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Quantum many-body simulation provides a straightforward way to understand fundamental physics and con-
nect with quantum information applications. However, suffering from exponentially growing Hilbert space size,
characterization in terms of few-body probes in real space is often insufficient to tackle challenging problems
such as quantum critical behavior and many-body localization (MBL) in higher dimensions. Here, we exper-
imentally employ a new paradigm on a superconducting quantum processor, exploring such elusive questions
from a Fock space view: mapping the many-body system onto an unconventional Anderson model on a com-
plex Fock space network of many-body states. By observing the wave packet propagating in Fock space and the
emergence of a statistical ergodic ensemble, we reveal a fresh picture for characterizing representative many-
body dynamics: thermalization, localization, and scarring. In addition, we observe a quantum critical regime
of anomalously enhanced wave packet width and deduce a critical point from the maximum wave packet fluc-
tuations, which lend support for the two-dimensional MBL transition in finite-sized systems. Our work unveils
a new perspective of exploring many-body physics in Fock space, demonstrating its practical applications on
contentious MBL aspects such as criticality and dimensionality. Moreover, the entire protocol is universal and
scalable, paving the way to finally solve a broader range of controversial many-body problems on future larger
quantum devices.

INTRODUCTION

Strong-correlated particles in an isolated quantum system
with appropriate perturbations trigger abundant physical phe-
nomena, typified by the many-body version of quantum ther-
malization [1–4], localization [5–9], scarring [10, 11], etc.
Their experimental realizations in various platforms [12–15]
arouse great interest ranging from fundamental physics to ap-
plications in quantum information, in particular for being ex-
amples of potential quantum advantages in many-body quan-
tum simulations [16]. Although tremendous experimental ef-
forts have been devoted to understanding quantum thermal-
ization [17, 18] and its breakdown [12, 13, 19], there is still
no strong consensus on further open problems such as the sta-
bility of many-body localization (MBL) phase in higher di-
mensions [20–22] and critical properties of the MBL transi-
tion [23–25]. So far, existing experimental explorations on
these topics have been largely confined to the conventional
framework in real space, focusing on the characterization of
the dynamics of few-body observables such as the imbalance
and correlations [26–28], rather than the bipartite entangle-
ment entropy (EE). The latter, a global probe often used in
theoretical studies since it distinctively describes the many-
body properties encoded in the quantum states, is, on the other
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hand, extremely challenging for experiments. Thus, strong
motivation exists to look for new experimental playgrounds to
resolve these elusive problems.

On a different perspective, the many-body problem can be
recast as a virtual “particle” hopping on a complex Fock-space
network [6, 29] with extensive local connectivity, each site
of which represents a many-body state. This idea originated
from mapping the complex disordered quantum dot system to
an Anderson localization problem in Fock space associated
with many-body states [30], where the nonergodic behavior
is represented by the localization in Fock space under strong-
correlated disorders [6, 31–33]. This new angle has led to a
series of novel insights, such as multi-fractal scaling of MBL
eigenstates [31], emergent Hilbert space fragmentation [33],
and nonergodic extended phase [34–36]. Nevertheless, ex-
perimental investigations along this line are still scarce, since
the conventional analysis in Fock space largely relies on the
quantification of the experimentally prohibitive inverse partic-
ipation ratios (IPR) [31].

To shed light on these long-standing challenges, here, we
experimentally demonstrate a new paradigm of probing many-
body dynamics in Fock space, describing a universal and scal-
able protocol capable of exploring such controversial prob-
lems, as MBL in higher dimensions and associated quantum
criticality. The underlying idea is illustrated in Fig. 1. An
isolated many-body system in real space (the upper panel
of Fig. 1a) can be equivalently represented in Fock space
(Fig. 1b), where each Fock-space site corresponds to a photon
excitation configuration s in real space and their connectivities

ar
X

iv
:2

21
1.

05
80

3v
1 

 [
qu

an
t-

ph
] 

 1
0 

N
ov

 2
02

2

mailto:leiying@zju.edu.cn
mailto:qguo@zju.edu.cn


2

2

Fock space

L-2

L0

L-44

𝐬𝐬0

b

c

a

x

y

Real space

Hamming Distance D(s,s0)  
0    2    4    6     8   10  12   14   16  18  20   22  24

Critical Localized

L0

Disorder strength V

Thermal

Scarred

|𝐬𝐬0〉

D(s,s0) 

Pr
ob

ab
ilit

y

𝐬𝐬2

𝐬𝐬𝑳𝑳
Jo Je Jx

Figure 1. Quantum processor and schematic of many-body dynamics in Fock space. a, The lower panel shows the optical micrograph of
a 36-qubit superconducting quantum processor. Using 24 of them, we emulate a hard-core Bose-Hubbard model on a 4 × 6 two-dimensional
lattice (upper panel). Each red (blue) sphere stands for a real-space qubit at the excited (ground) state, and lines represent the photon hopping
strength connecting two sites, whose thickness indicates the programmable coupling strength. b, Fock-space representation of the real-space
lattice in a, where each site s (denoted by a dot) represents a specific photon excitation configuration in the real-space lattice. The extensive
local connectivity (gray lines) signifies all possible one-photon hoppings in Hamiltonian (1). The initial configuration s0 is the apex of the
network, marked by an orange star. All other sites are arranged according to the Hamming distance D(s, s0) away from it. The yellow circle
(s2) and the blue square (sL) are two representative configurations corresponding to D(s, s0) = 2 and L, respectively. c, Fock-space visualization
of the typical dynamics. A far-from-equilibrium initial state |s0〉 is prepared as a Fock state, whose wave packet is a unit impulse function
located at D = 0. The unitary dynamics result in its propagation and diffusion in the Fock-space network over time, whose long-time behavior
describes the equilibration properties. At weak disorder regime, the system shows a thermalizing behavior, and the wave packet quickly
reaches the ergodic distribution (shaded gray region) with a maximum occurring at L/2 for the majority of states. Few scarred states, however,
exhibit pendulum-like dynamics with slow thermalization as visualized by the dashed curves and arrows. At strong disorders, the propagation
of the wave packet is suppressed at D(s, s0) < L/2, and its width is narrower than the ergodic case. Around the critical point (black triangle),
the wave packet exhibits a broader width, implying stronger fluctuation.

denote all allowed hoppings. Thus, the many-body dynamics
of a far-from-equilibrium initial Fock (product) state |s0〉 can
be regarded as a wave packet moving along the radial direction
of the Fock-space network labeled by the Hamming distance
D(s, s0) =

∑
m,n |smn − smn

0 | (the left panel of Fig. 1c), where
smn = 0 or 1 denotes the real-space site (m, n) being either in
the ground or excited state.

Within this Fock-space approach, we experimentally char-
acterize typical many-body dynamics and further explore con-
tentious areas of the MBL transition on a two-dimensional
(2D) superconducting qubit array. We track how the wave
packet propagates on the Fock-space network, providing an
intuitive physical picture of thermalization and its breakdown
(localization and scarring) from the Fock-space view (right
panel of Fig. 1c). Quantum ergodicity is further qualified
by the Bhattacharyya metric, and we find that only a finite
fraction of the Fock space is actively involved at large disor-
der strengths, a hallmark of Fock-space localization. More-
over, the anomalous nonmonotonic behavior of wave packet
width with growing disorder allows us to quantitatively iden-
tify a three-regime phase diagram for the finite-size 2D non-
ergodic transition, which is hard to capture for conventional

real-space experimental observations. The critical disorder Vc
is extracted by the maximum of wave packet fluctuations in
the disorder dependence. Remarkably, it agrees well with the
numerical value by means of the experimentally inaccessible
probe, the bipartite EE, further confirming the effectiveness of
our protocol.

