β→0 dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds− 1
α

∫
∂Ω

[µ̃2]ds−
∫
∂Ω

[µcMcµc]ds

α→0 dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s+µcMcµc]ds

α→∞ dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds−
∫
∂Ω

[µcMcµc]ds

Case II

β→0 dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds− 1
α

∫
∂Ω

[µ̃2]ds−
∫
∂Ω

[µcMcµc]ds

α→0 dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µcMcµc]ds

α→∞ dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds−
∫
∂Ω

[µcMcµc]ds

TABLE 2.2. Energy dissipation rates in three limiting cases. I and II represent the first and second type of
boundary condition, respectively, when they are different.
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Case I

Ms→0 ∂φ
∂t =− β

2

α µ̃s+ β
α µ̃, αn ·M(2)

b ·∇µ̃=βµ̃s− µ̃, ∇nφt=−Mcµc

Ms→∞ ∂φ
∂t =−βn ·M(2)

b ·∇µ̃, µ̃s= 0, ∇nφt=−Mcµc

Mc→0 ∂φ
∂t =−(Ms+ β2

α )µ̃s+ β
α µ̃, αn ·M(2)

b ·∇µ̃=βµ̃s− µ̃, ∇nφt= 0

Mc→∞ ∂φ
∂t =−(Ms+ β2

α )µ̃s+ β
α µ̃, αn ·M(2)

b ·∇µ̃=βµ̃s− µ̃, µc= 0

Case II

Ms→0 ∂φ
∂t =− βα µ̃, αn ·M(2)

b ·∇µ̃=βµ̃s− µ̃, ∇nφt=−Mcµc

Ms→∞ ∂φ
∂t =βn ·M(2)

b ·∇µ̃, µ̃s= 0, ∇nφt=−Mcµc

Mc→0 ∂φ
∂t =−Msµ̃s− β

α µ̃, αn ·M(2)
b ·∇µ̃=βµ̃s− µ̃, ∇nφt= 0

Mc→∞ ∂φ
∂t =−Msµ̃s− β

α µ̃, αn ·M(2)
b ·∇µ̃=βµ̃s− µ̃, µc= 0

TABLE 2.3. Two types of dynamic boundary conditions.

Case I

Ms→0 dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx− 1
α

∫
∂Ω

[(βµ̃s− µ̃)2]ds−
∫
∂Ω

[µcMcµc]ds

Ms→∞ dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx− 1
α

∫
∂Ω

[µ̃2]ds−
∫
∂Ω

[µcMcµc]ds

Mc→0 dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds− 1
α

∫
∂Ω

[(βµ̃s− µ̃)2]ds

Mc→∞ dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds− 1
α

∫
∂Ω

[(βµ̃s− µ̃)2]ds

Case II

Ms→0 dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx− 1
α

∫
∂Ω

[µ̃2]ds−
∫
∂Ω

[µcMcµc]ds

Ms→∞ dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx− 1
α

∫
∂Ω

[µ̃2]ds−
∫
∂Ω

[µcMcµc]ds

Mc→0 dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω
µ̃sMsµ̃sds− 1

α

∫
∂Ω

[µ̃2]ds

Mc→∞ dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω
µ̃sMsµ̃sds− 1

α

∫
∂Ω

[µ̃2]ds

TABLE 2.4. The free energy dissipation rates corresponding to the two types of boundary dynamics.

Models Specific conditions for the model with first type of dynamic boundary condition

Gal model [18] Mb=M
(2)
b ∇

2, Ms= 1, α= 0, ρ=ρs=µc=Mc=H= 0

GMS model [26] Mb=M
(2)
b ∇

2, Ms=M(2)
s ∇

2
s , α= 0, ρ=ρs=µc=Mc=H= 0

LW model [40] Mb=M
(2)
b ∇

2, Ms=M(2)
s ∇

2
s , α→∞, ρ=ρs=µc=Mc=H= 0

KLLM model [35] Mb=M
(2)
b ∇

2, Ms=M(2)
s ∇

2
s , ρ=ρs=µc=Mc=H= 0

TABLE 2.5. Relation between the general model with first types of dynamic boundary conditions and several
existing models in the literature.
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2.4. Mixed dynamic boundary conditions
Let us consider a domain Ω with piecewise smooth boundaries ∂Ω =∪Ni=1Γi, where Γi

and Γj are either mutually disjoint or adjacent smooth surfaces, i,j= 1, ·· · ,N . The energy
dissipation rate in (2.12) can be rewritten into

dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx

+
∑N
i

∫
Γi

[µ̃sφt+µcn ·∇φt+ µ̃n ·M(2)
b ·∇µ̃]ds.

