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We present the reaction-coordinate polaron-transform (RCPT) framework for generating effective Hamilto-
nian models to treat nonequilibrium open quantum systems at strong coupling with their surroundings. Our
approach, which is based on two exact transformations of the Hamiltonian followed by its controlled truncation,
ends with a new Hamiltonian with a weakened coupling to the environment. This new effective Hamiltonian
mirrors the initial one, except that its parameters are dressed by the system-bath couplings. The power and ele-
gance of the RCPT approach lie in its generality and in its mathematical simplicity, allowing for analytic work
and thus profound understanding of the impact of strong system-bath coupling effects on open quantum system
phenomena. Examples interrogated in this work include canonical models for quantum thermalization, charge
and energy transport at the nanoscale, performance bounds of quantum thermodynamical machines such as ab-
sorption refrigerators and thermoelectric generators, as well as the equilibrium and nonequilibrium behavior of
many-body dissipative spin chains.

I. INTRODUCTION

Quantum systems are inevitably coupled to their surround-
ing environment. At the nanoscale, these interactions are in-
fluential and cannot be neglected, which in turn leads to the-
oretical and technical challenges in modelling open quantum
systems. Quantum master equation (QME) approaches offer
a powerful framework for simulating open quantum systems.
While the Nakajima-Zwanzig formalism is exact1, approxi-
mations must be made for practical computations. Most com-
monly, QMEs are made perturbative in the system-bath cou-
pling parameter; the prominent Redfield equation takes into
account only the lowest (second) nontrivial order in this ex-
pansion, referred to as the Born approximation. Weak cou-
pling QMEs offer straightforward computations and analyti-
cal results in some cases, and as such they have gained enor-
mous popularity in diverse fields: e.g. chemical dynamics1,
quantum optics2, quantum information science3,4, and quan-
tum thermodynamics5,6. However, these methods are strictly
limited to the weak coupling regime, missing rich physics.
This work presents a Hamiltonian reformation (transforma-
tion and truncation) technique that allows treating strong cou-
pling regimes while providing both detailed understanding of
such effects in quantum systems, and a cheap route for com-
putations. Applications detailed in this work concern quantum
transport and quantum thermodynamics problems5–12, where
a consistent theory of thermodynamics in the quantum regime
relies on the correct treatment of strong coupling features.
However, our approach can be exercised on other open prob-
lems in a variety of contexts.

Focusing on quantum thermodynamics in the context of
thermal machines, strong coupling effects can allow non-
classical correlations to build-up between the system and its
reservoirs, which could be utilized as a resource to design
novel quantum technologies13,14. While it is debated whether
strong coupling effects are beneficial or detrimental to their
performance15–18, it is clear that strong coupling effects can

significantly impact the performance and efficiency of thermal
devices e.g., by renormalizing parameters and opening new
transport pathways19–21. Additionally, in the context of ther-
malization, strong system-bath interactions lead to deviations
from the canonical distribution, predicted under the assump-
tion of vanishingly-weak system-reservoir coupling13,22–31.
Strong coupling is also responsible for deviations from sim-
ple additivity approximations32–34.

To capture such non-trivial effects, one must go beyond
second-order perturbative QMEs. One such choice are
numerically-exact methods, including the multiconfiguration
time-dependent Hartree (MCTDH) approach35–37, numerical
renormalization group methods38–40, the hierarchical equa-
tions of motion41,42, path integral approaches43–51, quantum
Monte Carlo algorithms52–54, chain mapping techniques55–58,
tensor network based methods59, and more. Though these
methods provide accurate benchmarks for describing open
quantum systems at strong coupling, (i) they are often lim-
ited to minimal models and (ii) fail to provide analytical intu-
ition and hence, do not allow us to pursue the objective of this
work: To understand the fundamental essence of strong cou-
pling. Conversely, there exist other inexact tools that allow
the development of analytic understanding. This includes the
noninteracting blip approximation (NIBA), which is accurate
for Ohmic spectral functions60–62, the polaron-transformed
Redfield equation, which allows for more general spectral
functions63–67, and Greens functions techniques68–74. How-
ever, these tools typically become immediately cumbersome
beyond minimal models, and are restricted in their applicabil-
ity since they are perturbative in some parameters.

The reaction coordinate (RC) mapping13,75–78 bridges the
gap between powerful numerical tools, and low-order pertur-
bative analytical methods. While originally developed in the
context of chemical reactivity77,78, in recent years the method
has found numerous applications in the context of quantum
thermodynamics as a general tool to capture the effects of
strong system-reservoir coupling. In this technique, a cen-
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tral, collective degree of freedom from the reservoir is ex-
tracted and included as part of the system. The original quan-
tum system is then extended, and termed an “enlarged sys-
tem”. This enlarged system now contains the open system
and the collective degree of freedom, the reaction coordinate,
extracted from the bath. The RC mapping can be used in con-
junction with weak coupling QME tools since, with a proper
choice of parameters, the coupling of the enlarged system
to the residual bath is weak. The RC method treats non-
perturbatively the system-reservoir coupling parameter to ob-
tain appropriate dynamical and steady state properties of the
original open system. The combined RC-QME approach has
been utilized for studying the quantum dynamics of impurity
models13,79, thermal transport in nanojunctions80–82, the oper-
ation of quantum thermal machines19,20,83,84, transport in elec-
tronic systems85–87, problems of equilibration13,88 as well as
the dynamics of non-Markovian systems89. As useful as this
tool has been in recent years, and despite relying on an ana-
lytical mapping, this approach in practice has been only used
as a numerical method due to the large Hilbert space of the
enlarged system.

The polaron or Lang-Firsov transformation is central to
many-body physics, with applications extending far beyond
the original coupled electron-phonon problem. The concept
of a polaron originates from solid state physics whereby lat-
tice vibrations couple to the electron, generating a heavy elec-
tron with an effective mass representing the electron plus the
phonon cloud surrounding it90. In the broader context of an
impurity immersed in a harmonic bath, the polaron trans-
formation allows to unitarily map the system to the polaron
frame where the system Hamiltonian is dressed by the system-
bath coupling, making it amenable to perturbative treatments
in the so called nonadiabatic parameter (tunneling splitting).
This approach has been used e.g., to simulate heat trans-
port through quantum nanojunctions61,62,91,92, later further ex-
tended using the polaron-transformed QME66,67,93,94. How-
ever, despite providing analytical insight on spin-boson type
models, the polaron mapping can become cumbersome with
compound (nonadditive) bath interaction terms. As such, it
was mainly utilized in simplified models with independent
baths locally affecting the system (see e.g., Refs. 95,96), or
by restricting the form of the system’s Hamiltonian to elimi-
nate the formation of composite interaction terms97.

In this work, we combine two central transformations in
open quantum systems methodologies, namely, the reaction
coordinate mapping and the polaron transformation, and de-
velop a general and robust tool for understanding and feasi-
bly simulating strong coupling features in quantum transport
and thermodynamics. The essence of this newly-developed
reaction coordinate polaron-transformation (RCPT) approach
is that the succession of these two transformations imprints
strong coupling effects directly into the system’s Hamilto-
nian, which after the transformations becomes weakly cou-
pled to the (residual) surroundings, allowing the use of weak-
coupling techniques. Furthermore, due to the additional trun-
cation of the RC manifold, the dimensionality of the Hilbert
space is identical to the starting one. Thus, the RCPT method
allows us to observe the role of strong coupling effects and

perform numerical simulations that non perurbatively handle
strong coupling effects at the cost of a weak coupling treat-
ment. After introducing the RCPT method, rather than focus-
ing on benchmarking it against numerically-exact approaches,
we exemplify the physics revealed by the formalism and pre-
dict signatures of strong coupling in several classes of open
quantum systems. We apply the RCPT approach and tackle
five central classes of problems encountered in quantum trans-
port and quantum thermodynamics. Namely, we study strong
system-bath coupling effects in (a) thermalization, (b) thermal
energy transport, (c) refrigeration, (d) phonon-coupled elec-
tronic transport in the context of thermoelectric power gen-
erators, and (e) many-body, dissipative spin lattice physics.
Figure 1 illustrates these five models.

The paper is organized as follows: We present the reaction
coordinate polaron transformation theoretical framework in
Section II. We exemplify the method on five key open-system
problems and demonstrate that their behavior is greatly altered
by strong system-bath coupling effects: quantum thermaliza-
tion (Section III), steady state heat transport (Section IV),
quantum refrigeration (Section V), phonon-assisted charge
transport in thermoelectric engines (Section VI), and steady
state dissipative spin-chain models (Section VII). In each Sec-
tion, theoretical predictions from the RCPT method are illus-
trated by numerical examples. We discuss and summarize our
findings in Section VIII.

II. THE RCPT THEORETICAL FRAMEWORK

In this section, we describe the protocol for transforming
an open system Hamiltonian using the reaction coordinate-
polaron transformation (RCPT), thus, arriving at what we re-
fer to as an effective Hamiltonian, allowing for the interpre-
tation of strong coupling effects in open quantum systems at
low cost. For simplicity, we present here the approach assum-
ing a single heat bath; generalizations are discussed in Sec.
II F. We work in units of h̄≡ 1, kB ≡ 1 and e≡ 1.

We consider a generic open quantum system model, with
an impurity system coupled to a bosonic reservoir,

Ĥ = Ĥs +∑
k

νk

(
ĉ†

k +
tk
νk

Ŝ
)(

ĉk +
tk
νk

Ŝ
)
. (1)

In this expression, Ĥs is the Hamiltonian of the system. Ŝ
is a system operator, and it couples to the displacement of
reservoir modes of frequency νk with coupling strength tk as-
sumed to be a real number; k is a wavevector index. Further-
more, ĉ†

k (ĉk) are the bosonic creation (annihilation) operators
for the bath modes. The interaction between the system and
the reservoir is fully captured by the spectral density function,
J(ω) = ∑k t2

k δ (ω−νk).
The framework consists of three steps, illustrated in Fig. 2:

(i) An exact reaction coordinate mapping is performed on the
bosonic reservoir, identifying a central degree of freedom to
be extracted from the reservoir and incorporated as part of the
system. This creates an extended open system, which com-
prises the original system along with its coupled reaction coor-
dinate mode. This extended system is coupled to the residual



3

Figure 1. Diagrams of the five problems examined in this work using the RCPT method. (a) Quantum thermalization, studied with a two-
level impurity spin coupled to a bosonic reservoir experiencing both decohering and energy-exchange effects. (b) Quantum heat transport,
examined on a minimal model of a spin system coupled to two bosonic reservoirs with a temperature bias. (c) Quantum refrigeration, examined
on a three-level quantum absorption refrigerator, where each transition couples to a different reservoir, resulting in the net effect of extracting
heat from the cold environment. (d) Thermoelectric performance of nanojunctions, illustrated on a phonon-assisted double quantum dot
nanojunction. Here, charge is transported between the two leads with the help of a phonon environment. (e) Dissipative spin chains, with each
spin coupled to an independent heat bath, here illustrated with a two-qubit model.

bath with a modified spectral density function, typically with a
weakened coupling strength compared to the original model,
Eq. (1). (ii) A polaron transformation is applied on the re-
action coordinate. The transformation “imprints” features of
the RC into the original system, and partially decouples the
RC from the system. This step further generates new direct
interaction terms between the original system and the resid-
ual bath, which provides insight into strong coupling features
of the model. The transformations (i) and (ii) are exact and
unitary. (iii) The Hamiltonian is truncated assuming that only
the ground state of the reaction coordinate is populated. This
approximate step relies on the reaction coordinate frequency
(which derives from the original bath’s spectral structure) be-
ing the largest energy scale in the problem, notably, exceeding
the thermal energy, which is our working assumption here.
More details on the consequences of this approximation are
included in Sec. II E.

We refer to the application of these three steps in succession
as the RCPT method. Once the RCPT procedure is performed,
an effective Hamiltonian emerges, which mathematically re-
sembles the original model, Eq. (1). However, parameters in
the new, effective model contain an explicit dependency on
the original system-bath coupling parameters. This in turn al-
lows for the interpretation of strong coupling features. In what
follows, we present this protocol to generate effective Hamil-
tonian models as a means of capturing strong coupling effects
in open quantum systems.

A. Reaction coordinate mapping

The first step in deriving effective Hamiltonian models us-
ing the RCPT method is to perform an exact reaction coordi-

nate mapping75 on the Hamiltonian Eq. (1). This transforma-
tion results in the extraction of a collective reservoir mode of
frequency Ω, which couples to the system at strength λ , and
is included as part of the system. We refer to the resulting
Hamiltonian as the reaction coordinate Hamiltonian,

ĤRC = Ĥs +Ω

(
â† +

λ

Ω
Ŝ
)(

â+
λ

Ω
Ŝ
)

+ ∑
k

ωk

(
b̂†

k +
fk

ωk
(â† + â)

)(
b̂k +

fk

ωk
(â† + â)

)
, (2)

where the reaction coordinate is defined such that

λ (â† + â) = ∑
k

tk(ĉ
†
k + ĉk). (3)

In the above expression, the bosonic creation (annihilation)
operator of the RC is â† (â) and it is coupled with strength
fk to the residual bath, identified by the creation (annihila-
tion) bosonic operators b̂†

k (b̂k) of frequency ωk. In the RC
representation, the coupling parameter λ between the system
and the reaction coordinate, and the frequency of the reaction
coordinate Ω are obtained from the original spectral density
function via the expressions75

λ
2 =

1
Ω

∫
∞

0
ωJ(ω)dω, (4)

and

Ω
2 =

∫
∞

0 ω3J(ω)dω∫
∞

0 ωJ(ω)dω
. (5)

Note that λ characterizes the extent of interaction between the
original system and the bath. As such, it is a central parameter
to tune in the exploration of quantum dissipative behavior at
strong coupling.
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In the RC picture, a different spectral density function now
characterizes the interaction between the RC and the resid-
ual bosonic environment, JRC(ω) = ∑k f 2

k δ (ω −ωk). From
Heisenberg’s equation of motion, it can be shown that this
newly-defined spectral density function is related to the origi-
nal spectral density function by75

JRC(ω) =
2πλ 2J(ω)[

P
∫ J(ω ′)dω ′

ω ′−ω

]2
+π2J(ω)2

, (6)

where in this expression, the integration is understood as a
principal-value integral.

In the reaction coordinate representation, the system-
reservoir boundary is shifted to include an additional mode
from the reservoir, resulting in an extended system, given by
the first two terms of Eq. (2). The last term of Eq. (2) repre-
sents the residual environment and its interaction to the reac-
tion coordinate.

