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Quantum many-body scarred systems host nonthermal excited eigenstates immersed in a sea of thermal ones.
In cases where exact expressions for these special eigenstates are not known, it is computationally demanding to
distinguish them from their exponentially many thermal neighbors. We propose a matrix-product-state (MPS)
algorithm, dubbed DMRG-S, to extract such states at system sizes far beyond the scope of exact diagonalization.
Using this technique, we obtain scarred eigenstates in Rydberg-blockaded chains of up to 80 sites and perform
a finite-size scaling study to address the lingering question of the stability for the Néel state revivals in the
thermodynamic limit. Our method also provides a systematic way to obtain exact MPS representations for
scarred eigenstates near the target energy without a priori knowledge. In particular, we find several new scarred
eigenstates with exact MPS representations in kinetically constrained spin and clock models. The combination
of numerical and analytical investigations in our work provides a new methodology for future studies of quantum
many-body scars.

Quantum many-body scars (QMBS) appear in many-body
systems with weak ergodicity breaking [1–4]. These anoma-
lous scarred eigenstates violate the eigenstate thermalization
hypothesis [5–9], yet only comprise a vanishing fraction of the
Hilbert space, as opposed to the strong ergodicity breaking
in integrable [10] or many-body localized systems [11, 12].
Typical many-body scarred eigenstates possess sub-volume-
law entanglement entropy, and are immersed in a sea of ther-
mal eigenstates [see Fig. 1(a)]. Many models exist in which a
set of scarred eigenstates can be calculated analytically [13–
25], but there are other examples in which their appearance re-
mains mysterious. For instance, experiments in Rydberg-atom
quantum simulators realizing the “PXP model” [1, 26] found
evidence of QMBS in the dynamics of an initial Néel state,
which exhibited coherent revivals for unexpectedly long time
owing to its high overlap with a tower of scarred eigenstates.
Motivated by these experiments, a flurry of theoretical and ex-
perimental works have emerged to explain the rich properties
of these special eigenstates [16, 27–38] and find other models
hosting many-body scars [30, 39–48].

In such cases without exact analytical expressions for the
scarred eigenstates, their existence can be confirmed by full
diagonalization of the Hamiltonian followed by a calculation
of some diagnostics, e.g. the entanglement entropy, across
the whole spectrum. The exponential computational cost of
exact diagonalization (ED) poses a substantial challenge to
faithfully addressing the fate of QMBS in the thermodynamic
limit. Examples of questions that are difficult to address us-
ing ED include the ultimate fate of periodic revivals for the
Néel state in the PXP model [1, 16] and the robustness of
scarred eigenstates under various perturbations [49–52]. Mat-
ters can be further complicated by the fact that highly excited
eigenstates of many-body Hamiltonians can have exponen-
tially large degeneracy in the presence of certain symmetries
[44, 45, 53–55]. This renders the task of finding scars using
ED methods extremely difficult in general.
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FIG. 1. Schematic illustration of the DMRG-S algorithm for extract-
ing quantum many-body scars with matrix product states. (a) Den-
sity plot showing the bipartite entanglement entropy S versus en-
ergy eigenvalue E for the PXP model. DMRG-S effectively serves
as a magnifier to discover low-entanglement scar states within a
target energy window. (b) Schematic of the variational procedure
for obtaining the updated matrix product state |ψt〉 (blue circles)
from |ψt−1〉 (green circles) by locally solving the linear equation
A[i,i+1]

t,eff ψ
[i,i+1]
t = ψ̃

[i,i+1]
t−1 , whereAt = (H− ξt)2 (yellow blocks).

Scarred eigenstates in one dimension often have entangle-
ment entropy scaling at most logarithmically with the system
size [15, 18, 20, 28, 56], suggesting that they could be de-
scribed using matrix product state (MPS) representations at
system sizes inaccessible to ED [57, 58]. In this paper, we
propose an MPS-based algorithm to extract quantum many-
body scarred eigenstates with high accuracy (see Fig. 1 for a
pictorial illustration). To demonstrate its power, we compute
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the tower of scarred eigenstates for system sizes up to L = 80
in the PXP model [27, 28] and a deformation thereof [16, 29].
With a detailed finite-size scaling study, we find that the co-
herent revivals of the Néel state vanish in the thermodynamic
limit in the PXP model, whereas they remain stable in the de-
formed PXP model.

Moreover, previous analytical studies have shown that
highly excited scarred eigenstates in several models possess
exact MPS representations [15, 17, 20, 54, 59], while the con-
structions of these scars are model-specific and lack general-
izability. In contrast, our method provides a systematic way to
find exact MPS representations for QMBS in generic Hamil-
tonians, without a priori knowledge. We use our algorithm to
discover several new zero-energy scarred eigenstates with ex-
act MPS representations in the kinetically constrained clock
[39] and higher-spin PXP models [30]. We also find a poste-
riori analytical derivations for these scars that apply to a wide
variety of kinetically constrained models.

DMRG-S Algorithm.– Our algorithm is inspired by the den-
sity matrix renormalization group (DMRG) method [60, 61],
which has been widely used to obtain modestly entangled
ground states of low-dimensional Hamiltonians. In the past
few years, DMRG methods relying on the MPS formalism
have been generalized to obtain highly excited eigenstates
of many-body localized systems [62–66]. In this work, we
modify and improve the shift-invert technique [65–67] to be
amenable for calculating scarred eigenstates. Below, we dub
the algorithm DMRG-S, where “S” stands for “scars”.

The algorithm is based on the intuition that repeatedly ap-
plying the inverse operator (H − ξ)−2 (more robust and effi-
cient in convergence compared to (H−ξ)−1 [68]) to an initial
state |ψ0〉 eventually yields an eigenstate of H with energy ξ,
provided |ψ0〉 has overlap with this eigenstate. In practice, we
define |ψ0〉 to be an MPS and consider the sequence of states
|ψt〉 = N−1A−1t |ψt−1〉, where At = (H − ξt)2 and N is a
normalization factor (We describe an update procedure for ξt
below). The state |ψt〉 is taken to be an MPS with bond dimen-
sion χ ≤ χmax. Restricting χmax to relatively small values
effectively serves as a filter for states with low entanglement
entropy. In the iteration step t, we circumvent the difficulty
of calculating the inverse operator A−1t by variationally op-
timizing |ψt〉 such that 〈ψt|At|ψt〉 = N−1 〈ψt|ψt−1〉. This
approach has the advantage thatAt can be expressed as a ma-
trix product operator. The optimization can be implemented
by locally solving the linear equation

A[i,i+1]
t,eff ψ

[i,i+1]
t = ψ̃

[i,i+1]
t−1 , (1)

where A[i,i+1]
t,eff is the local “effective Hamiltonian” for At,

ψ
[i,i+1]
t is the local tensor of |ψt〉 to be updated, and ψ̃[i,i+1]

t−1
is the environment tensor of the overlap 〈ψt|ψt−1〉 [see
Fig. 1(b)]. The optimized ψ

[i,i+1]
t is substituted back into

|ψt〉, which is then brought to the canonical form via singu-
lar value decomposition. We perform the local optimization
on each pair of sites [i, i + 1] sweeping back and forth, sim-
ilar to the two-site DMRG sweep procedure [60, 61]. Dur-

ing the iterations, we monitor the energy variance σ2
H =

〈H2〉 − 〈H〉2 of |ψt〉, which vanishes if and only if |ψt〉 is
an eigenstate. Initially we set ξ0 within the target energy win-
dow [E −∆E,E + ∆E], which may not contain the energy
of the initial state |ψ0〉. After a few iterations, if σ2

H reaches
a relatively small value (less than 10−3), we then begin to up-
date ξt = 〈ψt|H|ψt〉 during each iteration. The update of the
energy shift ξt is crucial for the convergence if we do not a
priori know the precise locations of scars in the energy spec-
trum [68]. These two stages correspond to the slow and fast
decay regions shown in Fig. 3(b). Eventually we expect |ψt〉
to converge, i.e. limt→∞ |〈ψt−1|ψt〉|2 = 1, and approach to
an eigenstate with energy close to the target one.

Tower of scars in PXP models.– The PXP Hamiltonian is
the effective Hamiltonian for a chain of spins satisfying the
Rydberg blockade constraint, which forbids configurations
containing |↑〉i |↑〉i+1 due to strong nearest-neighbor interac-
tions [1, 69, 70]. It is given by HPXP =

∑
i PiXi+1Pi+2,

where Pi = (1 − Zi)/2 projects onto |↓〉i and Xi, Zi are
Pauli matrices on site i. HPXP is nonintegrable accord-
ing to studies of its level statistics, and yet hosts a tower of
scars supporting the periodic revival dynamics of the Néel
state |Z2〉 = |↑↓↑ · · · ↓〉 [27, 28]. Numerical simulations
of these dynamics observe that the revivals have a decay-
ing envelope, begging the question of whether they persist at
late time in the thermodynamic limit. Ref. [16] found that
adding a term δH2 = −h2

∑
i Pi−1XiPi+i(Zi−2 + Zi+2)

with h2 = 1/2 − 1/
√

5 ≈ 0.053 makes the periodic revivals
nearly perfect due to the emergence of an approximate su(2)
algebra. Here, we benchmark the DMRG-S algorithm by
computing the tower of scarred eigenstates in the PXP model
and its deformation by δH2.