EXPERIMENTAL PLATFORM AND PROTOCOL

To reveal many-body dynamics in Fock space with the
aforementioned approach, we utilize a 2D flip-chip supercon-
ducting quantum processor (the lower panel in Fig. 1a). It pro-
vides a 6×6 transmon qubit lattice with long qubit energy re-
laxation times (T1 ∼ 120 µs), high-fidelity site-resolved con-
trollability (single-qubit fidelity ∼ 0.997), and tunable interac-
tions (Supplementary Sections 1, 2). Using a subset of L = 24
qubits, we effectively emulate a 4×6 hard-core Bose-Hubbard
lattice in real space (the upper panel of Fig. 1a) and its Hamil-
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Figure 2. Many-body dynamics in Fock space. Plotted are experimental dynamical radial probability distribution Π(d, t) in Fock space,
with color bar on the far right, which characterize dynamics of thermalization (a), localization (b), and scarring (c). Insets are the snapshots
showing the comparison of Fock-space wave packets for experiments (dots) and numerics (curves).

tonian (Supplementary Section 4) is given by

HR

~
=

∑
m,n

(
χmσ

+
m,nσ

−
m+1,n + γnσ

+
m,nσ

−
m,n+1 + h.c.

)
+

∑
m,n

Vm,nσ
+
m,nσ

−
m,n + Hx

(1)

where σ+
m,n (σ−m,n) is the two-level raising (lowering) operators

of qubit (m, n) and ~ is the reduced Planck constant. The first
term in Eq. (1) describes the kinetic motion of bosons, where
χm and γn denote the strength of tunable nearest-neighbor
hoppings along x- and y-axis respectively. The second term
represents the local bosonic occupation energy, which can be
adjusted individually for each site (m, n) by tuning the qubit
frequency. To mimic a 2D disordered system, Vm,n is chosen
from the uniform random distribution [−V,V]. A perturba-
tion term, Hx = gx

∑
m,n

(
σ+

m,nσ
−
m+1,n+1 + σ+

m,nσ
−
m+1,n−1 + h.c.

)
,

is associated to parasitic cross hoppings that naturally occur
in the device. As visualized in the upper panel of Fig. 1a,
we set Jo/2π = 2Je/2π ≈ −6 MHz and gx/2π ≈ 0.9 MHz
in the model to realize a 2D Su-Schrieffer-Heeger (SSH)
model [37] (Supplementary Sections 4, 5). In the half-filling
condition, this setup naturally makes the Hamiltonian (1) a
non-integrable model rather than the non-interacting single-
particle problem [38].

From the Fock-space view, the 4×6 real-space 2D Hamilto-
nian (1) above can map onto a disordered single-particle tight-
binding model on a Fock-space network withN sites. Setting
the Fock states {|s〉} as the basis, we have

HF

~
=

∑
s
Es|s〉〈s| +

∑
s,s′
Tss′ |s〉〈s′|, (2)

where Es =
∑

m,n Vmnsmn is the on-site energy for the ba-
sis |s〉 and Tss′ = 〈s|HR|s′〉 is the hopping strength between
Fock states |s〉 and |s′〉. As shown in Fig. 1b, with the initial
configuration s0 as the apex, N Fock-space sites {s} can be
sorted out as a 13-layer structure by the Hamming distance
d = 0, 2, . . . 24 (L) wherein each layer includes C2(L/2, d/2)
sites. Together with the connectivity provided by the hoppings
{Tss′ }, the Fock-space Hamiltonian (2) forms a quantum net-
work with a double-cone structure.

The experimental observation starts with a Fock state |s0〉

by exciting half of the qubits via π-pulses, which enables the
probe of the largest photon-number-conserved sector with the
Hilbert space dimension of N = 2, 704, 156. After suddenly
opening interactions by tuning qubits and couplers, the system
undergoes the out-of-equilibrium evolution governed by the
engineered many-body Hamiltonian above (see Supplemen-
tary Section 3 for experimental sequences and calibrations).
Finally, we extract the system dynamics with subsequent site-
resolved simultaneous qubit readout after time t. The maxi-
mum evolution time tmax = 1000 ns is much longer than typi-
cal tunneling time 1/J0 ≈ 32 ns, enabling observation close to
equilibration, while sufficiently short compared with qubit re-
laxation and dephasing times. Here, J0/2π ≈ 4.9 MHz, is the
average of absolute values for all nearest-neighbor hoppings.
For the detailed information about error mitigation, decoher-
ence effect, and finite-time effect, see Supplementary Sections
12, 13, and 14.

WAVE PACKET DYNAMICS IN FOCK SPACE

To describe quantum dynamics within the Fock-space net-
work, a dynamical radial probability distribution Π(d, t) is in-
troduced as

Π(d, t) =
∑

s∈{D(s,s0)=d}

|〈s|e−
iHF t
~ |s0〉|

2, (3)

which behaves as a wave packet and is interpreted as the prob-
ability that the many-body wave function appears at a Ham-
ming distance d away from the initial state |s0〉 at time t. In
contrast with the experimentally inaccessible and static defi-
nition in terms of eigenstates [39], Π(d, t) quantitatively char-
acterizes how an initial localized many-body wave function
propagates in Fock space (Fig. 1c), being experimentally fea-
sible with growing system sizes.

Examples of dynamics of Π(d, t) for thermalization, local-
ization and scarring are shown in Figs. 2a, b and c, respec-
tively. At t = 0 ns, the initial state is a localized wave packet,
thus Π(0, 0) = 1. For thermalizing dynamics in the absence of
disorder (Fig. 2a), |sT

0 〉 quickly and homogeneously spreads
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Figure 3. Dynamics of Bhattacharyya distance B(t). a, Dynamics
ofB(t) for state |sT

0 〉 at V = 0 (red) and V ≈ J0 (blue). b, Dynamics of
B(t) for scarred state |sS

0 〉 at V = 0, where the short-time oscillations
and slow thermalization phenomena are observed due to the weak er-
godicity breaking mechanism. Inset plots snapshots of experimental
Π(d) at J0t ≈ 0.4 (blue) and J0t ≈ 1 (red) for scarred dynamics, in
contrast to the shaded background for the ergodic wave packet. Error
bars stem from repetitions of measurements.

over the whole Fock space, equilibrating near L/2 (Supple-
mentary Section 10), where the density of states is maximum.
In contrast, under the nonergodic dynamics (V ≈ 16J0), the
wave packet does not propagate to the large Hamming dis-
tance regime, staying around (d < L/2) its initial state, ul-
timately suggesting the localization in Fock space (Fig. 2b).
Interestingly, however, the scarred state |sS

0 〉 shows a coherent
periodic motion (Fig. 2c) in Fock space. Due to the weak link
between the scarred subspace and the huge thermal Hilbert
space, the system exhibits slow thermalization [40] (Supple-
mentary Sections 5). The collective motion of twelve pho-
tons in real space can be reinterpreted as a Fock-space single-
particle quantum walk [41, 42], where the wave packet be-
haves as a ballistic particle propagating along the Fock-space
network, reflecting at the boundary at early times. However,
in the long-time regime, it gradually escapes from this sub-
space, diffusing in the entire Fock space, resulting in thermal-
ization. For experimental results of few-body observables in
real space, see Supplementary Sections 6, 7.

A generic many-particle system unaidedly thermalizes
obeying the eigenstate thermalization hypothesis (ETH) [1, 3],
which states that an ergodic system explores all allowed re-
gions in phase space with the probability proportional to the
space volume. Therefore, within the Fock-space picture, we
can define an ergodic wave packet ΠErg.(d) whose probabil-
ity distribution is equal to the density of states (Supplemen-
tary Section 10). ΠErg.(d) resembles a Gaussian distribution
centered at L/2 (the gray region in the inset of Fig. 3b). To
describe the emergence of ergodicity or its breakdown, we in-

troduce the Bhattacharyya distance

B(t) =
∑

d

√
Π(d, t) · ΠErg.(d), (4)

which quantifies the similarity between the dynamical wave
packet Π(d, t) and the ergodic one ΠErg.(d).

