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Abstract

We use a groupoid model for the spin algebra to introduce boundary conditions on quantum
spin systems via a Poisson point process representation. We can describe KMS states of quantum
systems by means of a set of equations resembling the standard DLR equations of classical
statistical mechanics. We introduce a notion of quantum specification which recovers the classical
DLR measures in the particular case of classical interactions. Our results are in the same direction
as those obtained recently by Cha, Naaijkens, and Nachtergaele, differently somehow from the
predicted by Fannes and Werner.
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o The KMS condition was proposed as a characterization for equilibrium states in quantum statis-
I tical mechanics in a seminal paper by Haag, Hugenholtz, and Winnink [29]. Around the same time,
Ruelle-Lanford [3T] and Dobrushin [I7] proposed a set of equations, known nowadays as the DLR
E equations, that characterize the equilibrium states for classical statistical mechanics systems.
s Both conditions are, at first sight, completely different. The KMS condition is a dynamical condi-
tion for equilibrium, relying on well-defined dynamics on the observable algebra to make sense, while
~the DLR equations characterize the conditional expectations of the state concerning the o—algebra
O of the events localized outside of a finite region of Z?. Also, some theorems pose problems with a
LOdirect analogy between both conditions.
The first evidence is given by Proposition 5.3.28 in [11], which implies that the dynamics on a
-classical algebra of observables must be trivial. Another theorem is Takesaki’s theorem [I], which
states that if there is a conditional expectation between the quasi-local algebra of observables and
O\ the localized algebra in a finite region A C Z¢, then the state factors as a product state.

At this point, we can ask about the relation between the two characterizations. Brascamp [12]
_Eshowed that a state is KMS for classical interactions of lattice gases when embedded in the CAR
>< algebra, if and only if they are DLR probability measures on the configuration space. For general finite
Espin systems, this was solved in two papers by Araki and Ton [5], which solved the one-dimensional

case and the high-temperature case for all dimensions, and by another article by Araki, in [6], where
the result was proven in full generality.

To this end, Araki introduced the so-called Gibbs condition, which is equivalent to the KMS
condition (Theorem 6.2.18 from [I1]) and reduces to the DLR equations if the interaction is classical.
This condition relies on perturbation theory with bounded operators developed by Araki, which poses
some difficulties that are absent in the classical case when one tries to identify the pure phases of the
system since the definition of the Gibbs condition involves modular automorphisms. In the words of
T. Matsui, in [32],

11.06

"One mathematically interesting question is whether any KMS state is obtained in this
procedure, namely, one may ask whether any KMS state is a thermodynamic limit of finite
volume Gibbs states with suitable boundary conditions for Hamiltonians as is described
here. Theorem 3.3 may be taken as an answer to this question, however, this is not what
we want. We are asking the effect of the boundary condition of our Hamiltonian in a large
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system while the Gibbs condition is the boundary condition imposed on the states. From

a practical point of view, the [Gibbs condition] is cumbersome to handle [...]. We are
not certain that all the infinite volume Gibbs states are obtained via a [thermodynamic
limit]."

Indeed, from a classical statistical mechanics point of view, all the pure phases of the system are
obtained via a thermodynamic limit (see Theorem 7.12 in [20]). However, it is known that there
exist examples of non-extremal DLR measures which can not be obtained via a thermodynamic limit,
see [14, B3]. In the quantum case, there are proposals by Israel [27] and Simon [42]. For Israel,
the boundary conditions should consist of conditioning the Hamiltonian to a fixed pure state of the
C*-algebra outside the box. In Simon’s approach, the boundary conditions come from states that can
be described by a family of compatible density matrices. Of course, if the interaction in consideration
has a finite range, both proposals are the same.

Other approaches for studying states in quantum spin systems with boundary conditions were
made using Poisson point processes; see [3, [4]. In their papers, M. Aizenman and B. Nachtergaele
proposed the notion of quasi-states, a linear function that has a positive restriction to an abelian
subalgebra. Although promising, no relation with KMS states has been further investigated since
then. In [23], M. Fannes and R. F. Werner raised concerns about the validity of what they called
a DLR inclusion, even suggesting some counterexamples to constructing such a theory for quantum
systems. But in recent years, M. Cha, P. Naaijkens, and B. Nachtergaele [13] have characterized
the ground states of Kitaev models using a suitable notion of boundary operators, reigniting our
interest and showing that maybe a DLR theory could be developed. By analyzing the monograph
by Gruber, Hintermann, and Merlini [22], we noticed that the transformation group studied there
had the usual spin algebra as its C*-algebra, giving us a possible "quantum space" to act as a
configuration space for a DLR theory. Thus by combining random representations and the groupoid
model for the C*-algebra of the quantum spin system, we could find a suitable generalization of
the DLR equations for the quantum setting. In this paper, we show some basic properties that
a quantum specification should have and show that the states compatible with it are KMS states.
In fact, DLR and conformal measures already were considered in the setting of groupoid C*-algebra
algebras exploring the connections with the results in thermodynamic formalism on countable Markov
shifts, see [8, [9].

Our paper is divided as follows. In Section 2, we give some basic definitions, state some known-
results on groupoid and their C*-algebras, and about Poisson point processes representations applied
to short-range models in quantum spin systems. In section 3, we introduce the notions finite volume
quantum Gibbs states depending on paths. We also introduce a definition of quantum specification
for groupoids and show that the finite volume quantum Gibbs states satisfy them. In Section 4, we
discuss how the sates introduced in previous sections relate to the known KMS states for short-range
interactions.

2 Preliminary Results

Following [22], we introduce the state space as a group. Let G, C S' be the subgroup of all ¢
roots of unity, i.e.,
2mik
Gy={e™a:k=0,1,...,¢—1}.
For simplicity, we choose ¢ = 2. With this assumption, we recover the usual state space {—1,+1}
for Ising spin systems. The Pontryagin dual of G, can be readily shown to be isomorphic to itself.

Indeed, just notice that a character x on G, must also be a root of unit since 1 = (1) = X(e%)q.

Thus there must exist k& such that X(e%) — 2" Moreover, the group G, is isomorphic to Z,, the
group of integers modulo ¢. Define the action o : Z, x G, — G, given by

omiky  opikim
a(m,e”™a) =¢eT"a .



With this action, we can define the transformation groupoid G, x, Z,. This is a compact Hausdorft
étale groupoid with respect to the product topology. The following proposition follows by standard
methods:

Proposition 2.1. C*(G, x, Z,) ~ M,(C).

For each subset A C Z¢, consider

QA:HZn and @\:@Zn.

TEA €A

When n = 2 we will consider Q4 = {—1,+1}* and use the multiplicative notation for Z, since this is
related to the more familiar case of two-valued spins in classical statistical mechanics. When A = Z<,
we will write 74 == Q and Gz« = G. Let the action ay : Q24 X Gy — G, be given by

OZ(O', g) = (gzax)zeAa

where we used implicitly that ¢ = @,ecrg, and that g,o, is the usual action of Z,, in {0,1,...,n}.
For the case n = 2, this action is known as spin-flip. Our groupoid then will be the transformation
groupoid

gA = QA HNap GA.