We initialize the algorithm in the state |ψ0〉 = |Z2〉, which
has predominant overlap with the L+ 1-dimensional tower of
scarred eigenstates {|Ψn〉}Ln=0 within corresponding energy
windows. During the iterations, we set χmax = 1200 to reach
the desired accuracy due to the logarithmic scaling of subsys-
tem entanglement entropy [27, 28] and the periodic boundary
conditions. As shown in Fig. 2, DMRG-S successfully ex-
tracts the tower of scars in the PXP model up to L = 80. The
average energy variance σ2

H is less than 10−6 [68]. To ver-
ify that these MPSs indeed capture the scar tower of the PXP
Hamiltonian, we calculate their overlap with |Z2〉 [Fig. 2(a)],
and their bipartite entanglement entropy [68] for different L.
Our results yield smooth curves as a function of energy and
agree with ED for small system sizes except for a few scars
that accidentally hybridize with thermal eigenstates [28, 34],
which are further addressed in [68, 71].

We now investigate the quench dynamics of |Z2〉 by
finite-size scaling beyond the scope of ED using DMRG-S
states up to L = 80. First, we compute the total overlap
between |Z2〉 and {|Ψn〉}Ln=0 [Fig. 2(b)], and find that∑L
n=0 |〈Z2|Ψn〉|2 decays exponentially with L for the PXP

model. In contrast, this quantity remains near unity for
the deformed PXP model. The dashed line in Fig. 2(b)
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FIG. 2. Numerical results for the tower of scars in the (deformed) PXP model. (a) Overlap between the Néel state |Z2〉 and each scarred
eigenstate of the PXP model for different L, all obtained by DMRG-S except points marked by crosses. (b) Finite-size scaling for the total
overlap between |Z2〉 and the L+1 scarred eigenstates of the (deformed) PXP model. The inset displays data on the linear scale. (c) Dynamics
of the staggered magnetization density ∆ within the scarred subspace constructed by DMRG-S (P =

∑L
n=0 |Ψn〉 〈Ψn|), for the PXP model.

(d) The same dynamics for the deformed PXP model. (e) Observable dynamics ∆(t) of |Z̃2〉 for the PXP model, which exhibits more stable
revivals than |Z2〉 (blue). ∆(t) dynamics of |Z̃2〉 computed by using the DMRG-S eigenenergies (red) and by exact Hamiltonian evolution
(cyan dashed) agree well with each other. (f) Energy spacings ∆En between adjacent scars as a function of the normalized eigenenergy
En/|Eg| for the PXP model. The inset shows that the ratio R increases exponentially with L.

(y = e−0.044L+0.739) is obtained from linear regression
with R2 ≈ 0.9996. To further probe the revivals, we
evaluate the dynamics of the staggered magnetization density
∆ = [

∑L
i=1(−1)i+1Zi]/L within the scarred subspace con-

structed by DMRG-S: ∆(t) = 〈Z2|PeiHt∆e−iHtP|Z2〉 ≈∑L
n,m=0 e

i(En−Em)t〈Z2|Ψn〉〈Ψn|∆|Ψm〉〈Ψm|Z2〉, where

P =
∑L
n=0 |Ψn〉 〈Ψn|, {En}Ln=0 and {|Ψn〉}Ln=0 are scarred

eigenenergies and eigenstates obtained via DMRG-S [72].
∆(t) characterizes the late-time non-thermal observable dy-
namics after the local relaxation time (the infinite-temperature
value of ∆ is zero). Fig. 2(c) and (d) display ∆(t) as a func-
tion of time for different L in the PXP and deformed PXP
models, respectively. We find that the oscillation amplitude
shrinks with increasing L for the PXP model but remains
unaltered for the deformed case, consistent with our results
for the total |Z2〉 overlap.

Furthermore, we evaluate the observable dynamics of the
deformed Z2 state |Z̃2〉 = P |Z2〉 /

√
〈Z2|P|Z2〉 constructed

by DMRG-S (which has logarithmic entanglement [68]) in
the PXP model. As shown in Fig. 2(e), oscillations of
∆(t) = 〈Z̃2|eiHt∆e−iHt|Z̃2〉 become more stable as sys-
tem size increases, suggesting the robustness of the peri-
odic revivals for |Z̃2〉 in the thermodynamic limit. To il-
lustrate this phenomenon, we calculate the energy spac-

ings ∆En between adjacent scars as a function of En/|Eg|
[Fig. 2(f)], where Eg is the ground state energy and n =
0, 1, · · · , L/2 label the scars from the spectrum boundary to
center. Notably, we find that ∆En approaches an L- and n-
independent constant near the center of spectrum (E = 0).
Furthermore, inspired by Fig. 2(a), we compute the ratio
R =

∑
n∈C |〈Z2|Ψn〉|2/

∑
n∈B |〈Z2|Ψn〉|2, where the ver-

tical dashed line En/|Eg| = −0.5 in Fig. 2(f) separates |Ψn〉
belonging to the spectrum center (C) or boundary (B). As
shown in the inset of Fig. 2(f), R increases exponentially with
the system size. Combining these two observations, we de-
duce that the equidistant scars near the center of spectrum
dominate the revival dynamics of |Z̃2〉 as L increases, result-
ing in the more stable oscillations observed in Fig. 2(e).

To sum up, for the PXP model the coherent revivals of the
Néel state vanish in the thermodynamic limit due to its ex-
ponentially small overlap with the scarred subspace, whereas
the revivals remain stable in the deformed case. Neverthe-
less, our results demonstrate that one can stabilize the revivals
in the original PXP model by initializing in a modestly en-
tangled state like |Z̃2〉. The DMRG-S algorithm provides a
convenient method to construct such states [68].

Exact MPS representations for QMBS.– Apart from the
ability to extract QMBS at system sizes beyond the scope of
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FIG. 3. (a) Fidelity f = |〈ψt|Ψexact〉| between the optimized MPSs
and exact scars from the spin-1/2 PXP model [17] and the deformed
one-dimensional cluster model [19] as a function of iteration number.
The inset shows the infidelity 1 − f . (b) Energy variance σ2

H of the
optimized MPSs for the Z3 clock and spin-1 and 2 PXP models as a
function of iteration number.

ED, our algorithm also opens up a promising avenue to natu-
rally obtain the exact MPS representations for certain QMBS.
Several exact scars have been discovered in previous analyti-
cal studies, such as the E = ±

√
2 scars |Γ12〉 , |Γ21〉 and the

E = 0 scars |Γ11〉 , |Γ22〉 in the spin-1/2 PXP model [17],
and the E = 0 scar in the deformed one-dimensional cluster
model [19]. We first benchmark our algorithm by recovering
the above known examples. We run the DMRG-S algorithm
for about 200 random initial states and select the converged
MPS with smallest variance σ2

H . During the optimization we
fix χmax = 10. As shown in Fig. 3(a), even though the fidelity
f = |〈ψt|Ψexact〉| is initially exceedingly small (∼ 10−6),
DMRG-S can extract these exact scarred eigenstates to high
precision within 100 iterations. We stress that our algorithm
is not hindered by the exponentially large degeneracy in the
E = 0 eigensubspace [53–55] and does not utilize any a pri-
ori knowledge. Thus it can be applied to generic many-body
Hamiltonians in any target energy window.

Indeed, in the kinetically constrained clock model [39]
and higher-spin PXP models [30], we discover several E =
0 scarred eigenstates with exact MPS representations that
have not been reported in previous literature. As shown
in Fig. 3(b), the energy variance of the optimized MPSs
in the corresponding models converges to very small val-
ues (∼ 10−10) within 200 iterations. We further apply the
singular value decomposition to compress their bond dimen-
sions, typically to χ = 2 for the open boundary cases, then
continue the optimization until convergence again. Careful
analysis of the bulk tensors on each site yields the expres-
sions reported below. We write the MPS representations as
|Ψ〉 =

∑
σ Tr

(
A

[σ1]
1 A

[σ2]
2 · · ·A[σL]

L

)
|σ1σ2 · · ·σL〉 for peri-

odic boundary conditions, where σ = σ1σ2 · · ·σL denotes
the physical index of each site. We define the following 2× 2
matrices:

B =

(
1 0
0 0

)
, D =

(
1 1
−1 −1

)
. (2)

These matrices are related to those found in the numerical cal-

culations by appropriate MPS gauge transformations [57, 58].
For the kinetically constrained ZN clock model [39]