The power of the RC transformation stems from the fact
that when increasing the coupling strength, J(ω)→ αJ(ω)
with α > 0, only the system-reaction coordinate coupling
strength gets modified to λ →

√
αλ , while JRC(ω) does not

change with α . This allows one to perform perturbative quan-
tum master equation calculations on the enlarged system, pro-
viding a valid strong coupling treatment relying on weak cou-
pling tools.

B. Polaron transformation

In the second step of the RCPT method we perform a po-
laron transformation on the reaction coordinate Hamiltonian,
Eq. (2). This unitary transformation is given by the shift op-
erator

ÛP = e
λ

Ω
(â†−â)Ŝ, (7)

which partially decouples the system from the RC, as we ex-
plain below. As a consequence of this transformation, we gen-
erate new direct coupling terms between the residual bath and
the system, as well as the RC and the system. We note that
our polaron operator lives in the Hilbert space of the system
and the RC. To perform the transformation, we rely on the fact
that ÛPâÛ†

P = â− λ

Ω
Ŝ, and use the shorthand notation for the

polaron-transformed reaction coordinate system Hamiltonian
ˆ̃Hs ≡ ÛPĤsÛ

†
P . The total polaron-transformed reaction coor-

dinate Hamiltonian is ĤRC−P ≡ ÛPĤRCÛ†
P , given by

ĤRC−P = ˆ̃Hs +Ωâ†â

+∑
k

ωk

{[
b̂†

k +
fk

ωk

(
â† + â− 2λ

Ω
Ŝ
)]

×
[

b̂k +
fk

ωk

(
â† + â− 2λ

Ω
Ŝ
)]}

.

(8)

Since the system Hamiltonian is dressed by the polaron trans-
formation operator, it is now a function of the system-bath

Figure 2. Diagrammatic representation of the RCPT Hamiltonian
transformations and truncation: (a) The original model: An open sys-
tem (Ĥs) coupled to a bosonic bath (B). (b) The system is extended to
include a reaction coordinate, which is extracted from the reservoir,
leaving a residual bath B′ missing one mode. (c) The model after
the application of the polaron transformation: The rotated system’s
Hamiltonian connects to both the RC and the residual bath. (d) The
model after the truncation of the RC, resulting in a so-called effective
Hamiltonian with the system coupled only to the residual bath. This
model is reminiscent of the original system in step (a).

coupling parameter λ . Another way to think about this, is that
the transformation “imprints” the RC into the system’s Hamil-
tonian. Furthermore, new interaction terms emerge in the po-
laron frame. Namely, the system now couples directly to both
the RC (â operators) and to the residual bath (b̂k operators).
However, the functional form of the spectral density function
of the residual bath is unaltered by this transformation, and it
is still captured by Eq. (6), albeit with an additional prefactor
(2λ/Ω)2.

At first glance, applying the polaron operator after the RC
transformation seems unconducive for performing calcula-
tions, as there are now terms coupling the system to both the
RC and the residual environment. In fact, we appear to have
made the Hamiltonian more complex to solve due to the addi-
tion of new interaction terms. As we show next, the Hamilto-
nian Eq. (8) is actually an intermediate step in deriving effec-
tive Hamiltonian models and after an additional simplifying
approximation, it becomes tractable.

C. Reaction coordinate truncation

The RC and the polaron transformations are exact. As
such, no approximations have been made up to this point. To
simplify the Hamiltonian (8) we now invoke an approxima-
tion, generating an effective Hamiltonian He f f (λ ). This ef-
fective Hamiltonian is transparent for analytical work and it
also serves as a good starting point for numerical implemen-
tations.

Assuming Ω, the frequency of the RC, to be the largest
energy scale in the problem (see a discussion in Sec. II E)
— higher in particular than the temperature of the attached
bath(s), Ω� T — one can safely truncate the harmonic man-
ifold of the RC and consider only its ground level. The trun-
cation does not eliminate strong coupling effects in a regime
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where Ω is the largest energy scale. We thus define the effec-
tive Hamiltonian as the subspace of Eq. (8) in which the RC
is fixed to its ground state |0〉,

Ĥe f f (λ ) = 〈0| ĤRC−P |0〉 . (9)

Explicitly,

Ĥe f f (λ ) = 〈0| ˆ̃Hs |0〉

+ ∑
k

ωk

(
b̂†

k−
2λ fk

Ωωk
Ŝ
)(

b̂k−
2λ fk

Ωωk
Ŝ
)
. (10)

We highlight here the dependency of the effective system
Hamiltonian on the coupling parameter λ ; however, the effec-
tive model depends as well on additional system parameters,
such as the RC frequency, Ω.

Crucially, the effective Hamiltonian (10) has a mathemati-
cal structure similar to the original Hamiltonian, Eq. (1). Two
important distinctions are, however, apparent: (i) The system
Hamiltonian is dressed by the polaron transformation opera-
tor,

Ĥe f f
s (λ ) = 〈0| ˆ̃Hs |0〉 . (11)

(ii) The reservoir considered here is the residual bath that was
obtained in the RC mapping, Eq. (2). The spectral density
function of the bath is further dressed by the RC parameters,

Je f f (ω) =
4λ 2

Ω2 JRC(ω). (12)

This completes the introduction of the RCPT method. Con-
sidering a general Hamiltonian strongly coupled to a bath, Eq.
(1), we mapped the model into Eq. (10), with a λ -dressed
system Hamiltonian and a weak system-bath coupling. This is
because JRC(ω) describes the coupling of the extended system
to a residual bath, which is weakened relative to the original
case. As well, we further assume that λ/Ω� 1 for Ω to retain
its status as the largest energy scale in the problem.

The RCPT method allows nonpertubative studies of strong
coupling models. The elegant and powerful aspects of the
RCPT method stem from the effective Hamiltonian (10) seem-
ingly having the same complexity as the original model. This
in turn allows the effective Hamiltonian to be treated with
weak coupling methods since the original system-bath cou-
pling energy λ has been quenched and absorbed into redefin-
ing the system itself. The main novelty of the method lies in
it allowing analytical studies of the strong coupling regime.
Since at weak coupling one can often approach the prob-
lem analytically and acquire closed-form expressions for e.g.,
nonequilibrium steady state properties, one can now build
on these solutions—only with renormalized parameters and
a dressed system Hamiltonian. Moreover, even without per-
forming a detailed analysis, the form of the Hamiltonian (10),
compared to Eq. (1), immediately exposes contributions of
strong coupling to the open quantum system, e.g., in opening
new transport pathways and shifting parameters.

We now go one step further and manipulate the effective
system Hamiltonian to cast it in a more transparent form,
which will be useful in applications,

Ĥe f f
s (λ ) = 〈0|e

λ

Ω
(â†−â)ŜĤse−

λ

Ω
(â†−â)Ŝ |0〉 . (13)

The polaron operators are mathematically analogous to dis-
placement operators encountered in quantum optics. They
have the useful property of generating coherent states when
acting on the vacuum D(α) |0〉= |α〉. Furthermore, coherent
states may be written as a superposition of harmonic oscillator
eigenstates. We employ these two properties defining α ≡ λ

Ω
Ŝ

as an operator. This results in a useful form for the effective
system Hamiltonian,

Ĥe f f
s (λ ) = e−

λ2

2Ω2 Ŝ2
(

∞

∑
n=0

λ 2n

Ω2nn!
ŜnĤsŜn

)
e−

λ2

2Ω2 Ŝ2
. (14)

This expression allows for the computation of the effective
system Hamiltonian, which is now coupling-strength depen-
dent. Further details are given in Appendix A.

The effective Hamiltonian, Eq. (10), concludes the theo-
retical account of the RCPT framework. In Sec. II D, we
summarize the evolution of the spectral density function dur-
ing the RCPT steps. We discuss the assumptions of the RCPT
method and thus its regime of validity in Sec. II E. Theoretical
extensions to the basic framework are presented in Sec. II F.
The numerical QME implementation of the method to study
transport behavior is described in Sec. II G.

D. Evolution of the spectral density function in the RCPT
method

The RCPT method is not limited to a specific type of spec-
tral density function and the procedure outlined above is gen-
eral. However, to make the method useful, one should work
in a parameter range such that, though the original model
may carry strong couplings to the bath, JRC(ω) corresponds
to a weak-coupling situation. In this work, we exemplify the
RCPT method using the Brownian spectral density function,

J(ω) =
4γΩ2λ 2ω

(ω2−Ω2)2 +(2πγΩω)2 . (15)

In this model, the system’s coupling to the bath is peaked at Ω

with a width parameter γ . λ tunes the system-reservoir cou-
pling strength. It can be shown13,79,80 that performing a reac-
tion coordinate mapping translates, via Eq. (6), this spectral
density function to an Ohmic form

JRC(ω) = γωe−|ω|/Λ. (16)

This expression becomes exact when Λ, the cutoff energy,
tends to infinity. In the RC representation, the dimensionless
width parameter γ controls the coupling strength between the
RC and the residual environment. Furthermore, in this model
the location of the central peak, Ω, maps to the frequency of
the reaction coordinate. Thus, a narrow Brownian function
translates to an extended system weakly coupled to the resid-
ual bath.

After the polaron transformation we build the effective
model and the spectral density function is further dressed ac-
cording to Eq. (12), ending with

Je f f (ω) =
4λ 2

Ω2 × γωe−|ω|/Λ. (17)
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In what follows, we describe bosonic baths using the Brown-
ian spectral density function. In contrast, we treat fermionic
reservoirs under the weak system-reservoir coupling assump-
tion and take them in the wideband limit.

E. Regimes of applicability of the RCPT formalism

In this section, we discuss the only approximation of the
RCPT mapping: representing the manifold of the RC solely
by its ground state. We first identify the parameter regime
where this approximation holds. We then discuss the type
of problems that would benefit from being addressed by the
RCPT technique. We emphasize that once the RCPT mapping
is complete, and we reach the effective Hamiltonian Eq. (10),
different analytical and numerical tools can be implemented
on the effective Hamiltonian. These tools may come with their
own independent sets of approximations; in this section how-
ever, we focus exclusively on the approximation of the RCPT
mapping.

Considering an open quantum system model, we list the rel-
evant energy scales in the problem: ∆ would serve as a char-
acteristic energy scale for the system, e.g. spin splitting in a
spin-bath model; Ω is a characteristic frequency for the bath;
λ characterizes the system-bath coupling; T is the thermal en-
ergy.

Let us now discuss the energy spectrum of the RC Hamil-
tonian: For a large value of Ω relative to the eigenspectrum of
the bare system and the coupling energy, Ω� ∆, λ , the en-
ergy spectrum of Eq. (2) shows manifolds of levels separated
by gaps of O(Ω). In each manifold, levels roughly correspond
to the original system thus they are spaced by O(∆). The trun-
cation of the RC performed in Sec. II C is justified as long as
Ω� T : In this regime, thermal energy from the bath is in-
sufficient to significantly populate higher excited states of the
reaction coordinate.

Altogether, the RCPT formalism presented in this work is
expected to be valid when Ω� ∆,λ , and Ω� T . Note that
there is no limitation on whether the thermal energy is higher
or lower than characteristic energies in the system, ∆. In im-
purity models, the temperature is defined relative to the eigen-
values of the system Hamiltonian. Therefore, the RCPT pro-
cedure is valid for both high and low temperatures.

What type of problems would benefit from representing
them with the effective Hamiltonian? The truncation of the
RC to its ground state accurately captures the impact of strong
coupling in transport phenomena, as we show in the next Sec-
tions. However, the truncation drastically curtails the ability to
follow dynamical effects, as we now explain. The reaction co-
ordinate method captures non-Markovian dynamics, see e.g.,
Refs.13,89. This is possible because of the build-up of cor-
relations during time evolution between the system and the
RC (which in truth is part of the bath). An undesired conse-
quence of the RC truncation is losing this ability to exchange
information between the RC and the system, hence, missing
dynamical features that emerge due to non-Markovianity. In
other words, in the RCPT formalism, the RC does not evolve
in time; it is maintained in its ground state. As a result, tran-

sient features in the dynamics, e.g., some oscillations, would
be missed. However, the RCPT method recovers the correct
decay constants at strong couplings, thus the steady state limit
is well described.

The RCPT method can be systematically made more accu-
rate by keeping higher excited states of the RC. This approach,
described in Appendix B would recover missing dynamical
features. However, this is achieved at the cost of exponen-
tially increasing the dimensionality of the Hilbert space of the
system, thus losing insights gained from the elegant effective
Hamiltonian picture.

F. Extensions

1. Iterative mapping

In implementing the RCPT method on Eq. (1) we arrived at
a form that closely resembles the initial Hamiltonian, except
with a λ -dressed effective system Hamiltonian and a different
spectral density function. In principle, it should be possible
to iterate this process: repeatedly extract an RC mode from
the bath, perform a polaron transformation on this mode, and
truncate the RC to only occupy its ground state. This pro-
cess would lead to an effective description including strong
coupling effects even with highly-structured spectral density
functions, for example, a bimodal function. The effective
Hamiltonian after n such rounds (where n is still significantly
smaller than the number of modes in the bath) would have the
following structure

Ĥe f f
n =〈0n| ˆ̃H(n)

s |0n〉

+∑
k

ωk

{[
b̂†

k +
n

∏
i=1

(
(−1)i 2λi

Ωi

)
fk

ωk
Ŝ

]

×

[
b̂k +

n

∏
i=1

(
(−1)i 2λi

Ωi

)
fk

ωk
Ŝ

]}
. (18)

In this expression, we used a shorthand notation to express the
effective system Hamiltonian,

〈0n| ˆ̃H(n)
s |0n〉 ≡ 〈01, ...,0n|

n

∏
i=1

(ÛP,i)Ĥs

n

∏
i=1

(Û†
P,i) |01, ...,0n〉 ,

(19)

with |0n〉 denoting the ground state of the nth RC. The eval-
uation of this term is in fact simple since the sequence of
polaron transformations commute. Additionally, the spectral
density functions can be iteratively computed using Eq. (6). It
is therefore straightforward to iterate this process as desired.
We emphasize that even without iterating, that is following the
procedure II A-II C, the Hamiltonian includes strong coupling
effects in a nonperturbative manner.

2. Multibath problems

Another extension of interest concerns the application of
this tool to study open quantum systems coupled to multiple
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environments. It is straightforward to extract simultaneously
more than one RC, e.g., one from each bath. However, the
polaron transform can become quite complicated when the
extended model includes more than one RC. Namely, it is
not guaranteed that the individual polaron transformations on
each RC will commute with one another, and this aspect de-
pends on the details of the model. As such, we are left with
the arbitrary freedom of deciding which polaron transform to
apply first, potentially changing the outcome of the calcula-
tion (a fact that is not surprising, as this is not an exact tool).
Given this non-uniqueness of the procedure, one would need
to test different sequences of the polaron transformation and
select the the most feasible and tractable approach.

