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We consider a class of Hubbard-Stratonovich transformations suitable for treating Hubbard in-
teractions in the context of quantum Monte Carlo simulations. A tunable parameter p allows us
to continuously vary from a discrete Ising auxiliary field (p =∞) to a compact auxiliary field that
couples to electrons sinusoidally (p = 0). In tests on the single-band square and triangular Hub-
bard models, we find that the severity of the sign problem decreases systematically with increasing
p. Selecting p finite, however, enables continuous sampling methods like the Langevin or Hamilto-
nian Monte Carlo methods. We explore the tradeoffs between various simulation methods through
numerical benchmarks.

I. INTRODUCTION

This paper develops a class of Hubbard-Stratonovich
(HS) transformations that can be used to handle on-site
Hubbard interactions, Ĥint = Un̂↑n̂↓, in the context of
determinant quantum Monte Carlo (DQMC) and related
simulation methods [1–3]. Our starting point is the op-
erator ansatz,

e−∆τU(n̂↑− 1
2 )(n̂↓− 1

2 ) =

∫
ea(s)Ô(s)b(s) ds, (1)

with functions a(s) and b(s) as yet to be determined.
The right-hand side introduces a real auxiliary field s
that couples to electron charge or spin magnetic moment

Ô(s) =

{
n̂↑ + n̂↓ − 1 (U < 0)

n̂↑ − n̂↓ (U > 0)
, (2)

corresponding to attractive or repulsive Hubbard U , re-
spectively. The electron number operators n̂↑ and n̂↓ for
a single site have eigenvalues 0 or 1. The discretization
in imaginary time ∆τ = β/Nτ is a tunable parameter,
and originates from a Suzuki-Trotter expansion of the
partition function, whereby the inverse temperature β is
subdivided into Nτ parts [1].

Special cases of Eq. (1) include the Gaussian trans-
formation, a(s) ∼ s and b(s) ∼ exp(−s2), as originally
considered by Hubbard and Stratonovich [4, 5], and the
discrete transformation proposed by Hirsch, for which the
choice b(s) ∼ [δ(s + 1) + δ(s − 1)] effectively introduces
Ising auxiliary spins, s = ±1 [6]. There is also extensive
literature introducing other types of HS transformations
and providing general rules for formulating new ones [7–
10].

DQMC simulations are frequently limited by the ap-
pearance of a sign problem [3, 11]. The severity of
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the sign problem depends partly on the choice of the
HS transformation, with discrete auxiliary variables fre-
quently being favorable. If the sign problem is not severe,
an advantage of working with continuous HS fields is that
they enable powerful sampling methods like Langevin dy-
namics and Hamiltonian Monte Carlo (HMC) [12, 13].
These sampling methods can be helpful for reducing long
autocorrelation times, especially near critical points. For
example, continuous variables make possible the applica-
tion of powerful Fourier acceleration techniques, whereby
the dynamical relaxation rate is adjusted according to
imaginary-time freqeuency [14]. As another example, the
fictitious momentum in HMC yields inertial dynamics
that can reduce the dynamical critical exponent z [15].
Such sampling methods were originally developed in the
context of lattice gauge theory, and have more recently
proved to be highly effective for simulation of electron-
phonon models [16–19].

A continuous but compact HS transformation has been
proposed by D. Lee [20]; it blends some of the trade-offs
of the discrete and continuous HS transformations dis-
cussed above. In this approach, auxiliary variables in the
domain s ∈ [−π, π] are coupled sinusoidally to the elec-
trons. This compact HS transformation was found to be
the most efficient strategy for simulating a dilute gas of
attractive fermions in the unitary limit. The auxiliary
field, as continuous variables, could be sampled using
the powerful HMC method. Furthermore, due to their
compact range, this HS transformation yielded the best
conditioning of the associated fermion matrices.