Again, we will make the identification G = Gy«. We will denote the elements of the groupoid by
different greek letters, to distinguish from the usual notation for configurations in classical statistical
mechanics, e.g., op,wp € Qp and oy, wy € Gy, Some references for groupoid C*-algebras are [36), [37)
38, [43]. Let 2, be the inductive limit C*-algebra, constructed in section 6.2.1 of [11]. This algebra is
also known as the UHF-algebra of type n>. We denote by P(Z?) the set of finite subsets of Z<.

Theorem 2.1. The C* algebra C*(G) is isomorphic to the algebra 2,

Definition 2.1. A function ¢ : Py(Z?) — C*(G) is called an interaction if $(A) = ¢p = ¢} and
oa € C*(Gr). An interaction is said to have short-range if there is R > 0 such that if diamX > R,
then ¢x = 0. Otherwise, it will be said that the interaction has long-range.

Definition 2.2. An interaction ¢ : Pp(Z?) — U is called classical when it is an interaction and
ox € C(Qx) for all X.

Before introducing the definition of boundary condition for the quantum statistical mechanics case,
we first will derive a random representation for the Gibbs density operator. These representations
appeared previously; see [3, 4 21, 24, 25 26, 40] for a non-exhaustive list of papers where point
processes were used to study quantum spin systems. In this case, the group @, ;. Zo as the set
Pf(Zd) with the product given by the symmetric difference. Let ag(f), t =1,2,3 be a copy of the Pauli
matrices in the local algebra 2(,. We will assume from now on that the interactions are homogeneous

polynomials on the generators, i.e.,

Ox = Z cA7Bcrf)og).

AUB=X
We will always use the representation where the Pauli operator af’) appears at the Lh.s of the
operator crg). Since the interaction term ¢y must be self-adjoint we have that the constants must
satisfy cap = (—1)“4“3‘0,473. We can write the coefficients as ca p = T’A,BGWGA’B, where the number

0ap €4{0,1,£1/2}. The Hamiltonian operator is defined as

Ha(9) = Z Ox.

XCA



By definition of interaction, the Hamiltonian is a well-defined self-adjoint element of the algebra
C*(Ga). Following Bratteli and Robinson [I1]], we define a surface term corresponding to the interac-
tion between the region A and the exterior region A¢

> ox

XNA#Q
XNASHED

The surface energy term is not well defined for all possible interactions since, different from the
Hamiltonian function H, described previously, it is potentially a sum of infinitely many terms, thus
bringing convergence issues to the definition. Notice that this can be circumvented, for instance, if
one assumes that the interaction has a short-range. For the general case, suitable decaying conditions
can be made as a hypothesis to ensure convergence of the sum. We will focus only on the short-range
case.

Proposition 2.2. The Gibbs density operator e PHATWAR) has g Poisson point process represen-
tation.

Proof. Let Z¢ L Z? be the disjoint union of two copies of the lattice Z?. For each finite subset
X C Z?UZ* we can associate a pair of finite sets A, B C Z% such that X = AU B. For A C Z¢,
define the set Fj = {X € F(Z'UZ) : (AUB)NA # Q) B # ()}. The Hamiltonian can be written as

HA(¢) + Wa(¢) = HR(¢) + ) rxSx. (2.1)
XGFA
The operators Sy above are defined as

i 3) (1)
SX — emexo_( ( — z7r0X H ol H 0_

€A yeB

where 0x is the number that makes Sx self-adjoint. The Hamiltonian H/(\O)(¢)+W/§0)(¢) is the classical
part of the initial quantum Hamiltonian Hx(¢) + Wy (¢), defined as

HY(0) + WO (0) = Y Jao?,

ANAFAD

where the constants J4 = r4ei™4 are real numbers, since the self-adjointeness of the interaction ¢
implies that 64 = 0 or 1. Remember that we are assuming that the interaction has a short-range,
thus there are only finitely many constants rx that are different from 0 for X € F). The Lie-Trotter
formula yields

o—BUHAD+WA®) _ o8 i [e 8 (HO (61w (4) ((1 B ) 147 VM)] o A P @AW ).
n

n—00 n
(2.2)
where Vya = =) v r, "xSx. The sequence above can be expanded as

oo (1 0) 1 By | =
n n

n ' n—> -1 J(m) 2 me1d(m)
ST e—%(HX”<¢>+Wk°)<¢>>vqun> P s . (2.3)
n—+1 n

j€{0,1}m m=1

We can break the sum depending on each j in the r.h.s of Equation (2.3)) yielding us

[e—%(H[(\m(quW}\O)(@) ((1 _ é) 1+ évd) A)} e L HD ()W (9) _
n n

n n n—~{ l
DS ( S (°><¢>+w<°><¢>>vy<m>>e 221 @+ W (0) (1_ﬁ> (ﬁ) _
$A n n

=0 je{o,1}" \m=1
7 (m)=1|=¢



Take some j € {0,1}", where |[j(m) = 1| = . Enumerate the points where j is not zero into an
increasing order m; < --- < my. Hence,

( e—n%(Hgm(¢>+W£o>(¢)>vg(xn)> o~ it (HY @0+ W (@) _

m=1

(He FRER ) @) )<¢)’V¢,A> o2 (1O (6w (0)

Let R be the range of the interaction ¢, and define Ar = {z € Z¢: Jy € As.t. ||z — y|| < R}.
We will calculate the value of the operator on the Lh.s of (2.2)) in a point (wa,,tx) and expand the
r.h.s. using the partition of identity

D Gang
R

UJARGQAR

where 4.,  are delta functions on the unit wy, € g/(\();. These delta functions satisfy the property

5WAR * f * 577AR = f(nARv LY)5(77AR7LY)7 (2.4)

where Y is such that tyna,, = wa,, and f € C.(Gy,,). Thus,

) WAR

Ouunn,, * (H e nﬂ<H(°)<¢>+w<°><¢>>v(;<xn>> oA HO GO0 s

m=1

wAR

l
A1) () © _ Blnti—my) (0) 0)
> Gigun, (H e LA CUC IR V(M) O mP @+wO6) 5 —

WARkESQA R
1<k<f

)4
$ e /D)o (D) 5 (H Bun, o * V¢,A> Gy

WA R kEQAR k=1
1<k<t

where the function E) is

Bal(@anasms/ 00+ 1), @ e (1)) = — = S (me = ma ) (H(0) + WA (6)) (),

with wap ¢+1 = wa,. We have

)4 l
5LXwAR * (H 5UJAR,k * V¢7A> * 5wAR = (H Vqﬁ,A(w/\R,k? LXk)) 5LXUJAR:UJAR,15WAR’
k=1

k=1

by the property (2.4]). Define the following function

Un(@WAg,1s - - s Wagmi (Wag, tx)) = H Vor(Wapks tx)-
k=1

The r.h.s of ([23) becomes

i Z Z e PEA(WAR 1ma /) (Wa g e /1)) o

=0 FE{0,1}" wamEQ

li(m)=1|=¢ 1<m<¢
B n—~¢ /8 Y4
Un(@ags - Wnnti (Wag, LX))(;LXUJAR:CUARJ (1 a _) <_) : (2.5)

n



Consider the following Bernoulli point process
Nu(,C) = D €ng(1)0 (¢, 111 (C):
j=1

where C is a Borel subset of QAR = Qa, % [0,1] and {&; ; }ieni<j<n and {(;};en are families of i.i.d
random variables with distribution

