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Two different kinetic theories [J. Solsvik and E. Manger (SM), Phys. Fluids 33, 043321 (2021) and V. Garzó,
J. W. Dufty, and C. M. Hrenya (GDH), Phys. Rev. E 76, 031303 (2007)] are considered to determine the
shear viscosity η for a moderately dense granular binary mixture of smooth hard spheres. The mixture is
subjected to a simple shear flow and heated by the action of an external driving force (Gaussian thermostat)
that exactly compensates the energy dissipated in collisions. The set of Enskog kinetic equations is the starting
point to obtain the dependence of η on the control parameters of the mixture: solid fraction, concentration,
mass and diameter ratios, and coefficients of normal restitution. While the expression of η found in the
SM-theory is based on the assumption of Maxwellian distributions for the velocity distribution functions of
each species, the GDH-theory solves the Enskog equation by means of the Chapman–Enskog method to first
order in the shear rate. To assess the accuracy of both kinetic theories, the Enskog equation is numerically
solved by means of the direct simulation Monte Carlo (DSMC) method. The simulation is carried out for
a mixture under simple shear flow, using the thermostat to control the cooling effects. Given that the SM-
theory predicts a vanishing kinetic contribution to the shear viscosity, the comparison between theory and
simulations is essentially made at the level of the collisional contribution ηc to the shear viscosity. The results
clearly show that the GDH-theory compares with simulations much better than the SM-theory over a wide
range of values of the coefficients of restitution, the volume fraction, and the parameters of the mixture
(masses, diameters, and concentration).

I. INTRODUCTION

The determination of the transport coefficients of poly-
disperse granular mixtures (namely, mixtures constituted
by smooth inelastic hard spheres of different masses, di-
ameters, and coefficients of restitution) is still a challeng-
ing objective. There are likely two main reasons for which
the above target is quite complex. First, there is a large
number of parameters and transport coefficients involved
in the description of granular mixtures. Second, there is
a wide array of intricacies and uncontrolled approxima-
tions arising in the derivation of the corresponding kinetic
theories.
Therefore, due to the above difficulties, many of the

previous attempts for obtaining the Navier–Stokes trans-
port coefficients of granular mixtures1–4 consider mix-
tures constituted by nearly elastic spheres. In this limit
case it is justified to assume the equipartition of the total
granular kinetic energy in the homogeneous cooling state
(HCS). This means that the zeroth-order contributions

T
(0)
i to the partial temperatures Ti of each species are

equal to the (global) granular temperature T .
However, as theoretical calculations,5,6 computer

simulations,7–15 and real experiments16,17 have shown,
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the assumption of energy equipartition between mechan-
ically different particles only occurs when the collisions
are perfectly elastic. A general conclusion of the above
works is that the departure of energy equipartition in-
creases as inelasticity increases and the mechanical dif-
ferences between the particles of each species become
more significant (specially when the masses are more dis-
parate).

Although the breakdown of energy equipartition in
granular mixtures was pointed out independently by
Jenkins and Mancini18 and Zamankhan19 (this author
noted energy nonequipartition but assumed equal par-
tial temperatures for studying rheology in sheared gran-
ular mixtures), to the best of our knowledge, the im-
pact of energy nonequipartition on transport properties
in granular mixtures was analyzed for the first time by
Huilin et al.20,21 They proposed a two-temperature ki-
netic theory where the one-particle velocity distribution
function of each species fi(r,v; t) is a Maxwellian distri-

bution at the partial temperature T
(0)
i , even for inhomo-

geneous states. Although this approximation could pro-
vide acceptable estimates of the collisional transfer con-
tributions to the fluxes and the cooling rate, it predicts
vanishing Navier-Stokes transport coefficients in the low-
density limit. This is an important drawback of these
theories.22 Based on the Maxwellian approximation for
fi, Solsvik and Manger (SM)23,24 have recently proposed
a kinetic theory (hereafter referred to as the SM-theory)
where the distributions fi take into account not only the
temperature differences of the species but also the dif-
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ferences in the mean flow velocities Ui of the species.
Within this approach, the authors24 obtain corrections to
the collisional contributions to the momentum and heat
fluxes, which are of the order |Ui−Uj |2 and |Ui−Uj |4.
A different approach for determining the Navier–

Stokes transport coefficients for moderately dense gran-
ular mixtures have been developed by Garzó, Dufty,
and Hrenya (GDH).25,26 These authors solve the En-
skog kinetic equation by means of the Chapman–Enskog
method27 adapted to dissipative dynamics (hereafter the
theory proposed by GDH will be referred to as the GDH-
theory). In the first-order of spatial gradients, as for
molecular mixtures,28 the transport coefficients are de-
fined in terms of the solutions of a set of coupled linear
integral equations. These equations are approximately
solved by considering the leading terms in a Sonine poly-
nomial expansion of the first-order distribution functions.
Thus, explicit expressions for the transport coefficients
and the cooling rate are obtained in terms of the param-
eter space of the mixture (masses and diameters, concen-
trations, solid volume fraction, and coefficients of resti-
tution). These expressions apply in principle to arbitrary
values of the coefficients of restitution and are not lim-
ited to specific values of the remaining parameters of the
mixture. In fact, the GDH-theory reduces in the limit
of mechanically equivalent particles to well established
kinetic theory models29,30 for monocomponent granular
gases. In addition, the GDH-theory compares in general
very well with computer simulation results obtained for
the tracer diffusion coefficient31 and the shear viscosity
coefficient of a heated granular binary mixture.32

On the other hand, given that the SM-theory24 can be
only reliable for obtaining the collisional contributions
to the transport coefficients, an interesting problem is to
assess the degree of accuracy of the SM and GDH the-
ories by comparing their predictions (for the collisional
coefficients) against computer simulations. Although the
predictions of the GDH-theory for the shear viscosity co-
efficient η were already tested with simulations in Ref. 33,
only simulation data for the kinetic ηk and global shear
viscosity η were reported in this paper. Thus, it could
be convenient to perform new simulations where the de-
pendence of the collisional shear viscosity coefficient ηc
on the parameter space of the mixture were widely ana-
lyzed. This would allow us to asses the degree of accuracy
of the SM and GDH theories for dense granular mixtures.
The objective of this paper is to carry out new simula-
tions for determining ηc and compare them with those
predicted by the SM and GDH theories. This will allow
us to gauge the strengths and weaknesses of both kinetic
theories.