(2.36)

For the surface terms in (2.36), either of two boundary conditions (2.16) and (2.21) can be
implemented. We illustrate this for case N = 2.

The following boundary conditions give dissipative boundary conditions to the above en-
ergy dissipation rate:

∂φ
∂t =−(Ms+

β2
1

α1
)µ̃s+ β1

α1
µ̃, x∈Γ1,

α1n ·M(2)
b ·∇µ̃=−µ̃+β1µ̃s, x∈Γ1,

∇nφt=−Mcµc, x∈Γ1,

∂φ
∂t =−Msµ̃s− β2

α2
µ̃, x∈Γ2,

α2n ·M(2)
b ·∇µ̃=−µ̃+β2µ̃s, x∈Γ2,

∇nφt=−Mcµc, x∈Γ2.

(2.37)

From (2.12), we have

dE
dt =−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx+
∫

Γ1
[µ̃s(φt+β1n ·M(2)

b ·∇µ̃)]ds

− 1
α1

∫
Γ1

(β1µ̃s− µ̃)2ds−
∫

Γ1
[µcMcµc]ds+

∫
Γ2

[µ̃s(φt+
β2

α2
µ̃)]ds

− 1
α2

∫
Γ2

[µ̃2]ds−
∫

Γ2
[µcMcµc]ds.

(2.38)

It is straightforward to generalize it to cases where N >2. We note that the function space for
the solution of the initial boundary value problems should be chosen such that weak derivatives
exist in the bulk and on the surface. We will not elaborate on this in this paper.

2.5. Examples
We present a few free energy functionals for binary phase field models describing im-

miscible, miscible polymeric materials, molecular beam epitaxy (MBE) and crystal growth,
respectively.

2.5.1. Polynomial double-well and Flory-Huggins mixing free energy for multiphase
polymers

We consider a general free energy functional involving polynomial double well or Flory-
Huggins bulk mixing energy and the conformational entropy in both the bulk and on the surface

Eb=
∫

Ω
[ρ2φ

2
t + γ1

2 ∇φ ·D ·∇φ+γ2f(φ)]dx,

Es=
∫
∂Ω

[ρs2 φ
2
t + ζ1

2 ∇sφ ·Ds ·∇sφ+ζ2g(φ)]ds,
(2.39)

where φ is a phase variable vector, D and Ds are the positive semi-definite anisotropic co-
efficients of the conformational entropy in the bulk and surface [31, 57, 63], respectively,
γi,ζi,i= 1,2 are parameters. The corresponding dynamic governing equations are given by
setting µc=Mc= 0 in (2.16) and (2.21).
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2.5.2. Free energy for molecular beam epitaxy
A bulk and a surface free energy for molecular beam epitaxy (MBE) are similar to (2.39),

but with different choices of energy densities f and g [38, 60]:

Eb=
∫

Ω
[ρ2φ

2
t + γ1

2 ∇φ ·D ·∇φ+γ2f(φ)]dx,

Es=
∫
∂Ω

[ρs2 φ
2
t + ζ1

2 ∇sφ ·Ds ·∇sφ+ζ2g(φ)]ds.
(2.40)

There are two choices of (φ)f and g(φ) in MBE models, one is

f(φ) =
1

4
(1−|∇φ|2)2,x∈Ω, g(φ) =

1

4
(1−|∇φ|2)2,x∈∂Ω, (2.41)

with slope selection and the other is

f(φ) =−1

2
ln(1+ |∇φ|2),x∈Ω, g(φ) =−1

2
ln(1+ |∇φ|2),x∈∂Ω, (2.42)

without slope selection. Setting µc=Mc=M
(2)
b = 0, we obtain the desired dynamic equations

from (2.16) and (2.21).

2.5.3. Free energy for crystal growth models
A bulk free energy for the phase field crystal growth model is given by

Eb=
∫

Ω
[ρ2φ

2
t + φ

2 (−ε+(∇2 +1)2)φ+ φ4

4 ]dx, (2.43)

where φ represents an atomistic density field, which is the deviation of the density from the
average density and is a conserved field variable, ε is a parameter related to the temperature,
that is, higher ε corresponds to a lower temperature [11, 12].

Likewise, we propose the following for the surface energy

Es=

∫
∂Ω

[
ρs
2
φ2
t +

1

2
(∇2

sφ)2−|∇sφ|2 +g(φ)]ds, (2.44)

where g(φ) is a prescribed surface energy density. The corresponding governing equations,
boundary conditions and energy dissipation rates are given by (2.16) and (2.21) with the free
energy functionals substituted, respectively. We could also consider an anisotropic phase-field
crystal model by using anisotropic conformational entropy in the bulk and the surface energy
functional [37].