P(&ny =1) =1 =P(&; =0) =
Defining the time ordering functions 7,, : [0, 1]™ — [0, 1]"

Tty .. tn) = (t],..., 1),

where the r.h.s is a permutation of (¢,...,t,) satisfying ¢; < ¢, ,, 7 =1,...,n — 1. One can write
the function 7,, more explicity using characteristics functions in the following way

g and P((; =wa,) = 1.

n—1
Ty, ... ta) = Y < L (w0} (tp(i) —tp(i+1>)> (tp(1)s - > tp(n))s
1

peEG, \1i=

where &,, is the permutation group of n points. Notice that this function is zero whenever we have
two coordinates ¢; and ¢; that are equal. Since the set of points where there are two equal coordinates
have measure zero on [0, 1]™ with respect to the Lebesgue measure, we can redefine it to give a nonzero
value. Using the functions 7T, we can construct a time ordering function 7" on the coproduct (See
Appendix A). By a similar procedure, by introducing the functions f,, : QX — R given by

fn((wAR,i7 tz)n; (wAR7 LX)) == eiﬁEA((wAR’hti)n;(wAR7LX))UA<<WAR,7;7 tl)nv (wARu [/X>>7

where (wap i, ti)n = (Wag1,t1)s -+ -5 (WAR s tn)) With

n

EA((@anis ti)ns (@ags ) = Oty — ) (HY (0) + W () (wWag,)  and

i=0
n
Un((Wapis ti)ns (Wag, tx)) = H VoA (Wapk: LX)
k=1

where tg = 0, {11 = 1, WAL 0 = txWa,, and wp,, = wa, We can create a function f defined on
the coproduct of QXR, for n > 0. The expression (25)) is then, an integral of the function f with
respect to the Binomial point process. Since the Binomial point process converges in distribution to
a Poisson point process we have that

e—B(HA(¢)+WA(¢))(wAR’ ix) = lim [ foN,(w)dP(w)= / foN(w)dP(w)
Q Q

n—oo
U

We know that the function U, can be expanded by using the fact that Vi, = ZXGFA rxSx, in
the following way

Un((Wag,is ti)n; (Wag, tx)) = H Vo a(Wag.ky LX)

k=1

— H (Z Tsz(wARJm LXk)>

k=1 \XEF)

n
= Z HTXjSXj(wAR,k,LXk)-

X;€EF) k=1
1<j<n



The Poisson point process representation in this case is a rigorous path integral for quantum spin
systems. We will proceed now to write in a way that the analogy with the paths is more transparent.
Using the integration formula for Poisson point processes in Proposition [A.4, we know

N(X) de Z [0,1] 7ﬁEA((WAR’i7ti)n;(WAR7LX))UA<<WAR,i7 ti)n; ((,UAR, LX)>dtn
n>0 " EQ" 1
B Z n! /[01] Z Z e PEAnpitinilng i) HTX SX (WA g s L, )L™

By Corollary [A.2] the formula above is just the integration of the map

n
(WAR,ia ti, Xi)n e BEA((Wa g irti)ni (WA g tx)) H SXj (WAR,lm ka)’
k=1

with respect to the Poisson Point process Nj, = Yy r, Vx, where each Nx is a Poisson point
process with intensity measure Srxdt. The point process N, can be decomposed as the sum of two
independent Poisson point processes

= ZNX+ Z Nx = Np + Nag\a-

XCA XOAR\qu)
XeFn XeFp

Lemma 2.1. Let f: N( QAR X Fr) — R be a bounded measurable function. It holds

/f VAN, (v //f v+ V)ANA () AN o (V) (2.6)

Proof. Corollary [A.2] gives us the following formula for the innermost integral in the r.h.s of Equation

2.6)
/fy+1/ YAN (v Zk'

0,1]%
k>0 [ ] ARz Qk
X;CAX; EFA

k k
(Z 5(0'AR,i7ti7Xi) + Vl) H Txidtk.
=1 i=1

Using the linearity of the integral and again using the formula given in Corollary [A.2] we get

k k
/ / (Z 5(O'AR,ivtiin) + Vl) HTXidtk dNAR\A(’/) =
0,1]% T, 169" i=1 i=1
Xi:CAX; EFA
k m k m
/ / Z f (Z 5(O'AR,i7tini) + Z 5(WAR,¢,ti,Yi)> H rx; H TYidtkdtm-
m>0 0,1/ J{o,1]x eﬂk WA R €QT i=1 i=1 i=1 i=1

X CA X; EFA YQAR\A#@ Y,€Fp

Thus, by rearranging the terms, we can write the total integral as the sum over n > 0 of all k+m =n
terms

//f(V + V/)dNA<V)dNAR\A<V/) =
Bn k m k m
Z n! Z k'm' / /[01]m Z f (Z 5(UAR7t7Xi) + Z 5(wAR7t,Yi)> H rx, H'r’yidtkdtm.
=1 i=1 i=1 i=1

. 0.11%
n>0 k+m=n [0,1] ,eQ RWYAR, ,GQTR

X CA X;€F)
YﬂAR\A#@ Y;EF\



We can break the hypercube [0, 1]" using the subsets A C {1,...,n} in the following way

01" = |J {lti,. i) i € Ay x{(ti,, .. 1) 115 € A%Y,

Ac{1,...,n}

Lo =2 G [ [
o = \K/ Jpapr S
yielding us

//f v+ V)ANA(V)dNypa (V) /01 oof <250AR¢,X)> [Trx.ar

UAR ZEQ
X; GFA

thus

Corollary [A.2] allows us to finish the proof. O

The random representation for the Gibbs density operator has the defining feature of always
coming with a preferred permutation for the times for the arrivals: it is always in increasing order,
realized by the composition with the time ordering function 7" introduced earlier. Hence a good way
of interpreting this random representation is through the notion of what is known as a path integral.
This interpretation could be made rigorous through the definition of a measure on the space of cadlag
functions, as in [7]. We preferred the representation presented here, as an integral over the space of
point measures, since we found it more simple. Nonetheless, the integral over paths idea motivates us
to introduce the following notations for the functions being integrated, but first, a few observations
must be made. Notice that the functions Sx satisfy

mlx Y—B
Sx(wag, tx)) = {S HmGA<LBWAR)x

o.w.