As in the simulations performed in Ref. 33, we con-
sider here a particular hydrodynamic state: the so-called
simple (or uniform) shear flow (SSF) state. This state
is characterized by constant partial densities ni, uni-
form granular temperature T , and a linear velocity pro-
file U1,λ = U2,λ = aλβrβ , where aλβ = aδλxδβy, a be-
ing the constant shear rate. In the case of a molecular

mixture (elastic collisions), unless a thermostating mech-
anism is introduced, the temperature grows in time due
to the viscous heating term −aPxy (Pxy < 0 is the xy-
component of the pressure tensor). A consequence of the
viscous heating effect is that the effective collision fre-
quency for hard spheres ν(t) (which is proportional to√
T (t)) increases with time and so, the reduced shear

rate a∗(t) = a/ν(t) tends to zero for times longer than
the (effective) mean free time ν−1. Thus, for sufficiently
long times, the system achieves a regime described by lin-
ear hydrodynamics and the Navier–Stokes shear viscosity
coefficient η can be measured in computer simulations.
This procedure was followed many years ago by Naitoh
and Ono34 for getting η for molecular hard-spheres gases.
In the case of granular gases, unfortunately the relation
between the temperature and the shear viscosity is not
as simple as for molecular gases due to the presence of
the collisional term arising from inelasticity in collisions.
However, if there is a thermostat that injects energy to
the system that compensates for the collisional energy
loss, then the viscous heating term heats the system (as
for molecular gases) and one can identify the shear viscos-
ity in the limit a∗ → 0. Here, as in Ref. 33, we consider
the Gaussian thermostat (external force proportional to
the particle velocity). In the absence of a shear field,
this thermostat (which is usually employed in nonequi-
librium molecular dynamics simulations35) has the ad-
vantage that it plays a neutral role in the dynamics of
the system.36

The plan of the paper is as follows. In Sec. II, the
Enskog kinetic equation in the SSF state is introduced.
Expressions of the pressure tensor and the cooling rate
in the local Lagrangian frame where the SSF is homoge-

neous are also displayed. Sections III and IV provide the
results obtained for the shear viscosity in the (driven)
SSF from the SM and GDH theories, respectively. Sec-
tion V deals with the application of the direct simula-
tion Monte Carlo (DSMC) method37 (the extension of
this method to dense gases is usually referred to as the
ESMC method) to the SSF with thermostat. The theo-
retical results obtained from the SM and GDH theories
for the collisional shear viscosity coefficient ηc are com-
pared in Sec. VI with computer simulations. The results
show that the GDH-theory compares with simulations
much better than the SM-theory. We close the paper in
Sec. VII with some concluding remarks.

II. ENSKOG KINETIC THEORY. SIMPLE SHEAR

FLOW STATE

A. Enskog equation for granular mixtures

We consider a granular binary mixture of inelastic hard
disks (d = 2) or spheres (d = 3) of masses m1 and m2,
and diameters σ1 and σ2. We assume that the spheres are
completely smooth so that the inelasticity of collisions
among all pairs is characterized by three independent
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constant (positive) coefficients of normal restitution α11,
α22, and α12 = α21. Here, αij ≤ 1 is the restitution
coefficient for collisions between particles of species i and
j. The case αij = 1 corresponds to elastic collisions
(molecular mixtures of hard spheres).
Due to the inelastic character of collisions, it is quite

usual in experiments to supply energy to the system to
balance the collisional loss of energy. This can be done by
driving the system through the boundaries38 or alterna-
tively by bulk driving, as in air-fluidized beds.39,40 How-
ever, these ways of supplying energy produce in many
cases strong spatial gradients in the bulk domain and so,
the Navier–Stokes description fails. For this reason, it
is frequent in computer simulations41–48 to heat the sys-
tem homogenously by the action of an external driving
force. Borrowing a terminology used in nonequilibrium
molecular-dynamics simulations of ordinary (or molec-
ular) fluids,35 these types of external forces are called
thermostats. In the present paper, for simplicity, we
introduce the so-called Gaussian thermostat, namely, a
deterministic external force proportional to the peculiar
velocity V. This sort of thermostat has been frequently
employed in nonequilibrium molecular dynamics simula-
tions of elastic particles.35

Under the above conditions, the Enskog kinetic equa-
tion for the one-particle velocity distribution function of
species i (i = 1, 2) is given by

(∂t + v · ∇) fi+
1

2
ξ
∂

∂v
·(Vfi) =

2∑

j=1

JE
ij [r,v|fi(t), fj(t)] ,

(1)
where the constant ξ is chosen to be the same for both
species. Here, V = v −U,

U =

2∑

i=1

ρi
ρ
Ui = ρ−1

2∑

i=1

∫
dv mivfi(v) (2)

is the mean flow velocity of the mixture, ρ = ρ1 + ρ2 is
the total mass density, ρi = mini, and

ni =

∫
dv fi(v) (3)

is the number density of species i. The second equality
in Eq. (2) defines the mean flow velocities Ui of species i.
Apart from ni and U, the other relevant hydrodynamic
field is the granular temperature T . It is defined as

T =
1

dn

2∑

i=1

∫
dv miV

2fi(v), (4)

where n = n1 + n2 is the total number density.
In Eq. (1), the Enskog collision operator JE

ij [fi, fj] is
49

JE
ij [r,v1|fi, fj] = σd−1

ij

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

×
[
α−2
ij χij(r, r− σij)fi(r,v

′′
1 ; t)fj(r− σij ,v

′′
2 ; t)

−χij(r, r+ σij)fi(r,v1; t)fj(r+ σij ,v2; t)] . (5)

Here, σij = σij σ̂ with σij = (σi + σj) /2 and σ̂ is a unit
vector directed along the line of centers from the sphere
of species i to the sphere of species j upon collision (i.e.
at contact). In addition, Θ is the Heaviside step function,
and g = v1 − v2 is the relative velocity of the colliding
pair. The double primes on the velocities denote the
initial values {v′′

1 ,v
′′
2} that lead to {v1,v2} following a

binary collision:

v′′
1 = v1 − µji

(
1 + α−1

ij

)
(σ̂ · g)σ̂, (6)

v′′
2 = v2 + µij

(
1 + α−1

ij

)
(σ̂ · g)σ̂, (7)

where µij = mi/ (mi +mj). Inversion of the collision
rules (6) and (7) provides the form of the so-called di-

rect collisions, namely, collisions where the pre-collisional
velocities (v1,v2) lead to the post-collisional velocities
(v′

1,v
′
2):

v′
1 = v1 − µji (1 + αij) (σ̂ · g)σ̂, (8)

v′
2 = v2 + µij (1 + αij) (σ̂ · g)σ̂. (9)

The quantity χij [r, r+σij |{nℓ}] is the equilibrium pair
correlation function of two hard spheres, one of species
i and the other of species j, at contact, i.e., when the
distance between their centers is σij . In the original
phenomenological kinetic theory of Enskog50 (which is
usually referred to as the standard Enskog theory), the
χij are the same functions of the densities {nℓ} as in a
fluid mixture in uniform equilibrium. On the other hand,
this choice for χij leads to some inconsistencies with irre-
versible thermodynamics. In order to fix this conceptual
problem, van Beijeren and Ernst51 proposed an alterna-
tive generalization to the Enskog equation for mixtures,
which is usually referred to as the revised Enskog theory
(RET). In the RET, the χij are the same functionals of
the densities {nℓ} as in a fluid in nonuniform equilibrium.
This fact increases considerably the technical difficulties
involved in the derivation of the general hydrodynamic
equations from the RET,28 unless the partial densities
are uniform as occurs in the SSF state.