Figure 3 shows the results of B(t). The prepared initial
states are far from equilibrium and thus B(t = 0) ≈ 0. For
V = 0, the initial wave packet spreads over the entire space,
indistinguishable from the ergodic ensemble ΠErg.(d), thus
B(t → ∞) → 1 for both thermal and scarred states. Albeit
of final thermal fate, the weak ergodicity breaking mecha-
nism leaves a slow-thermalization imprint on the scarred dy-
namics with periodic coherent oscillations (Fig. 3b). In the
deep localized phase (V ≈ 16J0), B(t) approaches a value
far less than 1, indicating that the wave packet restricts to a
finite fraction of the Fock space, signifying the strong vio-
lation of ergodicity. A small B(t) means that only part of
the Fock space actively contributes to the system dynamics,
which can be instructive for developing a decimation scheme
of the Hilbert space to efficiently simulate MBL systems with
numerics [43, 44].

SIGNATURE OF TWO-DIMENSIONAL NONERGODIC
TRANSITION

In addition to characterizing many-body dynamics over dif-
ferent quantum phases, more importantly, our Fock-space ap-
proach provides a scalable way being capable of exploring
critical phenomena. Quantum critical behavior near the MBL
transition currently lacks consensus [24, 45] and its locat-
ing method typically relies on global diagnostics (e.g., bi-
partite EE and IPR) [24, 31, 46–50], which are experimen-
tally and numerically challenging for large systems (Supple-
mentary Section 8, 11). By analyzing properties of the wave
packet in detail, we find three regimes for the MBL crossover
in our finite-sized 2D system.

We utilize Π(d) in the long-time limit (t = 1000 ns;
J0t ≈ 31) to characterize the transition from the thermal to
the MBL-like phase (whose approach to the thermodynamic
limit in the latter requires confirmation). We introduce the
normalized displacement x = 1

L
∑

d dΠ(d) and the normalized

width ∆x =
√

L−1
L

√∑
d d2Π(d) − [

∑
d dΠ(d)]2 to quantify the

properties of the wave packet. For an ergodic wave packet,
xErg. = 0.5 and ∆xErg. = 0.5 (Supplementary Section 10).

Figure 4a displays the disorder-averaged displacement 〈x〉
as a function of disorder strength V , where 〈· · · 〉 denotes the
average over k = 400 combinations of random disorder real-
izations (Supplementary Section 9). Notably, x is closely re-
lated to the local real-space autocorrelation function, implying
a preservation of a local information for x < 0.5 [13, 51, 52].
Deep in the thermal phase with V → 0, 〈x〉 → 0.5, in quan-
titative agreement with xErg.. As disorder strength grows, 〈x〉
decreases monotonically, meaning that the propagation of the
wave packet in Fock space is hindered by disorder, and the ini-
tial local information is preserved, suggesting strong evidence
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Figure 4. Signature of nonergodic transition in two dimensions. a-c, Disorder-averaged normalized displacement 〈x〉, normalized width
〈∆x〉, and system fluctuation 〈σ〉 of wave packets at t = 1000 ns (J0t ≈ 31) as a function of disorder strength V , where the experimental data
(green squares) are obtained by averaging over 400 random disorder realizations in comparison with numerics (shades with boundary lines).
Insets in a and c show simulation results for the disorder-averaged bipartite entanglement entropy 〈S 〉 and its standard deviation ∆S , exhibiting
qualitatively similar behavior to 〈x〉 and 〈σ〉, respectively. Error bars are the standard error of the statistical mean. d-f, Disorder-averaged wave
packets (the shaded regions) for V ≈ J0 (red), 8J0 (orange), and 16J0 (blue) over 400 disorder realizations. Squares connected with lines in
each panel are two representative realizations of Π(d) at the corresponding disorder strength.

of nonergodicity. Its behaviors are compatible with the nu-
merical results of bipartite entanglement entropy 〈S 〉/S P (the
inset of Fig. 4a). Here, S P = 0.5[ln(2)L − 1] is the Page value
for random states in Fock space [53].

As shown in Fig. 4b, the second-order quantity 〈∆x〉, with-
out real-space correspondence, exhibits much richer features
and allowing the identification of three typical regimes for
the disorder-induced transition from the thermal phase to the
MBL-like phase. In the weak disorder regime V . 2J0,
we find a plateau of 〈∆x〉 = ∆xErg., indicating a thermal
phase, where wave packets almost coincide perfectly with
the ideal thermal one ΠErg.(d) (Fig. 4d). A critical regime
of 2J0 . V . 10J0 is identified by an anomalous increase
of wave packet width with 〈∆x〉 & ∆xErg., which shows a
good agreement with the anomalous slow-relaxation regime
reported in Ref. [27]. Take V ≈ 8J0 for example (Fig. 4e):
the wave packet in this regime exhibits a broader distribution
with an enhanced sample-to-sample fluctuation for the dis-
placement x. At strong disorder regime V & 10J0, the width
plummets below ∆xErg., implying localization in Fock space.
Despite the narrower wave packets with the smaller displace-
ment, the displacement fluctuations from sample to sample are
still larger than that in the thermal phase (Fig. 4f).

To locate the critical disorder, we use the fluctuation
σ =

√
L−1
L

√∑
d d2Π(d) − 〈x〉2, the width of disorder-averaged

wave packet (see Fig. 4e), as the diagnostic. It comes from
sample-to-sample randomness, including both displacement
fluctuations and width variations. Enhanced fluctuations are
observed as shown in Fig. 4c. A putative critical disorder
Vc ≈ 8J0 is estimated by the peak position of 〈σ〉. Remark-

ably, the numerics for ∆S (the standard deviation of bipartite
EE) predicts the same value (the inset of Fig. 4c), validating
the Vc estimated within our approach.

The observed physical picture above can be explained by a
dilute thermal bubbles model [39], which establishes the con-
nection between thermal avalanche theory [20, 21] and the
renormalization group approach [25, 54] for understanding of
MBL transition. Currently, the existence of MBL in a 2D sys-
tem is still widely debated [55]. Despite numerical [56–59]
and experimental [26, 27] evidences, thermal avalanche the-
ory argues on the instability of a 2D MBL phase due to ther-
mal bubbles occurring in rare regions of locally weak disor-
ders. A final conclusion requires proper scaling and the ver-
ification of the delocalization mechanism in the presence of
such bubbles, which is beyond the scope of this work.

CONCLUSION AND OUTLOOK

We experimentally demonstrate a novel protocol of ex-
ploring many-body physics from a fresh perspective – Fock
space. By mapping the out-of-equilibrium many-body dy-
namics onto a wave packet propagating on a Fock-space net-
work, we provide a clear view of the thermalization and its
breakdown in Fock space, described by the dynamical trajec-
tory of the wave packet and the statistical emergence of an
ergodic ensemble. In Fock space, key features of MBL, inhi-
bition of wave packet propagation, are observed dynamically,
and many-body scarring is identified by short-time oscilla-
tions. Besides that, our protocol also allows us to experimen-
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tally capture the elusive quantum critical behaviors across the
finite-size MBL transition in two dimensions. A three-regime
picture of such transition and a critical disorder Vc are quan-
titatively identified experimentally, which is challenging for
traditional real-space observations.

Methodologically, our protocol provides a simple yet effec-
tive way to quantitatively reveal the nature of MBL transition,
even for critical behaviors of higher-dimensional systems. It
is worth stressing that unlike experimentally and numerically
prohibitive bipartite EE and IPR in large systems, our proto-
col is scalable, platform-independent, and robust to readout
errors (Supplementary Section 12), making it a universal ex-
perimental playground to solve contentious questions in future
larger devices.