3. Nonlocal models and other extensions
We now consider phase field models with a nonlocal free energy [19, 25], where the free

energy is given by

Eb=

∫
Ω

[

∫
Ω

1

4
J(‖x−y‖)(φ(x,t)−φ(y,t))2dy+f(φ)]dx, (3.1)

where J(‖x‖) is the interaction kernel and f is the free energy density for the bulk. We assume
the interaction between the bulk and the boundary has been built in the interaction kernel. This
form of the free energy is perhaps more generic than the one that depends on spatial derivatives
of the phase variable.

The chemical potential is calculated as follows

µ=

∫
Ω

J(‖x−y‖)(−φ(y,t))dy+f ′(φ)+a(x)φ(x,t), (3.2)



18 Thermodynamically Consistent Dynamic Boundary Conditions of Phase Field Models

where a(x) =
∫

Ω
J(‖x−y‖)dy. Likewise, we consider the surface energy given by

Es=

∫
∂Ω

[

∫
∂Ω

1

4
K(‖x−y‖)(φ(x,t)−φ(y,t))2dsy +g(φ)]dsx, (3.3)

where g is the surface energy density. The surface chemical potential is calculated as follows

µs=
∫
∂Ω
K(‖x−y‖)(φ(x,t)−φ(y,t))dsy +g′(φ)

=
∫
∂Ω
K(‖x−y‖)(−φ(y,t))dsy +g′(φ)+aS(x)φ(x,t),

(3.4)

where aS(x) =
∫
∂Ω
K(‖x−y‖)dsy. The total free energy, including the inertia effect, is then

given by

E=Eb+Es+

∫
Ω

ρ

2
(φt)

2dx+

∫
∂Ω

ρs
2

(φt)
2ds. (3.5)

We calculate the time rate of change of the free energy

d

dt
E=

∫
Ω

µ̃φtdx+

∫
∂Ω

µ̃sφtdsx. (3.6)

We apply the Onsager principle to the bulk term to arrive at

φt=−Mbµ̃, x∈Ω, (3.7)

where Mb is the mobility operator. For Mb=M
(1)
b −∇·M

(2)
b ·∇,

d
dtE=−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx+
∫
∂Ω

[µ̃sφt+ µ̃n ·M(2)
b ·∇µ̃]dSx

=−
∫

Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx+
∫
∂Ω

[µ̃sφt+ µ̃fm]ds.
(3.8)

We propose boundary condition as followsφt

fm

=−M2×2 ·

 µ̃s

µ̃

, x∈∂Ω, (3.9)

where M2×2≥0 is the boundary mobility operator.
The energy dissipation rate is given by

d
dtE=−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[(µ̃s,µ̃) ·M2×2 ·(µ̃s,µ̃)T ]ds. (3.10)

By specifying M2×2 as the 2×2 upper left sub-matrix in M3×3 in the previous section, we
arrive at two types of dynamic boundary conditions analogous to the above mentioned, which
we will not repeat them here. We note that the authors derived a nonlocal model with the first
type of dynamic boundary conditions and proved the weak and strong well-posedness of the
system recently in [36] although they used two distinct phase field variables for the bulk and
surface respectively.

The dynamic boundary conditions for the nonlocal model are similar to the ones with
weakly nonlinear interactions through high order derivatives except that the chemical poten-
tial and the time rate of change of the phase field variable at the boundary do not have the
explicit dependence on the bulk chemical potential. The explicit connection between the bulk
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and the surface is in fact established through the nonlocal kernel in the free energy in the bulk
effectively.

In the previous section, we present the results for a free energy with up to the second order
spatial derivatives. This can be readily extended to include more general free energy function-
als. It requires one to consider physically i) what would be the appropriate boundary conditions
when the variation of the free energy is carried; ii) when the mobility operator includes high
order spatial differential operators, how to deal with the boundary terms generated while apply-
ing integrations by parts in the context of thermodynamical consistency. The method presented
here should be able to guide the generalization to those cases straightforwardly.