Hclock =
∑
i Pi−1CiPi+1, the local Hilbert space is

spanned by N states {|0〉 , |1〉 , · · · , |N − 1〉}. Here, Pi =
|0〉i 〈0|i forbids creating excitations (i.e., basis states be-
sides |0〉) on neighboring sites, and Ui = exp(−iCi) =∑N−1
n=0 |n+ 1〉i 〈n|i cyclically permutes basis states on site

i (we define |N〉 ≡ |0〉). A translationally invariant highly
excited eigenstate |Ψ〉c with E = 0 can be constructed us-
ing A[0] = B, A[1],[2],··· ,[N−1] = D. In [68] we show
that Pi−1CiPi+1 |Ψ〉c = 0, ∀ i. We further observe that
this MPS is nothing but the equal-weight superposition of all
computational basis states allowed by the constraints |Ψ〉c =∑

allowed σ |σ1σ2 · · ·σL〉.
The spin-s PXP models [30] are defined by HPXP =∑
i Pi−1S

x
i Pi+1, where the local Hilbert space is spanned

by 2s + 1 states {|−s〉 , |−s+ 1〉 , · · · , |s− 1〉 , |s〉}. Pi =
|−s〉i 〈−s|i, and Sxi is the spin-s generator of rotations around
the x-axis. When s is an integer, a translationally invariant
scarred eigenstate |Ψ〉s with E = 0 can be expressed as

A[−s] = B, A[−s+2k−1] = 0, A[−s+2k] = akD, (3)

where k = 1, 2, 3, · · · , s, and ak = 〈mz = −s + 2k|mx =
0〉/〈mz = −s|mx = 0〉 [73]. Similarly, Pi−1Sxi Pi+1 |Ψ〉s =
0, ∀ i [68]. |Ψ〉s also takes a simple form in the computational
basis,

|Ψ〉s =
∑

allowed σ

[
s∏

k=1

(ak)# of−s+2k in σ

]
|σ1σ2 · · ·σL〉 , (4)

where the allowed computational basis states contain only lo-
cal states {|−s+ 2k〉}sk=0 and the additional prefactors count
the number of |−s+ 2k〉 states appearing in |σ1σ2 · · ·σL〉.

The above exact scars can be analytically derived as
follows. Consider Hamiltonians of the form H =∑
i Pi−1hiPi+1, where the local Hilbert space is spanned by

the bases {|0〉 , |1〉 , · · · , |d− 1〉} and Pi = |0〉i 〈0|i. We de-
fine the projector onto the global constrained Hilbert space as
P =

∏
i(I − P̃iP̃i+1), where P̃i = I − Pi. If the single-site

operator hi has a zero mode |φi〉 (e.g.
∑N−1
n=0 |n〉i for the clock

model, and |mx = 0〉i for the PXP models of integer spins),
the product state |Φ〉 =

∏
i |φi〉 is a zero-energy eigenstate

of H . While this state does not satisfy the global constraint
defined by P , the projected state P |Φ〉 does, and in fact re-
mains a zero-energy eigenstate since [P,H] = 0. Since P can
be expressed as a matrix product operator with bond dimen-
sion χ = 2, the zero-energy scarred eigenstate P |Φ〉 becomes
an MPS with bond dimension χ = 2. Explicit calculations
[68] yield the 2 × 2 matrices in Eq. (2) and the coefficients
in Eq. (3). We stress that this construction is different from
the embedding construction of Ref. [13], where the embedded
scarred eigenstates are annihilated by certain local projectors
Pi rather than the local operators hi.

Conclusion.– In summary, we have introduced the DMRG-
S algorithm to accurately extract quantum many-body scarred
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eigenstates. This method can access system sizes far beyond
the scope of ED and assist analytical studies in discovering
exact MPS representations of new scars for generic Hamil-
tonians. It also sheds light on other open questions about
QMBS, such as their robustness under various types of per-
turbations [49–52]. The analytical construction of exact scars
inspired by our numerical results provides a different mech-
anism for scar states in models with local kinetic constraints.
The synergy between numerical calculations and analytical in-
vestigations in our work establishes a promising framework
for future studies on quantum many-body scars.

The DMRG-S algorithm is implemented based on the ITen-
sor library [74] in Julia programming language. The source
code for the numerical calculations is accessible online [75].
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Z. Papić, M. Serbyn, M. D. Lukin, and D. A. Abanin, “Emer-
gent su(2) dynamics and perfect quantum many-body scars,”
Phys. Rev. Lett. 122, 220603 (2019).

[17] C.-J. Lin and O. I. Motrunich, “Exact quantum many-body scar
states in the rydberg-blockaded atom chain,” Phys. Rev. Lett.
122, 173401 (2019).

[18] M. Schecter and T. Iadecola, “Weak ergodicity breaking and
quantum many-body scars in spin-1 xy magnets,” Phys. Rev.
Lett. 123, 147201 (2019).

[19] S. Ok, K. Choo, C. Mudry, C. Castelnovo, C. Chamon, and
T. Neupert, “Topological many-body scar states in dimensions
one, two, and three,” Phys. Rev. Research 1, 033144 (2019).

[20] S. Chattopadhyay, H. Pichler, M. D. Lukin, and W. W.
Ho, “Quantum many-body scars from virtual entangled pairs,”
Phys. Rev. B 101, 174308 (2020).

[21] S. Moudgalya, N. Regnault, and B. A. Bernevig, “η-pairing in
hubbard models: From spectrum generating algebras to quan-
tum many-body scars,” Phys. Rev. B 102, 085140 (2020).

[22] K. Lee, R. Melendrez, A. Pal, and H. J. Changlani, “Exact
three-colored quantum scars from geometric frustration,” Phys.
Rev. B 101, 241111 (2020).

[23] C. M. Langlett, Z.-C. Yang, J. Wildeboer, A. V. Gorshkov,
T. Iadecola, and S. Xu, “Rainbow scars: From area to volume
law,” Phys. Rev. B 105, L060301 (2022).

[24] C. M. Langlett and S. Xu, “Hilbert space fragmentation and
exact scars of generalized fredkin spin chains,” Phys. Rev. B
103, L220304 (2021).

[25] F. Schindler, N. Regnault, and B. A. Bernevig, “Exact quantum
scars in the chiral nonlinear luttinger liquid,” Phys. Rev. B 105,
035146 (2022).

[26] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini,
S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho,
et al., “Controlling quantum many-body dynamics in driven ry-
dberg atom arrays,” Science 371, 1355 (2021).

[27] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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Supplementary Materials for: Extracting Quantum Many-Body Scarred Eigenstates with Matrix
Product States

I. ANALYTICAL PROOFS FOR EXACT MPS REPRESENTATIONS OF QMBS

In this section, we provide the analytical proofs for the exact matrix product state (MPS) representations of quantum many-
body scars (QMBS) found by our DMRG-S algorithm.

General one dimensional (1D) quantum states can be written as the MPS form

|Ψ〉 =
∑
σ

Tr
(
A

[σ1]
1 A

[σ2]
2 · · ·A[σL]

L

)
|σ1σ2 · · ·σL〉, (S1)

in the periodic boundary condition (PBC), and

|Ψ〉 =
∑
σ

vlA
[σ1]
1 A

[σ2]
2 · · ·A[σL]

L vTr |σ1σ2 · · ·σL〉, (S2)

in the open boundary condition (OBC). σ = σ1σ2 · · ·σL denotes the physical index of each site, in other words, {|σi〉} are the
local bases on site i. For example, σi =↑, ↓ for spin-1/2 systems. {A[σi]

i } are χi−1 × χi matrices for all σi. {χi} are called
bond dimensions, which upper bound the entanglement entropy S ∼ O[log(χi)] of |Ψ〉 at the cut i, i + 1 [57, 58]. vl, vr are
left and right boundary vectors. The product of A[σi]

i matrices provides the complex probability amplitude of the computational
basis |σ1σ2 · · ·σL〉 in |Ψ〉. Similarly, general 1D Hamiltonians can be written as the matrix product operator (MPO) form

H =
∑
σ,σ′

H
[σ1],[σ

′
1]

1 H
[σ2],[σ

′
2]

2 · · ·H [σL],[σ′L]
L |σ1σ2 · · ·σL〉〈σ′1σ′2 · · ·σ′L| (S3)

where {H [σi],[σ
′
i]

i } are γi−1 × γi matrices, and σi, σ′i are physical indices on the site i.