Although our experiments have already provided signif-
icant insights and implications for understanding MBL in
Fock space, conclusive arguments on open questions involved
in this work, such as the stability of MBL in higher di-
mensions [55] and the role of rare regions near the critical
point [20, 60] need further investigations. Going forward,
it will be fascinating to develop a finite-size scaling method
based on our protocol, the application of which to larger quan-
tum devices, surpassing sizes amenable to classical computa-
tions, has a larger chance to settle the ongoing conundrum.
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Supplementary Information

1. EXPERIMENTAL SETUP

As shown in Fig. 1a of the main text, our experiment is car-
ried out on a two-dimensional (2D) flip-chip superconducting
quantum processor, which integrates 36 transmon qubits and
60 tunable couplers [61]. The former form a 6 × 6 square
lattice, and the latter provide the nearest-neighbor connectiv-
ity. A diagrammatic sketch of on-chip control circuits for two
qubits and a coupler is shown in the gray box of Fig. S1. Each
qubit owns an individual control line, which enables the mi-
crowave (XY) control for the single-qubit rotation and the flux
(Z) control for modulating its frequency. Meanwhile, each
qubit is capacitively coupled to a readout resonator for its
state discrimination. Similarly, each coupler owns an indi-
vidual flux control line for tuning frequency. In this way, the
coupling strength between the two connected qubits by the
coupler can be effectively tuned as needed.

The experimental setup for the control and the measure-
ment of this multi-qubit device is shown in Fig. S1. The de-
vice is loaded inside a dilution refrigerator (DR) with a base
temperature of ∼ 20 mK. The control pulses, such as XY
pulses, fast (slow) Z pulses, and microwave readout pulses
are generated by room-temperature electronics (dashed box in
Fig. S1), which are transmitted to the device after a series of
attenuating, filtering at different cold stages in the DR. The
digital to analog converter (DAC) channels are used individu-
ally for the fast Z controls of qubits and couplers, and in pairs
for generating XY control pulses or readout pulses via fre-
quency mixing with local oscillator signals. In addition, there
is a low-noise slow Z (DC) control channel for biasing qubit to
its idle frequency. For the frequency-multiplexed qubit read-
out, every nine qubits share a common readout transmission
line, and the output readout signals from the device are ampli-
fied sequentially by a Josephson parametric amplifier (JPA)
at the mixing chamber and a high electron mobility transistor
(HEMT) amplifier at the 3K stage. At room temperature, read-
out signals are further amplified by room-temperature ampli-
fiers and mixed down via the IQ mixer module. Finally, qubit
state information is extracted with a demodulation process on
analog-to-digital converters (ADCs).

2. DEVICE PERFORMANCE

The device is fabricated using the flip-chip recipe (see
Ref. [62] for more fabrication details). In current experiment,
we utilize up to 24 (4 × 6) qubits and 38 couplers, but we
collect the performance for all 36 qubits in Table S1. It is out-
standing that the average energy relaxation time T1 is more
than 120 µs in our device. In addition, the dephasing time
measured with spin echo (Hahn echo) experiment is ∼23 µs.
Both of them are much longer than the maximum evolution
time (tmax =1000 ns) in our experiment, and thus make it pos-
sible to observe the coherent quantum many-body dynamics
before decoherence effects are substantial. Average single-

qubit gate fidelities measured by simultaneous randomized
benchmarking are ∼ 0.9968 for 36 qubits (see Table S1), and
∼ 0.9978 for the 24 qubits used in our experiment.

3. EXPERIMENTAL CALIBRATIONS

We use quench protocol to investigate many-body dynam-
ics. As shown in Fig. S2, the experimental sequence includes
three steps: state preparation, interaction and measurement.
For the initial state preparation, all qubits and couplers stay at
their idle points, where half of qubits are excited to |1〉 states
by π pulses (orange Gaussian-shape waveforms). Then, all
qubits are suddenly tuned to their interaction frequencies via
fast Z pulses. At the same time, all couplers are biased for
realizing target coupling strengths in the same way. After an
evolution time t, all couplers are tuned back to idle points and
all qubits are tuned to their respective readout frequencies for
state measurements.

In our experiment, fast Z pulses play a substantial role in
tuning frequencies (disorder strength), which makes their cal-
ibrations more important. Here, we take qubit Q(4,6) as an ex-
ample to show its calibrations. To minimize the crosstalk ef-
fect on final multi-qubit experiments, we keep all other qubits
stay near the interaction frequency ωI and all couplers stay
on target coupling strength when we use spectroscopy exper-
iment to map the relationship between qubit frequency and Z
pulse amplitude. The measured spectroscopy data is shown
in Fig. S3a. There are two branches above and below ωI due
to the avoided crossing. With a polynomial fitting of these
two branches (see Fig. S3b), we could extract a function of Z
pulse amplitude versus qubit frequency ranging from 4.4 GHz
to 4.7 GHz.

4. EFFECTIVE HAMILTONIAN

Equation (1) in the main text is the effective Hamiltonian
of our model and its tunable interactions between nearest-
neighbor (NN) qubit pairs is enabled by the adjacent couplers.
Here, we show the derivation of effective Hamiltonian from
its original configurations including couplers. At first, the full
Hamiltonian (~ = 1) in a general configuration is written as

H0 =
∑

m

ωmσ
+
mσ
−
m +

∑
j

ω jτ
+
j τ
−
j

+
∑
m, j

gm j(σ+
mτ
−
j + σ−mτ

+
j )

+
∑
m,n

gmn(σ+
mσ
−
n + σ−mσ

+
n ),

(S1)

where gmn (gm j) is the coupling strength between qubit Qm
and qubit Qn (qubit Qm and coupler C j), σ±m and τ±j are the
raising (lowering) operators for qubit Qm and coupler C j, re-
spectively. The long-range couplings are very small, thus, we
only consider the qubit-qubit couplings for the qubit pairs sep-
arated with the distance Rmn = |rm − rn| ≤

√
2a0, where a0 is
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Figure S1. Experimental setup. The cartoon diagram schematically shows the connection of room-temperature electronics (DACs, ADCs,
and IQ mixers) and cryogenic wirings (cables, attenuators, filters, circulators, and amplifiers) for controlling and measuring our device. The
layout in the left-lower gray box represents the device, where Q, C, and R indicate the qubit, coupler, and readout resonator, respectively.
Different stages of DR, including mixing chamber (20 mK), 3 K plate and 300 K plate are indicated by horizontal thick gray lines, where
attenuators, filters, circulators and amplifiers are mounted. The top dashed rectangular box illustrates the room-temperature electronics for
generating control signals and demodulating readout signals.

the lattice constant of 2D qubit lattice and rm, rn are the posi-
tions of Qm and Qn, respectively.

In the regime of gm j (gn j) > gmn > 0, ∆m(n) = ωm(n)−ω j < 0,
and gm(n) j � |∆m(n)|, such a Hamiltonian can be applied with
the Schrieffer-Wolff transformation [63]

U =
∑

Rmn=a0

e
gm j
∆m

(
σ+

mτ
−
j −σ

−
mτ

+
j

)
+

gn j
∆n

(
σ+

n τ
−
j −σ

−
n τ

+
j

)
(S2)

to the first order of gm(n) j/∆m(n). Then, we have the trans-
formed Hamiltonian as

H =
∑

m

ω′mσ
+
mσ
−
m +

∑
m,n

Jmn(σ+
mσ
−
n + h.c.), (S3)

with

ω′m =ωm +
g2

m j

∆m
,

Jmn =
gm jgn j

∆
+ gmn,

2
∆

=
1

∆m j
+

1
∆n j

.