4. Numerical results
In this section, we use the crystal growth model alluded to earlier, as an example, to il-

lustrate the effect of dynamic boundary conditions to the solution in the bulk numerically. We
adopt the energy quadratization (EQ) and finite difference method to discretize the governing
equation of the phase field crystal growth model [28, 29]. We assume the dimensionless bulk
free energy and surface energy in a fixed rectangle domain are given respectively by

Eb=
∫

Ω
[ |∇

2φ|2
2 −|∇φ|2 + 1−ε

2 φ2 + φ4

4 ]dx,

Es=
∫
∂Ω

[
|∇2
sφ|

2

2 −|∇sφ|2 + 1−εs
2 φ2 + φ4

4 ]ds,
(4.1)

where ε,εs are positive constant parameters. The corresponding chemical potentials in the bulk
and on the boundary are calculated as follows

µ=∇4φ+2∇2φ+(1−ε)φ+φ3, µc=∇∇φ :nn,

µs=∇4
sφ+2∇2

sφ+(1−εs)φ+φ3−∇3φ ·n−2∇φ ·n−∇sn :∇∇φ.
(4.2)

We present some numerical examples of the crystal growth model with dynamic boundary
conditions on a part of the boundary. We use a 2D computational domain, in which the four
sides are labeled as Γ1,Γ2,Γ3 and Γ4, respectively. Dynamics in the bulk is governed by

∂φ
∂t =M

(2)
b ∇2µ, (4.3)

where M (2)
b is a positive constant, while dynamic boundary conditions on each boundary are

given respectively by

∂φ
∂t =−(−M (2)

s ∇2
s+

β2
1

α1
)µs+ β1

α1
µ, α1M

(2)
b n ·∇µ=−µ+β1µs, x∈Γ1

∇nφt=M
(2)
c ∇2µc, x∈Γ1, n ·∇φ=n ·∇3φ=n ·∇µ= 0, x∈Γ2,Γ3,Γ4.

(4.4)

Namely, we allow dynamic boundary conditions on one side of the boundary and static bound-
ary conditions on the rest.

We use the energy quadratization technique together with the Crank-Nicolson method in
time, and the second order finite difference method on staggered grids in space to derive a ther-
modynamically consistent numerical algorithm by introducing two intermediate scalar variables
in the bulk and on the surface, respectively. The numerical algorithm guarantees that the total
energy dissipates in time and space [30]. Simulations of the crystal growth model with static,
homogeneous Neumann boundary conditions uniformly along the boundary, corresponding to
the case of a zero surface energy, can be found in [29].
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In all simulations, solid crystallites with Hexagonal ordering in 2D is initially placed in
the centre of the computational domain, which is assigned an average density φ. The initial
condition is given by

φ0(r) =φ+w(r)(Aφs(r)), (4.5)

where

w(r) =

{
(1−( |r−r0|d0

)2)2 if |r−r0|d0
≤1,

0 otherwise,
(4.6)

φs(r) = cos( q√
3
y)cos(qx)− 1

2 cos( 2q√
3
y), (4.7)

r= (x,y), r0 is the center coordinate of the domain, and d0 is 1
6 of the domain length in the

x-direction. The domain is given by Ω = [0, 2π
q a]× [0,

√
3π
q b], a= 10 and b= 12. The other

parameter values are ε= 0.325,φ=
√
ε

2 ,A= 4
5 (φ+

√
15ε−36φ

2

3 ) and q=
√

3
2 . For the initial con-

dition on the surface and the surface energy at the boundary, we set εs= ε and φ=Aφs on Γ1

as the first initial condition at the surface. We move the initial condition to the right by 6hx
as the second initial condition of φ on the boundary to check the potential grain boundary ef-
fects induced by the surface energy, where hx is the spatial step size. For simplicity, we call
these two initial conditions on the surface as ordered and shifted initial condition on the surface,
respectively. Besides these, we setM (2)

b =M
(2)
s = 1 andM (2)

c = 0 in the following simulations.
In the following, we investigate the effect of the surface energy on the bulk structure by

varying two parameters α1,β1. At first, the ordered and shifted initial conditions on the sur-
face are depicted in Figure 4.1-(a,d), respectively. Figure 4.1-(a-c) show that the crystal grows
from the bulk and the surface simultaneously with the ordered initial condition without a grain
boundary effect. Figure 4.1-(d-f) show the grain boundary effect induced by the shifted initial
condition on the surface in the highlighted region. This simulation demonstrates that a dynamic
boundary condition can significantly affect crystal growth in the bulk.

We then check the roles of α1,β1 by benchmarking against the result in Figure 4.1-(a-c).
In Figure 4.2, a large α1 suppresses the roles that the surface energy and bulk energy play
in inducing the across boundary mass flux at the boundary and forces a nearly homogeneous
Neumann boundary condition asymptotically for µ̃. As the result, the surface can have very
little impact on the bulk structure as shown in (a) to (c). For a small α1, on the other hand, the
difference between the surface energy and bulk energy is amplified at the boundary to lead to a
large across boundary mass flux. As the result, the crystal growth at the boundary is significantly
accelerated as shown in Figure 4.2-(d) to (f).