In summary, the RCPT approach is straightforward to ap-
ply in situations in which the system’s operators that couple
to the different baths commute, or, if one applies only a single
polaron transformation before truncating the reaction coordi-
nate.

G. Numerical implementation: Redfield QME

Before tackling examples of impurity models with the
RCPT method, we briefly review the numerical approach used
in this work to simulate the steady state limit of the reduced
system’s dynamics, as well as different currents. We imple-
ment the Redfield quantum master equation (QME), which
relies on weak coupling and Markov approximations, and sim-
ulate the nonequilibrium behavior of three Hamiltonians:

(i) The original model, Eq. (1).
(ii) The reaction coordinate Hamiltonian, Eq. (2).
(iii) The effective Hamiltonian, Eq. (10), which constitutes

the last step of the RCPT method.
We emphasize that in all cases we use the Born-Markov

Redfield (BMR) quantum master equation, which in case (ii)
is performed on the extended system, and in (iii) on the effec-
tive model. In both of these cases this second-order method
is able to capture strong coupling effects. In contrast, in (i)
the BMR-QME provides meaningful results only if the cou-
pling strength in the original picture is weak. We first discuss
the general Redfield equation, and then comment on modifica-
tions required to study each variation, (i), (ii) and (iii). Work-
ing in the Schrödinger representation and in the energy basis
of the system Hamiltonian, the Redfield equation for the re-
duced density matrix ρ(t) of the system is given by

ρ̇mn(t) =−iωmnρmn(t)
−∑

j,p
[Rm j, jp(ωp j)ρpn(t)+R∗np,p j(ω jp)ρm j(t)

− Rpn,m j(ω jm)ρ jp(t)−R∗jm,np(ωpn)ρ jp(t)]. (20)

The indices m (as well as n, j and p) denote eigenstates of
the system with eigenvalues Em, and Bohr frequencies ωmn ≡
Em−En. The elements of the R superoperator are given by a
half Fourier transform of bath autocorrelation functions,

Rmn, jp(ω) = (SD)mn(SD) jp

∫
∞

0
dτeiωτ〈B̂(τ)B̂(0)〉

= (SD)mn(SD) jp[Γ(ω)+ i∆(ω)], (21)

with ŜD standing for the system’s operator that is coupled to
the bath, written in the energy basis of the system Hamilto-
nian. Furthermore, Γ(ω) and ∆(ω) are the real and imaginary
parts of the bath autocorrelation function, respectively. These
correlation functions are evaluated with respect to the thermal
state of the bath. In this work, we neglect the imaginary part
of the autocorrelation function as it contributes only a small
shift to the spectrum.

For harmonic environments and a bilinear system-bath cou-
pling, the real part of the R tensor evaluates to

Γ(ω) =


πJ(|ω|)n(|ω|) ω < 0,
πJ(ω)[n(ω)+1] ω > 0,
π limω→0 J(ω)n(ω) ω = 0.

(22)

Here, n(ω) is the Bose-Einstein distribution function of the
bath, characterized by an inverse temperature β = 1/T . In a
compact form, the evolution of the system density matrix is
given by

ρ̇(t) =−i[Ĥs,ρ(t)]+∑
α

Dα(ρ(t)), (23)

where we have already generalized the equation to include
multiple thermal reservoirs with the dissipators Dα(ρ(t)), or-
ganized based on Eq. (20).

We solve the equation of motion in the steady state, and
obtain the density matrix of the system, ρSS. This can be
achieved in different ways; here we write down the equation
of motion in a compact form as ρ̇(t) = L ρ(t) and we further
construct a modified Liouvillian L ′ by replacing the last row
with a population (probability) conservation condition. We
also define the column vector v with all its elements set to
zero besides the last one, which corresponds to the population
conservation condition with the diagonal elements of the sys-
tem’s density matrix summing up to unity. The steady state
limit of the system’s density matrix is then obtained by alge-
braic operations,

L ′
ρ

SS = v. (24)

This formalism allows the calculation of currents; the heat
current at the αth contact, for example, is calculated from the
heat exchanged between the system and the αth reservoir,

jα
q (t) = Trs

[
Dα(ρ(t))Ĥs

]
, (25)

where steady state currents are obtained once obtaining the
state of the system in the long time limit, ρSS. The heat current
is defined positive when flowing from the αth bath towards the
system. Similarly, the charge current at the αth contact is

jα
e (t) = Trs

[
Dα(ρ(t))N̂s

]
, (26)

where N̂s is the number operator for the system.
We now elaborate on the three implementations of the Red-

field QME that we use in this work:
(i) BMR-QME simulations refer to using the Born-Markov

Redfield quantum master equation directly on the original
Hamiltonian, Eq. (1), with the associated spectral density
function of the heat bath, here Eq. (15). The BMR-QME
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provides inaccurate results in the strong system-bath coupling
regime, as the method is stretched beyond its regime of valid-
ity. In this sense, we regard the BMR-QME as an asymptotic
solution of the weak coupling limit.

(ii) RC-QME simulations refer to using the Redfield QME
to study the extended system after adding the RC, Eq. (2),
with the relevant spectral density function, here Eq. (16) (or
more generally Eq. (6)). In practice, we truncate the RC har-
monic oscillator manifold, reducing it to its first M levels. The
coefficients (SD)mn in the dissipator, Eq. (21), are dictated by
the form of the RC coupling to the bath, see the third term in
Eq. (2). While the original system may be strongly coupled
to the bath, in the RC representation the assumption of a weak
coupling between the residual reservoir and the extended sys-
tem can be justified as explained in Sec. II D.

(iii) EFF-QME simulations correspond to using the Red-
field QME, except we now apply it on the effective Hamilto-
nian, Eq. (10) with the spectral density function, Eqs. (12)
and (17). Recall that the effective Hamiltonian is constructed
with the RCPT framework. This approach allows for strong
coupling effects to be captured through renormalized parame-
ters, while still retaining a simple and tractable quantum mas-
ter equation framework; the dimension of the Hilbert space of
the effective system is equal to the original model. This ap-
proach is in principle less accurate than the RC-QME since the
RC manifold is truncated. However, the EFF-QME method
should reliably capture predictions of the RC-QME in the
limit where Ω is the largest energy scale, see Sec. II E for
a discussion on this point.

The hierarchy of methods goes as follows: The RC-QME
provides the most accurate results at strong coupling, main-
taining dynamical effects in the RC. However, it is a numeri-
cal method and it does not offer deep insights into the physical
mechanisms of strong coupling. The EFF-QME method pre-
serves dominant strong coupling effects, but is less accurate.
On the other hand, it provides a profound understanding of
underlying strong coupling effects. The BMR-QME is valid
only at weak system-bath coupling.

In what follows, we study and simulate several prominent
impurity models with the BMR-QME, RC-QME, and EFF-
QME methods to illustrate the predictive power of the RCPT
approach. Our main argument however is that the effective
Hamiltonian itself — namely Eq. (10), the outcome of the
RCPT approach — already allows assessment of contributions
of strong coupling to transport characteristics, even without
performing simulations.

III. THERMALIZATION: WEAK, INTERMEDIATE AND
THE ULTRASTRONG COUPLING LIMIT

What is the equilibrium state of a system that is coupled
to a heat bath at temperature T ? For macroscopic objects,
statistical physics asserts that in the long time (steady state)
limit, the system should reach the conventional Gibbs state,
ρSS = 1

Z e−β Ĥs , with Ĥs the Hamiltonian of the system, β the

inverse temperature of the bath and Z = Trs

[
e−β Ĥs

]
the rele-

vant partition function, with the trace performed over the sys-
tem’s degrees of freedom. However, the Gibbs state assump-
tion is valid only if the interaction of the system with the heat
bath is vanishingly weak; it breaks down, e.g., for nanoscale
systems once the interaction energy becomes comparable to
energy parameters of the system. The derivation of the equi-
librium state as a function of the system-bath interaction en-
ergy has been a topic of recent focus, particularly when steady
state coherences are generated22–27. Note that in this Section
the system is coupled to a single heat bath, and we thus refer
to the equilibrium state as the steady state. In the next Sec-
tions, when dealing with multiple heat baths, the steady state
is a nonequilibrium state.

What is then the long-time state of a quantum system cou-
pled to a heat bath? The general statement is that the system
should reach the mean-force Gibbs state (MFGS), defined as

ρ
SS
MFGS =

1
ZMFGS

TrB

[
e−β Ĥ

]
, (27)

which is the state obtained once taking a partial trace over
the bath’s degrees of freedom. Here, Ĥ is the total Hamil-
tonian and the partition function is defined with the the full
trace, ZMFGS = Tr[e−β Ĥ ]. Generally, this MFGS differs from
the conventional Gibbs state. An analytic expression for the
MFGS was obtained for the Caldeira-Leggett model in the
ultra-strong coupling limit25,27. It was shown that in this case,
the equilibrium state of the system was diagonal — albeit in
the basis of the system’s operator that couples to the bath.

Here we show that the effective model, the outcome of the
RCPT process, provides an excellent analytic approximation
for the MFGS from weak coupling, through the intermedi-
ate regime, to the ultrastrong coupling limit. We perform this
analysis on the generalized spin-boson model with a spin cou-
pled to a harmonic reservoir,

Ĥ = ∆σ̂z +∑
k

νk

(
ĉ†

k +
tk
νk

σ̂θ

)(
ĉk +

tk
νk

σ̂θ

)
, (28)

where ∆ is the spin splitting. The spin is coupled to a bosonic
bath with parameters as defined in Eq. (1). The system in-
teraction operator to the bath is σ̂θ = cos(θ)σ̂z + sin(θ)σ̂x,
where 0 ≤ θ ≤ π/2 is the angle of a vector pointing in the
x− z plane of the Bloch sphere, determining the nature of the
system-bath interaction. With this definition, θ = π/2 corre-
sponds to the standard spin-boson model while θ = 0 is the
pure dephasing model where only decoherence dynamics is
observed. In the language of Eq. (1), the generalized spin-
boson model (28) corresponds to the choice Ĥs = ∆σ̂z and
Ŝ = σ̂θ .

Based on Eqs. (10)-(14), we write down directly the effec-
tive Hamiltonian obtained from Eq. (28) through the RCPT
procedure. Making use of the properties of the Pauli opera-
tors, namely, Ŝ2 = 1 and Ŝ3 = Ŝ, we break down the sum in
Eq. (14) into even and odd contributions,

Ĥe f f
s (λ ) = e−

λ2

Ω2

(
∑

n;even

λ 2n

Ω2nn!
Ĥs + ∑

n;odd

λ 2n

Ω2nn!
ŜĤsŜ

)
.

(29)
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Figure 3. Spectrum of the generalized spin boson model. We display ∆e f f (λ ), the energy gap between the first excited and the ground state
eigenenergies of the spin system as a function of the system-bath coupling for three different angles: (a) θ = π/2, (b) θ = 0, and (c) θ = π/4.
Analytical expressions obtained from the effective spin splittings Eqs. (35)-(37) (dashed) perfectly agree with results from the numerical
diagonalization of Eq. (2), applied to the generalized spin-boson model (full). Parameters used here are ∆ = 1 and Ω = 20.

We sum the series noting that ŜĤsŜ = ∆sin(2θ)σ̂x +
∆cos(2θ)σ̂z. The effective system Hamiltonian thus becomes

Ĥe f f
s (λ ) = e−

λ2

Ω2 cosh
(

λ 2

Ω2

)
∆σ̂z

+ e−
λ2

Ω2

[
sinh

(
λ 2

Ω2

)
(∆sin(2θ)σ̂x +∆cos(2θ)σ̂z)

]
.

(30)

Next, we rearrange this expression into the form,

Ĥe f f
s (λ ) =

∆

2

[
(1+ e−

2λ2

Ω2 )+(1− e−
2λ2

Ω2 )cos(2θ)

]
σ̂z

+
∆

2

(
1− e−

2λ2

Ω2

)
sin(2θ)σ̂x. (31)

This is the effective Hamiltonian for the system, and it un-
covers two important aspects of strong coupling. (i) Parame-
ter renormalization: As can be seen from the first row in Eq.
(31), the qubit splitting is suppressed when θ 6= 0 once λ > 0

since 1
2

[
(1+ e−

2λ2

Ω2 )+(1− e−
2λ2

Ω2 )cos(2θ)

]
≤ 1. (ii) Gener-

ation of new processes: The second row in Eq. (31) reveals
that a new system tunneling term appears for 0 < θ < π/2,
compared to the original Hamiltonian, Eq. (28). This term is
induced by the system-bath coupling, λ 6= 0. To gain insight
into the strong coupling features of this model, Eq. (31), we
consider three angles as special cases:

(1) The pure-dephasing model is realized when θ = 0. This
reduces Eq. (31) to

Ĥe f f
s (λ ,θ = 0) = ∆σ̂z. (32)

In this case, [Ĥs, Ŝ] = 0, and therefore the polaron shift opera-
tor commutes with the system’s Hamiltonian. As a result, the
system’s Hamiltonian is unchanged by the RCPT procedure.

(2) The standard spin-boson model is obtained when θ =
π/2,

Ĥe f f
s (λ ,θ = π/2) = ∆e−

2λ2

Ω2 σ̂z. (33)

Here, the spin-splitting is exponentially suppressed due to the
coupling to the environment, but no new terms (processes)
are generated in the system’s Hamiltonian. This observa-
tion clearly points to the non-perturbative nature of the RCPT
scheme.

(3) The intermediate angle θ = π/4 leads to

Ĥe f f
s (λ ,θ = π/4) =

∆

2
(1+ e−

2λ2

Ω2 )σ̂z +
∆

2
(1− e−

2λ2

Ω2 )σ̂x.

(34)

This intermediate case reveals the general features of strong
coupling as predicted by this technique: the qubit frequency
is renormalized, similar to the standard spin-boson model, and
a new tunneling term is generated.

A. Spectrum of the spin-boson model

To showcase the predictive power of the RCPT method, we
next compare the eigenenergy spectrum of the extended RC
system, which is formally-exact and obtained from simula-
tions, to the eigenenergies of the effective system Hamilto-
nian, which are inexact, but are given by analytical expres-
sions. Our results are displayed in Figure 3 (a)-(c) for the
three different angles, θ = π/2, θ = 0, and θ = π/4, respec-
tively.

