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Long-range effects induce some interesting behavior and considered as a gateway to understand the
non-local behavior in the quantum systems. Especially, the long-range topological models became a
platform for the realization of new quasi-particles, which are believed to be potential candidates for
the topological qubits. In this work, we consider non-Hermitian Su-Schriffer-Heeger (SSH) model and
discuss the interplay of non-Hermiticity and long-range effects. We use the approach of momentum
space characterization, critical exponents and curvature renormalization group (CRG) method to
understand the aspects of interplay. The longer-range (finite neighbors) effect produces higher
winding numbers, where we observe a staircase of transitions among the even-even and odd-odd
winding numbers which depends on the number of interacting neighbors. Here we also highlight
the effect of multi-criticality in the system and show that they belong to a different universality
class. The interplay of long-range (infinite neighbors) effect and non-Hermiticity produces fractional
topological invariants, and we analyze them from the behavior of pseudo-spin vectors. We also
determine the long-range and short-range limit of the model through universality class of critical
exponents. Our work mainly showcases that how the study of criticality in topological system is
interesting in exploring the interplay of non-Hermiticity and long-range effects.

I. INTRODUCTION

Topological state of matter is the milestone in the
area of condensed matter, both from the perspective of
theory and experiments1–6. The transitions among the
topological phases can not be apprehended by the con-
ventional Landau theory of symmetry breaking, as they
do not possess an order parameter7–10. The topological
phases possess localized edge modes which are protected
by certain symmetries and are robust against the exter-
nal perturbations11–13. Topological invariant is the most
accepted tool to differentiate the index of the topological
phases, where topological invariant is equal to the num-
ber of localized edge modes14. Even though topological
invariant can not be considered as local order parameter,
it has a well defined form in gapped phases and ill-defined
at criticality. The edge mode contains a topological lo-
calization length, which diverges as the system drives to-
wards criticality15–27. This diverging nature gives the
idea of explaining the criticality through set of critical
exponents and renormalization group methods28–31. Es-
pecially renormalization group (RG) method can be very
helpful during the topological transitions where there are
actually no order parameters32.
Introducing non-Hermiticity in topological systems
opened a new doorway towards the unexplored parts of
novel phases of matter33. The works in non-Hermitian
topological systems from the perspective of bulk-
boundary correspondence34, loss-gain35, dissipation36,
symmetry37–40, skin effect41 and critical scaling42 gained
a lot of attention in recent days. The realization
of non-Hermitian models in experimental setups pro-
vided new understandings in optical systems43,44, elec-
tric circuits45,46 and ultra-cold atomic gases47,48. The
longer-range effects in non-Hermitian topological system
created some fractional topological phases including non

metallic phases49,50, which gained attention both theo-
retically and experimentally49,51,52.
The longer-range models are important milestones in
topological systems due to the formation of more than
one edge modes and formation of multi-critical points30.
The increase in the number of coupling neighbor gen-
erates higher winding numbers (WNs). Furthermore,
the increase in the decay parameter reduces the sys-
tem towards short-range through staircase of topologi-
cal transition30. Multi-criticality is an interesting phe-
nomenon which can exhibit a combined behavior of
two or more different criticalities30,31,53. In Hermi-
tian systems, multi-critical point witnesses transition be-
tween different (gapped-gapped, gapless-gapless, gapped-
gapless) phases30. In addition, under some cases, multi-
critical points have been recognized as the point where
Lorentz invariance violates31. Also, there are observa-
tions, where the introduction of non-Hermiticity violates
multi-critical effects36.
On the other hand, long-range effects in condensed mat-
ter has a long history and had been an area of curios-
ity over the decades54. Especially, long-range effects in
topological systems been used to understand the non-
local behavior of the fermions55. Long-range topological
models exhibit the emergence of massive edge modes56,
topological transition without gap closing30,56, area law
violation for Von Neumann entropy and breaking of
Lorentz invariance57. The long-range models are also
important as they can be realized in the experiment se-
tups of trapped ions58–61, multi-mode cavities62, mag-
netic impurities63,64 and simulated circuits65. Even in
two dimensional models, long-range effects has enhanced
the topological behaviors66. The massive edge modes
has been predicted to be a potential qubit for topological
computation67. The extension of long-range effects to-
wards the non-Hermitian systems naturally triggers the
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curiosity to explore the interplay among them. Here our
motivation is as follows.

• To understand the behavior of non-Hermitian sys-
tem with increased neighboring coupling.

• To explore the multi-critical effects in non-
Hermitian systems and to differentiate the multi-
criticality from normal criticalities through univer-
sality class and curvature renormalization group
(CRG).

• To understand the interplay of non-Hermiticity and
long-range effect in a topological system, thus to
understand the non-local behaviors of the fermions
in these systems.

• The interface of short-range and long-range limit is
an interesting topic of discussion. There are many
arguments to decide the short-range limit based
on entanglement entropy56, conformal invariance57

and bulk-edge correspondence68. Here we give an
approach of universality class of critical exponents
to decide the short-range limit in a non-Hermitian
long-range system.

With these motivations, we present the manuscript in fol-
lowing pattern. In Sec.II we introduce the model Hamil-
tonian and explain the momentum space properties. This
section includes the study of universality class of critical
exponents, CRG method and behavior of multi-critical
points in longer-range model. In Sec.III, we study on
long-range models with winding vector analysis, univer-
sality class, higher order quantum transitions and inter-
play among non-Hermiticity and long-range effect. In
Sec.IV we give outlook and experimental possibility of
our work and conclude in Sec.V.

II. MODEL HAMILTONIAN AND PROPERTIES

We consider chiral non-Hermitian 1D Su-Schriffer-
Heeger (SSH) chain with long-range interaction. Here,
the non-Hermiticity is due to the imbalanced intracell
hoppings, i.e., the hopping within the lattice i (between
the sub-lattice Ai, Bi) is a real non-reciprocal quantity,
which violates the Hermiticity in the Hamiltonian50.

H =

L−l∑
j=1

(t− δ)c†j,acj,b + (t+ δ)c†j,bcj,a

+

L−l∑
j=1

r∑
l=1

t′

lα
(c†j+l,acj,b + c†j,bcj+l,a), (1)

where t′

lα is the intercell long-range hopping with l as site
index and α as decay parameter respectively. The imbal-
ance in the intracell coupling is introduced through the
non-zero term δ, which breaks the Hermiticity and leads
to non-Hermitian skin effect41,50. The term L is the sys-
tem size where the intercell coupling occurs between sites

i and i+ l. The term l can take the upper limit r, where
r can be infinite. In such cases, it is called long-range
systems with infinite number of coupling neighbors. On
the other hand, if r is finite, then it is longer-range with
finite number of coupling neighbors. In addition to these
factors, as α → ∞, the model reduces to short-range
version irrespective of number of interacting neighbors.
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FIG. 1: (Color online) Schematic representation of non-
Hermitian long-range SSH chain with open boundary
condition. Colored rectangles represent the unit cell, t+δ
and t−δ are the forward and backward hopping (intracell
hopping) between sub-lattice sites A and B respectively.
Here t′ is the intercell hopping (short-range limit) and
t′

rα is the longer-range hopping parameter.