β1 is also varied while α1 is fixed to show the effect of the surface energy on the bulk pattern
in Figure 4.3. If β1 is large, it forces a near static boundary state with µs≈0. That is the reason
why the pattern in the bulk is similar to the one with the homogeneous Neumann boundary
condition shown in Figure 4.2-(a-c). If β1 is small, crystal growth near the surface tends to
form solid crystallites with weak hexagonal ordering resembling a lamellar pattern shown in
Figure 4.3-(d-f). This prevents the well-ordered crystal from growing into the boundary region.
The time evolutions of total energy, bulk energy and surface energy in figure 4.4 show that the
total free energy dissipation is guaranteed. However, the surface energy may increase due to
the mass transfer at the boundary. The patterns in figure 4.2-(a-c) and 4.3-(a-c) are similar is
because their bulk energies are the same as in 4.4-(b), however, their surface free energies are
different. The difference of surface energies between them are covered by the magnitude of
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(a) (b) (c)

(d) (e) (f)

FIG. 4.1. The ordered growth vs the grain boundary effect induced by a shifted initial boundary condition
in (d)-(f). Snapshots of the numerical solution of φ are taken with 128×128 meshes in 2D space at T = 0,32,40,
respectively. Time step δt= 1×10−2 and α1 =β1 = 1 are used in the simulations. (a)-(c): φ=Aφs is used at
boundary Γ1; (d)-(f): the shifted initial boundary condition is used in the simulation, where the grain boundary effect
was shown in the highlighted region.

the bulk energy. Figure 4.4 show numerically that both α1 and β1 control the magnitude of the
energies.

In the example, we demonstrate that the surface energy and prescribed dynamic boundary
conditions can indeed influence bulk dynamics in various ways depending on what surface
physical effects are dominating. It paves the way for one to alter or even manipulate bulk
dynamics by controlling the boundary condition especially when the bulk energy and surface
energy become comparable in a small confined geometry.



22 Thermodynamically Consistent Dynamic Boundary Conditions of Phase Field Models

(a) (b) (c)

(d) (e) (f)

FIG. 4.2. The role of model parameter α1 in the ordered growth. The snapshots of φ are taken with 128×128
space meshes at T = 0,32,40, respectively. Time step δt= 1×10−2 is used. (a)-(c): α1 = 1×103,β1 = 1;(d)-(f):
α1 = 5×10−3,β1 = 1. A large α1 tends to annihilate the boundary effect to the bulk while a small α1 promotes
crystal growth near the boundary in addition to the growth in the middle and thereby facilitates the overall growth in
the domain.

(a) (b) (c)

(d) (e) (f)

FIG. 4.3. The role of parameter β1 in the ordered growth. Snapshots of φ are taken with 128×128 space meshes
at T = 0,32,40, respectively. Time step is chosen as δt= 1×10−2. (a)-(c): α1 = 1,β1 = 10; (d)-(f): α1 = 1,β1 =
1×10−4. A large β1 diminishes the effect of boundary dynamics while a small β1 facilitates growth near the boundary
in a different pattern.
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(a) (b)

(c) (d)

FIG. 4.4. Time evolutions of total energy, bulk energy and surface energy with different α1,β1 in (a-c). In (d),
the range of surface energies are between [−0.8,−0.5], which is a supplementary figure for (c). Though the surface
energies for α1 = 1×103,β1 = 1 and α1 = 1,β1 = 1×10−4 are almost same, their bulk free energies are different.
The bulk free energies for α1 = 5×10−3,β1 = 1 and α1 = 1,β1 = 1×10−4 are also almost same, but their surface
free energies are different. It reveals the magnitudes of the bulk and surface energies and the weights for chemical
potentials or flux determine the patterns.
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5. Conclusions
We have presented a hierarchical procedure for deriving thermodynamically consistent

models together with consistent dynamic boundary conditions using the generalized Onsager
principle in tandem. We illustrate it using the binary phase field model with up to second order
spatial derivatives in the free energy functional. Extensions to models with more general free
energy functionals, including the one with nonlocal interaction kernels, can be derived follow-
ing an analogous procedure. We show that many existing binary phase field models with the
dynamic/static boundary conditions are in fact special cases of the general model. We then show
the effect of the surface energy and the dynamic boundary conditions on solutions in the bulk
in crystal growth processes through numerical simulations. This study summarizes a thermo-
dynamically consistent modeling protocol. It also paves the way for one to develop structural
preserving, thermodynamically consistent numerical algorithms for the resulting models.
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