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Cold quantum gases, when acted upon by electromagnetic fields, can give rise to samples where
isolated atoms coexist with dimers or trimers, which raises the question of the interactions between
these various constituents. Here we perform microwave photoassociation in a degenerate gas of 87Rb
atoms to create weakly-bound dimers in their electronic ground state. From the density-induced
shift of the photoassociation line, we measure the atom-dimer scattering length for the two least-
bound states of the molecular potential. We also determine the complete energy diagram of one
hyperfine manifold of the least-bound state, which we accurately reproduce with a simple model.

Cold atomic gases constitute a unique platform to
study many-body phenomena. They offer the possibility
to relate macroscopic observables, e.g. the equation of
state of the fluid, to microscopic quantities such as two-
and three-body interactions, as illustrated by the intro-
duction of the “contact parameter" [1]. More generally,
with a suitable control of these few-body interactions,
quantum gases can host simultaneously isolated atoms
and molecules, opening intriguing connections with quan-
tum chemistry [2–7].

The coexistence of atoms and dimers in a quantum
gas raises the question of a universal description of their
interactions. In a spin 1/2 Fermi gas close to the uni-
tary limit, the knowledge of the atom-atom scattering
length a is sufficient to predict the scattering length aad
characterizing the interaction between an atom and a
weakly-bound dimer [3, 8–17], as well as add, the scat-
tering length for dimer-dimer interaction [18]. In a Bose
gas in the vicinity of a scattering resonance, the search
for a universal relation between a and aad is more sub-
tle due to the Efimov effect [19], i.e. the existence of
a large number of three-body bound states when a in-
creases, which requires the introduction of the so-called
“three-body parameter" [20–24]. Outside a resonance, a
is comparable to the range of the potential and the exis-
tence of a van der Waals universality relating aad and a
for weakly-bound dimers remains an open question [25–
27].

Experimentally, most studies of atom-dimer interac-
tions in quantum gases concentrated so far on inelastic
scattering [28–38] and atom-exchange reactions [39–42].
Elastic collisions have been studied in a Fermi mixture,
in which several partial waves contributed to the scat-
tering process [43] and, more recently, in the context of
sympathetic cooling of a molecular gas [44]. In this Let-
ter, we concentrate on pure s-wave interactions between
atoms and dimers in a rubidium Bose gas. The dimers
are prepared either in the least or second-to-least rovi-
brational bound state using microwave photoassociation.
We provide the first precise spectroscopic measurement
of the scattering length aad, using a uniform atomic gas
to minimize inhomogeneous broadening of the signal. We
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FIG. 1. Relevant levels for atom pairs in either the |f = 1〉
or the |f = 2〉 hyperfine sublevels of the electronic ground
state of 87Rb. The dissociation limits of molecular state man-
ifolds, represented as dashed lines, are separated by hνhf ≈
h × 6.8GHz. The molecular potentials are represented by
thick continuous lines, together with the values of the total
spin angular momentum F of the dimer. Here, we focus on
the least-bound rovibrational levels n = −1 and n = −2 of
the |f = 1; f = 2〉 branch, with zero orbital angular momen-
tum. These levels are located at ∼ 25 and 642MHz below the
dissociation energy, respectively. The dimers are produced
by microwave photoassociation of two atoms either both in
|f = 1〉 or both in |f = 2〉.

complete these results by measuring the full Zeeman di-
agram of the relevant hyperfine manifold for the least-
bound state.

We use uniform, horizontal flat Bose gases of 87Rb
atoms at low temperature (T . 20 nK) prepared in the
strongly-degenerate regime [45]. The confinement along
the vertical direction z, provided by a harmonic potential
of frequency ωz/2π ≈ 3.7 kHz, is strong enough to ensure
that kBT, µa � ~ωz, where µa is the chemical potential
of the gas. This ensures the two-dimensional character
of the fluid at the thermodynamic level. However, the
thickness of the cloud along z, `z =

√
~/mωz ≈ 180 nm,

remains much larger than the scattering length a ≈ 5nm,
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so that collisions keep a three-dimensional character [46].
Unless otherwise stated, the in-plane confinement is a
disk-shaped box potential of radius 20 µm.