After the Fourier transformation, BdG Hamiltonian
can be written as

HBdG(k) =

(
0 χx(k) + iχy(k)

χx(k)− iχy(k) 0

)
. (2)

With the use of Anderson pseudo-spin approach69,70, we
write the BdG Hamiltonian in the pseudo-spin basis as

(3)HBdG(k) = χx(k) ~σx + χy(k) ~σy,

where σx, σy are the Pauli matrices and the correspond-
ing coefficients,

χx(k) = t+ t′
r∑
l=1

cos(kl)

lα
,

χy(k) = t′
r∑
l=1

sin(kl)

lα
− iδ. (4)

It is to be noted that for r → ∞ the series involv-
ing cos(kl)

lα and sin(kl)
lβ

terms give rise to polylogarithmic

functions14,56. Energy dispersion is given by16,29

E(k,M) = ±
√

(χz(k))2 + (χy(k))2, (5)

=

√
(t′)2 + t2 − δ2 + 2tt′

cos(lk)

lα
+ i2δt′

sin(lk)

lα
.

Due to the non-Hermiticity, the Eq 5 gives the complex
energy spectrum for finite δ50. At the phase boundary
the imaginary part vanishes, such that the criticality con-
dition is monitored by the real part. For a non-Hermitian
system, the Fermi sea level is contributed by the real part,
while the imaginary part signals the decoherence (infor-
mation leak to the environment)36,50.



3

A. Winding number in non-Hermitian systems

For topological conditions, the winding vectors form a
closed loop in the parameter space, due to the period-
icity in the boundary condition. In Hermitian systems,
when the parameter k runs from −π to π, which gives
topological invariant9,

W =

(
1

2π

)∫ π

−π

χx∂kχy − χy∂kχx
χ2
x + χ2

y

dk. (6)

The imbalance in the intercell hopping induces non-
Hermiticity in the Hamiltonian which results in the com-
plex topological angle (φ), i.e.,

φ = φre + iφim, (7)

where the imaginary parts do not contributes to the argu-
ment of the topological angle50. But the imaginary part
creates two exceptional points (with topological angles
φ1, φ2) instead of single Dirac (gap closing) point. The
angles φ1 and φ2 are real and they produce the winding
number as50

W =
1

2

(
1

2π

)
(

∮
∂kφ1dk +

∮
∂kφ2dk), (8)

where φ1 = tan−1
(
χrey (k)+χimx (k)

χrex (k)−χimy (k)

)
and φ2 =

tan−1
(
χrey (k)−χimx (k)

χrex (k)+χimy (k)

)
.(For detailed derivation, refer Ap-

pendix A)
Here, we initially consider the simplest longer-range
model with two neighbor couplings. We gradually in-
crease the number of neighbor couplings to get fur-
ther longer-range models and to analyze the transitions
among them. At the end, we consider infinite couplings
to understand the interplay of non-Hermiticity and long-
range behavior.

B. Critical exponents and universality class

In the vicinity of phase transition point, the physical
quantities shows the diverging nature, which can be
quantified by the critical exponents15,71. The set of crit-
ical exponents constitutes the universality class, which
effectively categorizes the phase transitions based on
their behavior. Here we analyze a few critical exponents
(relevant to zero temperature TQPTs) and analyze their
behavior.

The dynamical critical exponent (z) defines the na-
ture of dispersion and can be calculated by expanding
Eq. 5 around gap closing point k0

29. i.e.,

E(k,M) =
√
|δg|2+A1k +A2k2 +A4k4 + ..., (9)

where the dominating terms among A1, A2, A4 are real
numbers which decides the nature of dispersion and cor-
responding z.

For the simplest longer-range model with two neighbors,
the winding vectors are given by

χx = t+ cos(k) +
cos(2k)

2α
,

χy = sin(k) +
sin(2k)

2α
− iδ, (10)

with t′ = 1. The criticality occurs at three values of
k, i.e., k = 0, π and cos−1(−2α−1) which results in six
exceptional points respectively. Thus the model possesses
six TQCLs

k = 0 =⇒ t = − 1

2α
+ δ − 1, t = − 1

2α
− δ − 1,

k = π =⇒ t = − 1

2α
+ δ + 1, t = − 1

2α
− δ + 1,

k = cos−1(−2α−1) =⇒ t =
1

2α
+ δ, t =

1

2α
− δ.

with red, blue, green, black, magenta and gray respec-
tively (Fig 2 a).
Here we observe two different spectrum of real and abso-
lute energy dispersion with different critical exponents.
Due to the non Hermiticity, the energy dispersion need
not to be symmetric around the gap closing values,
which may result as different exponents around a same
point42. In our study, both real and absolute spectrum
yield z = 1/2 for all TQCLs except at multi-criticality
(Fig 3 a). At multi-criticality the real spectrum yield
z = 2, 1 and 0.5 while (Fig 3 b)absolute spectrum yield
z = 1, 1 and 0.5 for MC1, MC2 and MC3 respectively
(absolute spectrum is not showed here).
The longer-range non-Hermitian SSH model contains
both fractional and integer WNs, where the WN is given
by Eq. 8, which physically means the encircling of the
winding vectors around the origin of the pseudo-spin
parameter space. Due to non-Hermiticity, there occurs
two exceptional points instead of single Dirac point
which act as center of pseudo-spin space. If the winding
vectors encircle both the exceptional points equal times,
then the WN is integer. If the winding vectors encircle
either one of the exceptional point, or unequal number
of time, then there occur fractional WN.
In Fig. 2 b, when winding vectors encircle both the EPs
once (twice), we get W = 1(W = 2) topological phase
which is equivalent to Hermitian version of topological
phases. If the winding vectors encircle either one of the
exceptional point, it gives W = 1/2 and encircling first
(second) EP twice (once) while other only once (twice)
give rise to W = 3/2, which do not have any Hermitian
counterpart. Under some special cases, winding vectors
encircle one of the exceptional point even number
of times and do not encircles the other, which also
results in the integer WN. With the increasing decay
parameter, the longer-range reduces to its short-range
version at α = 1 through the intersection of TQCLs i.e.,
multi-critical points.

Localization critical exponent (ν): In a topological
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system, the zero energy modes are localized at the edges
and protected by the bulk Bloch states.
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FIG. 2: (Color online) (a) Phase diagram for non-
Hermitian longer-range SSH chain with two interacting
neighbors. Here the red, blue, green, black, magenta
and brown lines represent six TQCLs respectively. The
points MC1, MC2 and MC3 correspond to first, sec-
ond and third multi-critical points respectively. The po-
sitions a, b, c, d and e represent the topological regions
W = 0, 1/2, 1, 3/2 and W = 2 respectively. (b) Varia-
tion of winding number against parameter t. (c) Energy
dispersion (real part) for TQCLs. (d) Energy disper-
sion (real part) for multi-critical points.(e) Energy dis-
persion (imaginary part) for TQCLs. (f) Energy disper-
sion (imaginary part) for multi-critical points.