(S4)

In the rotating frame of ωI , we can get the effective Hamilto-
nian in real space as

HR =
∑

m

Vmσ
+
mσ
−
m +

∑
m,n

Jmn(σ+
mσ
−
n + h.c.), (S5)

where Vm = ω′m − ωI . Equation (1) of the main text is just
the 2D form of Equation (S5) and Jmn includes all the NN
couplings (χm, γn) and cross couplings (gx).
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Qubit ω(m,n)/2π T (idle)
1,(m,n) T (inte.)

1,(m,n) T ∗2,(m,n) T S E
2,(m,n) F0,(m,n) F1,(m,n) esq

Index (GHz) (µs) (µs) (µs) (µs) (%)
Q(1,1) 4.630 ∼169 ∼147 ∼3.6 ∼10.7 0.973 0.950 0.20
Q(1,2) 4.780 ∼117 ∼114 ∼8.8 ∼27.3 0.988 0.962 0.40
Q(1,3) 4.881 ∼130 ∼119 ∼7.0 ∼19.8 0.979 0.946 0.53
Q(1,4) 4.704 ∼132 ∼132 ∼3.9 ∼13.3 0.976 0.946 0.58
Q(1,5) 4.597 ∼96 ∼100 ∼4.7 ∼21.4 0.974 0.893 0.17
Q(1,6) 4.509 ∼150 ∼114 ∼5.2 ∼20.0 0.970 0.915 0.14
Q(2,1) 4.368 ∼160 ∼117 ∼5.0 ∼21.6 0.967 0.923 0.27
Q(2,2) 4.826 ∼163 ∼90 ∼2.8 ∼9.45 0.975 0.928 0.22
Q(2,3) 4.752 ∼132 ∼87 ∼6.2 ∼21.7 0.986 0.952 0.13
Q(2,4) 4.679 ∼132 ∼118 ∼3.8 ∼13.8 0.979 0.899 0.33
Q(2,5) 4.643 ∼138 ∼128 ∼3.0 ∼13.4 0.976 0.926 0.22
Q(2,6) 4.471 ∼108 ∼139 ∼10.6 ∼36.9 0.972 0.912 0.20
Q(3,1) 4.542 ∼119 ∼150 ∼7.3 ∼30.9 0.978 0.888 0.15
Q(3,2) 4.791 ∼142 ∼120 ∼6.0 ∼20.7 0.953 0.947 0.33
Q(3,3) 4.615 ∼110 ∼136 ∼3.6 ∼10.4 0.966 0.898 0.28
Q(3,4) 4.722 ∼133 ∼157 ∼8.7 ∼28.7 0.989 0.970 0.35
Q(3,5) 4.666 ∼139 ∼160 ∼4.0 ∼14.1 0.982 0.954 0.59
Q(3,6) 4.492 ∼106 ∼130 ∼9.0 ∼33.7 0.969 0.863 0.45
Q(4,1) 4.387 ∼141 ∼114 ∼7.5 ∼20.7 0.974 0.936 0.24
Q(4,2) 4.432 ∼155 ∼152 ∼6.6 ∼19.4 0.969 0.949 0.38
Q(4,3) 4.522 ∼152 ∼132 ∼5.2 ∼15.0 0.981 0.942 0.28
Q(4,4) 4.761 ∼157 ∼127 ∼7.3 ∼24.7 0.987 0.942 0.13
Q(4,5) 4.803 ∼154 ∼112 ∼6.3 ∼23.5 0.990 0.948 0.12
Q(4,6) 4.560 ∼121 ∼118 ∼5.3 ∼21.1 0.988 0.952 0.16
Q(5,1) 4.813 ∼114 ∼133 ∼8.8 ∼17.5 0.917 0.873 0.40
Q(5,2) 4.652 ∼127 ∼120 ∼7.6 ∼23.5 0.957 0.872 0.42
Q(5,3) 4.686 ∼89 ∼120 ∼7.4 ∼31.9 0.942 0.862 0.29
Q(5,4) 4.715 ∼103 ∼89 ∼14.1 ∼58.0 0.953 0.916 0.73
Q(5,5) 4.604 ∼104 ∼99 ∼5.8 ∼18.1 0.974 0.886 0.36
Q(5,6) 4.751 ∼131 ∼102 ∼10.5 ∼42.1 0.972 0.947 0.28
Q(6,1) 4.764 ∼151 ∼150 ∼6.4 ∼19.8 0.988 0.944 0.73
Q(6,2) 4.403 ∼118 ∼102 ∼3.1 ∼9.7 0.921 0.886 0.23
Q(6,3) 4.462 ∼115 ∼155 ∼4.9 ∼15.5 0.960 0.900 0.26
Q(6,4) 4.838 ∼127 ∼129 ∼8.3 ∼35.1 0.973 0.924 0.17
Q(6,5) 4.806 ∼116 ∼129 ∼9.4 ∼30.5 0.969 0.944 0.62
Q(6,6) 4.858 ∼121 ∼101 ∼7.6 ∼37.2 0.963 0.938 0.22
mean 4.652 ∼130 ∼123 ∼6.5 ∼23.1 0.970 0.925 0.32

Table S1. Device performance. ω(m,n) is the idle frequency of Q(m,n) where single-qubit XY pulses are applied for preparing initial Fock
states. T (idle)

1,(m,n) and T (inte.)
1,(m,n) are the energy relaxation times of Q(m,n) measured at its idle frequency ω(m,n) and the interaction frequency

(ωI/2π ≈4.57 GHz), respectively. T ∗2,(m,n) and T S E
2,(m,n) are the ramsey and spin echo dephasing times of Q(m,n) measured at ω(m,n). The readout

fidelities are characterized by the measured probability when Q(m,n) is prepared in state |0〉 (|1〉), labeled by F0,(m,n) (F1,(m,n)). Single-qubit gate
errors esq are measured with randomized benchmarking (RB) on 36 qubits simultaneously. We note that such average esq is about 0.22% for
the simultaneous RB on the 24 actively used qubits in the experiment.

In order to realize a 2D SSH model with many-body scar-
ring, we set Jo/2π = 2Je/2π = −6 MHz and gx/2π = 0.9 MHz
in our model, which are used for the numerical simulations.
Effective coupling strengths {Jmn}measured by two-qubit pho-
ton swapping experiments atωI/2π = 4.57 GHz are illustrated
in Fig. S4 for NN couplings and Fig. S5 for cross couplings.
We choose Vm from a uniform random distribution [−V,V] to
mimic a fully disordered system. Vm can be tuned individu-
ally by adjusting Qm’s frequency without noticeably altering
{Jmn}.

5. MECHANISM OF 2D MANY-BODY SCARRING

Inspired by the scarring phenomenon in the 1D XY
model [40], here, we consider a 2D SSH lattice constructed
by a set of tetramers. The intra- and inter-tetramer couplings
are denoted by Jo and Je, respectively. To understand the scar-
ring phenomenon, we begin to focus on a single tetramer with
a square geometry that includes four qubits. In the half-filling
condition, a special kind of entangled eigenstates is given by

|Esp〉 =
1
√

2

[∣∣∣∣∣• ◦◦ •
〉
−

∣∣∣∣∣◦ •• ◦
〉]
, (S6)
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Figure S2. Pulse sequence. There are three steps (preparation, in-
teraction and measurement) for the experimental pulse sequence. ω
axis indicates the frequency domain of qubits and couplers. The π
pulses for exciting qubits are denoted by orange Gaussian-shape en-
velopes. The black dashed line represents the interaction frequency
ωI/2π = 4.57 GHz where qubits interact with each other when dis-
orders are absent.

where |◦〉 and |•〉 represent the ground and excited states of
a qubit, respectively. Then, when such tetramers are con-
nected with a weak coupling Je, a pair of special Fock product
states, |sS