Thus not every point measure ay,, € N (QAR X P(ArUAR)) will contribute to the integral representa-
tion, only those that, after the time ordering operation, are coherent with respect to the sets appearing
in the jumps. We can make this rigorous by introducing the following subset of N(2y x P(Ar U AR))

“’AR’ . . _ _ _ 3
Py = {QAR = E Own ity Xi)s 2 00 WAL T = WA, WApn = LXWA, WARi—1 = LB;WAR,is 1 S0 < n} ;

(2.7)
Given another point measure £, we can also introduce the following set

wAR,X

P tfhe — gy 4P (2.8)

Although some elements of the set above may not generate coherent paths, it will be clear that in

our applications it will always be the case. Each point measure of PX;R’X can be viewed as a path
by rearranging the jumps following the increasing order of the time, i.e.,

O{AR(t) = WAR,i» if ti*l S t < tiu

where we are supposing, in the definition above, that the times t; are already ordered, see the Figure
We will use, for the path, the same notation as in the point measure. Finally, the following
notation will be used from now on

n

Ean (@i )i (@rg 1)) = 3 (s — VO (6) (wn ) / HG)

=0

0.
Sap(ag) = H mhx; H (tB,WA)z
TEA;

=1



For every bounded measurable function f : N(QAR x Fp) — C, let us introduce the measure

Jian

R
AR

X f(aAR)dV¢7AR<aAR = / Z f(wAR i Z, HT’X dtn (29)
n>0 [0 1]

WA 1€QAR7
X GFAR

Notice that this measure can be related to the integration with respect to the Poisson point process
Ny ,,, introduced previously in this section. We get the expression,

_ o
G_BHAR(¢)(WAR,X) :65/ e BfozAR AR(¢)S(QAR)dV¢,AR(a/\R>-

X
wAR,
AR

3 The DLR states and the Gibbs states

Another definition that is more suitable for classical systems was introduced by Dobrushin [16]
and Lanford and Ruelle [31] and nowadays is called the DLR equation.

Definition 3.1. Let Q) = {E}Zd, where |E| < oo, with the product topology, and consider F the Borel
o-algebra. Consider Fac, for A a finite subset of Z¢, the smallest o — algebra such that {m; : i € A},

the projections, are measurable. Let u be a probability measure on (2, F). We say that v satisfies the
DLR equations if, and only if, for all f € C(Q), we have:

Eu(fIFae)(w) = pi p(f) n ae.

Where E,,(+|Fac) is the conditional expectation with respect to the o-algebra Fae, and g 4 is the local
Gibbs measure.

For more on DLR equations, with more details and in more general contexts, see [20], 44]. The
quantum Gibbs state for the interaction given by the Hamiltonian Hy, (¢) is given by the following

expression
Z fxe ~OMaR(o (UAR)7
ZB é.AR

" oA EQAR

ts.ong(f) =

where Zg 4 = EUAR e PHar(@) (g, ) is the partition function. We proceed to give a special decom-

position of this state in terms of the Poisson point process Ny,. By the definition of the product in
a groupoid, we get

f % e—ﬁHAR(¢)(O-AR) — Z f(WARaX)e_BHAR(¢)(UAR7X)

TA
(wAR,X)EgARR

:66 Z /UAR7X f(wAR,X)G

TA A
(WAva)egARR R

-8, H(¢)
Ar MRS (g ) AV ag (ang)

Thus

=B oy, HAp (@)

1p.6.05(f) = - ﬁZﬁqu Z Z /[,AR,X fwag, X)e Sap(ag)dvp g (any)

TA A
oAR €, (WARJ()EQARR R

where we can write the partition function in the following representation

_ ~8J,, HOM(®)
e Zpprn= / e "tr Sap(ng)dvsng(any)



Although the above expression seems cumbersome at first sight, it satisfies a decomposition I;roperty

similar to the DLR equations. To show this, first, notice that the classical Hamiltonian H ) can
be written as
0) 0 0
HOG) = > Jaod + Y Jaoy) = HY(0)+ W (6) + Hyo 4 (9).

ANAED ACAR\A

Lf@wzﬁyWWHw\ / HO, (6

R

Yielding us

Thus, we can break a path «, into two paths, one with jumps only on sets BN Ag \ A # (), that
we will call a4, and the jumps occurring only inside A, that we will call ay. Notice that since
there are no changes in the points x € Ag \ A configurations when the jump occurs at times in a,,

this implies that
(0) (0)
QAR\A

Since we cannot remove the dependence of the Hamiltonian in the jumps occurring in the path ap\a,
we will write the other term as

/cﬂ%wwﬂw:/HWW@

A similar decomposition is available for the function Sy,

SAR (aAR) = H eiﬂexi H (LBiwA,i)m H emexi H (LBiwA,i):v = SZAR\A (aA)SAR\A(aAR\A>'

i:B;NA#£D r€A; :B;CAR\A TEA;
Due to Lemma 2.1} the following decomposition is possible

e~ PHAR(9) (wWap, X) =

a (0)
—Bfa H AR\A((b) QA p\A _Bfa H, \A(¢)
/PwAR\A,X\A (/PwA,XﬁA,aAR\A € ah SA f (aA)dV¢7A € AR\A R SAR\A(O{AR\A)dV(vaR\A
A

AR\A
Thus by calling the innermost integral in the equation above
CAR\A A -8 fa H/TAR\A FAR\A d
Dﬁ,/\ (WA7X N ) = WA XA ap L\ A € A SA (O[A) V¢7A(QA)7
PA

we get the following representation for the point process

B g n Hagpa @)

e FHAR®) () X) = / D (wa, X N A)e Sam\a(Qap\A)dVs ap\a-

WAR\A’X\A
AR\A

The following expression for the product with a function f € C.(Ga,) is possible

ST frePa(gy ) =

AR €% p

Z Z /O'AR\A,X\A f(CUAR, X)Dﬁf/\R\A(CTA, XN A)e

oA
AR €% R (wAR7X)EQARR AR\A

B[, HY (¢
IS Sap\a(@apa)dvg apa(aama)

10



We can break the sum above into two sums, the first one summing over the arrows of G AAR\A and
the second over G{*. A similar procedure can be made with the sum depending on the conﬁguration
space. Thus, by deﬁning the following expression

ps () (@ama, X\ A) = aAR\A N D5 o), (3.1)
ﬁd’A UAGQA

where the normalization is given by the partition function

oé/\R\/\ . oé/\R\/\
ﬁ(b/\ Z D

oAEQN

Plugging this again in the equation, we get

Z I e*B(HA(¢>)+WA(¢))(O—AR) —
oAR €,

« a -8/, G(o)

> > / oA gAY\ Zg i gt () (@ama, X\ A)e 720 Ty (app\a)dvg apa(@apa) =

AR g (wag X )G(}JAR AR\A
a B[, HO(¢)
> > / onx Mg (F)(@ag, X)e 70 Saloag)dveapa(@apa)-