As a simple example, we consider Eq.1 with two neigh-
bor couplings (r = 2). For a semi-infinite system with
j = 1, 2, 3..., with wave function ψn, the energy relation
yields50

(t+ δ)ψa,j + t′ψa,j+1 +
t′

2α
ψa,j+2 = Enψb,j

(t− δ)ψb,j + t′ψb,j−1 +
t′

2α
ψb,j−2 = Enψa,j . (11)

We construct the boundary condition with zero energy
state (E = 0) as

(t+ δ)ψa,j + t′ψa,j+1 +
t′

2α
ψa,j+2 = 0

(t− δ)ψb,j + t′ψb,j−1 +
t′

2α
ψb,j−2 = 0. (12)

Here the boundary condition ψb,j = 0 is true for every n.
The ratio of nth localized zero eigenstate to that of first
is given by15,71

δψn =
ψn(E = 0)

ψ1(E = 0)
=

∣∣∣∣ δg

A1,2,4

∣∣∣∣n−1 . (13)

These states are ensured by the condition eik0 =

−
(

δg
A1,2,4

)
. Thus the k0 is a complex number with

k0 = i
(

δg
A1,2,4

)
, where A1,2,4 are the real numbers and

dominating term among them decides the value of k0.
With the system size n, the localization of the eigenstates
is given by,

δψn = e
−(n−1)

ξ , (14)

where ξ is the localization length with ξ = An
|δg|ν =⇒

ξ = ξ0|δg|−ν , with ξ0 as the natural length of the sys-
tem. Here An is the dominating term in Eq. 9 and ν
is the localization critical exponent. In non-Hermitian
systems, the edge localization is highly influenced by the
skin-effect which decides the bulk-edge correspondence.
In our model, we get ν = 1 for both TQCLs and multi-
critical points (Fig.3 e,f).
To understand the number of localized edge modes at
each end, we write Eq.12 as

(t+ δ) + t′λ+
t′

2α
λ2 = 0,

(t− δ) + t′λ′ +
t′

2α
λ′2 = 0. (15)

with λ =
ψa,j+1

ψa,j
and λ′ =

ψb,j+1

ψb,j
, corresponding to the

left and right localized modes respectively. The quadratic
form gives two roots

λ± =
−t′ ±

√
(t′)2 − 4( t

′

2α )(t± δ)
21−α(t′)

. (16)

The topological limit forms a unit circle, where the num-
ber of solutions less than unity represent the number of
localized modes. The roots of λ and λ′ represent the left
and right localized modes respectively. The combination
of these two solution constitutes the phase diagram as
mentioned in Ref.50.

Crossover critical exponent (y): The scaling behav-
ior near the TQCL is given by42,

E(k → k0,M = Mc) ∝ kz,
E(k = k0,M→Mc) ∝ |∂g|y , (17)

where y is called crossover or gap critical exponent with
y = zν. This exponent gives the relation between z and ν
and can be calculated in the limit E(k0,M→Mc). The
energy gap at criticality behaves like ∆ ∝ |δg|zν , where
δg is the distance from the criticality. In our case, both
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real and absolute spectrum give y = 0.5 for TQCLs as
well as for multi-critical points (Fig. 3 c,d).
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FIG. 3: (Color online) Critical exponents through non-
linear curve fitting method with the parameter space
t′ = 1 and δ = 0.2 respectively. The red, blue, green
and black colors in left panel correspond to first (α =
1.5, tc = −1.15), second (1.5,−1.55), third (1.5, 1.84) and
fourth (1.5, 0.44) TQCLs respectively. The red, blue and
green colors in right panel correspond to first (1,0.7),
second (1,0.3) and third (0.53,0.5) multi-critical points
respectively.(a-b) Dynamical critical exponent (z) (c-d)
Crossover critical exponent (y) (e-f) Localization critical
exponent (ν). (g-h) Susceptibility critical exponent (γ)

Canonical critical exponent (α∗): The concept of ther-
modynamic grand potential (Ω) helps to understand
the order of phase transition and corresponding criti-
cal exponent28,42. The divergence or non-analyticity in
the derivative of the grand potential signals the order of
the corresponding transition. For a system with peri-
odic boundary condition at zero temperature, the grand
potential density is given by,

ω =
Ω

N
= −

∫ π

−π
E(k,M)dk, (18)

where N is the system size. The above integral is conver-

gent for all positive α, which makes the grand potential
as independent of system size in this limit. The order of
the transition can be calculated through the derivative
of the grand potential. The transition can be nth order
if the nth derivative of grand potential shows a cusp or
spike against the parameter and the (n+1)th derivative
shows a discontinuity72,73.
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FIG. 4: (Color online) Derivatives of ground state en-
ergy for k = π critical line at different values of α.
(a1-a3) Normal critical lines showing cusp for second or-
der derivatives. (b1-b3) Behavior of multi-critical points,
where MC1 and MC2 show cusp for second and first order
derivatives respectively.

In Fig. 4, we study k = π critical line (t=1- 1
2α ± δ) un-

der two different configurations. For α = 0.1 the second
derivative with respect to t shows a cusp at criticality
followed by a discontinuous third order derivative. At
multi-criticality (α = 1), the first order derivative shows
cusp at MC2 and a continuous curve at MC2. The second
order derivative shows discontinuity at MC2 and a cusp
at MC1 respectively. This observation signals that, the
multi-criticalities MC1 and MC2 exhibit different nature
of transitions. To understand this in detail we study the
hyperscaling relation.
Here, the grand potential (ω) contains two parts, i.e., reg-
ular and singular parts. The singular part of the grand
potential density scales as42

ωsingular ∝ |g|2−α
∗
, (19)

where α∗ is the canonical critical exponent and 2 − α∗
signals the order of transition. These critical exponents
are connected by the relations called scaling laws which
governs the phase transitions. One such relation is the
Josephson’s hyperscaling relation given by71

2− α∗ = ν(z + d), (20)
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where z+d is the effective dimension. This law connects
the dimensionality, dynamical and correlation critical ex-
ponents with order of transition through hyper-scaling
relation. Thus, through hyper-scaling relation (Eq.20),

2− α∗ = 1(1/2 + 1) = 3/2 for TQCLs,

2− α∗ = 1(2 + 1) = 3 for MC1,

2− α∗ = 1(1 + 1) = 2 for MC2,

2− α∗ = 1(1/2 + 1) = 3/2 for MC3. (21)

which clearly signals the difference between the order of
transitions among normal criticality and multi-criticality.
The fraction order of transitions are the interesting ob-
servations in non-Hermitian systems, which are differ-
ent than their corresponding Hermitian counterparts. In
Ref.42, the authors have tried to analyze this issue by
scaling the singular part with the factor ξ ∝ |δg|−ν . As
the grand potential has a contribution from system size
L, every distance is divided by the correlation length.
This has showed that, for the lower range of δg the sin-
gular part of grand potential scales as δg1/2, whereas for
the higher range it scales as δg1. This is the reason be-
hind the difficulty to decide whether the transitions are
first order or second order. However, in our model also we
find similar observation at normal criticality, but multi-
criticality remains interesting and merits more attention
in this regard.