We diagonalize Eq. (31) and find the effective spin splitting
for the three angles,

∆e f f (λ ,θ = 0) = ∆, (35)

∆e f f (λ ,θ = π/2) = ∆e−
2λ2

Ω2 , (36)

∆e f f (λ ,θ = π/4) =
∆√
2

√
1+ e−

4λ2
Ω2 . (37)

In parallel, using the RC Hamiltonian, we study the energy
spectrum of the extended system Hamiltonian, the first line
of Eq. (2). We focus on the gap between the first excited
state and the ground state. In Fig. 3 we show that this gap
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Figure 4. Thermalization in the generalized spin-boson model. We present (a) the population and (b) the coherence in the eigenbasis of the
Hamiltonian of the spin using two limitings cases of the mean force gibbs state: the ultraweak coupling limit Eq. (38), (UW-MFGS, magenta
dashed-dotted), and the ultrastrong MFGS of Ref.25 (US-MFGS light-grey dashed dotted). We further show the numerical RC-QME where the
Redfield equation is solved after performing a reaction coordinate mapping (full), as well as its MGFS approximation, Eq. (39) (cyan circles).
We also show the EFF-QME results where the Redfield QME is once again implemented after the RCPT method (dashed) as well as its MFGS
approximation Eq. (40) (maroon squares). Parameters are ∆ = 1, θ = π/4 γ = 0.0071, Ω = 20, Λ = 1000, T = ∆/2.

is perfectly reproduced by the energy differences of the effec-
tive Hamiltonian, as written in Eqs. (35)-(37). This agree-
ment holds, surprisingly, even at very strong coupling with
λ > Ω. We conclude that the RCPT technique provides an
excellent approximation for the lowest energy levels of the
system Hamiltonian, with strong-coupling effects absorbed in
their definitions. More broadly, as we show next, the method
brings an intuition on the expected impact of strong-coupling
effects in open system phenomena.

B. Thermalization in the spin-boson model

We now examine the long-time steady-state value of the
system’s density matrix as a function of the system-reservoir
coupling parameter, λ . Our main achievement here is the
derivation of a closed-form analytic expression for the steady-
state of the system, [Eq. (40) and Eq. (C7) in Appendix C],
which is exact in both the weak and ultrastrong coupling lim-
its. Moreover, it provides an excellent qualitative approxima-
tion to the steady state in the intermediate coupling regime.

In Figure 4 (a) and (b) we present the population of the
excited state and the magnitude of the coherences of the spin,
respectively, in the eigenbasis of the system Hamiltonian for
θ = π/4 using Ω= 20. We present the elements of the density
matrix using different methods:

(i) The ultra-weak MFGS (UW-MFGS) corresponds to the
conventional Gibbs state,

ρ
SS
UW−MFGS =

1
ZUW−MFGS

e−β Ĥs , (38)

with ZUW−MFGS the partition function and Ĥs the original sys-

tem Hamiltonian, Eq. (28). It can be also shown that the Gibbs
state is the long time limit of the weak-coupling BMR-QME
simulation22,23. In this limit, λ dictates the rate to approach
the steady state, but not its value, as we clearly see in Fig. 4
(magenta dashed-dotted line).

(ii) The RC-MFGS is defined as

ρ
SS
RC−MFGS =

1
ZRC−MFGS

TrRC

[
e−β (Ĥs+Ωâ†â+λ Ŝ(â†+â))

]
,

(39)

and it clearly has a nontrivial λ dependence: While the ex-
tended system, which encompasses the RC, thermalizes to a
conventional Gibbs state, the state of the spin itself, obtained
after the RC is traced out, depends on λ . The RC-MFGS,
Eq. (39), is achieved numerically as the long-time solution
of RC-QME simulations13, and in Figure 4 we present both
calculations (cyan). We clarify that the RC-QME value (cyan
full line) is obtained by constructing the Redfield tensor and
inverting it as in Eq. (24). In contrast, the RC-MFGS result
(cyan circles) is reached according to Eq. (39) by construct-
ing the extended system Hamiltonian (yet truncating the RC to
include 11 levels, which is a sufficiently high number to rep-
resent the harmonic manifold of the RC), exponentiating the
result, and tracing out the RC. These two approaches provide
identical values.

(iii) The EFF-MFGS is

ρ
SS
EFF−MFGS =

1
ZEFF−MFGS

e−β Ĥe f f
s (λ ), (40)

with the effective system’s Hamiltonian Ĥe f f
s (λ ) given by Eq.

(31). This state is tractable analytically, and it can be evalu-
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ated to give a closed-form expression, see Appendix C, cul-
minating with Eq. (C7). In Figure 4, we present both the
EFF-MFGS of Eq. (40) (maroon square) and steady state sim-
ulations based on the the EFF-QME method while using the
effective Hamiltonian Eq. (31) (maroon, full lines). These
two calculations agree and we find that the steady state den-
sity matrix depends on λ in a non-trivial manner.

Interestingly, the EFF-MFGS provides excellent qualita-
tive results for all coupling regimes: It is exact in the
asymptotically-weak coupling regime. It is also exact in the
ultrastrong coupling limit (see Sec. III C). In between, it cor-
rectly reproduces the RC-MFGS trends, albeit with some de-
viations in the position of the weak-to-strong crossover.

Concretely, the steady state of the conventional spin-boson
model (θ = π/2) is diagonal with

ρ
SS
EFF−MFGS(θ = π/2) ∝ e−β∆e f f (λ )σz , (41)

where ∆e f f (λ ) is given in Eq. (36). The steady state of the
intermediate case, (θ = π/4) presented in Figure 4 is nondi-
agonal, and thus maintains steady-state coherences,

ρ
SS
EFF−MFGS(θ = π/4) ∝ e−

1
2 β∆[(1+e

− 2λ2

Ω2 )σ̂z+(1−e
− 2λ2

Ω2 )σ̂x].

(42)

The proportionality constants in the above expressions are the
reciprocal of the partition functions of the respective states,
which can be computed by a trace over the system.

(iv) The ultrastrong limit, US-MFGS, of Ref. 25 is plotted
as well in Fig. 4 (light grey dashed-dotted line). It is given
below in Eq. (45). Remarkably, the EFF-MFGS approaches
this limit as λ →∞. We discuss this limit in more detail in the
following Section.

C. Ultrastrong coupling limit of the generalized spin-boson
model

Focusing now on the ultrastrong coupling limit with λ→∞,
we obtain from the effective Hamiltonian - RCPT treatment
[Eq. (40)] the following steady state,

lim
λ→∞

ρ
SS
EFF−MFGS(θ) ∝ e−

β∆

2 [(1+cos(2θ))σ̂z+sin(2θ)σ̂x]. (43)

Thus, at very strong coupling, the conventional model (θ =
π/2) corresponds to the two levels being equally populated,
with zero coherences. In contrast, when the coupling involves
non-commuting operators using θ = π/4, the RCPT method
provides the steady state

lim
λ→∞

ρ
SS
EFF−MFGS(θ = π/4) ∝ e−

β∆

2 [σ̂z+σ̂x]. (44)

Here, the equilibrium state possesses different populations
from the standard spin-boson model, as well as nonzero steady
state coherences.
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Figure 5. The ultrastrong coupling limit of the generalized spin-
boson model in steady state presenting the spin’s (a) population and
(b) coherence as a function of the angle θ , which controls the non-
commutativity of operators. We note on the exact agreement between
the ultrastrong MFGS, Eq. (45) (light-gray dashed-dotted), and our
analytical results (maroon squares), calculated using Eq. (43). Pa-
rameters are the same as in Figure 4, with λ → ∞.

We now recall the ultrastrong limit of the MFGS (US-
MFGS) derived in Ref. 25 for the same model,

lim
λ→∞

ρ
SS
US−MFGS =

1
2
[1− (σ̂x sin(θ)+ σ̂z cos(θ)) tanh(β∆cos(θ))] .

(45)

In Appendix C, we prove that the EFF-MFGS reduces to this
expression in the λ → ∞ limit. It is significant to note that the
elegant RCPT procedure produces results that exactly match
the ultrastrong limit of Ref. 25.

We further expand on the exact agreement between our
RCPT approach and the ultrastrong limit of Ref. 25 by show-
ing in Figure 5 the steady state excited state populations and
the magnitude of the coherences in the λ →∞ limit as a func-
tion of the angle θ . We briefly comment on this agreement,
between EFF-MFGS and the US-MFGS, Eq. (45): In Ref. 25,
their result was derived by representing the Hamiltonian in the
“pointer basis”, that is, the eigenbasis of the system’s opera-
tor that is coupled to the bath. Projecting the effective system
Hamiltonian Eq. (14) to the pointer basis, we find that it is
exactly equal to the pointer basis representation of the origi-
nal, system Hamiltonian. Therefore, due to their pointer basis
representations being the same, we should expect the same
results for the two methods in the ultrastrong coupling limit.

Figure 5 (a) shows an increase in the excited state popula-
tion in the ultrastrong coupling limit with increasing θ . As
θ grows, the suppression of the spin-splitting becomes more
substantial; in the limiting case of θ = π/2, the ground and ex-
cited states are equally populated, since they become degener-
ate in the ultrastrong limit. For lower values of θ spin-splitting
suppression is only one aspect of strong coupling, which ex-
plains why we stray from equally populated levels. Further-
more, in Figure 5 (b) we observe that coherences are con-
trolled by the angle θ , with a maximum showing at θ = π/4.
This can be traced back to the effective system Hamiltonian,
Eq. (31), where a new contribution, a coupling-induced tun-
neling term, is maximized at this angle.
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D. Discussion and Extensions

The principal far-reaching result of this section is the effec-
tive MFGS, Eq. (40) with its explicit form, Eq. (C7). This is a
closed-form approximate analytic solution for the steady state
density matrix that properly captures all coupling regimes,
from the asymptotically weak to the ultra-strong limit. This
example demonstrates that the effective model Hamiltonian,
the outcome of the RCPT, provides an accurate description
for the equilibrium state of a system coupled to a heat bath,
covering the full range of coupling parameters, weak, inter-
mediate and ultrastrong. The main advantage of the RCPT
method is that the equilibrium state is readily obtained by per-
forming the RCPT mapping, and there is no need to perform
an actual open-system dynamics.

The EFF-MFGS can be calculated efficiently for other non-
trivial models with steady state coherences and interactions.
The EFF-MFGS and the resulting partition function, allow us
to obtain analytic expressions for thermodynamical observ-
ables (energy, heat capacity, entropy) in the strong-coupling
limit. For example, one could consider a fermionic analog of
this study, a quantum dot model with an onsite Coulomb re-
pulsion and strong coupling to the metals. Using the reaction
coordinate method and developing a fermionic analog of the
EFF-MFGS one may be able to evaluate electrical effects in
the highly-correlated regime.

IV. HEAT TRANSPORT IN THE NONEQUILIBRIUM
SPIN-BOSON MODEL

In this section we investigate the problem of quantum
heat transport in the nonequilibrium spin-boson model, which
provides a minimal setting to study heat transport at the
nanoscale. Such ideas of thermal transport were recently
experimentally implemented using superconducting quantum
circuits98,99. The effective model provides an excellent ana-
lytical approximation to the quantum heat current, from weak
to strong coupling, as was shown in Ref. 80.

The nonequilibrium spin-boson model is identical to the
generalized spin-boson model with θ = π/2, except now the
spin couples to two thermal reservoirs (α = L,R) held at dif-
ferent temperatures; for a diagramatic representation, see Fig.
1(b). In this model, the two system operators that couple the
spin to the different baths commute with each other, allow-
ing for successive polaron transformations to be applied on
the two RCs (extracted from each bath), with no conceptual
complications.

The Hamiltonian is given by

Ĥ = ∆σ̂z

+ ∑
α={L,R},k

να,k

(
ĉ†

α,k +
tα,k

να,k
σ̂x

)(
ĉα,k +

tα,k

να,k
σ̂x

)
,

(46)

The terms here are analogous to those in Eq. (28), except now
there are two bosonic reservoirs, which are independent and
maintained at different thermal states. We follow an identical
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Figure 6. Quantum heat transport in the nonequilibrium spin-boson
model. We present the steady state heat current computed with the
RC-QME method (cyan) and the EFF-QME (maroon) at two differ-
ent RC frequencies, Ω = 10 and Ω = 20. Parameters are ∆ = 1,
Th = ∆, Tc = ∆/2, γ = 0.0071, Λ = 1000.

procedure to Section II, but now we extract two RCs, one from
each bath, and thus perform two polaron transformations, one
for each RC. Since the two baths are coupled via the same
system operator, we represent this transformation as a single
polaron operator,

ÛP = ÛP,LÛP,R = e[
λL
ΩL

(â†
L−âL)+

λR
ΩR

(â†
R−âR)]σ̂x . (47)

As a consequence of including an additional reservoir, the
effective system Hamiltonian is modified from Eq. (33).
Namely,

Ĥe f f
s = ∆e

−∑α=L,R
2λ2

α

Ω2
α σ̂z. (48)

The total effective Hamiltonian of the model, Eq. (10) with
Eq. (48), is given by

Ĥe f f (λ ) = ∆e
−∑α=L,R

2λ2
α

Ω2
α σ̂z

+∑
α,k

ωα,k

(
b̂†

α,k−
2λα fα,k

Ωα ωα,k
σ̂x

)(
b̂α,k−

2λα fα,k

Ωα ωα,k
σ̂x

)
.(49)

Since in the effective model the spin weakly couples to the
heat bath, analytical expressions from the weak coupling limit
were adopted to provide a closed-form expression for the heat
current, capturing weak-to-strong coupling behavior80. We
do not repeat these expressions here, but in Fig. 6 we present
calculations of the heat current obtained from the RC-QME
method and the EFF-QME technique. Importantly, the two
approaches are in an excellent agreement. This demonstrates
that the effective treatment is appropriate for describing steady
state properties, even in the very-strong coupling regime. The
main nontrivial observation from Fig. 6 is the turnover be-
havior of the heat current with coupling strength. This phe-
nomenon has been analyzed and demonstrated with power-
ful numerically-exact methods such as in Refs.50,100–102, as
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well as with quantum master equation tools in the polaron
frame, e.g.,61,62,66,67,91–94,103. The RCPT method reproduces
this nontrival behavior with minimal effort. Fundamentally,
we know that transport at weak coupling is sequential and
resonant61,91,92. Inspecting Eq. (49), we conclude that for
large Ω transport is still sequential and resonant—yet with
spin frequency that is monotonically quenched, revealing the
origin of heat current suppression at strong coupling: When
we increase λ the current first increases due the enhance-
ment in excitation and relaxation processes transferring en-
ergy through the system. However, increasing λ also sup-
presses the spin splitting, thus the quanta of energy trans-
ferred is being quenched. More details on heat transport in
this model are given in Ref. 80.