For 87Rb, the electronic ground level is split by hy-
perfine interaction into two sublevels f = 1 and f = 2,
separated by an energy difference hνhf ≈ h × 6.8GHz.
In most experiments described below, the atoms are pre-
pared in the state |f = 1,m = 0〉 with the quantization
axis along z defined by a magnetic field B in the range
0.7 to 2G [47]. The relevant energy levels for a pair of
atoms are sketched in Fig. 1, together with the molecular
potentials leading to the formation of dimers.

Starting with a gas in the hyperfine level f = 1, we
shine a microwave field of typical amplitude Bmw ≈
30mG to photoassociate atom pairs into weakly-bound
dimers of the |f = 1; f = 2〉 manifold. We first tar-
get the least-bound (n = −1) rovibrational level with
zero orbital angular momentum and a binding energy
∼ −h×25MHz [48]. This level has a hyperfine structure
associated to three possible values of the total spin an-
gular momentum F = 1, 2, 3. More specifically, within
this multiplicity of dimension 15, we focus on a spe-
cific state, labeled |Ψ(n=−1)

0 〉. Its spin component is
(
√

3|F = 3,mF = 0〉 −
√

2|F = 1,mF = 0〉)/
√

5 in
the limit of low magnetic field, it is a pure electronic
spin triplet and has zero magnetic moment. We denote
M1 the transition from |f = 1,m = 0; f = 1,m = 0〉 to
|Ψ(n=−1)

0 〉. It is well suited for precision measurements
of interaction energies because it is insensitive to mag-
netic field fluctuations at first order.

We detect the formation of dimers by losses in the gas
as a function of the microwave frequency ν. A typical
signal on the M1 transition is reported in the upper right
inset of Fig. 2. The reference frequency ν0 corresponds
to the resonance frequency measured in the zero-density
limit [49]. For this reported spectrum, the peak fre-
quency νm is displaced with respect to ν0 by ≈ 670Hz
and the measured full width at half maximum is ≈ 1 kHz.
We attribute it to the finite lifetime of the dimers, which
can decay through two channels. First, dipolar relaxation
within the dimer can produce a pair of atoms by releasing
the energy hνhf [50]. Second, two-body inelastic collisions
between atoms and molecules can play a significant role,
as observed for other alkali molecules [28–30, 51].

To study the interaction between the produced dimers
and the atom gas, we measure the variation of the peak
frequency ∆ν ≡ νm − ν0 with the surface atomic density
na. For each density, we adjust the duration of the ex-
citation time to keep the depletion at resonance δna/na
at a given value. We show the results obtained for three
different values of δna/na in Fig. 2. We observe a shift
of the resonant frequency which goes up to 800Hz at our
maximum density na ∼ 100 atoms/µm2. All data col-
lapse on a single curve, which confirms that we operate
in the weak excitation regime. We fit a linear function
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FIG. 2. Frequency shift of the M1 line as a function of the
surface density of the gas. The three different symbols cor-
respond to a measured depletion signal of 20% (square), 14%
(diamond), 8% (circle). All data are adjusted by a common
linear fit. The left-hand inset shows the result of a similar
measurement for the second-to-least bound level (M2 line in
Fig. 1). The right-hand inset shows a typical microwave pho-
toassociation signal for na = 95 µm−2. The variation of the
width of the photoassociation signal with density is reported
in [52].