B. Simple shear flow

As mentioned in section I, we want to solve the Enskog
equation (1) in the SSF state. At a macroscopic level, the
SSF is characterized by uniform partial densities ni and
temperature T and a linear velocity profile given by

U1 = U2 = U = a · r, aλβ = aδλxδβy, (10)

where a is the constant shear rate. In the SSF, the
mass and heat fluxes vanish for symmetry reasons and
the only flux of the problem is the (uniform) pressure
tensor P. For moderate densities, P has kinetic and col-
lisional contributions. The only relevant hydrodynamic
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balance equation is that for the temperature T (t). This
equation can be deduced by multiplying both sides of Eq.
(1) by 1

2miv
2, integrating over v, and summing over i.

It is given by

∂tT +
2

dn
aPxy = − (ζ − ξ)T, (11)

where ζ is the cooling rate. This quantity provides the
rate of kinetic energy dissipated by inelastic collisions.
The expressions of P and ζ in the SSF will be displayed
below.
It is worthwhile noting that if one chose ξ = ζ in Eq.

(11), then this macroscopic balance equation looks like
the energy equation in the SSF state for molecular mix-
tures. However, in the limit a∗ → 0, the corresponding
expression of the shear viscosity coefficient differs from
the one obtained for a mixture of elastic collisions.
At a microscopic level, the SSF becomes a homoge-

neous state in the local Lagrangian frame defined by
the variables V = v − a · r and R = r − a · rt.52 In
this frame,the velocity distribution functions are uniform
[fi(r,v, t) = fi(V, t)] and the Enskog equation reads

∂tfi−aVy
∂

∂Vx
fi+

1

2
ξ

∂

∂V
·(Vfi) =

2∑

j=1

JE
ij [V|fi(t), fj(t)] ,

(12)
where the operator JE

ij [V|fi(t), fj(t)] becomes33

JE
ij [V1|fi, fj ] = σd−1

ij χij

∫
dV2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

×
[
α−2
ij fi(V

′
1, t)fj(V

′
2 + aσij σ̂yx̂, t)

−fi(V1, t)fj(V2 − aσij σ̂yx̂, t)] . (13)

Note that the functions χij are uniform in the SSF prob-
lem. As said before, the pressure tensor has kinetic and
collisional transfer contributions:

P = P
k + P

c. (14)

The kinetic contribution Pk is

P
k =

2∑

i=1

∫
dVmiVVfi(V), (15)

while the collisional transfer contribution Pc in the La-
grangian frame is given by33

P
c =

2∑

i=1

2∑

j=1

mijχijσ
d
ij

1 + αij

2

∫
dV1

∫
dV2

∫
dσ̂

×Θ(σ̂ · g)(σ̂ · g)2σ̂σ̂fi (V1 + aσij σ̂yx̂, t) fj(V2, t),

(16)

where mij = mimj/(mi +mj). The cooling rate ζ is33

ζ =
1

2dnT

2∑

i=1

2∑

j=1

mijχijσ
d−1
ij (1 − α2

ij)

×
∫

dV1

∫
dV2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)3

×fi (V1 + aσij σ̂yx̂, t) fj(V2, t). (17)

Equations (14)–(17) provide the expressions of the
pressure tensor and the cooling rate in terms of the ve-
locity distribution functions fi(V; t) in the SSF state.
Needless to say, it still remains to determine fi(V; t) to
compute the corresponding velocity integrals and get the
above quantities. Based on symmetry considerations, to
first-order in the shear rate, the pressure tensor P(1) is

P
(1)
λβ = −ηa (δλxδβy + δλyδβx) , (18)

where η is the shear viscosity coefficient η. In this paper,
we consider two different kinetic theories to determine η.

III. SM-KINETIC THEORY

The SM-theory24 is based on a simple approximation:
the distributions fi(V; t) are assumed to be Maxwellian
distributions fi,M(V; t):

fi,M(V; t) = ni

(
mi

2πT
(0)
i

)d/2

exp

(
−miV

2

2T
(0)
i

)
, (19)

where T
(0)
i is the zeroth-order contribution to the partial

temperature of species i. Upon writing Eq. (19) we have
made use of the fact that the velocity differences |Ui−Uj |
vanish in the SSF. According to the approximation (19),
the kinetic contribution Pk = 0 in the SM-theory and
the kinetic shear viscosity vanishes (ηk = 0). This is of
course a deficiency of the SM-theory which is not able
to capture the kinetic transfer contributions to the shear
viscosity, which are different from zero even for granular
mixtures at low-density.53,54 This means that this theory
can be only seen as a valuable approach for estimating
the collisional transfer contribution ηc to η. According
to Eqs. (41) and (77) of Ref. 24 and Eq. (18), ηc for hard
spheres (d = 3) can be identified as24,55

ηSMc =

√
2π

15

2∑

i=1

2∑

j=1

ninjσ
4
ijχijm

2
ij(1 + αij)

×
(
T

(0)
i

mi
+

T
(0)
j

mj

)3/2(
1

T
(0)
i

+
1

T
(0)
j

)
. (20)

It is interesting to note that the expression (20) slightly
differs from the one obtained by replacing fi(V) by
fi,M(V) in Eq. (16) and performing the corresponding
integrals in velocity space. In the linear order of the
shear rate, after some algebra, one gets the following ex-
pression for the collisional shear viscosity ηc ≃ ηMc :

ηMc =

√
2π(d−1)/2

d(d+ 2)Γ
(
d
2

)
2∑

i=1

2∑

j=1

ninjσ
d+1
ij χijmij(1 + αij)

×
(
T

(0)
i

mi
+

T
(0)
j

mj

)1/2

. (21)
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For elastic collisions (αij = 1), T
(0)
1 = T

(0)
2 = T and so,

Eqs. (20) and (21) agree for a three-dimensional (d = 3)
system.

IV. GDH-KINETIC THEORY

In contrast to the SM-theory, the GDH-theory25 solves
the Enskog equation (12) by means of the Chapman–
Enskog method.27 Since we want to get the shear vis-
cosity coefficient in the driven case when the collisional
cooling is exactly compensated for by the energy sup-
plied to the mixture by the external driving force, then
we take ξ = ζ in Eq. (12). With this choice, according
to Eq. (11), the temperature increases in time due to the
viscous heating term −aPxy > 0. The determination of η
under these conditions was carried out years ago in Ref.
33 for d = 3. The extension to d-dimensional mixtures
follows similar steps as those mode in the above work (see
the Appendix B of Ref. 33 for specific technical details on
this calculation). We offer here only some partial results
for the determination of η in the driven SSF.
The Chapman–Enskog method27 provides the normal

(or hydrodynamic) solution to the Enskog equation (12)
as an expansion in powers of the shear rate a:

fi = f
(0)
i + f

(1)
i + · · · , (22)

where f
(k)
i is of order k in a. As usual, the time deriva-

tives ∂t, the Enskog collision operator JE
ij [fi, fj], and the

pressure tensor P are also expanded as

∂t = ∂
(0)
t + ∂

(1)
t + · · · , JE

ij = J
(0)
ij + J

(1)
ij + · · · , (23)