V. AUTONOMOUS QUANTUM ABSORPTION
REFRIGERATOR

An autonomous quantum absorption refrigerator extracts
heat from a cold bath (c) and deposits it in a hot bath (h),
assisted by heat input from a so-called work (w) reservoir,
obeying Tc < Th < Tw. A canonical model for this machine
is made of a quantum “working fluid” with three energy
states104–106, |n〉, n = 1,2,3. For a schematic representation,
see Fig. 1(c). Transitions between the levels are achieved
by absorbing or releasing heat to the different thermal reser-
voirs, with the following system operators, Ŝc = |1〉〈2|+h.c.,
Ŝw = |2〉〈3|+h.c., and Ŝh = |1〉〈3|+h.c.. The total Hamilto-
nian of this model is

Ĥ = Ĥs + ∑
α={c,w,h},k

να,k

(
ĉ†

α,k +
tα,k

να,k
Ŝα

)(
ĉα,k +

tα,k

να,k
Ŝα

)
.

(50)

Here, ĉ†
α,k (ĉα,k) are the bosonic creation (annihilation) opera-

tors to generate a quanta of frequency να,k in the αth thermal
bath; tα,k are the system-bath coupling energies. The system
Hamiltonian is written in the energy basis as

Ĥs = ∑
n=1,2,3

εn|n〉〈n|. (51)

For the system to act as a refrigerator, that is, extract heat from
the cold bath and release it into the hot bath, one needs to tune
the energy levels ε1,2,3. Without loss of generality, below we
use ε1 = 0, ε2 = ∆ and ε3 = 1, and adjust ∆ to achieve cool-
ing. While the cooling condition and the associated cooling
current can be readily obtained assuming weak system-bath
coupling9,10, these calculations become nontrivial once we de-
viate from this assumption: In Ref. 19, we used the RC-QME,
a numerical tool, to locate the cooling window at strong cou-
pling, revealing rich trends.

In what follows, we show that the RCPT approach can be
used to provide an analytical expression for the cooling win-
dow — assuming for simplicity that only the cold bath is
strongly coupled to the three-level quantum system, while the
other baths are weakly coupled to it. We thus extract a single
reaction coordinate from the cold reservoir and apply the cor-
responding polaron transformation to the cold RC. This en-
ables analytical expressions for the cooling condition to be
obtained from the RCPT method, while not posing new chal-
lenges arising from the non-commuting polaron operators.

We comment that we choose to extract the RC from the cold
reservoir since it is at a lower temperature than the other baths,
hence stronger correlations are expected to survive in this
reservoir. The other two contacts are treated in the standard
(BMR-QME) weak coupling fashion. The resulting Hamilto-
nian upon extracting a reaction coordinate from the cold reser-
voir is

ĤRC = Ĥs + ∑
α={w,h},k

να,k

(
ĉ†

α,k +
tα,k

να,k
Ŝα

)(
ĉα,k +

tα,k

να,k
Ŝα

)
+ Ωc

(
â†

c +
λc

Ωc
Ŝc

)(
âc +

λc

Ωc
Ŝc

)
+ ∑

k
ωc,k

(
b̂†

c,k +
fc,k

ωc,k
(â†

c + âc)

)(
b̂c,k +

fc,k

ωc,k
(â†

c + âc)

)
.

(52)

In this expression, the hot and work reservoirs are unchanged,
compared to the initial model, Eq. (50). The RC transforma-
tion acts exclusively on the cold reservoir. It extracts a collec-
tive coordinate from that bath of frequency Ωc, which couples
to the system via λc. Next, we apply the polaron transforma-

tion, ÛP = e
λc
Ωc

Ŝc(â
†
c−âc), to (partially) decouple the cold RC

from the three-level system. The resulting Hamiltonian is

ĤRC−P = ÛPĤsÛ
†
P + ∑

α={w,h},k
να,k

(
ĉ†

α,k +
tα,k

να,k
ÛPŜαÛ†

P

)(
ĉα,k +

tα,k

να,k
ÛPŜαÛ†

P

)
(53)

+Ωcâ†
c âc +∑

k
ωc,k

(
b̂†

c,k +
fc,k

ωc,k
(â†

c + âc−
2λc

Ωc
Ŝc)

)(
b̂c,k +

fc,k

ωc,k
(â†

c + âc−
2λc

Ωc
Ŝc)

)
.

Focusing on the subspace with zero excitations in the RC, we arrive at our effective description of the 3-level QAR Hamiltonian
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Figure 7. Cooling window of the three-level autonomous quantum absorption refrigerator. (a)-(b) The cooling window calculated analytically
from the RCPT method using Eq. (59) for Ω = 20 (a) and Ω = 10 (b). This is contrasted to panels (c) and (d) where the cooling window
is calculated from the numerical RC-QME method. The dashed line marks the boundary of the cooling window in the weak coupling limit,
where cooling takes place for 0 < ∆ < 0.4. We used reservoir temperatures Tc = 0.25, Th = 0.5, Tw = 1.5. Panels (e) and (f) show a comparison
of the eigenvalues calculated from the RCPT method and exact diagonalization of the RC Hamiltonian. Here, ∆ = 0.5.

(ignoring constant shift terms),

Ĥe f f (λ ) = Ĥs +
∆

2

(
e
− 2λ2

c
Ω2c −1

)
Q̂+ ∑

α={w,h},k
να,k

(
ĉ†

α,k +
tα,k

να,k
e
− λ2

c
2Ω2c Ŝα

)(
ĉα,k +

tα,k

να,k
e
− λ2

c
2Ω2c Ŝα

)

+ ∑
k

ωc,k

(
b̂†

c,k−
2λc fc,k

Ωcωc,k
Ŝc

)(
b̂c,k−

2λc fc,k

Ωcωc,k
Ŝc

)
. (54)

In this expression, the operator Q̂ = −|1〉〈1|+ |2〉〈2| arises
from the action of the polaron transformation on the system
Hamiltonian and it represents a shift of the first two energy

levels of the QAR.

Inspecting Eq. (54), the overall effect of strong system-
bath coupling at the cold contact as observed from the RCPT
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treatment is nontrivial: (i) The energy difference between the
lowest two energy levels (those coupled to the cold bath) is

suppressed, ∆→ ∆e
− 2λ2

c
Ω2c . This effect is similar to the suppres-

sion of the spin spacing in the spin-boson model, Eq. (36). (ii)
Transitions in the system that are induced by the hot and work
baths are suppressed by the cold bath. This effect is highly
nontrivial.

The cooling condition specifies regimes in which the sys-
tem can act as a refrigerator and extract heat from the cold
environment. In the weak coupling limit and using the Born-
Markov Redfield quantum master equation, the cooling con-
dition is9,10

ε2− ε1

ε3− ε1
≤ βh−βw

βc−βw
. (55)

The effect of strong coupling is to dress the QAR parame-
ters. In particular, the energy levels of the QAR, εn, gain a
dependence on λc. The renormalized energy levels are [see
Eq. (54)],

ε1(λc) =
∆

2

(
1− e

− 2λ2
c

Ω2c

)
, (56)

ε2(λc) =
∆

2

(
1+ e

− 2λ2
c

Ω2c

)
, (57)

ε3(λc) = 1. (58)

The cooling condition Eq. (55) was derived for the original
Hamiltonian (50) under the weak coupling condition. It thus
holds for the effective Hamiltonian (54) since it has the same
form, only with renormalized parameters, and with weak cou-
pling restored between the effective system and the bath. We
thus write down the cooling condition in the strong coupling
regime using the renormalized levels,

ε2(λ )− ε1(λ )

ε3(λ )− ε1(λ )
=

∆e
− 2λ2

c
Ω2c

1− ∆

2

(
1− e

− 2λ2c
Ω2c

) ≤ βh−βw

βc−βw
. (59)

The gap between the lowest two energy levels is suppressed
faster with λc than the total gap. As a result, at large ∆, where
cooling was impossible at weak coupling, we observe cooling
once we reach the strong system-reservoir coupling regime.
This effect is seen in Figure 7: The cooling window calcu-
lated using Eq. (59) is displayed in Figure 7(a) and (b). It is
compared to the cooling window predicted by the weak cou-
pling limit (to the left of the dashed line at ∆ = 0.4). This
analytic result is also compared to numerical simulations with
the RC-QME method, see Figure 7(c) and (d).

In these figures, the blue region corresponds to areas where
cooling is allowed ( jc > 0) whereas red regions identifies the
no cooling regime ( jc ≤ 0). We find that the effective treat-
ment agrees well with complete simulations for large RC fre-
quency, Ωc = 20, while for smaller Ωc = 10, the agreement
is not as good, particularly at large λc values. This is to be
expected since the RCPT analytical approach relies on Ωc be-
ing the largest energy scale in the problem, and deviations are
expected once λc ≈Ωc.

We comment that deviations between the two approaches
are not attributed to problems in capturing the eigenspectrum
of the QAR at strong coupling. Figure 7 (e) and (f) show
the LHS of the cooling inequality, and we compare the ana-
lytical expression Eq. (59) with the effective energies to the
value computed by taking the three lowest eigenvalues of the
Hamiltonian (52). We observe perfect agreement even at large
λc. This correspondence reveals that the RCPT method fails
to capture the cooling window at small Ω due to transitions
missing in the method, the result of the energy truncation in-
volved. For example, leakage effects, with heat flowing di-
rectly from the work to the cold bath are missing in the effec-
tive Hamiltonian19.

Equation (59) demonstrates the remarkable predictive
power of the RCPT method. Since strong coupling effects are
now embedded in the energy levels of the system, a wealth
of results describing performance bounds on weakly-coupled
systems can be effortlessly extended to the strong coupling
regime.

VI. PHONON-ASSISTED THERMOELECTRIC ENGINES

In this Section, we explore another nontrivial application
of the RCPT technique to obtain a deeper understanding of
phonon-assisted electron transport and thermoelectric gener-
ation in quantum dot setups. In this model, the RC and the
subsequent polaron transformation are applied to a bosonic
(phonon) reservoir that is strongly coupled to the system’s
electronic degrees of freedom (quantum dots). These quan-
tum dots are assumed to weakly hybridize with voltage-biased
and temperature-biased fermionic environments (metals) re-
sponsible for both charge and energy currents flowing in the
junction. A schematic representation of the model is given in
Fig. 1(d).

As we show in this Section, using the RCPT method on
the phonon-assisted charge transport model we gain three out-
comes: (i) We bypass expensive simulations while treating
strong coupling effects nonperturbatively. (ii) We analytically
distill impacts of strong couplings from the renormalization
of parameters in the effective Hamiltonian. (iii) We achieve
closed-form expressions for transport characteristics, here fo-
cusing on the efficiency of a thermoelectric power generator.
As for physical observables, the RCPT method provided ex-
cellent predictions not only for the averaged charge current,
but also for its fluctuations, as well as for the energy current.

A. Model and the derivation of the Effective Hamiltonian

The literature includes many theoretical proposals for
phonon-assisted quantum-dot based thermoelectric genera-
tors, for example, Refs. 84,107–111. In Refs. 112–114, for
instance, phonon-assisted conduction and thermoelectric gen-
eration were analyzed in double quantum dot devices. In those
studies, however, the hybridization of the dots to the metal
electrodes was assumed strong, but the electronic states of the



16

quantum dots only perturbatively coupled to phonons; com-
putationally extensive simulations in Ref. 49 explored non-
perturbative electron-phonon coupling effects.

In the present study and following Ref. 84, we assume
that the coupling of the quantum dots to the metal electrodes
is weak and can be handled in a perturbative manner by a
second-order BMR-QME. The coupling of the quantum dot to

a phonon bath is however strong, and this interaction, which
will be treated with the RCPT method is essential for facilitat-
ing charge transport.

The Hamiltonian of the double quantum dot is written in the
|G〉 , |L〉 , |R〉 , |D〉 basis, which corresponds to the states with
neither dots being occupied, the left dot only occupied, the
right dot only occupied, and both dots occupied, respectively.
In this basis, the total Hamiltonian is represented as

Ĥ = εL |L〉〈L|+ εR |R〉〈R|+(εL + εR +U) |D〉〈D|+∑
k

εk,Lĉ†
k,Lĉk,L +∑

k
εk,Rĉ†

k,Rĉk,R

+∑
k

[
(|R〉〈D|− |G〉〈L|)hk,Lĉ†

k,L +h.c.
]
+∑

k

[
(|L〉〈D|+ |G〉〈R|)hk,Rĉ†

k,R +h.c.
]

+∑
q

νq

(
d̂†

q +
tq
νq

(|L〉〈R|+h.c.)
)(

d̂q +
tq
νq

(|L〉〈R|+h.c.)
)
. (60)

For more details on this model, see Ref. 84. In the above
expression, εL,R are the energies of the left and right quan-
tum dots, and U is the Coulomb interaction energy when both
quantum dots are occupied. The fermionic reservoirs are cou-
pled to the dots with a coupling strength hk,L/R; here the cre-
ation (annihilation) operators ĉ†

k,α (ĉk,α ) create (annihilate) an
electron in the fermionic lead α = L,R with energy εk,α . We
assume a linear dispersion relation for the electronic energy
with a wideband of constant density of states. The last line
in Eq. (60) describes electron tunneling between the two dots
— assisted by a phonon bath. The phononic degrees of free-
dom are described by creation (annihilation) operators d̂†

q (d̂q).
Here, q identifies a normal mode with frequency νq coupled
to electronic transitions between the dots with the coupling
energy tq.

Following Ref. 84, we introduce a compact notation for
the system operators on the double quantum dot Hilbert
space, Â1 =−|G〉〈L|+ |R〉〈D|, Â2 =−|L〉〈G|+ |D〉〈R|, Â3 =
|G〉〈R|+ |L〉〈D|, Â4 = |R〉〈G|+ |D〉〈L|, Ŝ = |L〉〈R|+ |R〉 |L〉,
L̂ = |L〉〈L|, R̂ = |R〉〈R|, and D̂ = |D〉〈D|. We allow phonons
to strongly couple to electrons, thus we perform a reaction co-
ordinate transformation on the phononic degrees of freedom
to extract a collective phonon coordinate and add it to the sys-
tem’s Hamiltonian. The dot-metal hybridization is assumed
weak (though in principle one can also perform the RC map-
ping on the electronic energies).