to the data and obtain ∆ν/na = −7.3(3)Hz/µm2 [53].
In order to interpret this shift within a mean-field ap-

proach, we introduce the interaction parameter gad =
2πaad~2/mr, where mr = 2ma/3 is the reduced mass
of the atom-dimer system. We assume that all interac-
tions occur in the s-wave regime, because of the very low
relative momenta between the unbound atoms and the
dimer. The photoassociation process must bring to the
sample (i) the energy in the zero density limit hν0, (ii)
the interaction energy between the dimer and the atom
bath, (iii) the energy −2µa, since two atoms are removed
from the bath. Denoting ρa(z) the 3D density profile
of the atom bath and fd(z) the distribution function of
the dimer (with the normalization

∫
dz ρa(z) = na and∫

dz fd(z) = 1), we find using the mean-field value of µa

in the low temperature limit [52]

h∆ν = gad

∫
dz ρa(z)fd(z)− 2µa =

(√
3 aad
2a1

− 2

)
µa,

(1)
where af denotes the s-wave scattering length of an atom
bath in state |f,m = 0〉 (f = 1 or 2). In all cases the
dimer density is low enough so that dimer-dimer interac-
tions can be safely neglected.

The atomic surface density na, or equivalently the
chemical potential µa, are inferred via Ramsey spec-
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troscopy. We measure the density-dependent component
∆ν′ of the microwave frequency that allows a full transfer
of the gas from |f = 1,m = 0〉 to |f = 2,m = 0〉 and find
∆ν′/na = −0.52(2)Hz/µm2. Combining Eq.(1) with

h∆ν′ =
1

2

a2 − a1
a1

µa, (2)

we obtain the atom-dimer scattering length:

aad =
4√
3
a1 +

1√
3

∆ν

∆ν′
(a2 − a1), (3)

an expression which is immune to systematic errors in the
calibration of the density na. Using the known values of
a1 = 100.9 a0 and a2 − a1 = −6 a0 with a0 the Bohr
radius [54], we obtain

a
(n=−1)
ad [bath in f = 1] = 184(2) a0, (4)

where the quoted error takes into account only the un-
certainties on ∆ν and ∆ν′ [55]. This result is notably
different from the result aimpulse

ad = 8a1/3 = 269 a0 of the
impulse approximation [56], which consists in summing
independently the scattering amplitudes of an atom of
the bath with each atom of the dimer.

We have performed two additional measurements of
the atom-dimer scattering length, by changing either the
final or the initial state of the photoassociation process:
− Firstly, still starting from a gas of atoms in
|f = 1,m = 0〉, we produced dimers in the state
|Ψ(n=−2)

0 〉 of the second-to-least bound rovibrational level
(M2 transition in figure 1). The target state still has
zero orbital angular momentum and it is the magnetic-
field-insensitive state equivalent to that studied above
for the n = −1 multiplicity. We found the value
h×−642.219(1)MHz for its binding energy at zero mag-
netic field, and the value

a
(n=−2)
ad [bath in f = 1] = 21(7) a0 (5)

for the atom-dimer scattering length, see inset of Fig. 2.
The large difference between a(n=−1)ad and a(n=−2)ad shows
the key role of the dimer radial wavefunction in the scat-
tering process. We note that a related work was per-
formed with two-photon photoassociation of 87Rb atoms
for a state in the n = −2, |f = 1; f = 1〉 manifold and
trapped in a harmonic potential [57]. An atom-dimer
scattering length of −180(150) a0 was reported, where
the large uncertainty could be attributed to the difficulty
of accurately modeling the experimental signal in an in-
homogeneous cloud.
− Secondly, coming back to the dimer state |Ψ(n=−1)

0 〉,
we measured its interaction with a bath of atoms ini-
tially all in state |f = 2,m = 0〉. The fitted slope is now
8.1(9)Hz/µm2, leading to

a
(n=−1)
ad [bath in f = 2] = 165(7) a0, (6)
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FIG. 3. (a-b) Clouds used for microwave spectroscopy with
either (a) a single component state |f = 1,m = 0,±1〉 or (b) a
binary mixture of these hyperfine states (bar length: 10 µm).
(c) Energy diagram of the manifold E(n=−1)