P = P
(0) + P

(1) + · · · . (24)

As ξ = ζ at any order in the shear rate, then ∂
(0)
t T = 0

and

∂
(1)
t T = − 2

dn
aP (0)

xy . (25)

A. Zeroth-order approximation

To zeroth-order in a, the Enskog equation (12) reads33

1

2
ζ(0)

∂

∂V
·
(
Vf

(0)
i

)
=

2∑

j=1

J
(0)
ij [f

(0)
i , f

(0)
j ], (26)

where ζ(0) is given by Eq. (17) with the replacements

fi → f
(0)
i , fj → f

(0)
j , and

J
(0)
ij [f

(0)
i , f

(0)
j ] = χijσ

d−1
ij

∫
dV2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

×
[
α−2
ij f

(0)
i (V′

1)f
(0)
j (V′

2)

−f
(0)
i (V1)f

(0)
j (V2)

]
. (27)

Equation (28) turns out to be formally identical to the
one obtained in the HCS (i.e., in the unforced case with
ξ = 0).6,49 Thus, when one properly scales the velocities

v with the thermal speed vth ∝
√
T (t), there is an exact

equivalence between the results derived in the HCS and
those obtained when the mixture is driven by the Gaus-
sian thermostat. This is one of the advantages of using
this thermostat. On the other hand, this equivalence fails
for inhomogeneous situations and the external force does
not play a neutral role in the evaluation of the transport
properties.52

Since the distributions f
(0)
i (V) are isotropic in V, then

the pressure tensor is diagonal: P
(0)
λβ = pδλβ, where the

hydrostatic pressure p is49

p

2∑

i=1

niT
(0)
i +

πd/2

dΓ
(
d
2

)
2∑

i=1

2∑

j=1

σd
ijχijninjµji(1 + αij)T

(0)
i .

(28)

Since P(0) is a diagonal tensor, then ∂
(1)
t T = 0 in accor-

dance with Eq. (25).
Note that the partial temperatures have the constraint

nT = n1T
(0)
1 + n2T

(0)
2 . (29)

For elastic collisions (αij = 1), T
(0)
1 = T

(0)
2 = T and so,

the total kinetic energy is equally distributed between
the two species of the mixture. However, for inelastic

collisions (αij < 1), the partial temperatures T
(0)
i are in

general different from the (global) granular temperature
T and so, energy equipartition is broken down.
It still remains to get the dependence of the tempera-

ture ratio γ ≡ T
(0)
1 /T

(0)
2 on the parameter space of the

mixture. The expression of γ will be also used later
in both SM-theory and GDH-theory to determine ηc in
terms of the the parameters of the mixture. The condi-

tion for determining the ratio T
(0)
1 /T

(0)
2 is6

ζ
(0)
1 = ζ

(0)
2 = ζ(0), (30)

where the partial cooling rates ζ
(0)
i are associated to the

partial temperatures T
(0)
i . Here,

ζ(0) =
1

nT

2∑

i=1

niT
(0)
i ζ

(0)
i . (31)

The partial cooling rates ζ
(0)
i are defined as

ζ
(0)
i =

1

2dniT
(0)
i

2∑

j=1

mijχijσ
d−1
ij (1− α2

ij)

×
∫

dV1

∫
dV2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)3

×f
(0)
i (V1, t) f

(0)
j (V2, t). (32)

A good estimate of ζ
(0)
i can be obtained by considering

the Maxwellian approximation (19) for the zeroth-order
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distributions f
(0)
i (V). In this case, the partial cooling

rates are6,49

ζ
(0)
i =

4π(d−1)/2

dΓ
(
d
2

)
2∑

j=1

njµjiσ
d−1
ij χij

(
2T

(0)
i

mi
+

2T
(0)
j

mj

)1/2

×(1 + αij)

[
1− µji

2
(1 + αij)

(
1 +

miT
(0)
j

mjT
(0)
i

)]
. (33)

It must be remarked that the theoretical results for
the temperature ratio obtained by using the Maxwellian
approximation (33) for the partial cooling rates shows
in general an excellent agreement with Monte Carlo
simulations.7,8,56

B. First-order approximation. Shear viscosity coefficient

The analysis to first-order in the shear rate is large and
tedious. As said before, as expected the GDH-theory
yields a nonzero kinetic contribution ηk to η, even for
dilute systems.53,54 The expression of η is

ηGDH = ηGDH
k + ηGDH

c , (34)

where

ηGDH
k =

2∑

i=1

ηki , ηki = −mi

a

∫
dVVxVyf

(1)
i (V), (35)

and57

ηGDH
c =

2πd/2

d(d + 2)Γ
(
d
2

)
2∑

i=1

2∑

j=1

niσ
d
ijχijµij(1 + αij)

[
ηkj

+njmjσij

(miT
(0)
j +mjT

(0)
i

2πmimj

)1/2
]
. (36)

As in the case of ζ
(0)
i , upon obtaining Eq. (36) we have

approximated f
(0)
i (V) by the Maxwellian distribution

fi,M(V). So far, the expression (35) for ηki is exact.

However, the distributions f
(0)
1 and f

(0)
2 obey a set of

coupled linear integral equations which exact solution
is not known to date. Therefore, as usual in molecular
mixtures,27 we take the low order truncation of the series
expansion of those distributions in Sonine polynomials.

The leading Sonine approximation to f
(1)
i (V) is

f
(1)
i (V) → −a

miη
k
i

niT
(0)2
i

VxVyfi,M(V). (37)

The kinetic coefficients ηki can be computed from the En-

skog kinetic equation for f
(1)
i (V) by using the approxi-

mation (37). After some algebra, one gets the expressions

ηk1 =

(
τ22 − ζ(0)

)
A1 − τ12A2

ζ(0)2 − ζ(0) (τ11 + τ22) + τ11τ22 − τ12τ21
, (38)

ηk2 =

(
τ11 − ζ(0)

)
A2 − τ21A1

ζ(0)2 − ζ(0) (τ11 + τ22) + τ11τ22 − τ12τ21
, (39)

where

Ai = niT
(0)
i +

πd/2

d(d+ 2)Γ
(
d
2

)
2∑

j=1

ninjσ
d
ijmijχij(1 + αij)

×
[
µji (3αij − 1)

(
T

(0)
i

mi
+

T
(0)
j

mj

)
− 4

T
(0)
i − T

(0)
j

mi +mj

]
,

(40)

τ11 =
2π(d−1)/2

d(d+ 2)Γ
(
d
2

)vth
{
n1σ

d−1
1 χ11(2θ1)

−1/2(3 + 2d− 3α11)(1 + α11) + 2n2χ12µ21(1 + α12)θ
3/2
1 θ

−1/2
2

×
[
(d+ 3)(µ12θ2 − µ21θ1)θ

−2
1 (θ1 + θ2)

−1/2 +
3 + 2d− 3α12

2
µ21θ

−2
1 (θ1 + θ2)