IA A
oAR €, (wAR7X)egARR R

where

Hgan (F)(@ags X) = Lwn, X N A" () (@agas X\ A).
Yielding us a decomposition similar to the one encountered in the usual classical case for the DLR
equations. So, for this reason we will use the expression for the finite Gibbs functional as the one
defined by Equation (3.]). But there is a problem with this functional, related to the way the densities
ng\R\A are defined. From now on, we will refer to the path aa,\a as aae, in order to lighten the
notation. The concatenation of paths can only be defined on paths ay oy where a, (1) = /4 (0), by
the following composition rule

an(2t) 0<t<1/2
ah(2t—1) 1/2<t<1.

ap O aﬁ\(t) = {

We can also define an involutive operation that just reverses the path. This is, given a path a,, we
define a* by o '(t) = ay(1 —t). We are ready to prove the next lemma:

Lemma 3.1. For every axe and oy. such that aAc(l) = &/\o(0) and B, 8" it holds that

DS D = Do,
where oy is the gluing of the paths ape and o).
Proof. Given an element (o5, X) of the groupoid Gy, the product is given by
DSy« Dg(on, X) = Y D3y (wa, Y)Di (0n, XAY).
€gxon

(W/hy)

For each (wy,Y), using the random representation of the densities, we have

Dgf\/\c(WA,Y)DB/ (O-A,XAY)

— ape (6% c — CV c
(/7;“%73’ e BIO‘A Ha (¢)SAAA (QA)dI/¢,A(OéA)> </73<7A XAY 4 f H (¢)S A (OéA)dV¢7A(OzA)>
A

Using Equation (2.9) and making a change of variables we conclude the proof. O

11



When the path consists of only one jump at time ¢, then we get the following representation
DSy = o—tBHY  o—(1=t)BH]

Thus, by iterating the above formula, we get this nice representation for the densities in terms of
the usual Gibbs densities.

n
e |

j=1
where 2?21 s; = 1. We readily see that it is not true that every operator Dg/}( is self-adjoint (this
happens, for example, when the path is symmetric, i.e., ay = & 0 &, for some path &,). Using
the auxiliary measure defined Equation (2.9]), we can introduce the following definition for the finite
volume Gibbs states. First, remember that for each A, we have the following random representation
for the operator Given (wpe, X) C Gy, we can introduce the linear functional

w ]]. WA,X ﬂ A
Mﬁ:;{A(f) = % Z f * Dg,A<O'AwAc,X)
67¢7A O'AGQA
T(wp, X NA
= % Z f(nAWAC,X U Y)DBJ\(O-AWAC, XU Y)

67¢7A O'AEQA
(na,Y)EGA
]1(&)/\, XN A)

- SAc apc
= E /PA . f(nawpe, X UY)e B Jay Ha (¢)SAA (ap)dvy(a),
TAWAC, ]

w, X
Zﬁv¢7A UAGQA

(na,Y)EGA

where we suppressed the Z? in the notation, and 1 is the identity operator. They satisfy the consis-
tency condition

Proposition 3.1. A’ C A. Then, for any f € C.(G) we have

W,X w,X .
1o (D) = 15 AUl n (1) (3.2)
Proof. Let us start by the definition of the integral in the region A’. We have that

1
= w,X Z f * Dﬁ,A’<O-A’wA/C7X)
Zﬁ’¢7Al OpArEQps
— Z Z f(w’XUY)GAI(O-A’wA’C,XUY)’

Op/ EQA/ (WAMY)GQZ{\I

w,X
/~L57¢7A'<f)

where
D[g,A/ ((TA/(,UA/C, XU Y)

w, X
Z/37¢7Al

When one integrates with respect to the outside box A, one gets

GA/<O'A/WA/C, XU Y) =

w,X . w,Y

B () = 3w A (F)Ga(oawae, X UY)
oA EQA
(wA,Y)GgZA

= > > frawae, X UYAY)Grr(naose, X UYAY') [ Gy(opwre, X UY)

TAEQA nA/EQA/
IA
(waY)EGA \ (rpr,Y")EG

12



By breaking the sum and remembering the term that the identity 1 is only different from zero in
the unit space, we can break the sum

2. = XX

oAEQ oA EQp N oA EQ
wp,Y)EG TA\N
( ) A (UJA\A’ ,Y\A/)EgA\k,

And changing the order of the sum we get

KA 0 () = 3 Flwpe, XUY \ )
OAcEQC

TA\A!
(UJA\A’ ,Y\A,)EQA\X,

where
F(wA/c,XUY\A') = Z Z f(TA/wAc,X UYAY,)GA/(’I]AIO'Ac,X U YAY/) GA(O'ACUAC,XUY)
UAIEQAI nA/GQA/
(TA/ Y/)ngA/

We can interchange the sums and make a trivial change of variables, yielding

F(wpe, XUY\A') = Y flwa, XUYAY)Go(oa, XUYAY') [ > Galnaoaywae, X UY)

OpArEQps NprEQps
(wpr, XNA)EG A

By the use of the consistency condition and Lemma 3.28 of [34] we get

Gal(oa, XUYAY') | Y Galnvonawae, X UY) | =Galoa, X UY)
nAIGQA/
Finishing the proof.
]

As one may notice, not every linear functional deﬁned in this way can be a state. Indeed, since
the identity operator 1 is zero outside 2, we have uﬁ ¢ A every time X # (). But they are important
to define proper maps in the C*-algebra C (Gac). Also, if we define the linear subspace

Vox = (C*(G)o{)) @ C(Qnx),

for X C A°. This is a linear subspace invariant by the adjoint operation, but is not an algebra for
the usual product, since (agp)2 = 1. We proceed to show that the maps when X = () are states.
Some other properties are easily seen to be satisfied by these linear functionals, for instance, they are
obviously continuous.

Proposition 3.2. For every w € 0, we have that 3 , 5 is a state.

Proof. We can use the fact the density of the Gibbs linear functional can be written as

DaA dl/d) Ac (O[AC)
PRae

Notice that the adjoint operation, being antilinear, commutes with the integral, thus we have

-1
( ’PWAC Dg:\/\c dlj@AC(OZAC)) - 'pWAc DgyAAC dV¢7AC (QAC)

A€ A€

13



Thus, since we are considering only paths that start and end in a configuration wyc, we have

DaA dV¢ Ac (O[AC) D A dl/d) Ac(O{Ac) = D;é\;\dV¢7Ac (OzAc)7
I PR’ PR’

by standard methods, as we applied in the proof of Lemma [B.Il The density is positive since an
element of a C* algebra is positive if and only if is of the form A*A, for some other element A. Since
the linear functional is the trace against a positive operator, it must be a positive linear functional.
It is normalized by definition. O

The proof used, in a particular way, the fact that the beginning and the ending of the path are
the same. If we tried to do the same with the diagonal measures, the integration with respect to
the outside paths would change the start and the beginning. Actually, the best we can show is that
the sum of the densities in the diagonal is a self-adjoint operator. But more can be shown, by fixing
the number of jumps that can occur at the boundary, a variant of the above lemma can be used to
show that the density one gets is actually positive. Thus, let us introduce the following finite-volume
Gibbs state