A. Known Examples of Exact QMBS

We first briefly review the known examples of exact QMBS shown in Fig. 3(a) of the main text. In the spin-1/2 PXP model
of OBC, Ref. [17] has shown that the following MPSs

|Γαβ〉 =
∑
σ

vαB
[σ1]C [σ2] · · ·B[σL−1]C [σL]vTβ |σ1 . . . σL〉 , (S4)

where σi = 0(↓), 1(↑), α, β = 1, 2, and

B[0] =

(
1 0 0
0 1 0

)
, B[1] =

√
2

(
0 0 0
1 0 1

)
, C [0] =

 0 −1
1 0
0 0

 , C [1] =
√

2

 1 0
0 0
−1 0

 , v1 = (1, 1), v2 = (1,−1), (S5)

are exact scarred eigenstates with E = 0 for |Γ11〉 and |Γ22〉, E =
√

2 for |Γ12〉, and E = −
√

2 for |Γ21〉.
We have also considered the deformed one-dimensional cluster model [19] with OBC,

H(β) =

L∑
i=1

αiQi(β), αi = α+ (−1)i,

Q1(β) = e−βZ1Z2 −X1, QL(β) = e−βZL−1ZL −XL,

Qi(β) = e−β(Zi−1Zi+ZiZi+1) −Xi, ∀i 6= 1, L, (S6)

where 0 < |α| < 1, β 6= 0 (specifically, we take α = 0.3, β = 0.5). There exists an E = 0 excited scarred eigenstate for H(β)

|scar(β)〉 = G(β)

L⊗
i=1

|+〉i, (S7)

where G(β) = exp
(
β
2

∑L−1
i=1 ZiZi+1

)
, |+〉 = (|0〉+ |1〉)/

√
2. Note that |scar(β)〉 is also the ground state of the Hamiltonian

Ĥ(β) =
∑L
i=1 |αi|Qi(β), which results in the area-law entanglement of |scar(β)〉.
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B. General Schemes for Zero-energy Scars in Kinetically Constrained Hamiltonians

Consider general kinetically constrained Hamiltonians of the following form

H =
∑
i

PihiPi+1, (S8)

where the local Hilbert space is spanned by {|0〉 , |1〉 , · · · , |d− 1〉}with the dimension d, Pi = |0〉i 〈0|i. We define the projector
towards the global constrained Hilbert space as

P =
∏
i

(I − P̃iP̃i+1), P̃i = I − Pi. (S9)

One can verify that [P,H] = 0.
If there exists a zero mode |φi〉 for the single-site operator hi, we define the product state

|Φ〉 =
∏
i

|φi〉 , (S10)

which is annihilated by each term of the Hamiltonian, thus H |Φ〉 = 0. Since H commutes with the projector P , the projection
of the product state |Φ〉 into the constrained Hilbert space will become a zero-energy scarred eigenstate HP |Φ〉 = 0.

Now P |Φ〉 is no longer a product state because of the projector P . To obtain the explicit MPS representation of P |Φ〉, we
construct the MPO representation for the projector P as follows. We break each term of P into a product of two vectors

(I − P̃iP̃i+1) =
(
I P̃i

)( I

−P̃i+1

)
. (S11)

Then we have

P = Tr

(∏
i

(
I P̃i
−P̃i −P̃i

))
, (S12)

which is in an explicit MPO form with bond dimension χ = 2. Then P |Φ〉, obtained by contracting P with a product state |Φ〉,
can be expressed in an MPS with bond dimension χ = 2:

P |Φ〉 = Tr

(∏
i

(
|φi〉 P̃i |φi〉
−P̃i |φi〉 −P̃i |φi〉

))
=
∑
σ

Tr

(∏
i

A
[σi]
i

)
|σ1σ2 · · ·σL〉, (S13)

where

A
[0]
i = 〈0|φi〉

(
1 0
0 0

)
, A

[σi>0]
i = 〈σi|φi〉

(
1 1
−1 −1

)
. (S14)

As mentioned in the main text, we define the following 2× 2 matrices

B =

(
1 0
0 0

)
, D =

(
1 1
−1 −1

)
, (S15)

satisfying D2 = 0, and BDB = BBB. Below for the ZN clock model with kinetic constraints and integer spin-s PXP models,
we specifically calculate the coefficients before B,D matrices and analyze the properties of the scarred eigenstates.

C. Kinetically Constrained Clock Models

For the ZN clock model with kinetic constraints [39], there exist N bases on each site i, {|0〉 , |1〉 , · · · , |N − 1〉}. The “PCP”
Hamiltonian reads

Hclock =
∑
i

Pi−1CiPi+1, Pi = |0〉i 〈0|i , Ui = exp(−iCi) =

N−1∑
n=0

|n+ 1〉i 〈n|i . (S16)
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Each site i precesses around the clock bases if both its neighbors are in |0〉, otherwise its rotation remains frozen. Note that
UNi = I, thus eigenvalues of Ui have the forms of ωkn , where ω = exp(i2π/N) and kn are arbitrary integers. SinceCi ∝ i lnUi,
the expressions of Ci are not unique. Here we set the values of {kn}N−1n=0 as

kn =

{
−N−12 ,−N−12 + 1, · · · , 0, · · · , N−12 − 1, N−12 for odd N
−(N2 − 1),−(N2 − 1) + 1, · · · , 0, · · · , N2 − 1, N2 for even N.

(S17)

Notice that values of {kn}N−1n=0 for even N taken here are slightly different from those in [39] since we preserve the clock period
T (UTi = I) to be T = N for both even and odd N . Now Ci can be expressed as

Ci = −2π

N

N−1∑
n=0

kn |ψn〉i 〈ψn|i , |ψn〉i =
1√
N

N−1∑
j=0

ω−knj |j〉i , (S18)

with {|ψn〉i}
N−1
n=0 being the eigenstates of Ui and Ci. Below we list the N = 2, 3, 4 Ci matrices as examples.

Ci =
π

2

(
−1 1
1 −1

)
i

, Ci = i
2π

3
√

3

 0 −1 1
1 0 −1
−1 1 0


i

, Ci =
π

4


−1 1− i −1 1 + i

1 + i −1 1− i −1
−1 1 + i −1 1− i

1− i −1 1 + i −1


i

. (S19)

As mentioned in the main text, a translationally invariant QMBS |Ψ〉c with E = 0 can be expressed as

A[0] = B, A[1],[2],··· ,[N−1] = D (S20)

in PBC Eq. (S1), and with

vl = vr = (1, 0) (S21)

in OBC Eq. (S2). First, the kinetic constraints are satisfied since A[σi]A[σi+1] = 0, for σi, σi+1 6= 0. Second, since
A[0]A[σi]A[0] = A[0]A[0]A[0], ∀σi = 0, 1, 2, · · · , N − 1, the coefficients of the computational bases |σ1 · · · , 0, σi, 0, · · ·σL〉
in |Ψ〉c are same for all σi. Observed from Eq. (S19) (also rigorously proved later), the summation for each row of the Ci
matrix is zero. Combining these two results together, we deduce that A[0] ×

(∑N−1
σ′i=0(Ci)

σiσ
′
iA[σ′i]

)
× A[0] = 0, ∀σi, thus

Pi−1CiPi+1 |Ψ〉c = 0, ∀i. For the boundary terms, we have vlA
[σ1]
1 A

[0]
2 = vlA

[0]
1 A

[0]
2 and A[0]

L−1A
[σL]
L vTr = A

[0]
L−1A

[0]
L v

T
r ,

∀σ1, σL = 0, 1, 2, · · · , N − 1, thus C1P2 |Ψ〉c = 0 and PL−1CL |Ψ〉c = 0 in the OBC case.
According to the analysis above, we further deduce that superposition coefficients of all the computational bases in |Ψ〉c

are the same, so this MPS is nothing but the equal-weight superposition state of all the allowed computational bases in the
constrained Hilbert space

|Ψ〉c =
∑

allowed σ

|σ1σ2 · · ·σL〉 (S22)

up to a normalization factor, where the allowed computational basis |σ〉 means that each two neighboring sites |σi〉 , |σi+1〉
should contain at least one |0〉 basis. It is quite surprising that such a simply-constructed state in computational bases can be
the E = 0 highly excited scarred eigenstates of Hclock and expressed as an MPS with finite bond dimension χ = 2, which
demonstrates the power of our DMRG-S algorithm. Notice that there exist otherB,D matrices satisfying the conditionsD2 = 0
and BDB = BBB, but they all represent the same physical state above in computational bases.

Next, we rigorously show that the summation for each row or column of the Ci matrix is zero (in the following we omit the
subscript i for convenience). To begin with, |ψn〉 = 1√

N

∑N−1
j=0 ω−knj |j〉 is the eigenstate of U with eigenvalue ωkn [see the

values of kn in Eq. (S17)], such that the C matrix can be decomposed into

C = −2π

N
E


k0

k1
. . .

kN−1

E−1, Ejn =
1√
N
ω−jkn , (E−1)jn =

1√
N
ωnkj , (S23)
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where j, n = 0, 1, · · · , N − 1. Now we can explicitly calculate the the summation for the i-th row of C as

N−1∑
i=0

Cij = −2π

N

N−1∑
i,l=0

Eil × kl × (E−1)lj = − 2π

N2

N−1∑
i,l=0

klω
−(i−j)kl = 0. (S24)

The summation for the j-th column is also zero through similar calculations.
Besides, we analyze the symmetry properties of the exact QMBS |Ψ〉c. First, the “PCP” Hamiltonian possesses the inversion

symmetry I : i→ L− i+ 1. The operator I transforms the MPS representations in PBC and OBC by

I|Ψ〉c =
∑
σ

Tr
(
A

[σ1]
I A

[σ2]
I · · ·A[σL]

I

)
|σ1σ2 · · ·σL〉, (S25)

I|Ψ〉c =
∑
σ

vrA
[σ1]
I A

[σ2]
I · · ·A[σL]

I vTl |σ1σ2 · · ·σL〉, (S26)

where A[σi]
I =

(
A[σi]

)T
and we have omitted the site indices due to the translational invariance of |Ψ〉c. The 2 × 2 z-Pauli

matrix σz will give us a gauge transformation restoring the original MPS representations, which proves that I |Ψ〉c = |Ψ〉c.