1/2

+
2d(d+ 1)− 4

2(d− 1)
θ−1
1 (θ1 + θ2)

−1/2
]}

, (41)

τ12 =
4π(d−1)/2

d(d+ 2)Γ
(
d
2

)vthn1σ
d−1
12 χ12µ12θ

−1/2
1 θ

3/2
2 (1 + α12)

[
(d+ 3)(µ12θ2 − µ21θ1)θ

−2
2 (θ1 + θ2)

−1/2

+
3+ 2d− 3α12

2
µ21θ

−2
2 (θ1 + θ2)

1/2 − 2d(d+ 1)− 4

2(d− 1)
θ−1
2 (θ1 + θ2)

−1/2
]
. (42)
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Here, vth =
√
2T/m12 is a thermal speed, θ1 =

T/(µ21T
(0)
1 ), and θ2 = T/(µ12T

(0)
2 ). The forms of τ22

and τ21 can be easily obtained from Eqs. (41) and (42)
by interchanging 1 ↔ 2.
For elastic collisions (αij = 1) and hard spheres (d =

3), the expression of ηGDH given by Eqs. (34)–(36) agree
with the results derived many years ago from the Enskog
kinetic theory for molecular mixtures of hard spheres.58

However, the expression (20) of ηSMc provided by the
SM-theory is inconsistent with the results for molecu-
lar mixtures.58 Regarding the comparison between the
SM-theory and GDH-theory for the collisional coefficient
ηc, we see that both theories lead to different expressions
even for elastic collisions. In this limit case (αij = 1),
Eqs. (20) and (36) are equivalent only when the kinetic
coefficients ηki are neglected in the GDH-theory.

V. MONTE CARLO SIMULATION OF A GRANULAR

BINARY MIXTURE UNDER SSF

To assess the degree of accuracy of the SM and GDH
theories one has to resort to computer simulations. More
specifically, in this paper we have numerically solved the
Enskog equation by means of the extension of the well-
known DSMC method37 to dense gases. The method is
usually referred to as the ESMC method.59,60 In the sim-
ulations carried out in this paper the method has been
slightly modified to determine the shear viscosity coeffi-
cient of a granular binary mixture for moderate densities.
One important advantage of using the ESMC method in-
stead of molecular dynamics simulations is that the simu-
lation method is easy to implement from a computational
point of view due to the fact that the SSF state becomes
spatially homogeneous in the local Lagrangian frame de-
fined by the position R and the peculiar velocity V.
As said in section I, in the absence of a thermostat-

ing force (ξ = 0), a granular fluid in the SSF reaches a
steady state where the viscous heating effect is exactly
compensated for by the collisional cooling. In this case,
the SSF is inherently a non-Newtonian state.61 Thus, to
allow that the granular temperature grows in time due
to the viscous heating effect (as in the case of elastic col-
lisions), we excite the granular mixture by means of the
Gaussian force

Fth
i =

1

2
miξV. (43)

According to Eq. (11), if ξ = ζ then the Gaussian force
exactly balances the energy lost by collisions. In this sit-
uation, since the collision frequency ν(t) for hard spheres

is proportional to
√
T (t), then the relevant uniformity

parameter a∗ = a/ν(t) (reduced shear rate) monotoni-
cally decreases in time and so, the mixture asymptoti-
cally reaches a Navier–Stokes regime where the reduced

shear viscosity

η∗ = − lim
t→∞

P ∗
xy

a∗
(44)

can be measured in the simulations. Here, P ∗
xy =

Pxy/nT ,

η∗ =
ν

nT
η, (45)

and

ν(T (t)) =
√
πnσd−1

12 vth(T (t)) (46)

is an effective collision frequency for hard spheres. In
the case of molecular mixtures (where ζ = ξ = 0), Eq.
(44) was employed by Naitoh and Ono34 to measure the
Navier–Stokes shear viscosity η of a hard-sphere gas. The
same procedure can be followed for granular mixtures
when the system is heated by the Gaussian thermostat.
In this case, η has been also measured in heated gran-
ular mixtures of low62 and moderate33 densities. Here,
since we are mainly interested in assessing the SM and
GDH theories at the level of the collisional coefficient ηc,
our simulations will consider moderately dense mixtures
where the Enskog equation applies.
The application of the ESMC method to the SFF state

was made years ago by Montanero and Santos.59,60 It will
be briefly presented herein for the physical case d = 3; the
interested reader is referred to Refs. 33 and 62 for a more
complete description on the application of this simulation
method to sheared granular mixtures. As usual in the
ESMC method, the velocity distribution function of the
species i is represented by the peculiar velocities {Vk} of
Ni “simulated” particles:

fi(V, t) → ni
1

Ni

Ni∑

k=1

δ(V −Vk(t)) . (47)

Although the number of particles Ni of the species i is ar-
bitrary, the relation N1/N2 = n1/n2 must be considered.
For the sake of simplicity, one assigns initially veloci-
ties to the particles drawn from the Maxwell-Boltzmann
probability distribution:

fiM(V, 0) = ni π
−3/2 V −3

0i (0) exp
[
−V 2/V 2

0i(0)
]
, (48)

where V 2
0i(0) = 2T (0)/mi and T (0) is the initial temper-

ature. To enforce a vanishing initial total momentum,
the velocity of every particle is subsequently subtracted
by the amount N−1

i

∑
k Vk(0).

The free motion and the collisions are uncoupled over
a time step ∆t; this time is small compared with both
the mean free time and the inverse shear rate. Since the
reduced shear rate a∗ decreases monotonically in time,
the value of ∆t must be updated in the course of the
simulation. Since the SSF state is homogeneous in the
local Lagrangian frame moving with the peculiar velocity
V, particles of each species (i = 1, 2) are subjected to the
action of a non-conservative inertial force

Fi,λ = −mi aλβVβ . (49)

Consequently, the free motion stage consists of making
the change

Vk → Vk − a ·Vk∆t. (50)
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In the collision stage, binary interactions between par-
ticles of species i and j must be considered. Then, a
sample of

1

2
Niω

(ij)
max∆t (51)

pairs is chosen at random with equiprobability to sim-
ulate the collisions between particles of species i with

j. In Eq. (51), ω
(ij)
max is an upper bound estimate of the

probability that a particle of the species i collides with
a particle of the species j. Let us consider a pair (k, ℓ)
belonging to this sample (k denotes a particle of species
i and ℓ a particle of species j). For each pair (k, ℓ) with
velocities (Vk,Vℓ), the following steps are taken:

1. A given direction σ̂kℓ is chosen at random with
equiprobability.

2. The collision between particles k and ℓ is accepted

with a probability equal to Θ(gkℓ · σ̂kℓ)ω
(ij)
kℓ /ω

(ij)
max,

where ω
(ij)
kℓ = 4πσ2

ijnj |gkℓ · σ̂kℓ| and gkℓ = Vk −
Vℓ−σija·σ̂kℓ is the relative velocity of the colliding
pair in the Lagrangian frame.