Here, we further develop this compact HS transforma-
tion approach in two ways. First, we derive a general set
of constraints on a(s) and b(s) such that the HS trans-
formation in Eq. (1) is exact at all orders in ∆τ , and use
these constraints to derive systematic corrections to pre-
vious results. Second, following the suggestion of Lee, we
introduce a class of HS transformations that continuously
interpolates from the compact, sinusoidal HS transforma-
tion to the discrete HS transformation of Hirsch. A final
contribution of this paper is to benchmark the new class
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of HS transformations using DQMC simulations of the
two-dimensional single-band square and triangular Hub-
bard models in the strong coupling limit.

II. A GENERAL CLASS OF HS
TRANSFORMATIONS

For notational convenience, we introduce the operator

m̂σ = 2n̂σ − 1, (3)

and represent the sign of U as

η = U/|U | = ±1. (4)

The ansatz of Eqs. (1) and (2) may now be written in
the compact form

e−
1
4 ∆τUm↑m↓ =

∫
e
a(s)

2 (m̂↑−ηm̂↓)b(s) ds. (5)

Unless otherwise stated, the integration domain extends
over the entire real line, s ∈ R.

The operators m̂↑ and m̂↓ commute, and each has two
eigenvalues, ±1. The local Hilbert space is spanned by
the four eigenstates that simultaneously diagonalize m↑
and m↓. Equation (5) is valid if and only if the operators
on both sides have an identical action when applied to
each of these four eigenstates. To achieve this, we may
effectively replace the operators (m̂↑, m̂↓) with all possi-
ble combinations of eigenvalues. The two cases, (+1,−η)
and (−1,+η) yield the constraints

e−
1
4 ∆τ |U | =

∫
e+a(s)b(s) ds, (6)

e−
1
4 ∆τ |U | =

∫
e−a(s)b(s) ds. (7)

The cases (+1,+η) and (−1,−η) yield an additional con-
straint

e
1
4 ∆τ |U | =

∫
b(s) ds. (8)

Averaging Eqs. (6) and (7), we find

e−
1
4 ∆τ |U | =

∫
cosh [a(s)] b(s) ds. (9)

Subtracting them yields

0 =

∫
sinh [a(s)] b(s) ds. (10)

Equations (8)–(10) are necessary and sufficient condi-
tions for the correctness of the ansatz, Eq. (5), or equiv-
alently, Eq. (1). Typically we will select a(s) as an odd
function, and b(s) as an even function, such that Eq. (10)
is immediately satisfied.

Constraints analogous to Eqs. (8)–(10) were previously
derived in Appendix A2 of Ref. 21.

III. REVIEW OF KNOWN HS
TRANSFORMATIONS

Let us now review how some existing HS transforma-
tions fit into the form of Eq. (5).

A. Gaussian auxiliary field

For illustrative purposes, we will derive the Gaussian
HS transformation using a more standard procedure.
The operator identity∫

e−
1
2 (s−Â)2

ds =

∫
e−

1
2 s

2

ds (11)

is valid for any Hermitian Â. To see this, one may work
in the eigenbasis, such that Â is effectively replaced by
an arbitrary eigenvalue λ. The integral is invariant to the
constant shift s→ s+λ, establishing the desired equality.

Expanding the square on the left, and performing the
Gaussian integral on the right, we find

e−
1
2 Â

2

∫
e−

1
2 s

2+sÂ ds =
√

2π. (12)

To make contact with Eq. (5), select

Â =
1

2

√
∆t|U | (m̂↑ − ηm̂↓). (13)

The commutativity of m̂↑ and m̂↓, the identity m̂2
σ = 1,

and the identity η|U | = U together yield,

Â2 =
∆t|U |

2
− ∆tU

2
m̂↑m̂↓. (14)

Inserting these results into Eq. (12) and rearranging
terms, we recover the ansatz of Eq. (5), where

a(s) =
√

∆τ |U | s (15)

b(s) =
1√
2π
e−

1
2 s

2− 1
4 ∆t|U |. (16)

One may verify that these functions satisfy the integral
constraints of Eqs. (8) and (9), as expected.