0 〉 and |sS ′
0 〉, partially inherit properties from the sin-

gle tetramer. Thus, for a half-filling 4 × 6 system, a scarred

-0.3

0   

0.4 

0.8 

Z
 p

ul
se

 a
m

pl
itu

de

0

0.5

1

P
1

4.4 4.5 4.6 4.7
XY pulse frequency

-0.3

0   

0.4 

0.8 

Z
 p

ul
se

 a
m

pl
itu

de Exp. Fit

a

(4.57, 0.225)

b

Figure S3. Frequency calibrations: Z pulse amplitude versus
qubit frequency. a, The raw data of the spectroscopy measurements
for qubit Q(4,6) when all other qubits are tuned to ωI and all the cou-
plers are tuned to the target coupling configuration for many-body
interactions. b, The polynomial fitting (gray line) for the experimen-
tal spectroscopy data (green circles) extracted from a.
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Figure S4. Experimentally measured nearest-neighbor cou-
plings. Gray circles represent qubits, and the chamfered rectangles
connecting them denote the nearest-neighbor couplings with values
for −Jmn/2π (MHz) listed.

initial product state is given by

|sS
0 〉 =

d• ◦e d◦ •e d• ◦e

b◦ •c b• ◦c b◦ •c

d◦ •e d• ◦e d◦ •e

b• ◦c b◦ •c b• ◦c

, (S7)

where the block marks a tetramer. Each tetramer has a π-
phase difference from its adjacent ones. As a system has the
particle-hole symmetry, the Fock product state |sS ′

0 〉 has the
same properties with the inverse state for each qubit.

Product states |sS
0 〉 and |sS ′

0 〉 have remarkable overlap with
a set of special eigenstates, which are equally spaced in the
energy spectrum. The numerical simulation of energy level-
spacing distribution for 4 × 4 lattice agrees with the Wigner-
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Figure S5. Experimentally measured cross couplings. Gray cir-
cles represent qubits, and the chamfered rectangles connecting them
denote the measured cross couplings with their values listed (MHz).
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Figure S6. Properties of 2D scar. Panel a shows the overlap
between the scarred state |sS

0 〉 and all eigenstates as a function of
eigenenergy Ek. Yellow pentagrams mark the towers’ peaks, repre-
senting a set of special scarred eigenstates. Panel b shows the level
spacing distribution in a particle-hole symmetry sector. Compared to
the GOE curve, this simulation result implies the absence of integra-
bility. Panels c and d show the dynamics of fidelity and bipartite EE,
respectively, for different initial product states. Red curves represent
20 randomly chosen thermal states, while yellow one represents the
scarred state. Gray dashed line in d is the Page value of bipartite EE,
S P. Both c and d show that the scarred state has a slow thermalizing
behavior. All simulation results are based on a disorder-free 2D SSH
model in 4×4 lattice with couplings Jo/2π = 2Je/2π = −6 MHz and
gx/2π = 0.9 MHz.

Dyson type, as shown in Fig. S6. If we prepare the initial state
as |sS

0 〉 or |sS ′
0 〉, their fidelity dynamics show revival behaviors,

and the dynamics of bipartite entanglement entropy (EE) also
shows a slower growth. On the contrary, other product states
show a thermalizing behavior, implied by their fidelity and
bipartite EE dynamics, in which their initial information er-
godically disperses in the whole Hilbert space.

6. LOCAL OBSERVABLES IN REAL SPACE

In general, measuring local observables in real space is the
conventional way to study the quantum many-body dynam-
ics experimentally. The population dynamics pm(t) for each
qubit in real space help us to identify many-body states. As
shown in Fig. S7 and Fig. S8, the population dynamics for
both experimental data and numerical data are in good agree-
ment with each other. For the scarred initial state |sS

0 〉, the pop-
ulations show remarkable oscillating patterns (Fig. S7a, b). In
contrast, populations for all the qubits rapidly approach to a
stable value of 0.5 for the thermal initial state |sT

0 〉 (Fig. S7c,
d). In the presence of disorders, the dynamics can preserve
the initial populations for a long time, as shown in Fig. S8.
In addition to the population dynamics, a quantity known as
the generalized imbalance I(t) [64] is also commonly used to
describe the preservation of initial local information in real
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Figure S7. Population dynamics without disorder. Panels a and
b show the numerical and experimental population dynamics for the
scarred state |sS

0 〉, respectively. Panels c and d show similar results
for the thermal state |sT

0 〉.

space. Its definition is given by

I(t) =
1
L

L∑
m=1

〈σz
m(t)〉〈σz

m(0)〉, (S8)

where 〈σz
m(t)〉 = 2pm(t) − 1. We note that initial states

are prepared as Fock states in the half-filling condition and
I(t = 0) = 1. As expected, the scarred dynamics exhibits
strong oscillations and remain for a considerable period of
time [65] (Fig. S9a), while the thermalizing dynamics quickly
drop to zero (Fig. S9b). For the disordered system, the im-
balance tends to stabilize at a finite value much larger than
zero (Fig. S9c and d).
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Figure S8. Population dynamics with disorder. Panels a and b
show the numerical and experimental population dynamics for V ≈
6J0, respectively. Panels c and d are the similar results for a much
larger disorder strength V ≈ 16J0.
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Figure S9. Imbalance dynamics. Panels a and b show imbalance
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0 〉 and the thermal state |sT
0 〉 at V = 0,

respectively. Panels c and d show the I(t) in disordered systems with
V ≈ 6J0 and 16J0, respectively. Green circle markers represent the
experiment data, and gray lines represent the numerical data.

7. FEW-BODY ENTANGLEMENT ENTROPY

For a quantum many-body system with a system size of L,
it can be decomposed into two subsystems A and B in real
space, with subsystem size lA and lB = L − lA. The reduced
density matrix of subsystem A is given by ρA = trB(ρ), where
ρ is the density matrix for the whole system. Then, the von
Neumann entanglement entropy is given by

S A = −tr
(
ρA log ρA

)
, (S9)

which depicts the entanglement complexity between two sub-
systems.

The experimentally measured four-qubit (lA = 4) EE are
shown in Fig. S10 for the scarred, thermal, and localized
states. For the scarred state, the growth of EE is slower than
the thermalizing dynamics but eventually reaches the similar
thermal value. In the presence of disorder (V ≈ 16J0), the EE
grows slowly and tends to saturate to a value much smaller
than thermal value, indicating the many-body localization in
our finite-sized system.

8. LIMITATION OF FEW-BODY OBSERVABLES

Even though few-body EE is experimentally measurable,
compared to global quantities (e.g., bipartite EE), it may fail
to characterize the entanglement information of the whole sys-
tem precisely [66]. Fig. S11 displays numerical results of EE
with different subsystem size lA for 4 × 4 square lattice. Ob-
viously, the bipartite (lA = L/2) EE shows the sharpest transi-
tion peak from thermalization to localization. On the contrary,
the standard deviation of two-qubit EE totally misses the tran-
sition point, and the four-qubit case shows a broad range of
indistinctive enhancement of ∆S , leading to an inaccurate es-
timation of critical disorder strength. Despite the reliability of
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Figure S10. Time evolution of four-qubit entanglement entropy.
Four-qubit EE as a function of evolution time in log scale are shown
in panel a for the scarred state |sS

0 〉 (V = 0), panel b for the thermal
state |sT

0 〉 (V = 0), and panel c for the nonergodic dynamics of V ≈
16J0. Gray lines represent the simulation results, while green circles
represent the experiment data.

bipartite EE, it is exponentially hard for numerics and experi-
ments with the growth of system size, which makes its scaling
analysis impossible for large systems.