C. Criticality and renormalization group approach

Due to the non-Hermitian effects, the TQPT occurs
through the exceptional points at (0, χimy ) and (0,−χimy )
instead of the Dirac points. The WN is given by Eq. 8,
with

F1(k,M) = ∂kφ1 =
(χrex − χimy )∂kχ

re
y − χrey ∂k(χrex − χimy )

(χrex − χimy )2 + (χrey )2
,

F2(k,M) = ∂kφ2 =
(χrex + χimy )∂kχ

re
y − χrey ∂k(χrex + χimy )

(χrex + χimy )2 + (χrey )2
.

(22)

Here we deal with an interesting quantity called curva-
ture function (CF). CF is the quantity whose integral
over the Brillouin zone gives the topological invariant,
like Berry connection, Berry curvature and Pfaffian wave
function16,31. In 1D models, we consider Berry connec-
tion as our CF which is an gauge dependent quantity.
The CF exhibits non-analyticity at the criticality and
yields ill-defined topological invariant at these points. In
case of non-Hermitian systems, exceptional points are the
points of non-analyticity. Based on the behavior in the
vicinity of exceptional points, CF can be classified as fol-
lowing.

1. High symmetry points (HSP): When the CF ex-
hibits a symmetric nature around the gap clos-
ing point k0, i.e.,F (k0 + δk,M) = F (k0 − δk,M)

is called a HSP. Here the Lorentzian peak is is
symmetric under condition k0 = −k0. The CF
diverges as one approach k0 from one direction
M → M+

c and flips the direction as one moves
away M→M−c from k0 with same diverging curve.
This can be represented as fixed peak with varying
height (Fig. 5 a1,b1).

2. Non-High Symmetry points (non-HSP): In this
case, as one approaches criticality, there occurs di-
verging peak with different k0 values. Here one can
observe the flipping of peaks but the Lorentzian
peak keep moving along the BZ (Fig. 5 a2,b2).

3. Fixed point (FP): Generally this kind of behavior
is observed at the multi-criticality where HSP and
non-HSP meet together30,31,53. Here the CF shows
a diverging peak as M → M+

c from one side, and
at k0 we observe a peak with diminished height.
As we go away M →M−c we observe a peak with
constant height with increasing width. The multi-
critical points MC1 and MC2 show the FP nature
(Fig. 5 a3,b3).
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FIG. 5: (Color online) Behavior of curvature function
around HSP, non-HSP and fixed points respectively. The
left panels represent criticality t = 1− 1

2α − δ (F1(k,M)

parameter space) and the right represent t = 1− 1
2α + δ

(F2(k,M) parameter space) respectively.

Susceptibility critical exponent (γ): Here the CF exhibits
non-analytic property at the exceptional points, which
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gives the idea of critical scaling near these points16. In
present case, we consider Berry connection as our CF,
which is a gauge dependent quantity. Without loss of
generality, we write CF in Ornstein-Zernike form as,

F (k0 + δk,M) =
F (k0,M)

1± ξ2δk2 + ξ4δk4
, (23)

where k0 is a gap closing point, δk is a small deviation
from gap closing and ξ is the characteristic scale respec-
tively. At k = k0 and M→M, the CF diverges signaling
a TQPT where the characteristic length vanishes.

limM→M+
c
F (k0,M) = −limM→M−c

F (k0,M) = ±∞.
(24)

and CF exhibiting an interesting nature

F (k0,M
′) = F (k0 + δk,M), (25)

which gives the idea of renormalization group study near
criticality.

(a1) F1(k,M), k=0 (a2) F1(k,M), k=π

(b2) F2(k,M), k=π(b1) F2(k,M), k=0

FIG. 6: (Color online) CRG flow diagram for non-
Hermitian longer-range SSH chain with two interacting
neighbors. (a) Flow for F1(k,M) at k = 0. (a) Flow
for F1(k,M) at k = π. (a) Flow for F2(k,M) at k = 0.
(a) Flow for F2(k,M) at k = π. Here the colored lines
represent critical and fixed configurations. For detailed
derivation, refer AppendixB.

The divergence of CF and characteristic length gives
the critical exponent F (k0,M) ∝ |M − Mc|−γ and
ξ(k0,M) ∝ |M −Mc|−ν , where γ and ν are the suscep-
tibility and characteristic critical exponents respectively,
where the susceptibility exponent explains the quality of
the transition to be topological. Here we get γ = 1 for
both TQCLs and multi-critical points.
Expanding Eq 25 up to a leading order, we get CRG
equation as16,

dM

dl
=

( 1
2 )d

2F (k,M)
dk2 |k=k0

dF (k0,M)
dM

, (26)

where
∣∣dM
dl

∣∣ → ∞ defines criticality and
∣∣dM
dl

∣∣ → 0 de-
fines fixed point configuration respectively. In our model,
at k = π (both F1(k,M) and F2(k,M)), there occurs
a superposition of all critical and fixed lines at α = 1.
Here we find a whirlpool kind of behavior where the
flow lines encircle a single point (Fig. 6). At this point,
d2F
dk2 ,

dF
dα ,

dF
dµ → 0 and dα

dl ,
dµ
dl →

0
0 . Interestingly at this

point, we observe a different class of UCCE through
multi-critical points. On the other hand, we do not ob-
serve any such behavior for k = 0 criticality. (For de-
tailed derivation, refer AppendixB)

Model k z ν γ1,2 y 2− α∗

Short-range model 0 0.5 1 1 0.5 1.5

π 0.5 1 1 0.5 1.5

Longer-range model 0 0.5 1 1 0.5 1.5

(r = Even and α = 1) π (2,1) 1 1 0.5 (3,2)

Longer-range model 0 0.5 1 1 0.5 1.5

(r = Odd, ∀α) π 0.5 1 1 0.5 1.5

(r = Even, α 6= 1)

TABLE I: A comparison of universality class of critical
exponents between the original Kitaev chain and the re-
duced long-range Kitaev chain.