σz
(
A[σi]

)T
σz = A[σi], vrσ

z = vl, σzvTl = vTr (S27)

Second, given the {kn}N−1n=0 values in Eq. (S17), for odd N , Hclock has the particle-hole (charge conjugation) symmetry
{Hclock, Cph} = 0 [39], leading to the E ↔ −E symmetry in the spectrum, where

Cph =

L∏
i=1

Ci, Ci =



1 0 · · · 0 0
0 0 · · · 0 1
0 0 · · · 1 0
0 · · · 1 0 0
...

...
...

...
...

0 1 0 · · · 0


i

. (S28)

Note that for even N , although the spectrum of Hclock is not symmetric with respect to zero, E = 0 still corresponds to highly
excited energy. The operator Ci keeps |0〉i invariant and exchanges |σi〉i with |N − σi〉i for σi = 1, 2, · · · , N − 1. Since
A[1],[2],··· ,[N−1] = C, we deduce that Cph |Ψ〉c = |Ψ〉c for odd N .

D. PXP Models for Integer Spins

As for general PXP models of spin-s (numerically shown to be nonintegrable and quantum chaotic by level statistics study
[30]), each site i contains 2s+ 1 bases {|−s〉 , |−s+ 1〉 , · · · , |s− 1〉 , |s〉}. The Hamiltonian reads

HPXP =
∑
i

Pi−1S
x
i Pi+1, Pi = |−s〉i 〈−s|i , 〈s,mz ± 1|Sx |s,mz〉 =

√
(s±mz + 1)(s∓mz)/2, (S29)

where Sxi is the x-angular momentum operator of spin-s. When s is an integer, we start by presenting the concrete examples of
s = 1, 2. The Sxi operators for s = 1, 2 are

Sxi =
1√
2

 0 1 0
1 0 1
0 1 0


i

, Sxi =



0 1 0 0 0

1 0
√

3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0


i

. (S30)

Actually since the eigenvalues of Sxi for integer spins and Ci matrices for ZN clock models with odd N are the same, by
performing the basis transformation, the PCP Hamiltonian Eq. (S16) can be expressed in the spin bases, where Ci becomes Sxi
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and consequently the kinetic constraint Pi in Eq. (S16) will be changed [39]. The following similar expressions of exact QMBS
also reflect the close relations between these two models.

A translationally invariant E = 0 scarred eigenstate |Ψ〉1 for s = 1 can be expressed in the MPS form as

A[−1] = B, A[0] = 0, A[1] = −D (S31)

in PBC, and with the same boundary vectors Eq. (S21) in OBC.
The proof for its eigenstate property follows the similar way as the clock model. The kinetic constraints are satisfied since

A[σi]A[σi+1] = 0, for σi, σi+1 6= −1. Because A[0] = 0 and A[−1]A[−1]A[−1] + A[−1]A[1]A[−1] = 0, by noticing the matrix
elements in each row of spin-1 Sxi , we deduce thatA[−1]×

(∑1
σ′i=−1

(Sxi )σiσ
′
iA[σ′i]

)
×A[−1] = 0, ∀σi, thus Pi−1Sxi Pi+1 |Ψ〉1 =

0, ∀i. The boundary terms in OBC annihilates |Ψ〉1 through the same approach. Then according to the matrix elements in

spin-2 Sxi , we require that A[σi]A[σi+1] = 0, for σi, σi+1 6= −2, A[−1] = 0, A[−2]A[−2]A[−2] +
√

3
2A

[−2]A[0]A[−2] = 0,√
3
2A

[−2]A[0]A[−2] +A[−2]A[2]A[−2] = 0 and A[1] = 0, such that an E = 0 exact QMBS |Ψ〉2 for the s = 2 PXP model should
be like

A[−2] = B, A[−1] = 0, A[0] = −
√

2

3
D, A[1] = 0, A[2] = D (S32)

in PBC, and with the boundary vectors Eq. (S21) in OBC.
Through this approach, we can generalize the MPS representations above to arbitrary integer spins. According to the matrix

elements in spin-s Sxi 〈s,mz ± 1|Sx |s,mz〉 =
√

(s±mz + 1)(s∓mz)/2, we obtain the following recurrence relations√
(2k − 1)(s− k + 1)A[−s]A[−s+2k−2]A[−s] +

√
k(2s− 2k + 1)A[−s]A[−s+2k]A[−s] = 0 k = 1, 2, · · · , s, (S33)

A[−s+1] = A[−s+3] = · · · = A[s−3] = A[s−1] = 0. (S34)

Therefore, we define a corresponding number sequence {ak}sk=0 with the recurrence relation

a0 = 1, ak = −

√
(2k − 1)(s− k + 1)

k(2s− 2k + 1)
ak−1 (k = 1, 2 · · · , s). (S35)

Together with the kinetic constraints, we deduce that an E = 0 scarred eigenstate |Ψ〉s of integer spin-s PXP models can be
expressed as

A[−s] = B, A[−s+2k−1] = 0, A[−s+2k] = akD,

ak = (−1)k

√[
s!

k!(s− k)!

]/[
(2s− 1)!!

(2k − 1)!!(2s− 2k − 1)!!

]
, (S36)

where k = 1, 2, 3, · · · , s, and (2k − 1)!! = (2k − 1) × (2k − 3) × · · · × 3 × 1 is the double factorial. The OBC cases have
additional boundary vectors Eq. (S21).

Because the nonzero bulk matrices A[σi] are proportional to B and D, and the boundary vectors remain the same as
the clock model, these MPSs are directly proven to possess inversion symmetry I |Ψ〉s = |Ψ〉s through the same gauge
transformation σz in Eq. (S27). The particle-hole symmetry operator for the PXP models now becomes Cph =

∏
i Ci,

Ci = diag(1,−1, 1,−1, · · · ,−1, 1)i, with {HPXP , Cph} = 0. Obviously Cph |Ψ〉s = |Ψ〉s.
Similar to the kinetically constrained clock model, |Ψ〉s can be written as simple forms in computational bases

|Ψ〉s =
∑

allowed σ

[
s∏

k=1

(ak)# of−s+2k in σ

]
|σ1σ2 · · ·σL〉 . (S37)

where the allowed computational basis |σ〉 only consists of bases {|−s+ 2k〉}sk=0 and the additional prefactors count the number
(#) of |−s+ 2k〉 bases appearing in |σ〉. In particular,

|Ψ〉1 =
∑

allowed σ

(−1)# of 1 in σ |σ1σ2 · · ·σL〉 , |Ψ〉2 =
∑

allowed σ

(−
√

2

3
)# of 0 in σ |σ1σ2 · · ·σL〉 . (S38)
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The above recursive implementations for theE = 0 QMBS of integer spins do not apply for the half-integer cases, because the
Sx operator of half-integer spins does not host a local zero mode. Nevertheless, through numerical calculations by our DMRG-S
algorithm, we still find several different E = 0 scarred eigenstates in the spin-3/2 PXP model with MPS representations. Their
bond dimensions can be even reduced to χ = 2 in OBC cases. Unfortunately, unlike the situations in the clock model and PXP
models for integer spins, the bulk tensors found by DMRG-S do not exhibit apparent features. The matrices A[σi]

i vary from site
to site and the matrix elements do not share common relations. We leave the investigations about the E = 0 scars in the PXP
models of half-integer spins for future studies.

II. SEVERAL DETAILS ABOUT THE DMRG-S ALGORITHM

In this section we present several numerical details about the DMRG-S algorithm. In Table. S1, we display the pseudo-code
for the DMRG-S algorithm, which we implement based on the ITensor library [74] in Julia programming language. The local
effective Hamiltonian A[i,i+1]

t,eff and the environment tensor ψ̃[i,i+1]
t−1 are constructed by contracting all the other tensors except for

those on the sites [i, i+ 1] of |ψt〉, as illustrated in Fig. 1(b) of the main text.

Algorithm 1 DMRG-S
1: Set ξ0 within the target energy window [E −∆E,E + ∆E]
2: Construct the initial MPO A0 = (H − ξ0)2

3: Construct the initial MPS |ψ0〉
4: for each iteration t do
5: |ψt〉 = |ψt−1〉
6: for each sweep do
7: for each site i during the left or right sweep do
8: Move the orthogonality center of the MPS |ψt〉 to site i by the singular value decomposition
9: Construct the effective Hamiltonian A[i,i+1]

t,eff from |ψt〉, |ψt−1〉 and At

10: Construct the environment tensor ψ̃[i,i+1]
t−1 from |ψt〉 and |ψt−1〉

11: Solve the linear equation A[i,i+1]
t,eff ψ

[i,i+1]
t = ψ̃

[i,i+1]
t−1 with the conjugate gradient method

12: Substitute the optimized tensor ψ[i,i+1]
t into the MPS |ψt〉

13: end for
14: end for
15: Normalize the MPS |ψt〉
16: Calculate ξt = 〈ψt|H|ψt〉 and σ2

H(|ψt〉) = 〈ψt|H2|ψt〉 − ξ2t
17: if σ2

H(|ψt〉) < min{σ2
H(|ψt−1〉), 10−3} then

18: Construct the MPO At+1 = (H − ξt)2
19: else
20: At+1 = At

21: end if
22: end for

TABLE S1. Pseudo-code of the DMRG-S algorithm for calculating quantum many-body scarred eigenstates.