B. Ising auxiliary field

Hirsch introduced the HS transformation [6],

e−
1
4 ∆τUm↑m↓ =

1

2
e−

1
4 ∆τ |U |

∑
s=±1

e
αs
2 (m↑−ηm↓), (17)

where s = ±1 is now an Ising auxiliary field. The real
constant α is defined to satisfy

coshα = e
1
2 ∆τ |U |. (18)
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This takes the form of our ansatz, Eq. (5), upon defining

a(s) = αs (19)

b(s) =
1

2
e−

1
4 ∆τ |U | [δ(s+ 1) + δ(s− 1)] . (20)

Again, one may verify that the constraints of Eqs. (8)
and (9) are satisfied.

C. Compact auxiliary field with periodic coupling

Lee proposed a compact HS transformation [20], which
takes the form of Eq. (5) using the definitions

a(s) =
√
c0 sin s (21)

b(s) =
1

2π
e−

1
4 ∆τ |U |Θ(π − |s|). (22)

The Heaviside step function Θ(·) constrains the integral
of Eq. (5) to the compact domain −π < s < π. Using
the path integral formalism, Lee derived an approximate
coefficient,

c0 ≈ 2∆τ |U | . (23)

Below, we will derive corrections to c0 by expanding in
powers of the small parameter ∆τ . Such corrections are
important to maintain the overall O(∆τ2) accuracy of a
DQMC code.

Observe that the function b(s) already satisfies the first
constraint, Eq. (8). The second constraint, Eq. (9), then
determines c0.

A general integral identity is

1

2π

∫ π

−π
cosh (

√
c0 sin s) ds = I0(

√
c0), (24)

where Iα(x) = i−αJα(ix) is the modified Bessel function
of the first kind. This integral matches that appearing
in Eq. (9) given the definitions of a(s) and b(s). The
resulting constraint is,

I0(
√
c0) = e

1
2 ∆τ |U |. (25)

Taylor expansion on the left and substitution of

x = ∆τ |U | /2 (26)

on the right yields an implicit equation for c0,
∞∑
n=0

cn0
n!24n

= ex. (27)

Note that x can be made arbitrarily small through an
appropriate choice of the discretization in imaginary time
∆τ . With the help of a symbolic algebra package, we find
the series expansion,

c0 = 4x+ x2 +
1

18
x3 − 1

72
x4 +

7

10800
x5 + . . . . (28)

Observe that the first order approximation, c0 ≈ 4x,
reproduces Eq. (23). Truncation at this level is not ad-
visable, however, as the corresponding approximation to
Eq. (21) becomes fairly imprecise,

a(s) =
√

2∆τ |U | sin s+O(∆τ3/2). (29)

This level of truncation error should be compared to
the discretization error already present in a DQMC
simulation, which is globally of second order in ∆τ .
This error originates from a Suzuki-Trotter expansion
involving symmetric operator splitting, e∆τ(Â+B̂) ≈
e∆τÂ/2e∆τB̂e∆τÂ/2, which is locally accurate to third or-
der in ∆τ [22]. It appears, then, that retaining more
terms in the expansion of Eq. (28) is important to the
overall accuracy of a DQMC code.

IV. INTERPOLATING BETWEEN ISING AND
SINUSOIDAL HS TRANSFORMATIONS

The constraints of Eqs. (8) and (9) are relatively easy
to satisfy, and allow great flexibility in designing new HS
transformations with the form of Eq. (5). For example,
it is possible to continuously interpolate between the HS
transformations of Secs. III B and III C via

a(s) =
√
cp

atan(p sin s)

atan p
(30)

b(s) =
1

2π
e−

1
4 ∆τ |U |Θ(π − |s|), (31)

where 0 < p < ∞ is the interpolation parameter. The
coefficient cp controls the coupling strength between the
auxiliary field and fermions, and remains to be deter-
mined.