D. Significance of multi-criticality

Multi-criticalities are the intersection of (at least) two
TQCLs and distinguish (at least) three different topolog-
ical regimes. So far, multi-critical points acted as unique
points, where we witnessed the breaking of Lorentz in-
variance, topological transition without bulk gap and as
a point with zero entanglement entropy53. There are cat-
egory of multi-critical points based on the conformal field
theory where we get different central charge. However, in
case of non-Hermitian systems, multi-critical points may
behave differently based on the nature of non-Hermitian
factor. For example, recently there has been the observa-
tion on the vanishing of multi-criticality when the non-
Hermiticity is introduced into an extended Kitaev chain
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through chemical potential36. In our case, we have in-
troduced non-Hermiticity through local imbalance in the
hopping, which splits the Hermitian multi-critical points
into two. We can observe that multi-critical points as the
superposition of HSP and non-HSP with a fixed point
behavior and belong to separate UCCE. This part is in
similarity with Hermitian counterpart.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(a1) α=0.5, t=0.49 (b1) α=0.5, t=0.09

(b2) α=1, t=0.3(a2) α=1, t=0.7

(a3) α=1.5, t=0.84 (b3) α=1.5, t=0.44

FIG. 7: (Color online) Localization of edge modes at crit-
icality calculated through Eq. 15. The unit circle repre-
sent the topological limit. The solution less than, equal
to and greater than unity represent the edge mode, crit-
icality and no edge mode condition respectively. (a1-a3)
Edge mode behavior at left end. (b1-b3) Edge mode be-
havior at right end.

The expansion of Eq. 5 around exceptional points k0
gives the better understanding towards the underlying
physics of multi-criticality. At normal criticalities, the
dispersion behaves as E(k → k0,Mc) ∝ k1/2. At multi-
criticalities, the dispersion takes first (E(k → k0,Mc) ∝
k1 for MC1) and second order (E(k → k0,Mc) ∝ k2 for
MC2) corrections as shown in Eq.9 respectively. On the
other hand, the multi-critical point MC3 is no different
than the normal criticalities, as it shows similar behav-
iors of normal criticality. However, we observe similar
cases in Hermitian counterpart, where the the instance
is recognized as breaking of Lorentz invariance31.
Exponent z gives information about the massless con-
dition of the system. In condensed matter, the energy
dispersion at Fermi surface resembles the relativeistic en-
ergy form E2 = c2p2 +m2c4. For gap closing points, the

equation gives masless condition with E2 = c2p2. Un-
der some cases, the equation takes correction form as,
E2 = c2p2 + m2c4 + Ap4 with A as constant74. Similar
effects we observe at exceptional points. For normal crit-
icalities, we get E2 =

√
AK and for multi-criticalities, we

obtain E2 =
√
Ak +Bk2 and E2 =

√
Ak +Bk4 respec-

tively. This creates the difference in the nature of en-
ergy dispersion and thereby dynamical critical exponent.
Transition among gapless phases: Localization at criti-
cality is an important phenomenon, which is important
both from the perspective of theory and experimental as-
pects 75–83, especially in longer-range models31,53,84–87.
In our model, the multi-critical points act as an unique
point, which witnesses the topological transition among
critical phases. Here MC1 and MC2 are present on the

k = π → t = 1 ± δ + t′

2α respectively. Through Eq.15,
we find the solutions of quadratic equation as shown in
Fig. 7. Throughout the critical line, one of the solu-
tion remains unity, which confirms the gapless condi-
tion. For α < 1, one of the solution is less than unity
(λ = 0.4), indicating a localization of edge mode at crit-
icality. At α = 1, the both the solutions are unity, indi-
cating a transition among gapless phases through multi-
criticality. For α > 1, one of the solution is greater
than unity (λ = 1.8), indicating the absence of localized
modes. Hence, both MC1 and MC2 act as transition
points among gapless phases. A similar phenomenon has
been observed in the Hermitian counterpart of the similar
model31,84.

E. Staircase of topological transitions:

Due to the feature of long-range coupling in Eq.1, it
is possible to achieve higher winding number with the
increase of interacting neighbors, i.e., finite r. For the
limit r < L/2, we can obtain higher WNs where the
uppermost WN is W = r. This is an effective method to
obtain more localized modes through static method while
similar can be achieved through periodic driving which is
dynamical in nature30,88. However the higher WNs are
comparatively less stable and reduce to consecutive lower
WNs with the increasing of α. Here we find an interesting
patter of transitions , i.e., a staircase of TQPTs.

• Even-Even transition: When the number of neigh-
bor is an even number (for r > 2), the uppermost
WN will be an even number and the transition oc-
curs among only even WNs.

• Odd-Odd transition: When the number of neighbor
is an odd number (for r > 2), the uppermost WN
will be an odd number and the transition occurs
among only odd WNs.

• Even-Odd transition: When the number of neigh-
bor is an even number (for r > 2), the uppermost
WN is an even number and with the increasing α,
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the longer-range model reduces to short-range ver-
sion. At the interface of short-range and longer-
range, there occurs a transition between W : 2→ 1.
For very small δ, this can be clearly observed and
with the increase in α, the transition occurs like
W : 2 → 3

2 → 1. This transition occurs through
the multi-critical points.
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FIG. 8: (Color online) Staircase of TQPTs with differ-
ent number of interacting neighbors. For even (odd) ’r’,
transitions occurs among only even (odd) winding num-
bers. Near short-range limit, we do not observe this be-
havior. The star mark indicates the numerical limitation
of converging for higher WNs.

Here we choose parameter space (t = 0.5, δ = 0.1), where
the increase in δ suppresses the uppermost WN and cre-
ates fractional WNs. For the even r, the fractional WNs
are observable with small δ and large α, whereas the
similar effect is not visible for odd r. The interface
of short-range and longer-range occurs through multi-
critical points as shown in Fig. 8(d). These multi-critical

points can also be recognized by the CRG method also
(Not shown here).

III. LONG-RANGE

With the introduction of infinite number of neigh-
bors (r →∞), Eq.1 represents long-range non-Hermitian
SSH chain, where the pseudo-spin parameters exhibit the
polylogarithmic nature56, i.e.,

χx(k) = t+ t′
(
Liα[eik] + Liα[e−ik]

2

)
,

χy(k) = t′
(
Liα[eik]− Liα[e−ik]

2i

)
− iδ. (27)

Expansions of polylogarithmic function around a gap
closing point k0 is given by89,

Liα[eik] = Γ[1− α](−ik)α−1 +
∞∑
n=0

ζ[α− n]

n!
(ik)n. (28)

For the detailed study, we can expand the polylogarith-
mic function around k = 0 as

χx = t+ t′(Γ[1− α](k)α−1 sin
(πα

2

)
+

∞∑
n=0

ζ[α− n]

n!
(k)n cos

(πn
2

)
),

χy = t′(Γ[1− α](k)α−1 cos
(πα

2

)
+

∞∑
n=0

ζ[α− n]

n!
(k)n sin

(πn
2

)
)− iδ. (29)

We analyze the properties of momentum space to char-
acterize the non-Hermitian long-range SSH chain.