12 . The colors of
the experimental points encode the composition of the initial
atomic state. The set of solid lines is the result of the simple
model described in the text, with two adjustable parameters
U and E0. The |Ψ(n=−1)

0 〉 used for characterizing atom-dimer
scattering is highlighted with a red solid line. The numbers
on the right give for each state the z-component mF of its
total angular momentum.

a value close to the result of an atom bath in state
|f = 1,m = 0〉. The similarity between these two results,
combined with the small difference between the two bath
scattering lengths a1 and a2, is compatible with the exis-
tence of a “van der Waals universality", which may allow
one to link a and aad for the least-bound dimers.

We now turn to the detailed analysis of the least-bound
manifold E(n=−1)12 emerging from a pair of atoms in the
energy level |f1 = 1; f2 = 2〉. We show in Fig. 3c the mea-
surement of the energy of all 15 states as a function of the
applied external magnetic field B. By preparing the gas
in |f = 1,m = 0〉 as described previously, we can pho-
toassociate only three states (blue circles) corresponding
to the absorption of a photon with a π or σ± polariza-
tion. The rest of the diagram is obtained by preparing
the gas in other pure hyperfine states |f = 1,m = ±1〉 or
in binary mixtures of |f = 1,m = 0,±1〉. Experiments
with mixtures require a modification of the experimental
protocol: as the two species have different magnetic mo-
ments, residual magnetic field gradients lead to spatial
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separation of the two components and prevent the dimer
formation. We circumvent this problem by loading atoms
in an array of microtraps whose size (about 5 µm) is small
enough to prevent phase separation (Fig. 3ab).

The energy diagram of Fig. 3 was previously computed
using coupled channels calculations [58] and quantum de-
fect theory [59], and it has already been partially mea-
sured [51]. Here, we present a simple model that accu-
rately reproduces the experimental data. At zero mag-
netic field, collisions between two 87Rb atoms involve two
channels, associated to singlet and triplet potentials with
slightly different scattering lengths. We model this dif-
ference by the Hamiltonian

Ĥst = U ŝ1 · ŝ2 =
U

2

(
Ŝ2 − 3/2

)
(7)

acting as a perturbation term in the subspace
|f = 1; f = 2〉 of the least-bound level n = −1. Here
ŝi designates the electron spin operator of atom i, Ŝ =
ŝ1 + ŝ2, and U is an adjustable parameter. Noting that
states with well-defined values of F are eigenstates of
Ĥst, we find for B = 0 the first-order energy shifts
∆EF=1 = ∆EF=3 = −2∆EF=2 = U/4 [52].

The effect of the magnetic field is described by ĤZ ≈
2µBBŜz, which mixes all F states. The diagonalization
of the 36x36 matrix of the spin Hamiltonian Ĥst + ĤZ

leads for the manifold E(n=−1)12 to the 15 continuous lines
shown in the energy diagram of Fig. 3. These lines are
obtained by adjusting two parameters: the coupling U
and the energy E0 ≡ EF=1(B = 0). We obtain U =
h × 2.875(5) MHz and E0 = h × −24.985(1)MHz. This
model provides an excellent agreement with all 15 lines of
the measured diagram. The distance between the best fit-
ted energy diagram and our measurements is 3.7 kHz [60],
which is slightly larger than the uncertainty on the mea-
sured molecular line positions (. 1 kHz). The remaining
deviations remind us that this simple model is not ex-
pected to be exact. A similar study could be performed
to measure the Zeeman diagram of the |f = 1; f = 1〉 and
|f = 2; f = 2〉 multiplicities. In our case, the limited life-
time of the atomic sample prepared in |f = 2〉, compara-
ble to required excitation times, makes these experiments
challenging.