After the polaron transform and the truncation of the RC
mode, we arrive at our effective Hamiltonian, exhibiting
strong electron-phonon coupling through renormalized pa-
rameters and new coupling terms. After neglecting constant
terms we obtain

Ĥe f f (λ ) =

[
εL cosh

(
λ 2

Ω2

)
+ εR sinh

(
λ 2

Ω2

)]
e−

λ2

Ω2 L̂+

[
εR cosh

(
λ 2

Ω2

)
+ εL sinh

(
λ 2

Ω2

)]
e−

λ2

Ω2 R̂+(εL + εR +U)D̂

+ ∑
q

ωq

(
b̂†

q−
2λ fq

Ωωq
Ŝ
)(

b̂q−
2λ fq

Ωωq
Ŝ
)
+∑

k

[
Â1hk,Le−

λ2

2Ω2 ĉ†
k,L + Â2h∗k,Le−

λ2

2Ω2 ĉk,L

]
+ ∑

k

[
Â3hk,Re−

λ2

2Ω2 ĉ†
k,R + Â4h∗k,Re−

λ2

2Ω2 ĉk,R

]
+∑

k
εk,Lĉ†

k,Lĉk,L +∑
k

εk,Rĉ†
k,Rĉk,R. (61)

Here, Ω and λ are parameters of the spectral density func-
tion of the phonon bath, describing the central frequency of
the bath and its coupling energy to the electronic system, see
Eq. (15). However, after the RCPT procedure, these bath
parameters are imprinted into the model Hamiltonian itself.
Furthermore, since we assume that the spectral density func-
tion is narrow, and that λ < Ω, the residual phonon bath only
weakly couples to the system, as in Eq. (12). Intermediate
steps in the calculation are presented in Appendix D.

Inspecting the Hamiltonian (61), and in comparison to the
original expression Eq. (60), the effects of the RCPT mapping
can be summarized as follows: (i) The energy levels of the
electronic dots are renormalized by the coupling to phonons
such that they approach equal values at strong coupling. (ii)
The coupling of the phonon bath to the dots is dressed (weak-
ened) by the factor λ/Ω. (iii) Electron tunneling from the
metals to the dots is exponentially suppressed.

To expound the impact of strong system-bath couplings, we
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Figure 8. Effective coupling-dressed parameters in the phonon-
assisted quantum dot thermoelectric generator. We display the en-
ergy of the left dot (triangle), right dot (diamond) and the magnitude
squared of the coupling energy between the dots and the fermionic
baths (star), as calculated from Eqs. (62)-(64). Parameters (without
dressing) are εR = 2, εL = 0, |h|2 = 1, Ω = 100.

define the renormalized energy parameters

εL(λ ) =

[
εL cosh

(
λ 2

Ω2

)
+ εR sinh

(
λ 2

Ω2

)]
e−

λ2

Ω2 , (62)

εR(λ ) =

[
εR cosh

(
λ 2

Ω2

)
+ εL sinh

(
λ 2

Ω2

)]
e−

λ2

Ω2 , (63)

hk,L(λ ) = hk,Le−
λ2

2Ω2 ; hk,R(λ ) = hk,Re−
λ2

2Ω2 , (64)

corresponding to the phonon-dressed quantum dots energies,
εL,R(λ ) and the phonon-dressed metal-dot hybridizations,
hk,L(λ ) and hk,R(λ ).

In Fig. 8 we show these renormalized parameters, which
are strongly affected by the electron-phonon coupling when
λ approaches Ω. For a system configured with εR = 2 and
εL = 0, we again observe level renormalization as a staple of
strong coupling in this model. Here, the quantum dot energies
approach their average value at strong coupling. Furthermore,
we also observe a suppression of the dot-metal hybridization
as the coupling of electrons to the phonon bath is increased,
which is notable, since the RC mapping did not involve the
fermionic reservoirs. This is indeed a polaronic effect, with
the electrons being slowed down due to polaron formation on
the dots. As we show below with benchmarking, the RCPT
method performs extremely well in this model. It quantita-
tively captures the significant features of the model even as λ

becomes comparable to Ω, a regime that is not guaranteed to
be properly described by the RCPT.

B. Charge current and its noise

We now turn to study charge transport in the model. The
quantum dot system is coupled to two metal electrodes and a

phonon bath, and one could use this setup to investigate nu-
merous aspects of quantum transport such as the behavior of
the charge current and its fluctuations as a function of voltage
and electron-phonon couplings, with all baths maintained at
the same temperature. The system can be also tuned to act
as a thermoelectic power generator when applying a temper-
ature difference counteracting the voltage bias. To study this
function, we follow Ref. 84 and investigate the same setup.
The left metal is set hot and the right side is cold, TL > TR.
However, the chemical potentials of the electrodes are tuned
with the opposite polarity, µL < µR. As for the temperature of
the phonon bath Tph, we set it here to be equal to TR, but one
could imagine other situations as described in Ref. 84. The
metal molecule hybridization is defined as

ΓL(ε) = 2π ∑
k
|hk,L|2δ (ε− εk,L), (65)

and a similar expression is used to define ΓR(ε). We assume
that these parameters are energy independent, and we work
in the weak metal-dot coupling limit such that ΓL,R � TL,R.
As for the phonon bath, it is described by a Brownian spec-
tral function with the peak frequency at Ω, Eq. (15). After
the mapping, the residual bath couples weakly to the quantum
dots, with an Ohmic spectral function.

In Fig. 9 we display the mean charge current and its
fluctuations as a function of the electron-phonon coupling
strength, λ . We calculate the charge current using Eq. (26),
presenting it here with the brackets, 〈 je〉, to emphasize that
this is the mean current; using a full-counting statistics ap-
proach, we also calculate the current noise, denoted here by
〈〈 j2

e〉〉 = 〈 j2
e〉− 〈 je〉2. Technical details on how to calculate

currents and noise in the model are given in Ref. 84 and we
do not repeat them here.

We present results using three methods: BMR-QME, which
is valid at weak electron-phonon coupling only, RC-QME,
a numerical tool simulating transport [based on Eq. (D1)],
which is expected to hold even for large λ , and the EFF-QME
method using the effective Hamiltonian (61), then simulating
current with the BMR-QME method. Focusing in Fig. 9 on
trends as a function of electron-phonon coupling strength, we
note the perfect agreement between the latter two techniques,
showcasing the excellent performance of the RCPT method
compared to full simulations.

The RCPT method is not only remarkably computationally
efficient (as we do not need to pay any computational cost
for working in the strong coupling limit), but furthermore it
clarifies the origins of (i) the significant enhancement of the
current at intermediate electron-phonon coupling compared to
the weak coupling limit, and (ii) the complete suppression of
charge current at the ultrastrong coupling limit, as we discuss
next.

At weak electron-phonon coupling, the current trivially
grows with λ due the increasing coupling between the dots
and the phonon bath (as in the weak coupling scheme) as-
sisting transport. At the intermediate regime (here around
λ = 50) the current shoots up, contrasting with the behav-
ior at weak coupling. The reason for this strong enhance-
ment of the current is made clear when looking at the effec-
tive Hamiltonian (61): As we increase the electron-phonon
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Figure 9. Phonon-assisted quantum dot thermoelectric power generator. (a) Mean steady state charge current flowing left to right (positive),
and (b) the current fluctuations. Parameters are εR = 2, εL = 0, TL = 10, TR = 1, Ω = 100, µL =−0.3 µR =−0.2, V = µR−µL = 0.1, Tph = 1,
2πγΩ = 100, and metal-dot hybridization energies ΓL = ΓR = 0.1, all in units of TR.

coupling the energy levels of the quantum dots approach de-
generacy, reaching their mean value (εL + εR)/2 in the ultra-
strong coupling limit. Evening the energy levels — closing
their gap — is beneficial for charge transport. However, at the
same time, the metal-quantum dot tunneling elements |h(λ )|2
are exponentially suppressed with λ . In the polaron picture
this effect is well known: Unlike the bare electron, an elec-
tron dressed by lattice vibrations stabilizes and it requires the
“reorganization energy” to hop. The combination of these ef-
fects lead to the turnover behavior of the current, and its even-
tual exponential suppression with λ . It is significant to note
that besides the mean current, its fluctuations are also excel-
lently captured by the RCPT method, similarly showing a cor-
responding turnover behavior.

C. Thermoelectric efficiency at strong coupling: Simulations
and analytic results

Using the RCPT formalism we next simulate the charge
〈 je〉 and energy currents 〈 ju〉 arriving from the hot metal, as
well as the associated heat current 〈 jq〉= 〈 ju〉−µL〈 je〉. Com-
bining these currents, we assess the efficiency of the thermo-
electric generator, defined as

η ≡ P
〈 jq〉

, (66)

with the power extracted P ≡ 〈 je〉(µR− µL). The efficiency
is bounded by the Carnot limit, ηC = 1− Tc

Th
with Tc,h as the

temperatures of the cold and hot baths. Nontrivial questions
concern how the thermoelectric efficiency depends on volt-
age, and how it is modified by the electron-phonon coupling
energy.

In Fig. 10 we look at the dependence of the mean charge
current, mean heat current, and power output on the applied

voltage bias between the right and left leads (V = µR− µL).
Here, µR is varied while µL is kept constant. We imme-
diately note the excellent agreement between the RC-QME
and EFF-QME methods in Fig. 10 (a)-(c). Using the data
for currents, in Fig. 10 (d) we plot the thermoelectric effi-
ciency based on Eq. (66). We observe the following: The
BMR-QME method predicts that the efficiency grows linearly
with voltage reaching the Carnot bound. Indeed, according
to a weak coupling master equation theory, the efficiency of
a thermoelectric generator is given by η = µR−µL

εL−µL
. This re-

flects the tight coupling limit between the charge and heat
currents, resulting in their cancellation from the expression
for efficiency. Obviously, since the electron-phonon coupling
strength is large, the BMR-QME prediction is provided here
as a reference point only. Contrasting the characteristic lin-
ear trend of weak coupling, RC-QME simulations show that
at finite electron-phonon coupling, the system cannot reach
the Carnot efficiency, and the efficiency drastically drops to
zero as we reach the stopping voltage. Interestingly, the RCPT
method with EFF-QME simulations provide accurate results
for small-intermediate voltage biases, but it fails to capture the
suppression of efficiency at higher voltage when approaching
the stopping voltage. In other words, the EFF-QME method
predicts that the efficiency can still reach the Carnot bound,
only with a different slope—due to the renormalization of pa-
rameters. This observation is consistent with the nature of
the EFF-QME method. It deploys a weak-coupling theory on
an effective Hamiltonian, thus allowing reaching the Carnot
bound: In the ultrastrong coupling limit and based on Eq. (64)
the efficiency is given by ηUS =

µR−µL
(εL+εR)/2−µL

, distinct from the
weak-coupling prediction by the value in the denominator.

It is intriguing to note that while both charge and heat
currents are seemingly excellently reproduced by the EFF-
QME method compared to simulations with RC-QME, see
Fig. 10(a)-(c), the corresponding thermoelectric efficiencies



19

0 0.1 0.2 0.3 0.4

0

2

4

6

8

10

10
-4

0 0.1 0.2 0.3 0.4

0

1

2

3

4
10

-4

0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

1.2

10
-4

0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

0.28 0.3
1

1.5

2

0.28 0.3

0.8

0.9

1

Figure 10. Phonon-assisted double quantum dot thermoelectric power generator. (a) Mean charge current from the left lead (positive) towards
the system and (b) mean heat current from the left reservoir. (c) Power output of the generator, which is given by the charge current times
voltage, and (d) the thermoelectric efficiency, compared to the Carnot bound ηC. The insets (b2) and (c2) present the ratio of currents (RC-
QME result over EFF-QME) at the vicinity of the stopping voltage. Parameters are the same as in Figure 9, with λ = 17.3 and µL = −0.3,
while µR is varied.

display marked differences. These deviations can be under-
stood from the inset plots, Fig. 10 (b2) and (c2), where we
note small deviations in both the heat current and power: Ac-
cording to Fig. 10 (b2) the heat current of the RC-QME ap-
proaches zero at a slightly higher voltage than the EFF-QME.
Conversely, in Fig. 10 (c2) we find that the power output
predicted by the RC-QME tends towards zero at a slightly
lower voltage as compared with the EFF-QME. This effect
can also be understood as a difference in stopping voltages.
The weak-coupling BMR-QME predicts a stopping voltage of
Vs = (εL− µL)(βR−βL)/βR with βL,R = 1/TL,R

84. However,
at strong coupling the stopping voltage increases (in the ultra-
strong limit, εL→ εL+εR

2 ). This is because the energy level of
the left quantum dot increases with λ due to strong coupling
renormalization, see Fig. 8.

D. Discussion

The RCPT method shows excellent predictive power when
describing the charge and heat currents and their fluctuations,
even at very strong electron-phonon couplings and beyond its
rigorous regime of applicability, extending to λ ≈ Ω. The
measure of thermoelectric efficiency, in contrast, is sensi-
tive to small deviations. Since the RCPT method still cap-
tures only the tight coupling (proportionality) of the currents,
its predictions for the efficiency miss the turnover behavior
near the stopping voltage. There are many model variants
of phonon-assisted charge transport, including the celebrated
Anderson-Holstein model. Employing the RCPT framework
on canonical models, further including strong hybridization of
the dots to the leads, could expose the rich physics of dissipa-
tive, correlated, nonequilibrium fermionic systems.
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VII. DISSIPATIVE SPIN CHAINS

Quantum spin models serve a central role in our under-
standing of quantum many-body systems, specifically univer-
sal aspects of quantum phase transitions in magnetic systems.
More recently, dissipative spin chains have been studied in
e.g., Refs.115–121, motivated by applications in quantum in-
formation processing and spintronics, as well as real-world
experiments simulating spin lattices with cold atoms122.