A. Energy dispersion, Fermi velocity, GSE density,
critical exponents:

The quasi-particle energy dispersion is given by Eq. 5,
where the band gap vanishes for k = 0 and π respectively.
Due to the polylogarithmic nature, the band gap closes
for all values of α at k = π and only α > 1 at k = 0.
The parameter space possesses two exceptional points
and four TQCLs corresponding to two values of k0. i.e.,

1. t = δ − Liα(1) for k = 0 for α > 1,

2. t = −δ − Liα(1) for k = 0 for α > 1,

3. t = δ − Liα(−1) for k = π and ∀α,

4. t = −δ − Liα(−1) for k = π and ∀α.

Here the pseudo-spin parameters go as sin(k) instead of
sin(lk) which result in the single time encircling of the
origin. Thus the phase diagram is given by Fig. 9(a,b).
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FIG. 9: (Color online) (a) Phase diagram of long-range model in a 3D representaion. (b) 2D representation of phase
diagram. (c1-c6) Behavior of winding vectors in long-range non-Hermitian SSH chain. The blue and green winding

vectors represent the F1(k,M) and F2(k,M) parameter spaces respectively. The combined effect determines the
topological index of the system.

Behavior of winding vectors: Due to the long-range ef-
fect, the winding vectors exhibit a discontinuity at k = 0
for α < 1 which give rise to fractional winding number.
Thus the region ±δ − Liα(1) < µ < ±δ − Liα(−1) for
α > 1 gives topological (Hermitian and non-Hermitian)
phase where the winding vectors encircle the origin of
the parameter space without any discontinuity. Due to
the polylogarithmic behavior, we find a less population
of winding vectors in the region 1 < α < 2, technically
which do not affects the winding number. In the
region δ − Liα(1) < µ < −δ − Liα(−1) for α > 1,
we find that both set of winding vectors encircle the
origin of each parameter space which yield W = 1.
The region µ < ±δ − Liα(−1) for α < 1 gives topo-
logically ill-defined (fractional) phase where winding
vectors corresponding to both the parameter space
shows a discontinuity at k = 0. If both set of vectors
exhibit half encirclement around their corresponding
origin, then it yield W = 1/2. If any one exhibits
this behavior, it yields W = ±1/4 where the sign
indicates the direction of encircling. On the other hand,

due to the imbalance in intracell hopping, there arise
fractional WN for −δ − Liα(1) < µ < δ − Liα(1) and
−δ − Liα(−1) < µ < δ − Liα(−1) for α > 1. These are
the non-Hermitian topological phases and do not posses
any Hermitian counterpart. Here any one set of the
winding vector encircle the origin by yielding W = 1/2.
Extended winding vectors are given by

χx(ext) = ±δ +
Liα(exp(−ik)) + Liα(exp(ik))

2
+ t,

χy(ext) =
Liα(exp(ik))− Liα(exp(−ik))

2i
. (30)

The behavior of extended winding vectors are presented
in Fig. 9(c1-c6).

Momentum space behavior: Due to the polyloga-
rithmic nature, in the limit k → 0, the χy term shows
a divergence for α < 1 and converges towards zero for
α > 1 and a discontinuity at α = 1 respectively(Fig. 10c).
This reflects in the behavior of CF and energy dispersion.
For α < 1 the CF shows a divergence (Fig. 10d) at
k = 0 which leads to the emergence of the fractional
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WN. The corresponding energy spectrum shows a
gapped region with diverging bands(Fig. 10a).The
transition from α < 1 to α > 1 occurs at α = 1, where
we observe topological transition without gap closing
(W : −1/4 → 0, 1/4 → 1/2,W : −1/2 → 1). This is an
interesting behavior which can be observed in long-range
models.

FIG. 10: (Color online) Properties of non-Hermitian
long-range SSH chain. (a) Real part of energy spectrum
where the spectrum is divergent for α < 1 and repre-
sentation of topological transition at α = 1 without gap
closing. (b) A sharp variation of imaginary part of spec-
trum at α = 1 interface. (c) Divergence of χy term for
α < 1 region due to the polylogarithmic behavior. (d)
Behavior of curvature function for α < 1 region. The
divergences at k = π and 0 is due to the criticality and
removable singularity respectively. (e) Decay of Wannier
state correlation function around k = π. The nature
is similar ∀α. (f) Decay of correlation function around
k = 0, only for α > 2.

Curvature function and Wannier state correlation
function: Substituting the values of Eq. 27 into Eq. 22
we get the CF in Ornstein-Zernike form as

F (k,M) ∝
Akα−2

Bkα−1 − Ck2α−3

Dk2α−2

1 + (Ek
α−1

Fkα−1 )2
. (31)

There are three possible cases,

• When α < 1, the term kα−2 dominates and
F (k,M)→∞ as k → 0, irrespective of M→Mc.

• When 1 < α < 2, the term kα−2 dominates and
F (k,M)→∞ as k → 0, irrespective of M→Mc.

• When α > 2, again the term kα−2 dominates and
F (k,M)→∞ as k → 0 with M→Mc.

Thus we can define the CF in the Ornstein-Zernike form
and corresponding critical exponents only for α > 2
around k = 0 region90. For k = π, the CF can expressed
Ornstein-Zernike form for all values of α.
Wannier state correlation function is the quantity,
which discusses the phase transition among different
phases16,31,53. Conceptually, it is the overlap between
the Wannier state centering at the origin and that of dis-
tance R. i.e.,

〈r|R〉 = Wn(r −R) (32)

with

|Rn〉 =
1

N

∑
k

eik.(r−R)|uk〉

(the form of |uk〉 is expressed in Appendix A.)
Mathematically, Wannier states can be expressed as
Fourier transform of the CF, i.e.,

λR =

∫
dk

2π
eik.RF (k,M). (33)

In our case, we observe the decay of Wannier state cor-
relation function around k = π for all values of α, with
a critical exponent ν = 1 (Fig. 10 e). For k = 0, there
occurs no correlation decay in the region 1 < α < 2,
which results in the undefined critical exponent. For
the region α > 2, we observe the decay of correlation
function, which is very sharp near the criticality with an
exponent ν = 1 (Fig. 10 f).