3. In the case that the collision is accepted, postcol-
lisional velocities are assigned to both particles ac-
cording to the scattering rules (8) and (9):

Vk → Vk − µji(1 + αij)(gkℓ · σ̂kℓ)σ̂kℓ, (52)

Vℓ → Vℓ + µij(1 + αij)(gkℓ · σ̂kℓ)σ̂kℓ. (53)

If in a collision ω
(ij)
kℓ > ω

(ij)
max, the estimate of ω

(ij)
max

is updated as ω
(ij)
max = ω

(ij)
kℓ .

The procedure described above is performed for i =
1, 2 and j = 1, 2. The granular temperature is calculated
before and after the collision stage, and thus the instan-
taneous value of the cooling rate ζ is obtained. After the
collisions have been calculated, the thermostat Gaussian
force (43) is considered by making the change:

Vk → Vk +
1

2
ζVk∆t. (54)

The kinetic and collisional transfer contributions to the
pressure tensor are evaluated along the course of the sim-
ulations. They are given as

P
k =

2∑

i=1

mini

Ni

Ni∑

k=1

VkVk, (55)

P
c =

n

2N∆t

∑

kℓ

†

µijmjσij(1+αij)(gkℓ ·σ̂kℓ)σ̂kℓσ̂kℓ, (56)

where the dagger means that the summation is restricted
to the accepted collisions and subscripts i and j refer to

the type of specie. Moreover, we recall that in Eqs. (55)
and (56) the subscript k refers to a particle of species i
while the subscript ℓ refers to a particle of species j.

As mentioned before, in our ESMC simulations, the
velocities of the particles are changed in each time step
due to two uncoupled mechanisms: the free streaming
stage [where all particle velocities are updated due to the
shear rate and the Gaussian thermostat force following
Eqs. (50) and (54), respectively] and the collision stage
[where only a selected sample of particles changes its ve-
locities following Eqs. (52) and (53)]. This allows us to
estimate separately the collisional and kinetic contribu-
tions to the pressure tensor in each time step. The former
is obtained by summing only the contributions given by
Eq. (56) of the selected collision pairs at the end of the
collision stage once all collisions were performed. The ki-
netic contribution is computed by taking into account all
the velocities of the particles independently if they are
collided at the end of each time step once free streaming
was applied to all particles. The kinetic and collisional
contributions to the pressure tensor are averaged over an
specific number of replicas N . The pressure tensor is ob-
tained from Eq. (14) while the (reduced) shear viscosity
η is obtained from Eq. (45).

One of the most determining steps for DSMC calcu-
lations is the use of an efficient pseudo-random numbers
generator (PRNG). It is well-known that PRNGs cre-
ate a long but finite sequence of pseudo-random num-
bers. The period of the sequence may play a major
role in the quality of this generator as the amount of
required random numbers grows up. In our simulations,
use has been made of a larger number of particles, time
steps and replicas than in the simulations carried out
in previous works.33,62 For this reason, we have imple-
mented the Mersienne Twister algorithm (MT19937),
which is based on Mersienne prime numbers, developed
by Matsumoto and Nishimura.63 The algorithm provides
a set of uniform distributed pseudo-random numbers
with an extremely massive period of 219937 − 1 and 623-
dimensional equidistribution up to 32-bit accuracy, while
using a working area of only 624 words. In addition,
the initial Maxwellian distributions were generated us-
ing the Marsaglia polar method64 for the Box-Muller
transform.65

Moreover, to improve the statistics, as said before the
results have been averaged over a number N of inde-
pendent realizations or replicas. PRNG was iniciated in
each replica with a different seed in order to ensure the
use of different pseudo-random number sequences. In
our simulations we have typically taken a total number
of particles N = N1+N2 = 5× 105, a number of replicas
N = 20, and a time step ∆t = 5×10−3λ11/V01(0). Here,

λ11 = (
√
2πn1σ

2
11)

−1 is the mean free path for collisions
1–1 when d = 3.

Before studying the dependence of η∗ on the param-
eter space of the mixture, it is convenient to gauge the
reliability of the simulation method. In other words, for
given values of the mass and diameter ratios, the coeffi-
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FIG. 1. Plot of the ratio η∗(a∗)/η∗

E versus a∗2 for a three-
dimensional mixture with x1 = 1

2
, σ1/σ2 = 2, m1/m2 = 4,

φ = 0.1, and a common coefficient of restitution α11 = α22 =
α12 = 0.8. Three different values of the initial shear rate a∗

0

are considered: a∗

0=0.2 (a), a∗

0=0.3 (b), and a∗

0=0.4 (c). Here,
η∗

E refers to the value of the Navier–Stokes shear viscosity
provided by the GDH-theory by solving the Enskog equation
in the heated SSF state.

cients of restitution, the concentration, and the density,
the (reduced) shear viscosity η∗ must achieve a value in-
dependent of the initial conditions for long times (which
is equivalent to the limit a∗ → 0). To illustrate this
behavior, Fig. 1 plots the ratio η∗(a∗)/η∗E for three dif-
ferent choices of the initial shear rate a∗0 = a/ν(T (0)):
0.2, 0.3, and 0.4. Here, η∗(a∗) refers to the value of
the (reduced) shear viscosity measured in the simulations
while η∗E corresponds to the theoretical Navier–Stokes
value predicted by the GDH-theory. Here, we consider
a three-dimensional mixture with x1 = 1

2 , σ1/σ2 = 2,
m1/m2 = 4, φ = 0.1, and a common coefficient of resti-
tution α11 = α22 = α12 = 0.8. Figure 1 highlights the
collapse of the three curves (corresponding to a three dif-
ferent initial conditions) to a common value after a tran-
sient period of a few mean free times. Consequently, a hy-
drodynamic regime independent of the initial preparation
of the system is reached for sufficiently long times. As a
byproduct, we also observe that there is a time window
(which corresponds to the region of very small values of
a∗2) where the ratio η∗(a∗)/η∗E fluctuates around 1. This
means that the shear viscosity coefficient measured in the
simulations when the (reduced) shear rate is small agrees
very well with the one obtained from the Enskog equa-
tion by the GHD-theory. Similar behaviors have been
found for other different mixtures. As remarked in Ref.
33, note that the strict limit a∗ → 0 is not attainable
in the simulations since it requires an infinite amount of
time.
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α

η c*
(α
)/
η c*
(1
)

FIG. 2. Dependence of η∗

c (α)/η
∗

c (1) on the (common) coeffi-
cient of restitution α for d = 3, x1 = 1

2
, σ1/σ2 = 1

2
, φ = 0.2,

and two different values of the mass ratio: m1/m2 = 10 [lines
(a) and (c) and squares] and m1/m2 = 2 [lines (b) and (d)
and triangles]. The solid lines correspond to the GDH-theory
whereas the dashed lines refer to the SM-theory. Here, η∗

c (1)
corresponds to the (dimensionless) collisional contribution to
η∗ for elastic collisions.