Comparison with existing shift-invert algorithms for MBL systems.– We compare our DMRG-S algorithm with existing shift-
invert algorithms for many-body localized (MBL) systems, in particular, the SIMPS algorithm proposed in Ref. [65] to find
highly-excited eigenstates of MBL Hamiltonians. In the following, based on the properties of MBL and many-body scarred
systems, we clarify the differences between the DMRG-S and SIMPS algorithm, and numerically demonstrate the suitability
and advantages of DMRG-S for extracting quantum many-body scars in Fig. S1.

First, in DMRG-S the energy shift ξ is updated (ξt = 〈ψt|H|ψt〉) after σ2
H reaches a relatively small value [10−3 in the main

text and 10−2 for Fig. S1(a)]. In contrast, the energy shift ξ in SIMPS is fixed throughout the optimization. We emphasize that
the update of the energy shift is crucial for extracting scars without a priori knowledge of their precise locations in the energy
spectrum: In MBL systems, almost all the excited eigenstates satisfy the entanglement area law [76, 77]. Due to the exponentially
small energy spacings, in SIMPS the energy shift ξ should be fixed in order to find all the highly-excited eigenstates inside an
energy window. In sharp contrast, in quantum many-body scarred systems, the energy spacings between adjacent scar tower
states remain finite even in the thermodynamic limit [see Fig. S2(a)]. Without a priori knowledge, the deviation between ξ0 and
the exact eigenenergies of scars can easily reach relatively large values. Based on that, we let the energy shift ξ slowly drift
during the iterations, which enables our DMRG-S algorithm to converge to the desired scarred eigenenergies within large energy
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FIG. S1. Comparison for the performance of the DMRG-S and SIMPS algorithm for two different tasks. (a) Upper panel: The state fidelity
f between |ψt〉 and the E ≈ −1.33 scar tower state in L = 30 PXP model as a function of the iteration step. Lower panel: The energy of
|ψt〉 as a function of the iteration step. For the three cases, the initial energy shift ξ0 is taken as ξ0 = −1.6. |ψ0〉 = |Z2〉 and χmax = 200.
The horizontal dotted black line indicates the exact energy of the E ≈ −1.33 scar tower state. (b) The number of converged (σ2

H < 10−6)
MPSs by DMRG-S (without updating the energy shift ξt) and SIMPS as a function of the system size, for the task of extracting the exact scars
|Γ11〉 and |Γ22〉 with E = 0 in the PXP model. Both algorithms are initialized with 1000 random product states |ψ0〉 and ξ0 ∈ [−0.01, 0.01].
χmax = 10. The inset shows the average iteration number for the ten fastest-converging MPSs.

windows. As shown in Fig. S1(a), for the task of extracting the E ≈ −1.33 scarred eigenstate in the PXP model, if we do not
know its accurate eigenvalue in advance and choose the initial energy shift as ξ0 = −1.6, the SIMPS method with fixed ξ (blue
line) can not converge during the iterations (resulting in almost zero fidelity and wrong energy), whereas the DMRG-S method
(red line) can successfully find the scarred eigenstate.

Second, for the shift-invert operator, in the DMRG-S algorithm we adopt (H− ξ)−2 instead of (H− ξ)−1. Note that different
from the excited eigenstates of MBL systems, which satisfy the entanglement area law, most scar tower states near the middle
of the spectrum possess logarithmic entanglement entropy. In the main text we need to take the maximum bond dimension as
χmax = 1200 to compute the tower of scars in the PXP model of L = 80. For such large bond dimensions, the efficiency of
DMRG-S hinges on the positive semidefiniteness of the operator (H − ξ)2, which enables us to adopt the conjugate gradient
method to accelerate the solving of the linear equation with an iterative solver. We mention that even approximate solutions of
the linear equation are sufficient for the convergence of the DMRG-S algorithm.

Besides, through extensive numerical simulations, we find that compared with SIMPS, which adds one more (H−ξ) operator
on the right hand side of the equation and effectively uses (H − ξ)−1 (see Fig. 1 of Ref. [65]), the positive semidefinite
(H − ξ)−2 operator in DMRG-S significantly improves the robustness and efficiency of its convergence. The iterations become
less frequently trapped in local minima of the optimization landscape. As demonstrated by the green line in Fig. S1(a) (to make
a fair comparison we also update the energy shift ξ in SIMPS), although the energy E converges closely to the correct value, the
fidelity exceeds 0.9 in the first few iterations, then drops abruptly and finally gets trapped in a local minimum of f ≈ 0.7.

In addition, we compare the performance of DMRG-S and SIMPS for the task of extracting scars with exact MPS represen-
tations. We take the exact |Γ11〉 , |Γ22〉 scar states with E = 0 in the PXP model [17] as an example. For this task, we a priori
know the eigenenergy of scars, and thus do not update the energy shift ξ in DMRG-S. As shown in Fig. S1(b), we count the
number of converged MPSs (σ2

H < 10−6) found by DMRG-S and SIMPS for different system sizes. The DMRG-S algorithm
turns out to be more efficient (see the inset) and have larger success probability in discovering the scars from the degenerate
eigensubspace.

We conclude that the designs in our DMRG-S algorithm make it well suitable and amenable for finding an isolated sub-
volume-law entangled scar state in a sea of thermal eigenstates, without a prior knowledge of its precise eigenenergy. On the
other hand, we should mention that the benefits brought by the update of energy shift and the usage of (H − ξ)−2 are mainly
specific to the task of extracting quantum many-body scars. For many-body localized systems, where the energy spacings
between area-law entangled eigenstates are exponentially small, fixing the energy shift ξ in SIMPS can ensure that the algorithm
converges to an eigenstate in the vicinity of ξ and finds all the excited eigenstates inside a small energy interval.
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FIG. S2. (a) Finite-size scaling of the energy gap ∆En = |En+1 − En| between adjacent scars for n = L/2 − 1, L/2 − 2, L/2 − 3
(n = 0, 1, · · · , L/2 − 1 are the indices for scars from the spectrum boundary to center) in the PXP model, which can be extrapolated
to the same value 1.3377 when L → ∞. The dashed lines are obtained by the quadratic fitting. (b) ∆En as a function of 2n/L for
different system sizes. The dashed line is the fitting curve with the ansatz function y = b0/(1 + eb1−b2x) + b3. The fitting parameters are
(b0, b1, b2, b3) = (0.56, 0.97, 5.19, 0.79).

For the calculations of the scar-tower states in the PXP model, we need to make several adjustments upon the general DMRG-
S algorithm, including the setting of special initial ξ0 and the projection into the blockade constrained Hilbert space. Note that
we compute the tower of scars in the PXP model for the periodic boundary condition since their |Z2〉 overlap and entanglement
entropy constitute smoother functions of the energy, which are also easier to benchmark with ED for large system sizes by
resolving the translation symmetry. During the iterations, we set the maximum bond dimension as χmax = 1200, while the open
boundary cases roughly need

√
χmax.

Setting of special initial ξ0.– The efficiency of the DMRG-S algorithm largely depends on the choice of the initial energy ξ0
and initial state |ψ0〉. For the task of calculating the tower of scars in the PXP model, we set |ψ0〉 = |Z2〉, which has predominant
overlap with the L+ 1 scars within corresponding energy windows. For the initialization of ξ0, naively one can divide the whole
possible energy interval into several windows and set ξ0 as their medians (see the last part of this section). Another possible
way is to use the energy obtained by the forward scattering approximation [27]. Here, according to our numerical experiences,
we extrapolate the results in small system sizes to approximate the eigenenergy in larger systems: In Fig. S2(b) we display the
energy gap ∆En between adjacent scarred eigenstates as a function of 2n/L for L = 32, 40, 50, 60, 80. We can observe that the
curves for different system sizes overlap with each other, especially near the center of the spectrum. With the following ansatz
function, we fit the curve of L = 32, which can be obtained by exact diagonalization (ED), the forward scattering approximation
or DMRG-S with random initial ξ0.

∆En =
b0

1 + eb1−b2(2n/L)
+ b3. (S39)

The fitting parameters are (b0, b1, b2, b3) = (0.56, 0.97, 5.19, 0.79). Now for large system sizes we can set ξ0 as the approximate
scarred eigenenergy En = −

∑L/2−1
i=n ∆Ei (n = 0, 1, · · · , L/2 − 1, EL/2 = 0, the other half could be obtained from the

particle-hole symmetry {
∏
i Zi, HPXP } = 0). We stress that setting the special ξ0 and the initial state as |ψ0〉 = |Z2〉 are solely

for this particular problem to get good convergence performance, and are not necessary for other general applications. In fact, in
the last part of this section, we benchmark the robustness of DMRG-S by adopting random initial ξ0 and random initial states.