Energy dispersion and Fermi velocity: By substi-
tuting Eq. 27 into Eq. 5, we get energy dispersion. The
first order derivative of the energy dispersion gives the
Fermi velocity as

E(k,M) =
√
Ak2α−2 +Bkα−1 + C,

dEk
dk

=
Ak2α−3 +Bkα−1 + Ck√
A2k2α−2 +Bkα + C2k2

. (34)

where A,B and C are constants. For the values α < 1,
the Fermi velocity is dependent on α as shown in Table II

Condition Relation k = 0 k = π

α < 1 Ak2α−3

Bkα−1 vF →∞ vF (Mc)→ 0

1 < α < 1.5 Ak2α−3 vF →∞ vF (Mc)→ 0

α > 1.5 Ck vF (Mc)→ 0 vF (Mc)→ 0

TABLE II: Behavior of Fermi velocity with respect to
decay parameter α. At k = 0, the Fermi velocity vanishes
as the system drives towards criticality only for α > 1.5

Thus, as k → 0 we obtain a diverging energy spectrum
and Fermi velocity for α < 1. For 1 < α < 1.5 we
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obtain gapless energy spectrum and a diverging Fermi-
velocity as k → 0. For α > 1.5, we obtain vanishing
Fermi velocity as the system drives towards criticality.
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FIG. 11: (Color online) Critical exponents through non-
linear curve fitting method. The left and right pan-
els represent the k = 0 and k = π criticalities respec-
tively. The parameter space δ = 0.2, t′ = 1 is considered.
The red, blue, green and black colors represent the first
(α = 2.5, tc = −1.14), second (2.5,-1.54), third (2.5,1.06)
and fourth (2.5,0.66) critical lines respectively. (a-b) Dy-
namical critical exponent. The inset represent the region
1 < α < 2 with parameter space (α = 1.1, tc = −10.38)
and (1.1,-10.78), where z < 0.5. (c-d) Crossover criti-
cal exponent. (e-f) Localization critical exponent. (g-h)
Susceptibility critical exponent.

Here we analyze the UCCE through nonlinear curve
fitting method (Fig. 11). Around k = 0, we obtain z <
0.5 for the region 1 < α < 2, whereas z = 0.5 for α > 2.
In the region 1 < α < 2, we obtain undefined ν, γ and
y critical exponents, and ν = 1, γ = 1, y = 0.5 for α >
2. On the other hand, we get z = 0.5, y = 0.5, ν = 1
and γ = 1 for all values of α around k = π. Table III
summaries the critical exponents for different regions of
non-Hermitian long-range SSH chain.

B. Higher order bulk transitions:

To understand the order of phase transition, we check
the derivatives of grand potential density for different
orders. The phase transitions act as singularities in the
density parameter space and the derivatives of density
signals the order of transition with non-analytic curves.
The polylogarithmic nature creates a singularity in the
vicinity of k → 0, while the entire BZ contributes to the
geometric phase. i.e., if ωsingular represents the grand
potential density of the bulk, then it can be expressed
as91

ωsingular = ωx + ωy, (35)

where ωx integral around k = 0 and ωy is the integral
over the rest of the BZ respectively.
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FIG. 12: (Color online) Different order derivatives of
ground state energy density. The singularities in the
ground state represents distinction between the topolog-
ical phases. The order of the transition represents the
order of transition.

Through Eq. 28, we write an expanded term around
k = 0 as

ωx(k = 0,M(α > 2)) =

∫ 0+ε

0−ε

√
M2 + k2dk ∝M2 ln|M|.

(36)
In this case we can observe a divergence in the second
order derivative of the above equation, signaling a second
order bulk transition. For the region 1 < α < 2,

ωx(k = 0,M(1 < α < 2)) ≈
∫ 0+ε

0−ε

√
M2 + k2(α−1)dk.

(37)
Through the Eq. 28, we observe the above term is pro-
portional to Γ(− α

2(α−1) )Γ( 2α−1
2(α−1) )M

α
α−1 , where Γ func-

tion diverges for α = n
n−1 where n ∈ N . Thus as one ap-

proaches α = 1 from the side of α = 2, the integral shows
divergence for higher orders signaling a higher order bulk



13

transitions. Thus as we take the higher order derivatives,
the criticalities corresponding to k = π show the peaks
while k = 0 fails to produce the same. This signals a
possible higher order phase transitions as one approaches
α = 1. The region with integral WN (Fig. 9) has simi-
lar Hermitian counterpart as explained in Ref. , while the
fractional WN do not have Hermitian counterpart. Inter-
estingly, the fractional WN corresponding to k = 0 shows
a very narrow phase boundary, and as α → 1, the non-
Hermitian phase gradually vanishes. Thus at α = 1, the
Hermitian phase exhibits an infinite order of bulk tran-
sition, while non-Hermitian phases shows almost none.
This is also in good agreement with the hyper-scaling
relation (Eq. 20) also.

2− α∗ = 1(1/2 + 1) = 3/2 for k = π,

2− α∗ = 1(1/2 + 1) = 3/2 for k = 0, α > 2,

2− α∗ = Higher as α→ 1 for k = 0, 1 < α < 2.

α k z ν γ1,2 y 2− α∗

α < 1 0 - - - - -

1 < α < 2 z < 0.5 - - 0.5 higher

α > 2 0.5 1 1 0.5 3/2

∀α π 0.5 1 1 0.5 3/2

TABLE III: A comparison of universality class of crit-
ical exponents of long-range Kitaev chain for different
parameter spaces.

IV. OUTLOOK AND EXPERIMENTAL
ASPECTS

Non-Hermitian topological systems are sensitive to
boundary conditions, where the phase diagram may vary
based on the choice of the boundary conditions. Here, we
have worked on the periodic boundary condition, while
the appearance of multi-criticality may be different in
other conditions. We have observed the signature of lo-
calized modes at the gapless phases, which is an inter-
esting phenomenon and merits further analysis in that
regard.
Hermitian long-range models are the platform to real-
ize the massive edge modes, which also can act as an
effective topological qubit. Such possibility to explore
massive edge modes in non-Hermitian counterparts can
be interesting both from the perspective of theory and
experiment. The field theoretical analysis of the Hermi-
tian long-rang models reveals the breakdown of Lorentz
invariance for the region 1 < α < 2. Our current work
also signals such behavior through dynamical critical ex-
ponent, however, a detailed field theoretical analysis may
answer this.
Long-range models are the field of interest from the ex-
perimental aspects also. The nature of shrinking charac-
teristic length with the longer-range interaction helps to

suppress the finite-size effects even by using a relatively
small number of ions92. Long-range models have been re-
alized in trapped ions58–61, atom coupled to multi-mode
cavities62, magnetic impurities63,64 and quantum com-
putation65. The effects of non-Hermiticity may give a
different dimension towards the understanding of long-
range systems.