The limit p→ 0 recovers Eqs. (21) and (22). The limit
p → ∞ is a bit more subtle. The domain of s may be
restricted to [−π, π], for which

lim
p→∞

a(s) =
√
cp

s

|s|
. (32)

The integral anstaz of Eq. (5) becomes

lim
p→∞

∫
e
a(s)

2 (m̂↑−ηm̂↓)b(s) ds =
1

2
e−

∆τ|U|
4 (I+ + I−),

(33)
where

I± = e±
1
2

√
cp(m̂↑−ηm̂↓)

(
1

π

∫
Ω±

ds

)
, (34)

and s is to be sampled from the two sub-domains, Ω− =
[−π, 0] and Ω+ = [0, π]. In the context of a DQMC code,
the sampling weight depends only on whether s ∈ Ω− or
s ∈ Ω+. That is, we could effectively replace each of these
two continuous sampling domains with just two allowed
values, s = ±1. As pointed out in Ref. 20, this limit
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FIG. 1. A class of compact Hubbard Stratonovich transfor-
mations defined by Eqs. (30) and (31). Each curve a(s) de-
fines a possible coupling between electrons and the auxiliary
field s. The square wave coupling (p → ∞) effectively corre-
sponds to the usual Ising auxiliary variables s = ±1 [6]. The
sine wave coupling (p→ 0) is the periodic HS transformation
introduced by D. Lee [20].

recovers the discrete Ising HS transformation, Eqs. (21)
and (22), where

√
c∞ = α, as defined in Eq. (18).

Figure 1 illustrates how varying p from 0 to ∞ inter-
polates between previously known HS transformations.
Here we selected cp according to its ∆τ → 0 limit
[Eq. (38)], which will be derived below.

The constant cp is, in general, determined by the con-
straint Eq. (9), which may be written

1

2π

∫ +π

−π
cosh

(
√
cp

atan(p sin s)

atan p

)
ds = ex, (35)

with x defined in Eq. (26). In applications, we will typi-
cally have numerical values for p and x, and it is straight-
forward to solve for cp numerically; a Julia routine is
provided in Appendix A.

One can formally Taylor expand cp(x) in small x, gen-
eralizing Eq. (28) to nonzero p. We will work out the
leading order approximation. Using

cosh a =

∞∑
n=0

a2n

(2n)!
, (36)

and x = ∆τ |U |/2, expand both sides of Eq. (35) in small
cp ∼ ∆τ ,

cp
4π

∫ +π

−π

(
atan(p sin s)

atan p

)2

ds =
∆τ |U |

2
+O(∆τ2). (37)

The limiting behavior for small ∆τ is

lim
∆τ→0

cp
∆τ |U |

=

[
1

2π

∫ +π

−π

(
atan(p sin s)

atan p

)2

ds

]−1

.

(38)

The right-hand side decreases monotonically as a func-
tion of the interpolation parameter p. For example,

lim
∆τ→0

cp
∆τ |U |

=


2 (p = 0)

1.37546 . . . (p = 4)

1.11849 . . . (p = 20)

1 (p =∞)

, (39)

where the first and last cases should be understood as
limits. The p = 0 result is consistent with Eq. (28), and
the p = ∞ result with Eq. (18) where α =

√
c∞. Ob-

serve that increasing p, i.e. moving toward the discrete
Ising HS transformation, effectively decreases the cou-
pling strength √cp between the auxiliary field and the
fermions.

V. NUMERICAL BENCHMARKS

We explore performance of the proposed compact HS
transformations in the context of the doped single-band
Hubbard Hamiltonian

H = −t
∑
〈i,j〉,σ

c†i,σcj,σ − µ
∑
i,σ

ni,σ + U
∑
i

ni,↑ni,↓. (40)

Here, c†i,σ (ci,σ) is the creation (annihilation) operator
for a spin-σ (=↑, ↓) electron on lattice site i, t is the
hopping integral for nearest neighbor sites 〈i, j〉, µ is the
chemical potential, and U is the onsite Hubbard repul-
sion. We consider the model defined on two-dimensional
square and triangular lattices with N = L× L sites and
arbitrary in-plane lattice constants. For all simulations,
the discretization in imaginary time is ∆τ = 0.1/t. The
Monte Carlo sampling task is to generate auxiliary fields
si,τ according to the weight exp(−S) = |detM↑ detM↓|.
Each Mσ is an N ×N matrix function of the fields si,τ ,
and this functional dependence varies according to the
choice of HS transformation [1–3].