Projection into the blockade constrained Hilbert space.– Throughout the DMRG-S iterations, we expect that the optimized
MPS always remain within the blockade constrained Hilbert space. Unfortunately it is not possible due to the approximate
solving of the linear equation A[i,i+1]

t,eff ψ
[i,i+1]
t = ψ̃

[i,i+1]
t−1 . Therefore, after we obtain the local tensor ψ[i,i+1]

t , we additionally

apply the two-qubit projector 1− nini+1 [ni = (1 + Zi)/2] on ψ[i,i+1]
t to project out the component |↑↑〉i,i+1.

Moreover, after finishing each iteration step t, we apply the projector
∏
i(1− nini+1) on the MPS |ψt〉 to further reduce the

leakage out of the constrained Hilbert space. In Fig. S3, we evaluate the Rydberg blockade energyEb = 〈Ψn| (
∑
i nini+1) |Ψn〉

upon the tower of scars {|Ψn〉}Ln=0 obtained by DMRG-S. We observe that the values for all the Eb are of the order 10−8,



16

-40 -20 0
0

2

4

6

8 10-9

FIG. S3. The Rydberg blockade energy Eb = 〈Ψn| (
∑

i nini+1) |Ψn〉 of the 41 scarred eigenstates with non-positive energy in the L = 80
PXP model.

confirming that these MPSs are indeed within the constrained Hilbert space.

Finally, we demonstrate the robustness of the DMRG-S algorithm by using random initial ξ0 and random initial states |ψ0〉.
Besides the PXP model, we apply DMRG-S to extract the tower of scars in the 1D spin-1 XY model [18]

HXY = J
∑
i

(
Sxi S

x
i+1 + Syi S

y
i+1

)
+ h

∑
i

Szi +D
∑
i

(Szi )
2

+ J3
∑
i

(
Sxi S

x
i+3 + Syi S

y
i+3

)
, (S40)

where Sαi (α = x, y, z) are spin-1 operators on the site i and we take the parameters (J, h,D, J3) = (1, 1, 0.1, 0.1). The spin-1
XY model has been shown to be nonintegrable and host scarred eigenstates at En = h(2n− L) + LD in OBC. Here the tower
of scars support the perfect revival dynamics from the ground state |φ0〉 of the staggered rhombic anisotropy Hamiltonian [18]

HA =
1

2

∑
i

(−1)i
[
(Sxi )

2 − (Syi )
2
]
. (S41)

In Fig. S4(a) and (b), we start the DMRG-S iterations by evenly picking up ξ0 from the whole possible energy interval. The
initial states remain as |ψ0〉 = |Z2〉 for the L = 16 PXP model (a) and |ψ0〉 = |φ0〉 for the L = 12 spin-1 XY model (b).
The plateaus in E correspond to the converged eigenvalues of scarred eigenstates, demonstrating that DMRG-S can successfully
extract the particular scarred eigenstate within a finite range of ξ0. The energy variance σ2

H for each converged MPS in (a) and
(b) is less than 10−12. Furthermore, in Fig. S4(c) and (d), for each evenly picked ξ0 we adopt 10 random product states as the
initial state |ψ0〉 and run the DMRG-S algorithm. We stress that under such conditions, we do not utilize any a priori knowledge
about the many-body systems. In (c) and (d), we can still find several converged MPSs with low energy variance marked by the
red dots, whose energies exactly match up with the ED or analytical results. Note that for the L = 16 PXP model (c), since
the system size is relatively small, there exist several converged MPSs with low energy variance not belonging to the tower of
scars, which will disappear in larger system sizes. For all the computation in Fig. S4, the maximum bond dimensions χmax are
set to be 30 ∼ 60 and the iteration steps are about 100. The above results once again demonstrate the power of our DMRG-S
algorithm, which is confirmed to be a universal method applicable to generic many-body Hamiltonians.

III. MORE NUMERICAL RESULTS

In this section, we present more numerical results and analyses about the PXP model and the deformed PXP model, including
the entanglement entropy of the scar-tower states, the eigenstate orders on the scar-tower states, the hybridizations between
scarred and thermal eigenstates, and more observable dynamics within the scarred subspace.
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FIG. S4. Testing the robustness of the DMRG-S algorithm for random initial ξ0 and random initial states |ψ0〉. (a) and (b) By using random
ξ0, the final converged energy E as a function of ξ0 for the L = 16 PXP model and the L = 12 spin-1 XY model. The plateaus correspond
to the eigenvalues of scarred eigenstates. ξ0 ∈ [−10, 0] with an interval 0.05 and |ψ0〉 = |Z2〉 for (a). ξ0 ∈ [−12, 0] with an interval 0.1 and
|ψ0〉 = |φ0〉 for (b). (c) and (d) By using random ξ0 and random initial states |ψ0〉, the energy variance σ2

H as a function of the converged
energy E for the L = 16 PXP model and the L = 12 spin-1 XY model. For each ξ0 [the same choices as (a) and (b)], we start the DMRG-S
iterations from 10 random product states. The red dots mark the MPSs converged to the tower of scarred eigenstates.

A. Entanglement Entropy and |Z2〉 Overlap

In Fig. S5(a), we compare the energy variance of the 41 scarred eigenstates with non-positive energy for L = 80 PXP model
obtained via DMRG-S and the forward scattering approximation (FSA) [27]. The average σ2

H obtained by DMRG-S is less
than 10−6, much smaller than 10−1 by the FSA. In Fig. 2(a) of the main text, we have used the |Z2〉 overlap to validate the
obtained MPSs for the PXP model. Here, in Fig. S5(b) and (d) we further display their bipartite entanglement entropy S for the
PXP model and deformed PXP model. We can observe that: First, the energy and bipartite entanglement entropy of the ground
state remain constant with increasing system sizes. The ground state is always gapped and satisfies the entanglement area law.
Second, the entanglement entropy of other scar-tower states grows as the system size increases. And for a particular L, S of
the scarred eigenstates increases with the energy E and reaches the maximum at E = 0. Third, S of each scar in the deformed
PXP model is relatively larger than that of the corresponding scar in the PXP model. Note that, as L becomes larger, the curves
of entanglement entropy collapse a little bit near E = 0, which indicates that larger bond dimensions are needed to capture the
entanglement property of scarred eigenstates near E = 0.

We also display the |Z2〉 overlap for the tower of scars in the deformed PXP model in Fig. S5(c). Compared to Fig. 2(a)
of the main text, we find that the |Z2〉 overlap curves for both models tend to bend downward when the system size increases,
whereas for the PXP model the curves shift downward more apparently. That mainly leads to the exponential decay of the total
|Z2〉 overlap illustrated in Fig. 2(b) of the main text.
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FIG. S5. (a) Energy variance of the 41 scarred eigenstates with non-positive energy for the L = 80 PXP model. The blue (red) bar results are
obtained via DMRG-S (forward scattering approximation (FSA) [27]). (b) Bipartite entanglement entropy S of each scarred eigenstate in the
PXP model for different system sizes. (c) Overlap between |Z2〉 and each scarred eigenstate of the deformed PXP model for different system
sizes. (d) Bipartite entanglement entropy of each scarred eigenstate in the deformed PXP model for different system sizes. For both models
we use the periodic boundary condition.

For the calculations of the tower of scars in the deformed PXP model, we set the maximum bond dimension as χmax = 400,
smaller that χmax = 1200 for the PXP model, mainly because the bond dimension of the MPO (H − ξ0) for the deformed PXP
model is 14, larger than 4 for the PXP model.

B. Eigenstate Orders

In Fig. S6(a), we demonstrate the off-diagonal long-range order 〈S+
π S
−
π 〉/L2 upon the tower of scars {|Ψn〉}Ln=0 to verify

that the scarred eigenstates contain a finite density of π-magnons in the thermodynamic limit [34]. The π-magnon creation and
annihilation operators S±π are defined as

S±π =
Zπ ∓ 2iYπ

2
, (S42)

where Zπ =
∑
j(−1)jZj and Yπ =

∑
j(−1)jPj−1YjPj+1. By accessing system sizes beyond the ED regime , we confirm the

existence of eigenstate orders on the scarred eigenstates, which are strictly forbidden by the eigenstate thermalization hypothesis
at infinite temperature. Note that 〈S+

π S
−
π 〉/L2 for the n = L/2 and n = L/2− 1 scars of the deformed PXP model overlap with

each other at large L, which is consistent with the π-magnon condensation interpretation since these two scars differ by only one
π-magnon and have the same density in the thermodynamic limit.

Another natural consequence of the π-magnon condensation interpretation is that scarred eigenstates possess long-range
connected correlations in space and time. In particular for the spatial correlation functions, limr→∞〈ZiZi+r〉c,scar ∼ (−1)r ×
const, where 〈ZiZi+r〉c = 〈ZiZi+r〉 − 〈Zi〉〈Zi+r〉 [34]. In Fig. S6(b) and (c) we demonstrate the spatial eigenstate orders on
the scarred eigenstates of the PXP and deformed PXP model, with the system size L = 80 beyond the ED regime. The spatial
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FIG. S6. (a) Finite-size scaling for the π-magnon off-diagonal long-range order [34] of scarred eigenstates in the (deformed) PXP model. The
dashed vertical line separates data points obtained by DMRG-S or ED. (b) The connected correlations 〈ZiZi+r〉c for the E ≈ −1.33 scarred
eigenstate and the ground state of the PXP model. L = 80. (c) 〈ZiZi+r〉c for the E = 0 scar (at the middle of the spectrum) and the ground
state of the deformed PXP model. L = 80.

correlation functions indeed exhibit long-range orders for the highly excited scarred eigenstates, whereas vanish on the ground
state due to its zero π-magnon density.