V. DISCUSSION AND CONCLUSION

Understanding the behavior of topological system with
different range of coupling has attracted the attention
of scientific community. The UCCE is an efficient tool
to characterize the criticalities based on their behavior.
The uniqueness of the multi-criticalities can be observed
through UCCE. Here CRG is an useful tool to obtain
the fixed and critical line configurations. But the CRG
limits its coverage only to certain parameter spaces like
HSP and non-HSPs corresponding to lower WNs. The
symmetry plays a major role in defining the topological
invariant. The current methodology may vary for the
systems which lack chiral symmetry.
To conclude, we have provided a detailed analysis of
criticality in longer and long-range non-Hermitian SSH
chain. We have adopted the approach of separating
the real and imaginary parts of the complex angle and
defined the topological invariant. With the construction
of staircase of transitions, we have observed the transi-
tion among even-even and odd-odd winding numbers,
which actually has the Hermitian counterparts. To
analyze the critical exponents, we have considered the
r = 2 case and calculated the universality class of
critical exponents along with order of transition. The
multi-critical point have shown some interesting feature,
where the universality class is different than the rest
of the parameter space. We adopt the CRG method
to non-Hermitian systems and observe the fixed point
configuration which actually depicts the difference in the
universality class.
The long-range models are well known in Hermitian
systems, due to the emergence of exotic particles like
massive edge modes and physics of short-range,long-
range inter-phase. Here we analyze model from
momentum space characterization, and observe the
interplay of polylogarithmic and non-Hermitian effect in
winding vectors. Here we preferred the universality class
of critical exponents to find the short-range limit rather
than the topological invariant. CRG analysis gives the
understanding of fixed/critical point configurations in
long-range models. We observe the in the α → 1 limit,
it is possible to observe the higher order topological
transitions.
The studies of long-range effects in non-hermitian
models are less in literature. We believe, our work can
be useful in understanding the interplay of long-range
and non-Hermitian effects in topological state of matter.
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Appendix A: Derivation of winding number for
non-Hermitian system

The non-Hermiticity of the Hamiltonian reflects in the
eigenvectors of the Hamiltonian as50

W =

(
1

2π

)∫ π

−π

〈uLk |i∂k|uRk 〉
〈uLk |uRk 〉

dk, (A1)

where

〈uLk |=
1√
2

(
χx+iχy√
χ2
x+χ

2
y

−1

)
, |uRk 〉 =

1√
2

(
χx−iχy√
χ2
x+χ

2
y

−1

)
.

(A2)
Due to the non-Hermiticity, the winding vectors become
complex (at least one of them) and the criticality condi-
tion is given by h2x+h2y = 0. In Hermitian case, criticality
occurs through single gap closing Dirac cone whereas in
non-Hermitian case it is through (at least two) excep-
tional points. Due to the complex nature, the position of
the exceptional point is given by,

χrex (k) = −χimy (k) and χrey (k) = χimx (k),

or

χrex (k) = χimy (k) and χrey (k) = −χimx (k).(A3)

In this model, we observe only two exceptional points.
Thus we define a complex topological angle as,

φ = φre + iφim. (A4)

Here the real and imaginary parts contribute to the ar-
gument and amplitude respectively. Thus the winding
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number is not affected by the imaginary part. Thus

ei2φ =
1 + i tan(φ)

1− i tan(φ)
=
χx + iχy
χx − iχy

,

e−i2φ =

∣∣∣∣χx + iχy
χx − iχy

∣∣∣∣ , e−i2φr =

χx+iχy
χx−iχy∣∣∣χx+iχyχx−iχy

∣∣∣ ,
tan(2φr) =

Im(
χx+iχy
χx−iχy )

Re(
χx+iχy
χx−iχy )

. (A5)

which can be represented in a single equation as,

tan(2φr) =
tan(φ1) + tan(φ2)

1− tan(φ1) tan(φ2)
= tan(φ1 + φ2), (A6)

where tan(φ1) =
χrey (k)+χimx (k)

χrex (k)+χimy (k) and tan(φ2) =

χrey (k)−χimx (k)

χrex (k)+χimy (k) . The angles φ1 and φ2 are real and they

produce the winding number as

W =
1

2

(
1

2π

)
(

∮
∂kφ1dk +

∮
∂kφ2dk). (A7)

For our model only χy contains the imaginary part.
Thus the exceptional points are located at (0, χimy ) and

(0,−χimy ). The wrapping of winding vectors (χrex , χ
re
y )

around first (second) exceptional point gives complex an-
gle φ1(φ2) with corresponding winding number W1(W2)
respectively. Due to the non-Hermiticity, each excep-
tional point induces its own origin of pseudo-spin space
and corresponding winding vectors. Thus we work on ex-
tended winding vectors to understand the non-Hermitian
effect in the parameter space. i.e.,

χx(extended) = χrex (k)± χimy (k),

χy(extended) = χrey (k)± χimx (k), (A8)

which correspond to parameter space F1(k,M) and
F2(k,M) respectively.

Appendix B: Detailed derivation of CRG equations

Considering Eq. 26, we calculate the CRG flow equa-
tions to the longer-range model with r = 2. Here x1, x2
and x3, x4 are critical and fixed lines respectively.The
terms X1,2, Y1,2 and Z1,2 are given by

X1,2 = −
2
(
21−α ∓ 1

)3
(2−α − δ + t∓ 1)

3 −
3
(
±1− 22−α

) (
21−α ∓ 1

)
(2−α − δ + t∓ 1)

2 ,

+
±1− 23−α

2−α − δ + t∓ 1

Y1,2 =
21−α ∓ 1

(2−α − δ + t∓ 1)
2 ,

Z1,2 =
2−α

(
21−α ∓ 1

)
log(2)

(2−α − δ + t∓ 1)
2 − 21−α log(2)

2−α − δ + t∓ 1
.

1) In the vicinity of first exceptional point (parameter
space corresponding to F1(k,M)), The CRG equations
corresponding to k = 0 are given by,

dt

dl
=

(
1

2

)(
−X2

Y2

)
,
dα

dl
=

(
1

2

)(
X2

Z2

)
. (B1)

with x1 = 1
2 (−2δ−1)(red), x2 = − 1

2α − δ−1(blue), x3 =

2−α − δ(green), x4 = − 2αδ−2α+8δ+1
2α+8 (black).

2) In the vicinity of first exceptional point (param-
eter space corresponding to F1(k,M)), The CRG
equations corresponding to k = π are given by,

dt

dl
=

(
1

2

)(
−X1

Y1

)
,
dα

dl
=

(
1

2

)(
X1

Z1

)
, (B2)

with x1 = 1
2 (1 − 2δ)(red), x2 = − 1

2α − δ + 1(blue), x3 =
1
2

(
21−α − δ

)
(green), x4 = − 2αδ+2α−8δ+1

2α−8 (black).

3) In the vicinity of second exceptional point (pa-
rameter space corresponding to F2(k,M)), The CRG
equations corresponding to k = 0 are given by,

dt

dl
=

(
1

2

)(
−X2

Y2

)
,
dα

dl
=

(
1

2

)(
X2

Z2

)
. (B3)

Here x1 = 1
2 (2δ − 1)(red), x2 = − 1

2α + δ − 1(blue), x3 =

2−α + δ(green), x4 = 2αδ+2α+8δ−1
2α+8 (black).

4) In the vicinity of second exceptional point (pa-
rameter space corresponding to F2(k,M)), The CRG
equations corresponding to k = π are given by,

dt

dl
=

(
1

2

)(
−X1

Y1

)
,
dα

dl
=

(
1

2

)(
X1

Z1

)
. (B4)

Here x1 = 1
2 (2δ + 1)(red), x2 = − 1

2α − δ + 1(blue), x3 =

2−α + δ(green), x4 = 2αδ−2α−8δ−1
2α−8 (black).
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