We show here that the RCPT method can be readily used
to study the properties of dissipative spin chains, namely their
spin polarization and heat transport behavior. We present the
theory on a 1-dimensional N-site Heisenberg model under a
magnetic field. In simulations, we exemplify the theory on a
two qubit system coupled via a general XYZ Ising interaction.
Our main result is that due to the impact of strong dissipa-
tion, the XX model approaches the Ising model Hamiltonian
at strong bath coupling. Thus, dissipation can mask distinct

features of spin chain models.
The Hamiltonian of a dissipative Heisenberg chain with N

sites is written as

Ĥ =
N

∑
α=1

∆α σ̂
α
z + ∑

i∈{x,y,z}

N−1

∑
α=1

Jiσ̂
α
i σ̂

α+1
i

+
N

∑
α=1

∑
k

να,k

(
ĉ†

α,k +
tα,k

να,k
σ̂

α
x

)(
ĉα,k +

tα,k

να,k
σ̂

α
x

)
.(67)

In this expression, ∆α represents the spin splitting of the αth
qubit. The qubits are coupled to each other with strength Jx,y,z
along the different directions. The qubits are also each cou-
pled to a local bosonic reservoir with modes of frequency να,k
at strength tα,k. We assume as before that the spectral den-
sity functions of these baths are of Brownian form, Eq. (15),
with Ωα and λα the centre of the Brownian functions and the
respective qubit-bath coupling strength. Proceeding via the
RCPT protocol as outlined in Sec. II, we arrive at the effec-
tive Hamiltonian,

Ĥe f f (λ1,λ2, ...,λN) =
N

∑
α=1

∆α e
− 2λ2

α

Ω2
α σ̂

α
z +

N−1

∑
α=1

Jxσ̂
α
x σ̂

α+1
x + Jye

− 2λ2
α

Ω2
α e
−

2λ2
α+1

Ω2
α+1 σ̂

α
y σ̂

α+1
y + Jze

− 2λ2
α

Ω2
α e
−

2λ2
α+1

Ω2
α+1 σ̂

α
z σ̂

α+1
z


+

N

∑
α=1

∑
k

ωα,k

(
b̂†

α,k−
2λα fα,k

Ωα ωα,k
σ̂

α
x

)(
b̂α,k−

2λα fα,k

Ωα ωα,k
σ̂

α
x

)
. (68)

The effective Hamiltonian depends on all λα and Ωα , though
we highlight the dependence on the former. For details on the
intermediate steps in the RCPT method, see Appendix E. The
residual coupling of the qubits to their baths is now weak, as
explained in Section II.

Inspecting the Hamiltonian, Eq. (68), we note that the sup-
pression of the spin splitting and the interaction parameters
Jy and Jz due to the coupling to the baths results in the dis-
sipative XX-model approaching the Ising model in the strong
coupling regime. Hence, we discover that models that behave
distinctively when isolated from their surroundings become
more and more similar as the system-bath interaction is in-
creased.

In what follows, we study the equilibrium and transport
properties of the Hamiltonian in Eq. (68) considering only
two spins, denoted by L and R, and for two special cases: (i)
A transverse-field Ising type interaction where Jz = Jy = 0,
and Jx = J. (ii) An XX type interaction with Jz = 0, and
Jy = Jx = J. In particular, two-qubit models can be used as
components for thermal energy transport, with each qubit cou-
pled to a heat bath at a different temperature123,124. For a
schematic representation, see Fig. 1(e).

Considering the first line of the Hamiltonian, Eq. (68), in
the large coupling limit, all but the term proportional to Jx
will be exponentially suppressed. Therefore: (i) In the strong
coupling limit, the eigenstates of the effective system Hamil-
tonian coincide with the eigenstates of σ̂L

x and σ̂R
x . This im-

plies that the XX-type model at strong coupling reduces to a
description of the Ising model, with zero qubit splitting. (ii)
When the qubits are coupled to heat baths at different tem-
peratures, heat current can flow between the baths through the
qubits. However, the heat current will be suppressed at strong
system-bath coupling since (in the ultrastrong limit) the ef-
fective system Hamiltonian commutes with the total Hamilto-
nian, implying that energy cannot flow in the system. These
predictions are arrived at by simply inspecting terms in the ef-
fective Hamiltonian, Eq. (68). In Figures 11 and 12 we test
these predictions using the numerical RC-QME method.

Focusing first on an equilibrium setting with the two baths
set at the same temperature, in Fig. 11 we present the spin
magnetization as a function of the spin-spin interaction J and
the system-bath coupling strength λ . We find that while at
weak coupling the XX and the Ising models behave differently
as a function of the exchange interaction J, both models fol-
low similar trends as one increases the couplings to the heat
baths. Specifically, at weak coupling the XX model shows
a transition from a polarized state to an unpolarized state at
J ≈ 1.5; the Ising model in contrast slowly looses polariza-
tion with increasing J. At strong dissipation, in contrast, the
two models similarly preserve small polarization irrespective
of the coupling strength, which is expected given the bath-
induced quenching of the spin splitting.

In Figure 12, we turn to a nonequilibrium steady state situa-
tion with TL 6= TR and present the current of the XX model (a)
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Figure 11. Equilibrium magnetization in a two-qubit model, plotted
as a function of the interaction strength J and the coupling parameter
λ using the RC-QME method for both the XX-type (a) and Ising
type (b) interactions. Panels (c) and (d) show cuts of the contour
at weak and strong λ , respectively. Parameters are ∆L = ∆R = 1,
TL = TR = 0.5, and Ω = 10.

and the Ising model (b). The relevant quadrant is in the strong
λ , weak J limit, where current predicted by the XX and Ising
models coincide. In this regime, since J is weak relative to Ω,
our RCPT effective treatment is relevant, and our prediction
of the two models coinciding in their behavior and leading to
suppressed currents are verified in simulations. Deviations in
the currents supported by the two models are apparent in the
upper right quadrant, which corresponds to the large J, large
λ limit. Here, since J becomes comparable to Ω, the RCPT
framework starts to break down, and our predictions of the
XX model mapping into the Ising model are not as accurate.

Altogether, the effective Hamiltonian treatment is a power-
ful new tool towards studying dissipative spin chains. Besides
allowing feasible numerical simulations, the strength of the
method lies in it directly building effective Hamiltonians that
expose the impact of dissipation on model parameters, thus
on the expected equilibrium phases and transport properties
of these paradigmatic systems.

VIII. CONCLUSION

We introduced the reaction-coordinate polaron-
transformation framework, an analytical-numerical tool
for tackling open quantum system problems at strong system-
bath coupling. This approach is applicable to a broad range
of open quantum systems. While computationally-expensive
techniques have been developed in recent years to handle
strong-coupling effects, including HEOM, chain mapping,
tensor network and path integral approaches, the RCPT
method stands out with it offering fundamental understanding
as to the different impacts of strong couplings, as well as a
route for highly-economic and reasonably accurate numerical
simulations. While the method was introduced and exercised
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Figure 12. Steady-state heat current through a two-qubit system,
plotted as a function of the interaction strength J and the coupling pa-
rameter λ using the RC-QME method for both the XX-type (a) and
Ising type (b) interactions. Panels (c) and (d) show cuts of the con-
tour at weak and strong λ , respectively. Parameters are ∆L = ∆R = 1,
TL = 0.5, TR = 1, Ω = 10.

here for systems linearly coupled to the displacements
of bosonic-harmonic environments, the approach can be
extended to treat strong coupling effects between fermionic
degrees of freedom.

The essence of our RCPT procedure is that strong system-
bath interactions were absorbed and embedded into a (mod-
ified) system Hamiltonian, which itself became weakly-
coupled to its surroundings, thus allowing economical simula-
tions and analytical derivations. The procedure involved per-
forming a reaction coordinate mapping to extract the promi-
nent degrees of freedom from the bath, applying next a po-
laron transformation to partially decouple the RC from the
system, and finally truncating the reaction coordinate. These
three steps resulted in an effective model Hamiltonian with
strong system-bath coupling built into the system.

We employed the RCPT method and studied central ques-
tions in quantum thermalization, quantum transport and quan-
tum thermodynamics. Focusing on the steady state regime,
the RCPT method allowed us to predict and rationalize trends,
derive closed-form expressions quantifying the performance
of many-body quantum thermal machines, and perform eco-
nomic simulations. We exemplified the capacity of the RCPT
method with five paradigmatic problems:

(i) We investigated the topic of quantum thermalization us-
ing the generalized spin-boson model in Sec. III. Our main
result via the RCPT procedure was the derivation of a closed-
form expression for the thermal equilibrium state of the sys-
tem. This expression is exact in both the weak and the ul-
trastrong coupling limits, and it further provides qualitatively
correct results in the intermediate regime.

(ii) Quantum heat transport was investigated using the gen-
eralized spin-boson model in Sec. IV. The RCPT approach
provided the characteristic turnover of the heat current with
system-bath coupling energy.
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(iii) The impact of strong coupling on the cooling perfor-
mance of continuous quantum absorption refrigerators was
analyzed in Sec. V. Here, the RCPT method allowed us to
derive analytical expressions for the cooling window, expos-
ing the role of strong coupling.

(iv) The problem of phonon-assisted electron transport was
studied in Sec. VI, with a focus on the performance of ther-
moelectric power generators. The RCPT method provided
accurate predictions not only of the charge current, but also
its fluctuations, revealing a turnover behavior when increas-
ing the coupling to phonons. The method further allows us
to write a closed-form expression for the efficiency of the
phonon-assisted power generator, valid from linear response
to the far-from-equilibrium region (yet, as expected, missing
the correct behavior near the stopping voltage).

(v) Dissipative quantum chains were analyzed in Sec. VII.
The RCPT method revealed the confluence of different spin-
chain models once dissipation was enhanced.

These five canonical models embody many-body interac-
tions, include strong system-bath coupling effects, and en-
compass rich physics from linear response to the far-from-
equilibrium regime. The powerful RCPT method elegantly
captured their equilibrium physics and transport characteris-
tics with little effort.

We focused in this study on the steady state behavior of

quantum thermal machines. In future work we plan to look
at how effective models deal with transient dynamics. In
this context, complications arise as the RCPT method may
neglect non-Markovian effects due to the truncation of the
reaction coordinate. As such, in order to accurately study
quantum dynamics, a method that can capture such features
is required. Another potential avenue for the RCPT method
is the application of iterative mappings, making use, for ex-
ample, of numerical spectral density functions for the RC
transformation. This would allow studies with spectral den-
sity functions that are richer, beyond the Brownian form.
More broadly, we envision the development and application
of RCPT-inspired mapping methods to understand and sim-
ulate light-matter systems, time-dependent driven materials,
and interacting fermionic models.
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APPENDIX A: CALCULATION OF THE EFFECTIVE SYSTEM HAMILTONIAN

In this appendix, we simplify the expression obtained in Sec. II of the main text for the system portion within the total effective
Hamiltonian. Our starting point is the subspace of the polaron-dressed system Hamiltonian, (Eq. (13) in the main text),

Ĥe f f
s (λ ) = 〈0|e

λ

Ω
(â†−â)ŜĤse−

λ

Ω
(â†−â)Ŝ |0〉 . (A1)

The polaron transformation operator has a similar mathematical structure to the displacement operator, D(α) = eα â†−α â, where
in our situation, the parameter α is in fact an operator living in the Hilbert space of the system, α ≡ λ

Ω
Ŝ. We note, that here, α is

hermitian. We use the following properties of the displacement operator: D(−α) = D†(α), and D(α) |0〉 = |α〉 which implies
that D†(α) |0〉= |−α〉 to write the effective system Hamiltonian as

Ĥe f f
s (λ ) = 〈−α| Ĥs |−α〉 . (A2)

Next, we comment that coherent states can be represented by the eigenstates of the harmonic oscillator |n〉 as |α〉 =

e−
|α|2

2 ∑
∞
n=0

αn
√

n!
|n〉. In the models examined here, all the elements in α are real thus we ignore the absolute value symbol.

Combining these facts, we compute the effective system Hamiltonian,

Ĥe f f
s (λ ) = e−

α2
2 ∑

n,m

(−1)n
√

n!
〈n|αnĤsα

m |m〉 (−1)m
√

m!
e−

α2
2

= e−
α2
2 ∑

n

(−1)2n

n!
α

nĤsα
ne−

α2
2 ,

= e−
λ2

2Ω2 Ŝ2
(

∑
n

λ 2n

Ω2nn!
ŜnĤsŜn

)
e−

λ2

2Ω2 Ŝ2
. (A3)

This is our final expression: In the second line, we made use of the fact that Ĥs and Ŝ are operators that act on the system Hilbert
space only. Therefore, the partial matrix element resolves simply to a Kronecker product in the m and n states.
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APPENDIX B: EFFECTIVE HAMILTONIAN HIGHER ORDER CONTRIBUTIONS

In this appendix, we explain how to systematically extend the RCPT method and build higher order contributions to the
effective Hamiltonian of the system, Eq. (9). This is done by including higher order excitations to the RC manifold. For
example, if we include two levels to the RC, |0〉 and |1〉, the effective Hamiltonian becomes a 2×2 matrix,

Ĥe f f ,[2]
s = 〈0|e

λ

Ω
(â†−â)ŜĤse−

λ

Ω
(â†−â)Ŝ |0〉 |0〉〈0|

+ 〈1|e
λ

Ω
(â†−â)ŜĤse−

λ

Ω
(â†−â)Ŝ |1〉 |1〉〈1|

+ 〈0|e
λ

Ω
(â†−â)ŜĤse−

λ

Ω
(â†−â)Ŝ |1〉 |0〉〈1|

+ 〈1|e
λ

Ω
(â†−â)ŜĤse−

λ

Ω
(â†−â)Ŝ |0〉 |1〉〈0| . (B1)

In the main text, we limited the occupation number of the RC to zero, assuming Ω� T . Here, we compute as an example
the matrix element between the kth and pth levels. Such extensions to higher occupations of the RC should allow for a more
complete description of the RCPT technique and provide corrections for better numerical accuracy. Therefore, as an extension
of Eq. (9) we consider terms of the form

〈k| Ĥe f f
s |p〉= 〈k|e

λ

Ω
(â†−â)ŜĤse−

λ

Ω
(â†−â)Ŝ |p〉 . (B2)

Note, |p〉= 1√
p! (â

†)p |0〉. We can again re-express the effective system Hamiltonian in terms of a ground state expectation value,

〈k| Ĥe f f
s |p〉= 1√

k!p!
〈0| âkD(α)ĤsD†(α)(â†)p |0〉 . (B3)

Next we make use of the property of displacement operators, |0〉= D(α) |−α〉. As such, we rewrite our matrix element in terms
of coherent state expectation values,

〈k| Ĥe f f
s |p〉= 1√

k!p!
〈−α|D†(α)âkD(α)ĤsD†(α)(â†)pD(α) |−α〉 . (B4)

Furthermore, using yet another property of displacement operators: D†(α)âkD(α) = (â+α)k, allows us to displace the RC
operators,

〈k| Ĥe f f
s |p〉= 1√

k!p!
〈−α|(â+α)kĤs(â† +α

†)p |−α〉 . (B5)

We note that the parameter α in our expressions is hermitian. Furthermore, we can express the coherent state in the basis of the

harmonic oscillator number eigenstates |−α〉 = ∑
∞
m=0

(−1)m
√

m!
αme−

|α|2
2 . Next, we use the binomial theorem to write (â+α)k =

∑
k
l=0
(k

l

)
âlαk−l . Combining these two manipulations, we write down the matrix element as

〈k| Ĥe f f
s |p〉= 1√

k!p!

p

∑
j=0

k

∑
l=0

∞

∑
n,m=0

(−1)n+m
√
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l

)(
k
j

)
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|α|2

2 〈n| âl
α

k−l+nĤsα
p− j+m(â†) j |m〉e−

|α|2
2 . (B6)

Note the action of the creation operator (â†) j |m〉=
√

(m+ j)!
m! |m+ j〉. Therefore,

〈k| Ĥe f f
s |p〉= 1√

k!p!

p

∑
j=0

k

∑
l=0

∞

∑
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√
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2 . (B7)

=
1√
k!p!

p

∑
j=0

k

∑
l=0

∞
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n,m=0
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√
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)(
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)
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2 α
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p− j+me−
|α|2

2 δn+l,m+ j. (B8)

The kronecker-delta function implies that m = n+ l− j. Re-indexing the sum over m, we arrive at our final expression

〈k| Ĥe f f
s |p〉= 1√

k!p!

p

∑
j=0

k

∑
l=0

∞

∑
n= j−l

(−1)2n+l− j(n+ l)!
n!(n+ l− j)!