C. Hybridizations between Scarred and Thermal Eigenstates

For the PXP model, previous diagonalization calculations of the entanglement entropy and the π-magnon off-diagonal long-
range order for the scar-tower states sometimes show nonmonotonic scaling behaviors with the system size (see the outliers in
Fig. 8 of Ref. [28] and Fig. 7 of Ref. [34]). These outliers can be attributed to accidental hybridizations, or eigenstate resonances,
between the scarred eigenstates and thermal eigenstates nearby in energy. In Fig. S7 we carefully address that these hybridized
scarred eigenstates will not affect the physical conclusions drawn in the main text.

First, similar to Fig. 8 of Ref. [28], in Fig. S7(a) we compare the bipartite entanglement entropy of the E1 ≈ −1.33
(n = L/2 − 1) and E2 ≈ −2.66 (n = L/2 − 2) scars obtained by ED and DMRG-S for different system sizes. When
the hybridizations happen, the DMRG-S method captures the low-entanglement part of hybridized scarred eigenstates. This is
intrinsically restricted by the filter property of the maximum bond dimension.

Nevertheless, the above low-entanglement bias does not affect our conclusions about the Néel state revivals in the PXP model:
For any accessible system sizes by ED (L ≤ 32), we observe that the |Z2〉 overlaps of hybridized scarred eigenstates are all
smaller than the smooth values estimated by DMRG-S [Fig. S7(b)]. So the total |Z2〉 overlap of all the scar-tower states in the
PXP model still decays exponentially with the system size even considering the hybridizations.

As for the observable dynamics computed in the main text, recall that we evaluated the dynamics of the staggered magneti-
zation density within the scarred subspace constructed by DMRG-S: ∆(t) = 〈Z2|PeiHt∆e−iHtP|Z2〉 ≈

∑L
n,m=0 e

i(En−Em)t

〈Z2|Ψn〉〈Ψn|∆|Ψm〉〈Ψm|Z2〉, where P =
∑L
n=0 |Ψn〉 〈Ψn|, {En}Ln=0 and {|Ψn〉}Ln=0 are scarred eigenenergies and eigen-

states obtained via DMRG-S. In Fig. 2(e) of the main text and Fig. S7(c), we explicitly benchmark the ∆(t) dynamics cal-
culated by using DMRG-S eigenenergies and by exact Hamiltonian evolution, for the L = 20 (without hybridized scars) and
L = 28, 30 (with hybridized scars) PXP model, all of which show good agreement. Since by its definition the hybridization can
not alter the eigenenergies of scars drastically, as long as the eigenenergy variances are small enough for the DMRG-S states
(e−iHt |Ψn〉 ≈ e−iEnt |Ψn〉), ∆(t) computed by using the DMRG-S eigenenergies should agree with the exact results.

Besides, we demonstrate that the hybridizations between scarred and thermal eigenstates are just some accidental effects. The
hybridizations are not robust and can be removed by some tiny perturbations. As shown in Fig. S7(d), we compute the state
fidelity between the scars obtained by ED and DMRG-S for L = 30, where there are three hybridized outliers (blue dots).
The fidelities of normal scars are almost one (with typical infidelities about 10−4), while the fidelities for the three hybridized
outliers are around 0.8 to 0.95. After we add a tiny z-direction magnetic field term Bz

∑L
i=1 Zi to the PXP Hamiltonian, the

three outliers disappear (red dots), whereas the scars obtained by DMRG-S remain stable (purple dots).
We also benchmark the entanglement entropy [Fig. S7(e)] and the π-magnon off-diagonal long-range order [Fig. S7(f)] of

scars for the unperturbed and slightly perturbed cases by ED or DMRG-S, which display consistent results with Fig. S7(d). The
states extracted by DMRG-S are more physical and more consistent with the defining features of many-body scars (robust to
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FIG. S7. Hybridizations between scarred and thermal eigenstates in the PXP model. (a) The bipartite entanglement entropy S of the E1 ≈
−1.33 and E2 ≈ −2.66 scars obtained by ED and DMRG-S for different system sizes. The dashed line is the logarithmic fitting with
S = 0.70 log10(L) + 0.70. (b) The overlap between |Z2〉 and the E1, E2 scars obtained by ED and DMRG-S for different system sizes. (c)
The ∆(t) dynamics computed by using the DMRG-S eigenenergies {En}Ln=0 and by exact Hamiltonian evolution. (d) The fidelity f between
the scars for the Bz = 0 case obtained by DMRG-S and the scars for the other three cases (Bz = 0 obtained by ED, Bz = −5.1 × 10−3

obtained by ED and Bz = −5.1 × 10−3 obtained by DMRG-S). Here L = 30 and we plot the results for scars with negative energy
(n = 0, 1, · · · , 14). (e) The bipartite entanglement entropy of the scar-tower states for the above four cases. (f) The π-magnon off-diagonal
long-range order of scars for the above four cases.

perturbations, smaller entanglement entropy, larger |Z2〉 overlap, more like a π-magnon condensate). Note that we choose the
value Bz = −5.1 × 10−3 because it shows good performance to remove hybridizations for all the three outliers of L = 30.
Other Bz values and other types of perturbations could also mitigate the hybridization effect to some extent.

D. Observable Dynamics within the Scarred Subspace

In addition to the ∆(t) dynamics shown in Fig. 2(c) and (d) of the main text, in Fig. S8 we calculate observable dynamics of
the ZiZi+1 correlation evaluated upon |Z2〉 projected into the scarred subspace constructed by DMRG-S (P =

∑
n |Ψn〉〈Ψn|).

|Φ(t)〉 = e−iHtP|Z2〉 and we apply the DMRG-S eigenenergies to compute its dynamics. Similar to ∆(t), we can observe
an obvious envelope decay of the oscillations for the PXP model as the system size increases, while the oscillations for the
deformed PXP model remain nearly perfect when L increases.

One interesting observation from Fig. 2(c) of the main text and Fig. S8(a) is that for the PXP model when the system
size increases, the envelope of oscillations, despite becoming smaller overall, decays slower with the evolution time. This
phenomenon indicates that the stability of oscillations actually increases with the system size. As mentioned in the main text, we
define the deformed Z2 state as |Z̃2〉 = P |Z2〉 /

√
〈Z2|P|Z2〉. In addition to the observable dynamics ∆(t) shown in Fig. 2(e)

of the main text, we calculate the Loschmidt echo | 〈Z̃2| e−iHt |Z̃2〉 |2 by using the DMRG-S eigenenergies. As shown in Fig.
S9(a), recurrence peaks of the Loschmidt echo are even higher for larger system sizes, implying that periodic revivals of |Z̃2〉
are stable in the thermodynamic limit. Note that compared to the product state |Z2〉, |Z̃2〉 still possesses modest entanglement,
which scales logarithmically with the system size [Fig. S9(b)].
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FIG. S8. Dynamics of the correlation function 〈ZiZi+1〉 evaluated upon |Z2〉 projected into the scarred subspace constructed by DMRG-S
(P =

∑
n |Ψn〉〈Ψn|), for the PXP model (a) and the deformed PXP model (b). |Φ(t)〉 = e−iHtP|Z2〉, i = 1.
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FIG. S9. (a) Loschmidt echo of the deformed Z2 state |Z̃2〉 for the PXP model. (b) The bipartite entanglement entropy of |Z̃2〉 and |ΨLE〉 as
a function of the system size. The dashed lines are logarithmic fittings with S = 1.66 log10(L)− 1.7 for |Z̃2〉 and S = 0.87 log10(L)− 0.76
for |ΨLE〉. (c) Observable dynamics ∆(t) of the “least entangled” state |ΨLE〉 for the PXP model.

Moreover, starting from |Z̃2〉, we utilize the algorithm in Ref. [54, 78] (exponentiating the singular values and projecting
back to the scarred subspace) to reduce its bipartite entanglement entropy and find the “least entangled” state |ΨLE〉. During
the optimization we require |ΨLE〉 to have symmetric |Z2〉 overlap |〈Z2|Ψn〉|2 with respect to E = 0. As shown in Fig. S9(b),
the entanglement entropy of the optimized |ΨLE〉 also scales logarithmically with the system size, yet with a smaller slope than
that of |Z̃2〉. Oscillations in the observable dynamics 〈ΨLE|eiHt∆e−iHt|ΨLE〉 also become more stable for larger system sizes
[Fig. S9(c)].

These results imply that the stable periodic revival dynamics inhere within the scarred subspace of the PXP Hamiltonian,
while the exponential decay of 〈Z2|P|Z2〉 leads to the envelope decay observed previously. One needs to take other modestly
entangled initial states like |Z̃2〉 or |ΨLE〉 to exhibit that. The above analyses could provide another perspective to explain why
quasilocal deformations of the original PXP Hamiltonian are able to make the revivals virtually perfect [16].
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