VI. COMPARISON BETWEEN KINETIC THEORIES

AND COMPUTER SIMULATIONS

Once the consistency of the simulation method to mea-
sure the shear viscosity in a heated granular mixture
has been tested, we want to analyze the dependence of
η on the parameters of the mixture. More specifically,
since the SM-theory is focussed essentially in the colli-
sional contribution ηc to η, we compare in this section
the predictions of both kinetic theories (the SM- and
GDH-theories) for ηc with the results obtained from the
ESMC method. On the other hand, since a complete pre-
sentation of the results is complex due to the high num-
ber of parameters involved in the problem, henceforth
we will assume a three-dimensional (d = 3) mixture for
ηc with a concentration of x1 = 1

2 and constituted by
spheres made of the same material α11 = α22 = α12 ≡ α.
This reduces the number of parameters to four quanti-
ties: {σ1/σ2,m1/m2, φ, α}. In the case of hard-spheres
(d = 3), a good approximation for the pair correlation
functions χij is66

χij =
1

1− φ
+
3

2

φ

(1− φ)2
σiσjM2

σijM3
+
1

2

φ2

(1− φ)3

(
σiσjM2

σijM3

)2

,

(57)
where Ms =

∑
i xiσ

s
i .

Figure 2 shows the dependence of the ratio η∗c (α)/η
∗
c (1)

on the coefficient of restitution α for a binary mixture
with σ1/σ2 = 1

2 , φ = 0.2, and two different values of
the mass ratio m1/m2. Here, η∗c (1) refers to the value
of the collisional shear vicosity for elastic collisions. Al-
though the SM-theory reproduces qualitatively well the
α-dependence of η∗c (this coefficient decreases with in-
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α
,ϕ
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)

FIG. 3. Plot of η∗

c (α, φ)/η
∗

c (1, φ) versus the volume fraction
φ for d = 3, x1 = 1

2
, σ1/σ2 = 2, m1/m2 = 10, and two values

of α: α = 0.5 [the solid line (a) is for the GDH-theory and
the dashed line (c) is for the SM-theory] and α = 0.8 [the
solid line (b) is for the GDH-theory and the dashed line (d)
is for the SM-theory]. The symbols correspond to the ESMC
results: triangles for α = 0.5 and squares for α = 0.8.

creasing inelasticity), significant quantitative discrepan-
cies with simulations appear specially for strong dissipa-
tion. On the other hand, comparison between the GDH-
theory and computer simulations shows a much better
agreement than the one found for the SM-theory. In
fact, the results obtained from the GDH-theory (which
we recall have been derived by considering the first-
Sonine approximation) compares in general very well
with simulation data. The differences between this the-
ory and ESMC results tend to increase slightly as the
coefficient of restitution decreases. We also observe that
the first-Sonine solution to η∗ overestimates the results
obtained from computer simulations. In this context and
based on previous results derived for the tracer diffusion
coefficient,31 [see Figs. 6.4 and 6.5 of Ref. 49] we expect
that the discrepancies between the first-Sonine approxi-
mation and simulations can be in part mitigated by con-
sidering the second-Sonine approximation to η∗. We plan
to perform this quite long and tedious calculation in the
near future.

More significant discrepancies between the SM and
GDH kinetic theories appear when one considers the
dependence of the ratio η∗c (α, φ)/η

∗
c (1, φ) on the total

solid volume fraction φ. This is shown in Fig. 3 where
η∗c (α, φ)/η

∗
c (1, φ) is plotted versus φ for a mixture with

σ1/σ2 = 2, m1/m2 = 10, and two values of α. As al-
ready remarked in Ref. 55, while the SM-theory shows
a very weak density dependence of the above ratio for
any value of α, the GDH-theory clearly shows a signifi-
cant decreasing of η∗c (α, φ)/η

∗
c (1, φ) as density increases,

regardless of the value of the coefficient of restitution.
With respect to the comparison with Monte Carlo sim-
ulations, we observe an excellent agreement between the
theoretical predictions of the GDH-theory and the sim-

ulation data over the entire range of values of the solid
volume fraction considered.
The tiny dependence of the ratio

η∗SMc (α, φ)/η∗SMc (1, φ) on φ at a given value of α
in the SM-theory can be explained by the fact that
the only dependence of this ratio on φ in this theory

is via the partial temperatures T
(0)
i , whose depen-

dence on φ is very small. However, the dependence
of η∗GDH

c (α, φ)/η∗GDH
c (1, φ) on φ in the GDH-theory

is not only through T
(0)
i but also through the kinetic

coefficients ηki . To show it in a more clean way, it is quite
instructive to consider the limiting case of mechanically
equivalent particles (m1 = m2, σ1 = σ2, and αij = α).
In this limit case,

η∗SMc (α, φ)

η∗SMc (1, φ)
=

1 + α

2
, (58)

while

η∗GDH
c (α, φ)

η∗GDH
c (1, φ)

=
1 + α

2
A(φ, α), (59)

where the function A(φ, α) has a complex dependence on
both φ and α. For the sake of illustration, for d = 3,
A(φ, α) is given by

A(φ, α) =
1 +B(φ, α)

1 + C(φ)
, (60)

where

B(φ, α) =
5π

16φχ

1− 2
5 (1 + α)(1 − 3α)φχ

(1 + α)(2 + α)
, (61)

C(φ) =
5π

96φχ

(
1 +

8

5
φχ

)
. (62)

To complement Fig. 3, Fig. 4 shows the φ-dependence
of the (dimensionless) collisional shear viscosity η∗c for
m1/m2 = 4, σ1/σ2 = 1, and three different values of
the coefficient of restitution α. As for Fig. 3, the good
agreement between the GDH-theory and Monte Carlo
simulations indicates again that the collisional transfer
contributions to the shear viscosity are provided accu-
rately by Eq. (36). Important discrepancies between the
expression (20) of the SM-theory and computer simula-
tions are again observed, specially for high densities.
Although the main goal of the present paper is to asses

the reliability of the SM-theory and GDH-theory at the
level of the collisional coefficient η∗c , it is also interesting
to gauge the accuracy of the GDH-theory for the total
shear viscosity η∗ = η∗k + η∗c . Given that the SM-theory
predicts η∗k = 0, we have not considered appropriate to in-
clude the SM-theory in this comparison. Figure 5 shows
η∗ versus the mass ratio m1/m2 for σ1/σ2 = 1, φ = 0.1,
and three different values of α. We observe first that
the agreement between the GDH-theory and computer



11

▲

▲

▲

▲

▲

▲

◼

◼

◼

◼

◼

◼













0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

0.5

1.0

1.5

2.0

ϕ

η c*
(ϕ
)

FIG. 4. Plot of the (dimensionless) collisional shear viscosity
η∗

c as a function of the solid volume fraction φ for m1/m2 = 4,
σ1/σ2 = 1, and three different values of the coefficient of
restitution α: α = 0.9 (solid lines and triangles), α = 0.8
(dashed lines and squares), and α = 0.7 (dotted lines and
circles). The black lines correspond to the GDH-theory while
the red lines are for the SM-theory. The symbols refer to the
results obtained from the ESMC method.
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FIG. 5. Plot of the (dimensionless) shear viscosity η∗ = η∗

k +
η∗

c as a function of the mass ratio m1/m2, for σ1/σ2 = 1,
φ = 0.1, and three different values of α. The linea are the
theoretical predictions of the GDH-thoery adn the symbols
correspond to the results obtained from the ESMC method.

simulations is in general very good, although the differ-
ences between the theoretical and ESMC results tend to
increase as inelasticity increases. As noted in Ref. 33, at
a given value of α, we observe that η∗ exhibits a non-
monotonic dependence on the mass ratio.