(
k
l

)(
p
j

)
e−
|α|2

2 α
k−l+nĤsα

p−2 j+l+ne−
|α|2

2 (B9)

=
1√
k!p!

p

∑
j=0

k

∑
l=0

∞

∑
n= j−l

(−1)l− j(n+ l)!
n!(n+ l− j)!

(
k
l

)(
p
j

)(
λ

Ω

)k+p−2 j+2n

e−
λ2

2Ω2 Ŝ2
Ŝk−l+nĤsŜp−2 j+l+ne−

λ2

2Ω2 Ŝ2
. (B10)

This expression can be readily computed to provide the higher order corrections to the effective system Hamiltonian.
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APPENDIX C: EQUILIBRIUM STATE OF THE GENERALIZED SPIN-BOSON: FROM ASYMPTOTICALLY WEAK TO
ULTRA-STRONG

In this appendix we provide further mathematical details on the effective mean force Gibbs state of the generalized spin-boson
model discussed in Sec. III. In the main text, we expressed this state in the form of Eq. (40), where Ĥe f f

s (λ ) is given in terms of
a closed form expression Eq. (31). Using this Hamiltonian, we may then write the equilibrium state in a convenient form

e−β Ĥe f f
s (λ ) = e−

1
2 β∆(~v·~σ), (C1)

where here ~σ = (σ̂x, σ̂y, σ̂z) and

~v = [(1− e
−2λ2

Ω2 )sin(2θ),0,(1+ e
−2λ2

Ω2 )+(1− e
−2λ2

Ω2 )cos(2θ)].

(C2)

Using properties of the Pauli operators, we may re-express the effective Gibbs state as

e−β Ĥe f f
s (λ ) = cosh

(
β∆

2
|~v|
)

Î− (v̂ ·~σ)sinh
(

β∆

2
|~v|
)
, (C3)

where, v̂ is the unit vector associated to~v and its magnitude is given by

|~v|=

√
2(1+ e−

4λ2
Ω2 )+2(1− e−

4λ2
Ω2 )cos(2θ). (C4)

Therefore, the partition function of the effective mean force Gibbs state is

Ze f f = Tr
{

e−β Ĥe f f
s (λ )

}
= 2cosh

(
β∆

2
|~v|
)
. (C5)

As a result, we may write the equilibrium state of the system in a compact form as

ρ
SS
e f f =

1
2

[
Î− (~v ·~σ)

|~v|
tanh

(
β∆

2
|~v|
)]

. (C6)

Writing explicitly the full λ and θ dependence of this model, we obtain our final solution for the effective mean force Gibbs
state of the generalized spin-boson model, valid for any coupling strength λ from asymptotically weak to ultrastrong

ρ
SS
e f f =

1
2

1− (1− e
−2λ2

Ω2 )sin(2θ)σ̂x +((1+ e
−2λ2

Ω2 )+(1− e
−2λ2

Ω2 )cos(2θ))σ̂z√
2(1+ e−

4λ2
Ω2 )+2(1− e−

4λ2
Ω2 )cos(2θ)

tanh

(
β∆

2

√
2(1+ e−

4λ2
Ω2 )+2(1− e−

4λ2
Ω2 )cos(2θ)

) .
(C7)

We highlight two limiting cases of Eq. (C7) where our results in Figure 4 and Figure 5 were validated. Namely: (i) the
asymptotically weak coupling limit (λ → 0), where we expect our solution to converge to a standard Gibbs state, and (ii) the
ultrastrong coupling limit (λ → ∞), where we expect our solution to agree with Eq. (45). In these cases we obtain:

lim
λ→0

ρ
SS
e f f =

1
2
(1− σ̂z tanh(β∆)) = e−β∆σz , (C8)

and

lim
λ→∞

ρ
SS
e f f =

1
2
{1− [σ̂x sin(θ)+ σ̂z cos(θ)] tanh(β∆cos(θ))} . (C9)

Our asymptotically-weak coupling limit exactly agree with the standard Gibbs state. Moreover, our ultrastrong result matches
the ultrastrong limit of Ref. 25. Therefore, we prove analytically that the RCPT method generates effective Hamiltonian models
that are exact in both the asymptotically weak and ultrastrong coupling regimes for the generalized spin-boson model.
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APPENDIX D: INTERMEDIATE STEPS IN THE RCPT MAPPING OF PHONON-ASSISTED ELECTRON TRANSPORT

We start with the Hamiltonian (60) and describe its mapping to Eq. (61). First, we build from Eq. (60) the total RC
Hamiltonian,

ĤRC = εLL̂+ εRR̂+(εL + εR +U)D̂+Ω

(
â† +

λ

Ω
Ŝ
)(

â+
λ

Ω
Ŝ
)

+ ∑
q

ωq

(
b̂†

q +
fq

ωq
(â† + â)

)(
b̂q +

fq

ωq
(â† + â)

)
+ ∑

k

[
Â1hk,Lĉ†

k,L + Â2h∗k,Lĉk,L

]
+∑

k

[
Â3hk,Rĉ†

k,R + Â4h∗k,Rĉk,R

]
+∑

k
εk,Lĉ†

k,Lĉk,L +∑
k

εk,Rĉ†
k,Rĉk,R. (D1)

In this expression, λ is the coupling strength between the dots and the RC and Ω is the frequency of the RC. â† (â) is the creation
(annihilation) operator of the RC. The coupling energies between the RC and residual phononic bath modes of frequency ωq are
captured by fq, while the creation (annihilation) operators of the residual phonon bath are given by b̂†

q (b̂q).
Continuing with the RCPT procedure, we now apply a polaron transformation to partially decouple the phononic RC and the

electronic dots, ÛP = e
λ

Ω
Ŝ(â†−â). This rotation results in the following transformed Hamiltonian, ĤRC−P = ÛPĤRCÛ†

P , given by

ĤRC−P = εLÛPL̂Û†
P + εRÛPR̂Û†

P +(εL + εR +U)ÛPD̂Û†
P +Ωâ†â+∑

q
ωq

(
b̂†

q +
fq

ωq
(â† + â− 2λ

Ω
Ŝ)
)(

b̂q +
fq

ωq
(â† + â− 2λ

Ω
Ŝ)
)

+∑
k

[
ÛPÂ1Û†

Phk,Lĉ†
k,L +ÛPÂ2Û†

Ph∗k,Lĉk,L

]
+∑

k

[
ÛPÂ3Û†

Phk,Rĉ†
k,R +ÛPÂ4Û†

Ph∗k,Rĉk,R

]
+∑

k
εk,Lĉ†

k,Lĉk,L +∑
k

εk,Rĉ†
k,Rĉk,R.

(D2)

Since the polaron transformation affects both the dots (through Ŝ) and the RC (through â), terms affected by the polaron
transformation involve both the RC Hilbert space and the double dot. With regard to the RC, we make use of the fact that
ÛPâÛ†

P = â− λ

Ω
Ŝ. To compute terms that involve the quantum dots, we note that Eq. (14) can be readily applied to any operator

on the double dot Hilbert space. We give an example of the transformation to L̂, noting that all other terms are computed in an
analogous manner. Once the reaction coordinate is truncated to zero occupation, we obtain

〈0|ÛPL̂Û†
P |0〉= e−

λ2

2Ω2 Ŝ2
(

∞

∑
n=0

λ 2n

Ω2nn!
ŜnL̂Ŝn

)
e−

λ2

2Ω2 Ŝ2
.

(D3)

In this case, ŜnL̂Ŝn is equal to L̂ for n even, and to R̂ for n odd. Furthermore, Ŝ2 is diagonal in this case. An intermediate step in
this derivation gives

〈0|ÛPL̂Û†
P |0〉= cosh

(
λ 2

Ω2

)
e−

λ2

2Ω2 Ŝ2
L̂e−

λ2

2Ω2 Ŝ2

+ sinh
(

λ 2

Ω2

)
e−

λ2

2Ω2 Ŝ2
R̂e−

λ2

2Ω2 Ŝ2
. (D4)

Since e−
λ2

2Ω2 Ŝ2
= |G〉〈G|+e−

λ2

2Ω2 |L〉〈L|+e−
λ2

2Ω2 |R〉〈R|+ |D〉〈D|, the left dot gets altered with energy renormalization. Further-
more, we obtain a new coupling between the left and right dots,

〈0|ÛpL̂Û†
p |0〉= cosh

(
λ 2

Ω2

)
e−

λ2

Ω2 L̂+ sinh
(

λ 2

Ω2

)
e−

λ2

Ω2 R̂.

(D5)

For completeness, we also show the transformation of Â1, since it is distinct from the last computation.

〈0|ÛPÂ1ÛP |0〉= e−
λ2

2Ω2 Ŝ2
(

∞

∑
n=0

λ 2n

Ω2nn!
ŜnÂ1Ŝn

)
e−

λ2

2Ω2 Ŝ2
.

(D6)

Here, ŜnÂ1Ŝn is equal to zero unless n = 0. Therefore,

〈0|ÛPÂ1ÛP |0〉= e−
λ2

2Ω2 Â1. (D7)
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The effective model is defined as

Ĥe f f (λ ) = 〈0| ĤRC−P |0〉 , (D8)

and we arrive at Eq. (61) in the main text.

APPENDIX E: INTERMEDIATE STEPS IN THE RCPT MAPPING OF DISSIPATIVE SPIN-CHAINS

In this Appendix, we begin from the model Hamiltonian (67) and include the intermediate steps in deriving the effective model
Hamiltonian Eq. (68).

Starting with Eq. (67), we apply the RCPT method and extract a reaction coordinate from each reservoir,

ĤRC =
N

∑
α=1

∆α σ̂
α
z + ∑

i∈{x,y,z}

N−1

∑
α=1

Jiσ̂
α
i σ̂

α+1
i +

N

∑
α=1

Ωα

(
â†

α +
λα

Ωα

σ̂
α
x

)(
â†

α +
λα

Ωα

σ̂
α
x

)

+
N

∑
α=1

∑
k

ωα,k

(
b̂†

α,k +
fα,k

ωα,k
(â†

α + âα)

)(
b̂α,k +

fα,k

ωα,k
(â†

α + âα)

)
, (E1)

with λα and Ωα denoting the coupling strength and frequency of the αth reaction coordinate. Next, we perform a polaron
transformation on each RC, since the unitary operators commute. Explicitly, it is given as

ÛP = Π
N
α=1ÛP,α = Π

N
α=1e

λα
Ωα

(â†
α−âα )σ̂

α
x . (E2)

We pause here to note that studying multi-qubit systems is natural for the RCPT because the qubits operate on different Hilbert
spaces, and Ŝ2 = 1. As a result, performing multiple polaron transformations and generating the effective model is relatively
simple compared to the other models studied in this work. We apply the polaron transformation and arrive at the following
Hamiltonian,

ĤRC−P =
N

∑
α=1

∆αÛPσ̂
α
z Û†

P + ∑
i∈{x,y,z}

N−1

∑
α=1

JiÛPσ̂
α
i σ̂

α+1
i Û†

P +
N

∑
α=1

Ωα â†
α âα

+
N

∑
α=1

∑
k

ωα,k

(
b̂†

α,k +
fα,k

ωα,k
(â†

α + âα −
2λα

Ωα

σ̂
α
x )

)(
b̂α,k +

fα,k

ωα,k
(â†

α + âα −
2λα

Ωα

σ̂
α
x )

)
. (E3)

Next, we introduce a shorthand notation where the ket vector |0〉 = |01,02, ...,0N〉 denotes a zero excitation state of each RC.
Since the polaron transformations act on different Hilbert spaces, we can simply apply each truncation separately. Therefore, we
should only evaluate the action of the polaron transformation on each Pauli operator σ̂x,y,z, done by employing Eq. (14). First,
we note that [ÛP, σ̂

α
x ] = 0, so the action of the polaron transformation is trivial on σ̂x. The transformations of σ̂z and σ̂y are very

similar, and produce the same outcome. We demonstrate the action on σ̂y, noting that we computed analogous expressions for
σ̂z in Sec. III,

〈0|ÛP,α σ̂
α
y Û†

P,α |0〉= e
− λ2

α

Ω2
α ∑

n

λ 2n
α

Ω2n
α n!

(σ̂α
x )n

σ̂
α
y (σ̂α

x )n

= e
− λ2

α

Ω2
α ∑

n,even

λ 2n
α

Ω2n
α n!

σ̂
α
y + ∑

n,odd

λ 2n
α

Ω2n
α n!

σ̂
α
x σ̂

α
y σ̂

α
x

= e
− λ2

α

Ω2
α

[
cosh

(
λ 2

α

Ω2
L

)
− sinh

(
λ 2

α

Ω2
α

)]
σ̂

α
y

= e
− 2λ2

α

Ω2
α σ̂

α
y . (E4)

The effect of strong system-bath coupling as seen from the RCPT method in this model is again parameter renormalization in

both the spin splittings as well as the internal interactions: ∆α −→ ∆α e
− 2λ2

α

Ω2
α , Jx −→ Jx, Jy −→ Jye

− 2λ2
α

Ω2
α e
−

2λ2
α+1

Ω2
α+1 , Jz −→ Jze

− 2λ2
α

Ω2
α e
−

2λ2
α+1

Ω2
α+1 .

The effective model is defined as

Ĥe f f (λ1,λ2, ....λN) = 〈01,02, ...0N | ĤRC−P |01,02, ....,0N〉 , (E5)

and we arrive at Eq. (68) in the main text.
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