The compact HS transformations of Sec. IV are tun-
able by a parameter p. The limit p → ∞ gives rise to
the usual discrete Ising HS transformation (Sec. III B).
Simulations in this limit are efficiently performed using
the traditional DQMC approach [1, 2]. The method
sweeps over all imaginary time-slices, and within each,
all lattice sites. At each space-time point (i, τ), a single
spin-flip si,τ → −si,τ is proposed and then accepted with
Metropolis probability min[1, exp(−∆S)], where ∆S de-
notes the associated change in action. After a successful
spin-flip, local data structures [the equal-time Green’s
functions G(τ)] are updated at an amortized cost that
scales approximately like O(N2). The cost to fully sweep
over all Nτ imaginary times and N sites then scales
like O(N3Nτ ). Numerical errors can accumulate when
sweeping through time slices, and one must periodically
recompute the equal-time Green’s function using a nu-
merical stabilization procedure [2, 3, 23–25].

Alternatively, when p is finite, each auxiliary variable
si,τ can be viewed as a continuous degree of freedom in
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FIG. 2. The average sign of detM↑ detM↓ as a function of
electron filling 〈n〉 for the two-dimensional single band Hub-
bard model on a square lattice with U = 8t, N = 8 × 8, and
(a) β = 3/t or (b) β = 4/t. Various HS transformations are
compared, with the Ising limit (p → ∞) generally producing
the best sign.

the periodic domain [−π, π]. The coupling strength cp
between auxiliary field and electrons is determined by
Eq. (38), which can be solved using the Julia code in
Appendix A. In our numerical implementation, we opted
to sample the field si,τ using the Langevin Monte Carlo
method [26] (or equivalently, the Metropolis-adjusted
Langevin method [27]). This approach can be under-
stood as a variant of HMC where each dynamical trajec-
tory consists of only a single-time step [13]. The method
associates with each field component si,τ a fictitious ve-
locity vi,τ . A trial update of the auxiliary field si,τ → s′i,τ
has two steps. First, one samples all velocities vi,τ from
the Gaussian equilibrium distribution. Second, one per-
forms Verlet integration for a single time-step ε,

s′ = s− ε2

2
∇S + εv (41)

v′ = v − ε

2
∇S − ε

2
∇S′. (42)

Here, S and S′ denote the action evaluated at fields s and
s′, respectively, and ∇ denotes the gradient with respect
to si,τ at every space-time index. The detailed balance
condition is achieved by accepting the proposed update
with probability

Paccept = min[1, exp(−∆S −∆K)]. (43)

As before, ∆S = S′ − S represents the change in action.
Additionally, we must include a term ∆K = 1

2

∑
i,τ (v′2i,τ−

v2
i,τ ) representing the change in fictitious kinetic energy.
The dominant numerical cost in each Langevin step is the
calculation of the new action S′ and its derivative ∇S′.
As with DQMC, numerical stabilization is necessary, and
the computational cost for a full system update again
scales like O(N3Nτ ).