In conclusion, we have presented a precise measure-
ment of the scattering length aad characterizing the in-
teraction between atoms and weakly-bound dimers in a
degenerate Bose gas. This result provides a first step
in the search for a possible van der Waals universality
for this problem. Our method can be straightforwardly
adapted to other alkali-metal bosonic species. Some of
them provide easily accessible Feshbach resonances, mak-
ing it possible to study the emergence of Efimov physics
on aad. In addition, our precise determination of the
whole energy diagram of a weakly-bound dimer mani-
fold paves the way to the implementation of microwave
Feshbach resonances [61, 62], using for instance strong

microwave fields directly generated on atom chips [63].
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SUPPLEMENTAL MATERIAL

Photoassociation spectroscopy

We detail in this section the measurements of the M2

line reported in the main text and the additional study
of photoassociation from |f = 2; f = 2〉 to |Ψ(n=−1)

0 〉. We
note that precision measurement of aad for other states
of the same rovibrational level is not accessible in our
setup because most other lines present a first-order Zee-
man effect and our residual magnetic field noise (∼ mG)
thus blurs the signal. The other magnetic field insensitive
transitions are too weak to allow an accurate measure-
ment.

M2 transition

We describe here the parameters used to obtain the
data reported in the inset of Fig. 2 in the main text for
the M2 transition from |f = 1,m = 0; f = 1,m = 0〉 to
|Ψ(n=−2)

0 〉. The strength of this transition is much weaker
than the one of the M1 transition due to a lower over-
lap of the radial wavefunctions. We thus use 10 s pulses
compared to duration < 260ms for the M1 transition.
Because of this longer duration, we had to decrease the
microwave power to 0.76Pmax to limit thermal effects in
the microwave amplifier. Finally, we restrict ourselves to
densities below 30 µm−2 for which the observed shift is
linear with density. For higher densities, the change of
density during the probing duration makes the interpre-
tation of the data more involved. In the inset of Fig. 2
of the main text, the horizontal error bars indicate the
density range scanned during excitation.

Width of M1 and M2 transitions

We show in Fig. S1 the measured full width at half
maximum (FWHM) of the loss spectroscopy signals used
for determining the position of the M1 and M2 lines as a
function of atomic density. For both lines, the width is al-
ways . 1 kHz and we observe an increase of the linewidth
with density. There is no significant difference between
the two lines.

Transition from |f = 2; f = 2〉

The data reported in Fig. 2 of the main text correspond
to photoassociation spectroscopy from a |f = 1,m =

0; f = 1,m = 0〉 unbound state to the |Ψ(n=−1)
0 〉 and

|Ψ(n=−2)
0 〉 molecular states. We show in Fig. S2 the re-

sults of photoassociation from a |f = 2,m = 0; f =

2,m = 0〉 unbound state to the |Ψ(n=−1)
0 〉 state. These

0 25 50 75 100
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z)

FIG. S1. FWHM of the M1 (blue circles) and M2 (red squares)
lines as a function of the surface density of the atomic cloud
for the same data as the one reported in Fig. 2 of the main
text.

measurements are limited by the short lifetime of the
atomic sample in |f = 2,m = 0〉 of . 100ms for the ex-
plored densities. However, the strength of this transition
is stronger than the one starting from |f = 1,m = 0; f =
1,m = 0〉, which makes the signal large enough for prob-
ing times as short as ∼ 10ms. We also observe a linear
shift of the line center with the density. A linear fit to
the data gives a slope of 8.1(9)Hz/µm2.
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FIG. S2. Frequency shift of the |f = 2,m = 0; f = 2,m =

0〉 ↔ |Ψ(n=−1)
0 〉 transition as a function of the surface density

of the atomic cloud. The microwave power is set to its max-
imal value Pmax. For all points, the duration of excitation is
< 10 ms and is adjusted to keep the maximal depletion con-
stant around 8%. The solid black line is a linear fit to the
data.
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Modeling of the photoassociation signal

The dynamics of photoassociation in cold Bose gases
has been for instance discussed in Ref. [67]. In the case
of dilute cold gases, where the molecules are lost from
the system, the time evolution of the atomic density in a
two-body model is expected to follow the rate equation

dρa
dt

= −βρ2a, (8)

where β is the time-independent loss rate coefficient.
This result also applies to the many-body situation of
dense gases when the molecule loss rate is large enough
[67]. This contrasts with the case with low losses and
strong excitation, leading to coherent coupling between
the atomic and molecular states, as observed for example
in Ref. [68] with Strontium atoms.