9. SELECTION OF INITIAL STATES

Fock product states |s〉 are friendly to prepare for experi-
ments. However, after long-time evolution, not all of them
have similar properties to the eigenstates of the middle spec-
trum due to the possible existence of many-body mobility
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Figure S11. Numerical entanglement entropy for different sub-
system sizes. Panel a and b show the disorder-averaged (k = 800)
subsystem entanglement entropy 〈S A〉 and its standard deviation ∆S A

for 4×4 SSH model (Jo/2π = 2Je/2π = −6 MHz, gx/2π = 0.9 MHz)
at t = 1000 ns, respectively. lA represents the site number of the sub-
system A. Compared with few-body results (lA =2, 4), the bipartite
EE (lA = L/2 = 8) is much more efficient in depicting the critical
behavior of the MBL transition. The estimated critical disorder with
bipartite EE is marked by the gray dashed line.
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Figure S12. Overlaps between initial states and eigenstates. Panels a, b, and c show the overlaps |Ck |
2 = |〈s0|Ek〉|

2 between five randomly
selected initial states and eigenstates in 4 × 4 2D SSH system (Jo/2π = 2Je/2π = −6 MHz, gx/2π = 0.9 MHz), with disorder strength V = 0,
V ≈ 6J0, and V ≈ 16J0, respectively. Each state is randomly selected in the energy window [Emid −∆E/100, Emid + ∆E/100]. The gray dashed
line indicates the center of the energy spectrum. Panel d shows the overlap spectrum for the scarred state |sS

0 〉 at V = 0, where multi-tower
feature with higher overlap on some special eigenstates appears. Panels e and f are the similar results at V ≈ 6J0 and V ≈ 16J0, respectively.
With the growing disorder strength, the multi-tower feature fades and keeps only one peak near its total energy.

edges [47, 64]. In our work, we choose the Fock product states
in the center of the energy spectrum. The energy of each Fock
state can be obtained easily by E/~ =

∑
m,Qm=|1〉 Vm. Since

the energy spectrum of the Hamiltonian for larger systems is
approximately Gaussian distributed, we can approximate the
energy in the middle by numerically averaging the maximum
and minimum eigenvalues (Emid = (Emax +Emin)/2). Thus, we
randomly select one Fock state with energy E in the range of
[Emid − ∆E/100, Emid + ∆E/100] for each realization, where
∆E = Emax − Emin is the bandwidth of energy spectrum.

To examine the effectiveness of the selection strategy, as
shown in Figs. S12a, b, and c, we plot the overlaps between
five randomly selected initial states and all eigenstates for 4×4
2D SSH model for different disorders. We find that the middle
eigenstates have much larger overlaps with our initial states
than the marginal ones. Furthermore, as the disorder strength
increases, the distribution of overlap over energy eigenstates
becomes narrower. Figs. S12d, e, and f display the overlap
for the scarred initial state |sS

0 〉. For V = 0, it shows a multi-
peak behavior (Fig. S12d). In the presence of large disorder
V ≈ 16J0, all these peaks shrink to a sharp one (Fig. S12f).
Its position deviates a little from the center due to the change
of total energy caused by disorders.

10. DERIVATION OF ERGODIC WAVE PACKET

Our model is a hard-core Bose-Hubbard model, and the to-
tal particle number is conserved during the time evolution.
In the half-filling condition, Π(d) vanishes for the odd Ham-
ming distance D(s, s0), since a photon hopping from one site
to another sit leads to a change of two for D(s, s0). Thus,
values of Hamming distance are a set of even integers as
d = 0, 2, 4, · · · , L for our system.

For the ideal ergodic wavefunction, its overlap with each
Fock-space site is the same. Thus, we have a hyper-geometric-
like distribution as

ΠErg.(d) =
Cd/2

L/2CL/2−d/2
L/2

CL/2
L

. (S10)

Then, the displacement is given by

d =
∑

d

Π(d) · d =
1
2

∑
d

Cd/2
L/2CL/2−d/2

L/2

CL/2−1
L−1

· d =
L
2
. (S11)

Variance is defined as ∆d2 = d2 − d
2

with d2 = d(d − 1) + d.
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Figure S13. Numerical simulation of MBL indicators with eigen-
state properties. a. Disorder-averaged normalized displacement
〈x〉 (blue) and level spacing ratios 〈r〉 (red) as a function of disor-
der strength V . b. Disorder-averaged 2-moment generalized frac-
tal dimension 〈D2〉 (blue) and rescaled bipartite EE 〈S 〉/S P (red) as
a function of disorder strength V . c, Fluctuation of wave packets
〈σ〉 (blue) and standard deviation of level spacing ratios ∆r (red) as
a function of disorder strength V . d, Standard deviation of bipar-
tite EE ∆S (red) and standard deviation of 2-moment IPR ∆ln(R2)
(blue) as a function of disorder strength V . The gray dashed lines in
c and d indicate the critical point of the finite-size MBL transition
for 4×4 lattice. The model for numerics is the 4×4 SSH lattice with
Jo/2π = 2Je/2π = −6 MHz and gx/2π = 0.9 MHz. For each V , we
randomly choose k = 800 disorder realizations and randomly select
ten eigenstates in the middle energy spectrum for each of them.

We have

d(d − 1) =
∑

d

Cd/2
L/2CL/2−d/2

L/2

CL/2
L

d(d − 1)

=
L
4

L2 − 2L + 2
L − 1

,

thus,

∆d2 = d(d − 1) + d − d
2

=
L2

4(L − 1)
.

In conclusion, for the ergodic wave packet, normalized dis-
placement xErg. = d/L = 0.5 and normalized width ∆xErg. =
√

L−1
L

√
∆d2 = 0.5. Moreover, the system fluctuation σ,

as it has been introduced in the main text, would be σ =
√

L−1
L

√∑
d d2Π(d) − 〈x〉2 = 0.5.

11. NUMERICAL SIMULATION OF 4 × 4 LATTICE

In this section, we numerically compare our Fock-space
wave packet approach with the conventional observables, such
as level statistics, inverse participation ratio, and entanglement
entropy on a 4 × 4 2D SSH lattice.

In the random matrix theory, the statistics of level spac-
ing si between two nearest eigenenergies Ei and Ei+1 is a

standard way to differentiate ergodic and nonergodic systems.
For a quantum chaotic system, its distribution shows a Gauss
orthogonal ensemble (GOE) type, PGOE = π

2 se−(π/4)s2
[67],

whereas a Poisson distribution, PPoisson(s) = e−s, is expected
when a quantum many-body system is localized. Different
kinds of level spacing statistics can be characterized by the
level spacing ratio ri = min (si+1/si, si/si+1). The mean value
〈r〉 at central energy spectrum regime, levels off (2ln2 − 1) ≈
0.386 or (4 − 2

√
3) ≈ 0.536 for an integrable or a GOE distri-

bution, respectively [68]. Figure S13a shows that 〈r〉 is equal
to about 0.53 for weak disorder regime (V < 4J0) and drops
to the Poisson distribution value 0.39 for the strong disorder
regime near V ≈ 16J0. For comparison, the disorder-averaged
normalized displacement 〈x〉 is also plotted in Fig. S13a.

In Fock space, the multifractal analysis of inverse partici-
pation ratio (IPR) is a popular way to characterize MBL tran-
sition. Here, we use 2-moment generalized fractal dimension,
which is given by [69]

D2 = − ln R2/ lnN , (S12)

where the inverse participation ratio R2 = IPR2 =
∑
α |ψα|

4.
{|α〉} is a set of orthonormal basis of an N-dimension Hilbert
space and |ψ〉 =

∑
α ψα|α〉. As shown in Fig. S13b, D2 decays

monotonically as disorder strength grows and the bipartite EE
also shows similar behaviors.

To extract the critical disorder, the fluctuations, such as 〈σ〉,
∆r, ∆ln(R2), and ∆S are displayed in Figs. S13c or d. In spite
of the slight difference, all of them indicate almost the same
critical disorder near ∼ 8J0.

12. ERROR MITIGATION

To mitigate state preparation and measurement (SPAM) er-
rors, and qubit energy relaxation (T1) errors, our error miti-
gation scheme includes readout correction and post-selection
in the data processing [64, 70]. Here, we illustrate detailed
information about them.