Figure 2 presents the results from simulations of the
square lattice Hubbard model for various HS transfor-
mations as a function of the parameter p and U = 8t.
The x-axis shows the estimated mean electron number
〈n〉, which is indirectly controlled by a varying chemical
potential µ. For example, the data at half-filling, 〈n〉 = 1,
was generated using µ = 0, and the data at 〈n〉 ≈ 0.668
was generated using µ = −3.5t. The y-axis shows the
expected value of

Sign =
detM↑ detM↓
|detM↑ detM↓|

. (44)

The deviation of 〈Sign〉 from one is a proxy for the dif-
ficulty of the so-called sign problem [11, 28–31]. All
HS transformations yield the same qualitative behav-
ior, which is consistent with previous results obtained
for the square lattice Hubbard model using Ising auxil-
iary fields [2, 29]. Particle-hole symmetry at half-filling
perfectly protects against the sign problem. Upon reduc-
ing 〈n〉 from one, the average sign rapidly decreases until
it hits a broad minimum value around 〈n〉 ≈ 0.8. As
the filling is reduced further, the average sign begins to
slowly recover before reaching one in the dilute limit.

The discrete Hirsch HS transformation is reached in
the limit where p→∞, and restricts each auxiliary vari-
able si,τ to two possible values, ±1. This limit is observed
to be the best at mitigating the sign problem (i.e. it pro-
duces the largest average sign at all fillings). Conversely,
the continuous Gaussian transformation gives rise to the
worst sign problem. The sinusoidal coupling studied by
Lee (p = 0) achieves an average sign that is already quite
close to the discrete case (p = ∞). By increasing the
interpolation parameter p, it is possible to approach the
discrete HS transformation arbitrarily closely, while re-
taining the continuous nature of the HS field s ∈ [−π, π].

Figure 3a shows a closer view of the p-dependence on
the average sign. Here, we fix µ = −3.5t, corresponding
to a particularly difficult filling fraction of 〈n〉 ≈ 0.668.
(All other simulation parameters are identical to those
used in Fig. 2.) The average sign i ncreases monotonically
with p.

Langevin or HMC sampling methods decorrelate
fastest when p is of order one. Because forces are pro-
portional to da/ds, they are either vanishing or divergent
when p → ∞. Figure 3b shows that, for a fixed integra-
tion time-step of ε = 0.1, the acceptance rate for pro-
posed Langevin updates steadily decreases with increas-
ing p. Furthermore, at large p, each accepted update
become less effective in decorrelating the auxiliary field,
because the typical forces are very small. In numerical
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FIG. 3. (a) The average sign of detM↑ detM↓ and (b) the cor-
responding acceptance rate for proposed Langevin updates,
for varying HS transformations as controlled by the param-
eter p. As in Fig. 2a, we consider a square lattice Hubbard
model with U = 8t, β = 3/t and N = 8×8, but here we focus
on 〈n〉 ≈ 0.668, corresponding to µ = −3.5t.

practice, the optimal choice of p should balance the ben-
efits of increasing the average sign against the disadvan-
tages of reducing autocorrelation time in the dynamical
sampling scheme.

Figure 4 shows results obtained for the triangular lat-
tice single band Hubbard model. Since this generally ex-
hibits a more severe sign problem compared to the square
lattice case [29], we focus here on an N = 6 × 6 lattice
with U = 6t and β = 3.5/t. The overall trends are very
similar to those already discussed for the square lattice.
The Guassian field produces the lowest average sign val-
ues at all carrier concentrations. The compact fields, on
the other hand, produce larger average sign values at all
carrier concentrations, and systematically approach the
values obtained using Ising HS fields as p increases. In-
terestingly, we also observe a small region 0.8 ≤ 〈n〉 ≤ 1
where the p = 0 compact field performs slightly better
than the Ising fields.

In these simulations of the single band repulsive Hub-
bard models, the DQMC method required only a few
sweeps to generate a decorrelated sample of the auxil-
iary field. In contrast, Langevin required two orders of
magnitude more full-system updates to achieve compa-
rable decorrelation. In the presence of a sign problem,
the Langevin approach is at a fundamental disadvantage:
The sampling weights |detM↑ detM↓| vanish upon each
reversal of the sign in Eq. (2). This nodal surface cor-
responds to a logarithmically divergent action S which,
in principle, should disallow crossing by any continuous
trajectory. In practice, the finite Langevin integration
timestep ε makes crossing possible but rare. Previous
work explored complexification of the auxiliary to en-