In all experiments reported in this Letter, we chose
short enough excitation duration to remain in a regime
in which the bath depletion is small and our excitation
strength is low enough so that we do not observe coherent
oscillations between the atomic and molecular states. We
thus describe the photoassociation process via a Fermi
golden rule approach. In this regime the variation of the
3D atomic density during a time δt is given by

δρa ∝ −βρ2aδt. (9)

The loss rate coefficient is proportional to |〈i|V̂ |f〉|2,
where V̂ is the operator describing the coupling induced
by the microwave field and the indices i, f describe the
initial atomic and final molecular states, respectively. In
our experiments we start with an atomic cloud whose
3D density is uniform in the xy plane and given by the
probability distribution of the ground state of an har-
monic oscillator of size `z =

√
~/mωz along the vertical

direction, which thus writes

ρa(z) =
na
`z
√
π

e−z
2/`2z . (10)

The initial two-atom state can be decomposed in its
center-of-mass and relative motion states

|i〉 = |K, 0〉 ⊗ |φk〉 , (11)

where K is the center-of-mass in-plane momentum, and
the index 0 refers to the harmonic oscillator ground state
along the z direction. The relative motion of the two
atoms in our quasi-2D system is described by the scat-
tering state |φk〉 as defined in Ref. [69]. We note that the
frequency of the harmonic trap is larger than the typical
linewidth of the photoassociation lines, which justifies to
use the vibrational state basis to describe the initial and
final states of the photoassociation process. The final
molecular state can also be decomposed as a center-of-
mass and relative motion state

|f〉 = |K, nd〉 ⊗ |φd〉 . (12)

The center-of-mass in-plane momentum K is unchanged
by the microwave photon. We have introduced nd, the
vibrational number associated to the molecular center-of-
mass state of the vertical harmonic oscillator. We note
that the relative motion at the scale of the extension of
the molecular state is not influenced by the confinement
along z because the molecule extension is much smaller
than `z. We now assume that the oscillation frequency
ωz is the same for the atom and the dimer center-of-
mass, which corresponds to a trapping force twice larger
for the dimer whose mass is twice the atomic mass. As
the microwave field does not influence the center-of-mass
motion, this leads to nd = 0. This assumption is sup-
ported experimentally by the absence of vibrational side-
bands in the measured photoassociation spectrum. One
can then determine fd, the distribution function of the
center-of-mass of a single dimer. It is uniform in-plane
and depends on its vertical coordinate Z as

fd(Z) =

√
2

`z
√
π

e−2Z
2/`2z . (13)

Because the formation of a dimer requires two atoms close
to each other, the density distribution of molecules is in-
deed narrower than the atomic one along the z direction.
From this expression of fd, we thus get∫

dz ρa(z)fd(z) =

√
2

3π

na
`z
, (14)

which is used in Eq. (1) of the main text with the def-
inition of the chemical potential for a quasi-2D gas,
µa = ~2

m

√
8π a

`z
na, to obtain the reported expression of

∆ν.

Zeeman diagram: theory

Hyperfine structure at B = 0

We consider a weakly-bound rovibrational state of the
Rb2 dimer with ` = 0 and focus on its hyperfine spec-
trum. The state of each atom of the dimer can be de-
composed in the {f,mf} basis of dimension 8 (f = 1, 2).
This leads to 64 possible two-atom spin states, but only
36 are symmetric under particle exchange as required
for symmetric orbital wavefunctions. These states can
be split into three multiplicities E1,1 ≡ (f = 1, f = 1),
E1,2 ≡ (f = 1, f = 2) and E2,2 ≡ (f = 2, f = 2), sepa-
rated in energy by the atomic hyperfine splitting of the
electronic ground state of about νhf ∼ 6.8GHz. We focus
in the main article only on multiplicity E1,2, but we give
here some information about multiplicities E1,1 and E2,2.