Honlf) = o > [#D5N (on),
5 AN opEQA

where
D;}:/J\V = / v DaA dV¢ Ac (O[AC)
PIA

is the density being integrated in the set of paths with exactly n jumps, as

N
wpae, N ,__ _ . _ _ _ .
Prast = {OéAc = E Owpe.i b, X) - WAe,T = WA, WAe N = LXWA, WAe i—1 = LB;WhAe i, 1 <1 < N} ;
i—1

There is a special class of boundary conditions for the operators that are related to paths where no
arrival of operators happens at the boundary, i.e., the case where N = 0 above. This means that a,.
is constant through time. We will refer to these boundary conditions as classical boundary conditions.
These are important boundary conditions since they can be obtained directly by a Poisson point
process representation of the Gibbs density of a specific Hamiltonian, which we will describe as follows.
Let w € Qe be a configuration and define the evaluation functional ev, on the dense subalgebra
C(Gac). By the definition of the norm in the regular representation, the evaluation functionals are
actually states. Thus, we can form the conditional expectation Id®ev,,,. : C(G) — C(G,) and define
the Hamiltonian with boundary condition w by the expression HY(¢) = Id ® evy,.(Ha(¢) + Wi (9)).

There is no novelty in construction above; it appeared before in Israel [27] as a proposal for
boundary condition for quantum spin systems in much greater generality. Finally, we are motivated
to introduce the following definition for the infinite volume Gibbs states

Ga(¢) = co{pp : H{Am}ms1 and {wpbms1, { N bms1Am 228 = w* — hm pzz’Am (3.3)

Notice that the finite volume Gibbs measures, when you fix a function f, is again a function of
the boundary conditions itself. This motivates us to the following proposition.

Proposition 3.3. For every f € C(G), we have that the following properties hold
1. If f is self-adjoint, then so is (w, X) — ugg/\(f)
2. If f isin C’(QA%), then pgsa(f) = f.

14



Proof. To prove the first assertion, just note that

(o))" = s (f)
= ; Z f * D57¢7A(0A(wa)Ac,X)

Lxw,X

1
Z(JJ,X f * D57¢7A<O-AWAC7 X)
/B7¢7A

where the last equality is due the self-adjointness of f, the fact that

-1
(D g/X ) =D ZAAC )
together with the bijection between paths between PX;X and PX“* given by the involution aje —
Ozxcl.
For the second point, notice that when a local function is in C(Gye ) there exists a A" C A such
that

f(O',X) = lA/c(O'A/c,X \ A,)f(O'A/,X N A,)
Then, one gets

f*ngA(aAwA,X) = Z f(?’/AwAc,XUY)D@A(O'AWAc,XUY)

(na,Y)EgaN

= f(wA/, XN A/) Z ILA/c(wA/c, (X U Y) \ A/)D@A(O’AWAc, XU Y)

(nA7Y)€gXA

and the last line is equal to 0 if (X UY)\ A’ # (). Otherwise, there is only of (n4,Y) for which the
sum is not zero, and this is when Y = (), thus we conclude the desired identity.
O

Actually we think the function g4 a(f) is positive whenever f itself is positive. These properties
allow us to introduce the following definition for a quantum specification on a groupoid.

Definition 3.2. Let G be a groupoid with a decomposition Gy x Gae for every finite A C Z¢. Then,
a family of functions puy : C(Ga) X Gae — C is called a proper quantum specification if and only if

1. For every (w, X) € Gae, ,LLX’X is a linear functional; if X =), then it is a state.

2. For every f € C(Gy), we know that pux(f) is a function in C(Gpe). More than that, if f is
self-adjoint, up(f) is self-adjoint.

3. There exists A" C A such that if f € C(Gare), then pa(f) = f.

4. For every N C A, it holds px(pa(f)) = pua(f)

As we showed in Propositions 3.1, 3.2 and 3.3, the family of finite volume Gibbs functionals we
introduce form a quantum specification for the groupoid in consideration. When this happens, we
call this a quantum Gibbs specification. This can be summarized in the following theorem.

Theorem 3.1. {ug s bacp,(ze) is a quantum specification.
We are motivated to introduce the following definition for quantum DLR states

Definition 3.3. A state p of C*(G) is said to be a quantum DLR state if it satisfies, for every A,
ua(F) = pa(un (£)):
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The set of all DLR states is

Go.01r(®) = (1o * 15 = pa(iagh). YA € P(Z7)} (34)
it is trivially a convex set. The following theorem holds.
Theorem 3.2. ¥3(¢) = 93 pLr(9)

Proof. The fact that 93(¢) C 95 prLr(¢) follows by the consistency condition and the definition of
w*-convergence. For the other inclusion, suppose that there exists ps € 93 prLr(¢) \¥s(¢). Since both
sets are compact and convex, we know that there is a linear continuous functional ¢ : C*(G) — C.
and two real numbers a, b such that

Re(p)(us) < a <b < Re(p(vp))

for any vz € 95(¢), where Re is the real part of the linear functional ¢. Since every continuous linear
functional in the w* topology is of the form Jg, for some F' € C*(G), we have that there exists a
self-adjoint element of C*(G) where

uﬁ(F)§a<b§1/5(F)

Since F' € C*(G), there exists a sequence of self-adjoint local functions converging to it. Thus, we
can assume that there is a A finite where F' € C'(Gy). Using the DLR~equation, for a A’ containing
A, we get that

pgoa(F) <a<b<wg(F). (3.5)

Since the off-diagonal terms are zero, if A’ is large enough, we know that u 4 ,(F) is a continuous
function in 2y. Thus, by the Riesz-Markov theorem, the state pg restricts to a probability measure
in Qp and standard arguments allow us to conclude that the Inequality (42]) holds. But since
this holds for every A’ large enough, we can extract a sequence of finite volume Gibbs states that
converges to some limit y;. But then pj € Gs(¢) and is separated by a linear functional. This yields
a contradiction, therefore Gs(¢) = Gs prLr(®).

O

4 The Relation between DLR and KMS states

The local Hamiltonian operators can be used to define a local dynamics in C*(Gy),
TtA(A) — o HHA(®) fitHA(9)
The finite volume Gibbs states have a nice algebraic relation with the dynamics at finite volume,
called the KMS condition:

tr(ABe—ﬁHA(¢)) tr(Ae—ﬁHA(¢)65HA(¢)BG—5HA(¢)) tr(Tw(B)Ae_ﬁHA(@) A
Han(AB) = tr(eP@) tr(e—PHA@)) T (e Pm@) Ho.a(7is(B)A)

In a seminal work, Haag, Hugenholtz, and Winnink [29] showed that the KMS condition survives
the thermodynamic limit procedure, so it must encode a good definition of equilibrium state in infinite
volume systems.