FIG. 4. The average sign of detM↑ detM↓ as a function of
electron filling 〈n〉 for the triangular lattice Hubbard model
with U = 6t, N = 6× 6 and β = 3.5/t. Various HS transfor-
mations are compared, with discrete Ising variables emerging
when p → ∞. Dotted curves show cubic spline interpolation
as a guide to the eye.

able continuous paths around the nodal surface, thereby
avoiding ergodicity issues [16]. In future studies, it would
be interesting to explore whether such complexification
might be used in conjunction with the compact HS trans-
formations of Eqs. (30) and (31).

VI. CONCLUSIONS

This work studies a class of HS transformations that
continuously interpolates between the discrete Ising aux-
iliary variables introduced by Hirsch (p = ∞) [6], and
the compact variables with periodic coupling introduced
by Lee (p = 0) [20]. As a proof of principle, we com-
pared DQMC simulations (p = ∞) with Langevin simu-
lations at various p, and found that the average sign sys-
tematically increases with p. Note, however, that these
measurements are context dependent; the average sign is
known to depend sensitively on the system’s dimension-
ality [29, 32], its orbital basis [32–34], and the presence
of additional interactions [10, 35].

Although the sign problem is best mitigated at in-
finite p, selecting instead moderate p enables the use
of continuous sampling methods such as Langevin or
HMC. In our study of the single band Hubbard model,
we did not find benefit from Langevin sampling; this is
partly because DQMC is already so effective at generat-
ing decorrelated samples, and partly because continuous
sampling methods do not do well in crossing nodal sur-
faces. In other contexts, however, continuous sampling
methods are known to significantly reduce long decorre-
lation times [14, 15]. Previous studies of the attractive
Hubbard model in the dilute limit found significant ad-
vantages to using HMC in conjunction with the compact
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p = 0 HS transformation [20], and future work may ben-
efit by selecting p > 0. The use of continuous sampling
methods also presents the possibility of using sparse it-
erative solvers to achieve near linear-scaling of compu-
tational cost with system size [16, 18, 36]. Although
linear-scaling simulations of the Hubbard model in the
strongly-correlated limit is still not practical, the present
study represents progress towards this direction.

Another context where a continuous HS transforma-
tion for the Hubbard interaction may be beneficial is in
simulations of correlated systems with strong electron-
phonon interactions. Langevin and HMC are known
to be highly effective in sampling decorrelated phonon
fields [16–18]. Future work could perform simultane-

ous dynamical sampling of the phonon and HS auxiliary
fields. Such an approach could prove useful in situations
where the electron and phonon degrees of freedom are
strongly coupled, e.g. small polarons.
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Appendix A: Numerical calculation of coupling strength

The Julia code below will solve Eq. (35) for the unknown cp, taking as inputs x = ∆τ |U |/2 and finite interpolation
parameter p.

� �
using QuadGK, Roots

# Arbitrary input parameters (but avoid p→0)
x = 0.1
p = 4.0

function f(c)
res, err = quadgk(s -> cosh(sqrt(c) * atan(p * sin(s)) / atan(p)), -π, π; rtol=1e-12)
return (1/2π) * res - exp(x)

end

# Solve f(c) = 0 to determine the target c value
find_zero(f, x; verbose=true) # 0.2835...� �

Numerical issues will arise at small p due to the re-
movable singularity at p = 0,

lim
p→0

atan(p sin s)/atan(p) = sin s.

One solution is to expand the integrand powers of small
p. Alternatively, when p = 0 exactly, the coefficient c0
can be calculated via the small-x expansion of Eq. (28).

Appendix B: Additional results for the average sign

Figure 5 shows additional results for the square lattice
Hubbard model on an N = 8× 8 lattice with U = 4t and

β = 4/t. The results resemble those presented in Fig. 2 in
that the average sign for the Gaussian HS transformation
has the smallest value across the full range of sampled
densities.
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