VII. CONCLUDING REMARKS

The main objective of this paper has been to assess
the accuracy of two different kinetic theories for granu-
lar mixtures: the SM-theory24 and the GDH-theory.25,26

While the SM-theory is based on the assumption of
Maxwellian distributions at different temperatures Ti

and velocities Ui for the true distribution functions
fi(r,v; t), the GDH-theory solves the Enskog kinetic
equation by means of the application of the Chapman–
Enskog method to first-order in spatial gradients. Due to
the Maxwellian approximation of the SM-theory, it yields
vanishing Navier–Stokes transport coefficients for dilute
granular mixtures.53,54 This is an important limitation
of this theory. Thus, one expects that the SM-theory
provides at least acceptable estimates for the collisional
contributions to the transport coefficients.

A previous comparison55 between both kinetic theo-
ries have shown important differences between them at
the level of the collisional shear viscosity ηc, specially
for strong inelasticity. To assess the reliability of each
one of the theories, we have compared in this paper their
theoretical predictions with those obtained by means of
Monte Carlo simulations. More specifically, we have per-
formed new simulations of moderately dense granular bi-
nary mixtures under SSF. As in previous works,33,62 we
have introduced in the simulations an external thermo-
stat force (proportional to the particle velocity) that sup-
plies energy to the system to exactly compensate for the
energy lost in collisions. In this way, the shearing work
still heats the mixture so that, the reduced shear rate
a∗(t) = a/ν(t) tends to zero in the long-time limit. Un-
der these conditions, the system reaches a linear hydro-
dynamic regime where the Navier–Stokes shear viscosity
of a heated granular binary mixture can be identified and
measured in the simulations.

To reduce the number of independent parameters in-
volved in the problem, the simulations have been car-
ried for three-dimensional mixtures (d = 3), with a mole
fraction x1 = 1

2 and with a (common) coefficient of nor-
mal restitution α ≡ αrs. This reduces the number of
relevant parameters to four (σ1/σ2, m1/m2, φ, and α).
As expected, the comparison with computer simulations
for ηc have shown that the GDH-theory exhibits a much
more better agreement with the ESMC results than the
SM-theory. This is clearly shown in Fig. 3 where the
scaled coefficient η∗c (α, φ)/η

∗
c (1, φ) is plotted versus the

density φ for two different values of α. While the SM-
theory predicts a tiny influence of φ on this coefficient,
the GDH-theory shows that η∗c (α, φ)/η

∗
c (1, φ) decreases

significantly with increasing density at a given value of
the coefficient of restitution. On the other hand, in spite
of the deficiencies of the SM-theory, it captures at least
the α-dependence of η∗c (α, φ)/η

∗
c (1, φ) for given values of

density (see Fig. 2).

As mentioned in Sec. VI, the differences between the
first-Sonine approximation to η∗ and computer simula-
tions could be in principle diminished by considering the
second Sonine correction to the first-order distribution
function. Although we do not have an evidence on the
convergence of the second-Sonine approximation to the
ESMC results in the SSF problem, previous works31 on
the tracer diffusion coefficient seem to indicate that this
approximation could mitigate the (small) discrepancies
observed in this paper between the GDH-theory and sim-
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ulations. Since the determination of the second-Sonine
approximation to the shear viscosity involves a signifi-
cant work, we expect to provide a support of the above
assertion in a next work.

It is quite apparent that the accuracy of the SM and
GDH theories have been assessed through a comparison
with an “exact” numerical solution of the Enskog equa-
tion in the SSF obtained from the ESMC method.59,60

This method (which is an extension to dense gases of
the well-known DSMC method37) is based on the same
assumptions as the Enskog kinetic equation: (i) molecu-
lar motion and collisions are decoupled and (ii) absence
of velocity correlations between the particles which are
about to collide (molecular chaos hypothesis). A much
more stringent assessment of the above kinetic theories
could be made via a comparison with the results ob-
tained from molecular dynamics simulations (which do
not rely on any of the above assumptions). In this
context, it is remarkable to note that the GDH-theory
has been also tested with molecular dynamics simula-
tions in a relatively complex problem: hydrodynamic in-
stabilities in a transient, polydisperse granular system
at moderate density with significant inelasticity levels.67

The comparison between the theoretical predictions of
the GDH-theory for the critical length scale Lc (which
expression involves the shear viscosity coefficient) and
molecular dynamics results shows in general an excel-
lent agreement in flows of strong dissipation (αij ≥ 0.7)
and moderate solid volume fractions (φ ≤ 0.2). This
good agreement between molecular dynamics and linear
hydrodynamics (with the Navier–Stokes transport coef-
ficients derived from the GDH-theory in the first-Sonine
approximation) for the onset of velocity vortices must be
considered as a nontrivial test of the reliability of kinetic
theory for describing granular polydisperse flows even for
strong inelasticity, finite density, and particle dissimilar-
ity.

One of the main limitations of the present study is its
restriction to the shear viscosity coefficient. This coeffi-
cient has been identified in computer simulations thanks
to the simplicity of the SSF: a nonequilibrium state that
becomes homogeneous in the Lagrangian frame moving
with the velocities of particles. This fact allows us to
measure in a clean way the dependence of the Navier–
Stokes shear viscosity coefficient on the parameter space
of the system. As said before, the reliability of the GDH-
theory has been also assessed in the computation of the
critical length Lc for the onset of instabilities in the ho-
mogeneous cooling state.67 Needless to say, the assess-
ment of other relevant transport coefficients of granu-
lar mixtures is still an open challenging issue. Among
them, the thermal conductivity coefficient (whose colli-
sional transfer contribution is different from zero at mod-
erate densities) can be the next coefficient to be measured
in computer simulations. However, its determination in
the Navier–Stokes domain is a quite difficult problem due
essentially to the coupling present in steady states for
granular gases between spatial gradients and collisional

cooling.49 In principle, two different strategies can be fol-
lowed to get this coefficient. The first option would be
the use of Green–Kubo relations.68,69 However, before
carrying on simulations, one should first derive theoreti-
cally these relations for granular mixtures. As a second
option and based on previous results obtained for dilute
monocomponent granular gases,70 one could apply a ho-
mogeneous, anisotropic velocity-dependent external force
which produces heat flux in the absence of gradients. On
the other hand, although this second option seems to be
more reachable than the first one (since the transport co-
efficient is measured in homogeneous conditions), its fine
tuning for dense granular mixtures still requires a signif-
icant additional work which goes beyond the objective of
the present paper. We plan to work on the last line in
the near future.
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