Definition 4.1. Let (4, 7) be a C*-dynamical system, i.e., a C*-algebra A and a strongly continuous
one-parameter group 7. Let u be a state. We say that this state satisfies the KMS condition if, and
only if, for all A € A and analytic elements B € 2 the following holds:

pu(rip(B)A) = u(AB)
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Another definition of equilibrium states more familiar to physicists, known as the variational
principle, can be seen in [11] 27, [42]). The KMS condition cannot be used to directly define equilibrium
states in an abelian C*-algebra because the dynamics is trivial (see Prop 5.3.28 in [11]). On the other
hand, the Takesaki theorem (see [T, 2]) serves as a no-go theorem for the more straightforward
generalizations of the DLR equations. Since we showed a suitable generalization to the quantum
realm of the DLR equations in the previous section, we are led to the question of how these equations
relate to the KMS states. The first step for answering this question started with the classical case
and was taken by Brascamp in [12], where he proved that when the interaction is classical and is
embedded in a nonabelian C*-algebra, the KMS equation reduces to the DLR equations.

Sometime after that, Araki and Ion [6] closed the questions by defining a new condition for
equilibrium, that we call here the Gibbs-Araki condition, showed that when the interaction is classical
the Gibbs-Araki condition reduces to the DLR equations and that the former is equivalent to the KMS
condition in general. To define properly what the Gibbs-Araki Condition means we must introduce a
new notion of perturbation of a state. We will explain this concept locally first. Let A be a finite set
and ¢ an interaction. Then we have the local dynamics 7{* defined in the beginning of this section
and P € Y. For more details on the perturbation of the dynamics, see Chapter 4 of [I8] and [11].
Let P € C*(Gy) be a self-adjoint element and define the perturbation dp : Ly — LUy by:

op(A) = i[Ha(¢), Al + [P, A]

It is a standard result that this derivation generates a strongly continuous one-parameter group 7/
and it relates to 7, by the Dyson series

(A) :Tt(A)+Z¢"/O dt1/0ldtQ.../On_ldtn[rtn(P),[...[Ttl(P),Tt(A)]]].

The above expansion is valid in much more general contexts, see [40]. Furthermore, we can define a

unitary operator
t t1 tn—1
tf =S [ [Cane [ dun, (P ()
wso Y0 0 0

In [I1] it is proved that this function is a cocycle and that the perturbed and the original dynamics
are related by
Ttp = Fthrf*

We are ready to introduce the perturbed state.

Definition 4.2. Let 2, be the spin algebra, ¢ a short-range interaction, and T the strongly continuous
group generated by it. Let P € A, be a self-adjoint element. Let i be a state, then we define the
perturbed state pt by
(), m(A)))
P (P
(€, Q)

u(A) =
Where Qf = WM(F%)QW 2, and m, are the cyclic vector and the representation of the GNS represen-

tation associated with pu.

Definition 4.3 (Gibbs-Araki Condition). Let pu : 2, — C be a state. We say that it satisfies the
Gibbs-Araki condition for B and interaction ¢ if, and only if

1. p is faithful;

2. P = up @ i, where p is the perturbed state defined previously for P = BWa(¢) and [i is a
state 1 Ape

One can find the proof of the next theorem in [I1] in greater generality.
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Theorem 4.1. Let A be the spin algebra and ¢ a short-range interaction. Then the following asser-
tions are equivalent for a state w

1. w satisfies the Gibbs-Araki condition for ¢ at (;
2. wis a (1,0)— KMS state.
Define the function E : 2, — C(§2) on each local elements f € C(G),

flo) g=e

0 o.w.

E(f)(o,9) = {

Clearly ||E(f)|l < ||f|l and E is linear, so there is a bounded extension to all 2,,.

Definition 4.4. Let u be a state. We call it a classical state if and only if for all A € 2,

In other words, classical states can only see the classical part of the observables. Because E(A)
can be identified with a continuous function f € C'(Q2) and, by the Riesz-Markov theorem, w can be
identified with a probability measure p on (2, F).

Theorem 4.2. Let 2, be the spin algebra and ¢ a classical interaction. Then a state p satisfies the
Gibbs-Araki condition if, and only if, the state is classical and satisfies the DLR equations.

Proof. Assume, first, that our state satisfies the Gibbs-Araki condition. Let us show that if F(A) =0
then w(A) = 0. Let A be a local observable at some finite set A. We know that for the perturbation
P = BW, the perturbed state satisfies:

w(A) =wa(4)

Since the interaction is classical the operator e #4(%) is diagonal and, if E(A) = 0, then F(A)e a9 =
E(Ae PHA®)) = 0, so wP’(A) = 0. Again, since the interaction is classical, e WA € D, and, because
D = Dy ® Dye, we have an expansion for the surface energy term with relation to the elementary

tensors:
ij>1
Where A; € Dy and B; € Dye. Calculating w?(Ae"r) we get:
P(AP) =" wa(AA)w"(By)
2,5>1

Multiplying a matrix with zero diagonal by a diagonal matrix doesn’t change its diagonal, so by our
above reasoning wx(A4;) = 0 and, consequently, wf(Ae"2) = 0 = w(A) = 0. This argument is
independent of the initial set A, so for all A € |J Uy NkerE. We claim that this is a dense
AeF(z%)
subset of the kernel. Indeed, kerE is complemented in i, so if we take A, € |J U, converging to
AeF(29)
A € ker(E) we can write:
A,=B,+C,, B,€kerE C,€ImE

The projections are continuous, so we know that B,, converges to A and our assertion is correct. With
this, we concluded that if F(A) = 0 then w(A) = 0. Now, every element A € $ can be written as:

A=B+C, CeD and E(B)=0
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By our previous considerations, it is clear that w(A) = w(C) = w(E(A)). For a fixed A, note that
the Gibbs-Araki condition is equivalent to:

W =wp ® W = wP(Idye @ wy) (4.1)

The Riesz-Markov theorem tells us that there are u, up probability measures such that for all f €
C(Q):
olf) = [ s ()= | fdnr
Q Q
Both measures are related by their Radon-Nykodim derivative:
d'u_P — PWa
dp

Equation [4.1] tells us that the conditional expectation of up relative to the o-algebra Fye is, for
all f e C(Q):
S oo Floanae)e PHA@) (1)

> ot e—BHA(d)(oA)

Denote v|,. the restriction of a measure v to the o algebra Fy.. We want to calculate the
conditional expectation for y. Note that:

d d
Ac :/fdli:/fw—ﬂpdﬂP:/Eup (fd,u—,up) d f1p| e (4.2)

When two measures are absolutely continuous with respect to each other then their restrictions are
absolutely continuous too. The relation between the Radon-Nykodim derivatives is the following:

d p pe / / /dﬂ / (du)
d c = d c = d - —d == E I — d c 43
[ nfztwetae = [ e = o= [ = [En (G5 )durls

The Equations and 3] together give us:

du \ dp
B () =B (40

For all f € C(£2). Now, consider ny. € Qe and let us calculate both sides of the equation above.
The right hand side gives us:

d'u Z cQ f(O-AnAC)e_B(HA(¢)(0A)+WA(0A77AC))
_ _ TAEQA
P (fd,up) (M) > con e—BHA(®)(on)