The possible values of the total angular moment F
of the dimer state are thus F = 0, 1, 2 for multiplicity
E1,1, F = 1, 2, 3 for multiplicity E1,2 and F = 0, 1, 2, 3, 4
for multiplicity E1,2. However, only even values of F
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corresponds to states that are symmetric under exchange
for multiplicities E1,1 and E2,2.

For 87Rb, the singlet and triplet potentials lead to sim-
ilar, but not exactly equal, scattering lengths. To take
into account this difference for the least bound states, we
add a phenomenological term to the Hamiltonian

Ĥ = U ŝ1 · ŝ2 =
U

2

(
Ŝ2 − 3

2

)
(15)

where Ŝ = ŝ1 + ŝ2 stands for the total electronic spin.
Since U � hνhf , we use degenerate perturbation the-

ory and diagonalize the restriction of Ĥ inside each mul-
tiplicity E1,1, E1,2, E2,2. The total angular momentum F

remains a good quantum number because Ŝ2 commutes
with the total electronic + nuclear angular momentum
F̂ . We obtain

• Multiplicity E1,1:

∆EF=0 = −2∆EF=2 = −U/8 (16)

• Multiplicity E1,2:

∆EF=1 = ∆EF=3 = −2∆EF=2 = U/4 (17)

Note that the subspaces F = 1 and F = 3 are pure
electronic-spin-triplet, corresponding to S = 1.

• Multiplicity E2,2:

∆EF=0 = 2∆EF=2 = −3∆EF=4/2 = −3U/8 (18)

The subspace F = 4 is pure electronic-spin-triplet.

The situation is summarized in Fig. S3 where we indicate
the spectroscopic values known so far. Note that the
value of U may depend on the multiplicity.

Zeeman effect

The coupling to an external magnetic field aligned with
the z axis is described by the Zeeman Hamiltonian

ĤZ = µBB(geŜz + giÎz) (19)

with the electronic and nuclear Landé factors ge =
2.002319 and gi = −0.000995. We note that ĤZ is a rank
1 operator so it cannot couple two subspaces differing by
∆F ≥ 2. Therefore, ĤZ just leads to a linear variation of
the energy levels with the magnetic field inside the mul-
tiplicities E1,1 and E2,2, with no avoided crossing. In the
multiplicity E1,2, one has to diagonalize it numerically.
The result of this diagonalization is shown in Fig. 3 of
the main text.

F = 4

F = 2
F = 0

25.045 MHz

E2,2

F = 1, 3

F = 2

24.985 MHz

1.078 MHzE1,2

F = 2
F = 0

24.242 MHz
E1,1

νhf = 6834.682 MHz

νhf = 6834.682 MHz

FIG. S3. Spectrum for a zero magnetic field. The values
quoted for the multiplicities E1,1 and E2,2 are extracted from
Ref. [48]. The values reported in this work for multiplicity
E1,2 are in excellent agreement with those quoted in [51].

The |Ψ(n)
0 〉 state

The |Ψ(n)
0 〉 state has, within perturbation theory, zero

magnetic moment. It can be written as the symmetric
|f1 = 1,m1 = 0; f2 = 2,m2 = 0〉 state, or

|Ψ0〉 =
1√
2

(∣∣∣∣++;−1

2
− 1

2

〉
−
∣∣∣∣−−; +

1

2
+

1

2

〉)
(20)

in the basis |s1z, s2z; i1z, i2z〉 where ijz = ±1/2,±3/2 is
the projection of the nuclear spin of atom j.