As shown in Table S1, we list readout fidelities
{F0,(m,n), F1,(m,n)} for each qubit. Thus, the readout correction
matrix for qubit Q(m,n) is given by

S (m,n) =

(
F0,(m,n) 1 − F1,(m,n)

1 − F0,(m,n) F1,(m,n)

)
. (S13)

Then, the corrected probability vector for the system is given
by ~Pcorr =

⊗
(m,n) S −1

(m,n) ·
~P, where ~P is the raw probability

vector. Moreover, since our model conserves the total pho-
ton number during the time dynamics, we could mitigate T1
induced photon leakage errors by only keeping the photon-
number-conserved subspace of Pcorr.

Thanks to the coherent oscillating dynamics of the scarred
state, we can clearly see effects of our error mitigation scheme
step by step. In Fig. S14, we compare the numerical results
with experimental results with and without using the error
mitigation scheme. Obviously, both readout correction and
post-selection remarkably improve the quality of experimen-
tal data.
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Figure S14. Effects of error mitigation. a. Experimentally measured wave packet dynamics are shown in the left panel for the results
extracted with raw data, and in the middle panel for the results using error mitigation. For comparison, the numerical results are shown in
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0 4 8 12 16
V/J

0

0.1

0.2

0.3

0.4

0.5

x

0 4 8 12 16
 V/J

0

0.4

0.45

0.5

0.55

x

    Num.
    Exp raw.
    Exp corrected.

0 4 8 12 16
 V/J

0

0.45

0.5

0.55

0.6

 
 Vc

a b c

Figure S15. Robustness to errors. a, b, and c are long-time (t = 1000 ns) disorder-averaged normalized displacement 〈x〉, normalized width
〈∆x〉, and system fluctuation 〈σ〉 as a function of disorder strength V , respectively. Green squares are experimental data with error mitigation
while yellow squares denote the raw data. The light gray areas represent numerical results. Despite some deviations, we can still clearly
identify the critical regime and critical point. For each V , we randomly choose k = 400 disorder realizations.

In addition, we emphasize that the observation of critical
behavior of MBL transition with ∆x and σ are quite robust to
SPAM errors and energy relaxation errors. It is a crucial point
for a scalable protocol, since the readout correction scheme
above is inaccessible for large systems. In Fig. S15, we com-
pare the raw data and the corrected data. The differences
mainly appear in the strong disorder regime, while the criti-
cal regime and the critical point almost do not change .

13. EFFECT OF DECOHERENCE

Decoherence is inevitable for current experimental plat-
forms, which is caused by the small couplings between the
system and the surrounding environments. Decoherence has

two effects on qubits: energy relaxation and dephasing. The
energy relaxation is characterized by the energy relaxation
time T1, as listed in Table. S1. T1 (∼ 120 µs) in our device
is far larger than the maximum experimental time (1 µs) and
we use the post-selection method to mitigate its effect (see
Sec. 12).

The effect of dephasing is much more complicated, espe-
cially for the interacting many-body system with all qubits ac-
tively coupled. Here, we demonstrate that the true dephasing
times describing the coupled qubits are much longer than that
measured by Ramsey experiments (T ∗2 ), whose timescales (∼
20 µs) are similar to spin echo dephasing times T S E

2 .
We choose nearest-neighbor qubit pairs, i.e., Q(1,1)-Q(1,2),

Q(1,2)-Q(1,3), and Q(2,3)-Q(2,4) to measure two-qubit resonant
swap dynamics for each pair at 4.57 GHz. The coupling
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Figure S16. Effective dephasing time Tφ for coupled qubit pairs.
P10 dynamics of qubit pairs are shown in a for Q(1,1)-Q(1,2), b for
Q(1,2)-Q(1,3), and c for Q(2,3)-Q(2,4). Green circles denote the exper-
imental data and gray lines are the corresponding fitting data using
Eq. S14, which give the effective dephasing time about 25 µs, 24 µs,
and 14 µs for them.

strength is set to JNN/2π ≈ −6 MHz or −3 MHz. The ex-
perimental results of swap dynamics are shown in Fig. S16.
We fit the probability P10 with the following formula [64]

P10(t) =
1
2

cos(2JNNt)e
− t

T1
− t

Tφ +
1
2

e
− t

T1 , (S14)

where T̄1 = 2T1,mT1,m+1/(T1,m + T1,m+1) is the average energy
relaxation lifetime for the qubit pair, and Tφ is the effective
dephasing time during the interaction. In this way, the effec-
tive dephasing times for qubit pairs Q(1,2)-Q(1,3), Q(1,2)-Q(1,3)
and Q(2,3)-Q(2,4), are estimated with values of 25 µs, 24 µs,
and 14 µs (see Fig. S16), respectively, which are one order of
magnitude larger than the maximum experimental time (1 µs).
Thus, it is reasonable to approximately treat our system as a

closed quantum system within the experimental timescale.

14. FINITE-TIME EFFECT

In general, properties of eigenstates are the starting point
for studying the MBL phase transition [3, 24]. However, cur-
rent experimental techniques only allow us to observe out-of-
equilibrium quench dynamics within a finite timescale. The
evolution time needs to be large enough in order to observe
quantum thermalization and its breakdown. Therefore, it is
necessary to demonstrate that the evolution time in our exper-
iment (1000 ns) is sufficient to imply the nature of the sys-
tem. We numerically investigate such an effect by varying the
evolution time and compare the results in infinite-time limit
obtained by eigenstates.

The relation between the eigenstates and time evolution of
a quantum state is given by (~ = 1)

|ψ(t)〉 = e−iĤt |ψ(0)〉 =
∑

k

Cke−iEk t |Ek〉, (S15)

where |ψ(t)〉 is the time-dependent wavefunction. Therefore,
an infinite-time operator 〈Ô〉t→∞ can be written as

〈Ô〉t→∞ ≡ lim
t→∞

1
t

∫ t

0
〈ψ(τ)|Ô|ψ(τ)〉dτ

≈
∑

k

|Ck |
2〈Ek |Ô|Ek〉.

(S16)

According to Eq. S16, we can obtain the radial probability
distribution at infinite time as

Π(d)t→∞ = lim
t→∞

∑
s∈{D(s,s0)=d}

〈ψ (t) |s〉〈s|ψ (t)〉

=
∑

k

|Ck |
2

∑
s∈{D(s,s0)=d}

|〈Ek |s〉|2,
(S17)

where D (s, s0) is the Hamming distance between state |s〉 and
|s0〉. Once we get the Π(d)t→∞, we can calculate the wave
packet displacement, width and fluctuation.

The numerical results for disorder-averaged 〈x〉, 〈∆x〉, and
〈σ〉 at different times are shown in Fig. S17, we find that the
results at timescale in our experiment (t = 1000 ns) have sim-
ilar transition behaviors with eigenstates. We note that despite
a higher peak of 〈∆x〉 for eigenstate results, the peak position
for identifying critical transition point is almost the same for
both eigenstate results and finite-time results.
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Figure S17. Finite-time effects. Numerical results at different timescales as well as eigenstate results are shown in panel a for normalized
displacement 〈x〉, panel b for normalized width 〈∆x〉, and panel c for system fluctuation 〈σ〉. All of them are averaged over k = 800 disorder
realizations. Red curves represent the eigenstate results and the purple lines represent the results at infinite-time limit. The cyan-blue gradient
curves show the time evolution of 500 ns, 1000 ns, 2000 ns, 5000 ns, and 10000 ns. In panel c, the dashed line labels the critical point estimated
by eigenstate results. All the data are obtained on 4 × 4 SSH model with Jo/2π = 2Je/2π = −6 MHz and gx/2π = 0.9 MHz.
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