Note that the state |Ψ(n)
0 〉 is a pure electronic spin-

triplet and that it does not have a well-defined value of
F : it is a linear combination of |F = 1,mF = 0〉 and
|F = 3,mF = 0〉, namely√

3

5
|F = 3,mF = 0〉 −

√
2

5
|F = 1,mF = 0〉. (21)

Finally, one can check that this state is not coupled by
Ĥ or ĤZ to the two other states with mF = 0 within the
multiplicity E1,2. Therefore its magnetic moment is null
at this level of approximation.
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mF N Initial state Cloud P BP [mG] t [s] δna/na [%] FWHM[kHz] ∆ν(1.25G) [kHz]

3 12 |+ 1; +1〉 Bulk σ+ 12 5 33 3.2 -2

2 7 |+ 1; +1〉 Bulk π 31 1 20 3.6 -2

13 |+ 1; 0〉 Patches σ+ 12 10 17 2.9 5

1
4 |+ 1; +1〉 Bulk σ− 23 5 24 3.1 0

11 |0; 0〉 Bulk σ+ 12 0.5 9 1.8 -1

15 | − 1; +1〉 Patches σ+ 12 5 22 2.7 -3

0
3 | − 1; +1〉 Patches π 31 5 21 2.7 4

9 |0; 0〉 Bulk π 31 0.115 14 0.8 0

14 | − 1; +1〉 Patches π 31 2.5 25 6 -5

-1
1 | − 1; +1〉 Patches σ− 8 10 23 3.7 0

5 |0; 0〉 Bulk σ− 8 1 11 1.5 1

10 | − 1;−1〉 Bulk σ+ 12 10 21 1.8 -2

-2 2 | − 1; 0〉 Patches σ− 8 10 13 6 -3

8 | − 1;−1〉 Bulk π 31 0.5 14 2.3 0

-3 6 | − 1;−1〉 Bulk σ− 8 5 17 3.5 3

TABLE I. Experimental parameters used to determine the Zeeman diagram of the least-bound rovibrational state. Sub-levels
are sorted according to their projection of the total angular momentum mF . We attribute to each level a number (N) standing
for its position in the energy scale at large magnetic field, N = 1 being the lowest in energy. Atoms are originally in the
|f = 1,m〉 hyperfine state of the electronic ground state and the different pairs of initial states are labeled with the notation
|m1;m2〉. When starting from pure states |m1;m2 = m1〉, loss spectroscopy is performed on a uniform planar gas while the
measurement is done in small patches array for mixtures. The polarization of the microwave field which drives a given atom
pair to the dimer state is labeled P . We send microwave pulses during a fixed time t for a given Zeeman level. Their amplitude
in the polarization P is given by BP . Two different antennas and microwave sources are used in this work. For each transition
we chose the one giving the largest excitation strength. The orientation of the external magnetic is perpendicular to the plane
for all levels but N = 4, for which we rotate it into the plane to obtain a larger coupling strength. The last three columns give
the measured average depletion δna/na, the measured FWHM and the distance between the fitted model and the measured
lines at a field of 1.25G.

Zeeman diagram: experiments

We show in Table I all the relevant experimental pa-
rameters used to obtain the Zeeman diagram reported
in Fig. 3c of the main text, the measured frequency shifts
and some information obtained with the model described
in the previous section.

The statistical uncertainty on the measured positions
of the lines is related to the measured linewidth and is
typically below 1 kHz. Systematic uncertainties are dom-

inated by the calibration of the magnetic field B. This
calibration is realized with well-known atomic transitions
and leads to a typical uncertainty on the reported values
of the order of 1 kHz. Note that we have not corrected
this measurement with the atom-dimer mean-field inter-
action. For the M1 transition, this corresponds to a sys-
tematic error . 1 kHz and we expect that it is similar
for all the other molecular states. In conclusion, all the
identified sources of error on the position of the molecu-
lar lines in the zero density limit are compatible with an
overall accuracy of the order of the kHz.
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