By () (ae) = wn(f)(1ae) =

/Eu(f)du

In the 1.h.s we have

( d,u ) (nA ) = ZO’AEQA eiﬁ(HA(qs)(UA)JFWA(UAnAC))
" \dpp > o, € PIA@EN)

Since HJ (¢)(op) = Ha(d)(on) + Wa(oanac) we conclude that:
E,.(f) = u}5(f)

Now assume that the state is classical and satisfies the DLR equation. It is clear, by our previous
calculations, that we can reverse the argument and conclude that all perturbation states w! are
product states with the local Gibbs state and another state. Now we need to show that the state is
faithful. Consider, first, A € i a positive element. We will show that if w(A) = 0 then A = 0. It
is a well-known result of measure theory that if f is a positive function with [ fdu = 0 then f =0
for p a.e. If the support of the measure p is the whole space, then the continuity of f would imply

that f = 0. Indeed, if let A C Q such that f(z) = 0,Vz € A. We know that p(A) = 0. We must
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have that A° in dense. Indeed, Suppose that A°¢ is not dense i.e., B = A¢ is a proper subset of €.
Because the measure is supported on the whole space, then p(B) < p(X) and, then, B must have
a positive measure. But B¢ C A, giving us a contradiction. Now to show that y is supported in the
whole space, consider the cylinder sets C3 ™™ = {0 € Q :w;, = jr, 1 <k < |A|}. Because they
are a basis to the topology of €2 if we can show that they have strictly positive measure then we are

done.

Because MK’%(C/]\I""’]‘A‘) is a positive number that doesn’t depend on the boundary condition 7 we
know that the cylinders have strictly positive measure.

Now, consider A a positive element of 4l such that w(A) = 0. By the above reasoning, F(A) = 0.
If A is a local observable, then this implies that F(A) = 0, and the only positive matrix with zero
diagonal is the zero matrix. So, for all local observables A, if w(A*A) =0 then A = 0. O

Theorem 4.3. ¥ prr(¢) C Kz(9).

Proof. Let u be a DLR state. That it is faithful is straightforward, since every positive operator can
be approximated by local positive operators and, a simple application of the DLR property gives the
result. We need to show that the perturbed state has the right property. Since the convergence of
the dynamics is uniform in compacts, we can approximate the Dyson series in the thermodynamic
limit by the local ones,

F’% - Ali/(n%d F’%’A/’

where P = fW(¢). By using the DLR equation for A, we get

p(f *Tf) = T u(F T )

— 1 I FP /
A/I/I%du(ﬂﬁ7¢vAR(f* iB,A ))

lim ® / = Q@ pu(f),

R deM(Mﬁ,qb,A tg.o.0\0 (f)) = 1gen @ fi(f)
where 1 is the composition of the right functionals. This shows that the perturbation is a product
state with the empty boundary condition Gibbs state. O

5 Final Remarks

We expect that a proposal of boundary conditions in a suitable language can be helpful to study
phase diagrams of quantum models.
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Appendix A Basics of Point Process

Let X be a Polish space and #(X) its Borel o-algebra. The space of point measures on X, that
we will denote by N(X) henceforth, is defined as

N(X) = {u= Zémi,:ci € X,n e NU{0,+o0}}.
i=1

Where the case n = 0 is the null measure, i.e. pg(A) = 0 for every A € A(X). Define for each
measurable set A C X the projection map 74 : N(X) — NU {0, +o00} by

and consider .4 (X)) be the smallest o-algebra on N(X') such that all such projections are measurable.
We are ready to define point processes

Definition A.1. Let (2,.2/,[P) be a probability space. A point process is a measurable function
N :Q — N(X).

A point process is said to be simple if for almost every w € Q it holds that N(w)({z}) < 2, for any
x € X. Notice that, since the projections are measurable, we can define new measurable functions
using the point process by
NA =1T4 O N.

One can see N(A) as a random choice of points inside B.
Proposition A.1. The following two assertions are equivalent
(i) N :Q — N(X) is a point process;
(11) Na:Q — NU{0,+oo} is measurable for every A € B(X).

Proof. (i) = (ii). Straightforward since m4 and N are measurable, the composition is measurable.
(i3) = (i). For each C C NU {0, +o0o}, we have that 7' (C) is measurable by definition of the

o-algebra 4 (X). To show that N is a measurable function, it is sufficient to show that N~(75*(C))

is measurable. But N~!(75"(C)) = (75 0 N)~"}(C) thus it is measurable. O

Example A.1. Let (Q, 7, P) be a probability space and & : Q — X, i = 1,...,n random variable.

Then,
N=> 4,
i=1

A point process N : Q — N(X) is a Poisson Point Process if for every A € (X)) the two following
conditions are satisfied

e P(Ny=k) = %e‘“(f‘), for any k& > 0.

e For any By,..., B, € #(X) pairwise disjoint the random variables N(By),..., N(B,,) are
independent.

We will show now that a Poisson point process exists and that it also has a representation as an
empirical process. Let p be a finite measure on X and N be the following point process

Ni=> 4, (A.1)
i=1
where 7,&1, &9, ... are a countable family of independent random variables such that
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° P(T = k) = N(;)k e_M(X)

e P(§ € B) = (—X for any B € #(X) andi=1,2,....

We will show first that such a family of random variables exists. Consider 2 = Ny x [], X, with
the product o—algebra. We can define on it the product probability measure P on the cylinder sets

by
P(C x [[B) = “

€N ZGN

where P,(X) is the Poisson distribution with parameter ;«(X'). That this defines a probability measure
on the product space €2 follows from [41]. Note that, by construction, the projections are independent
random variables with the wanted distribution.

Proposition A.2. Let X be a Polish space with its 2(X) Borel o-algebra and u a finite measure.
Then the point process N defined above is a Poisson Point Process.

Proof. Let B € #(X). Using the independence of the random variables, we have

P(Ng = k) = ZP(ZQ ) P(t = m)

m>k =1
S ANAC\ LY o P
m% — 2; ¢(B)

Hence

IP’(Z%(B)zk:): Y P(e(B)=ani=1,...,m)

a1+-+am=k
a;=0,1

art-+am=k i=1

a; =0,

where the last equality is due to the independence of the random variables. By our hypothesis on the
random variables &;, we have

p(B°) a: =0
X) i
PO(B)=a) = | )

wxy 4T
A standard stars and bars argument gives us

> IT#6em) =0 = () 2B

a1+-+am==k i=1

a;=0,1
Hence,
c\m—k k
n(B°) u(B)"
Py = ) = £V oo o MOV B
m>k
Consider By, Bs, ..., B, disjoint measurable sets. In order to show that the random variables

Np,,...,Np, are independent it is sufficient to show that

m

P(Np, = ni,i=1,...,m) = [ [P(Np, = n).
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We will assume that U, B; = X now and show how to prove the general case later. With this
assumption, necessarily we must have 7(w) =n = 3" n;. Thus, using independence we get

X)n -
IP’(NBi:ni,izl,...,m):M( ') e HXOP (Z%(B):nj,jzl,...,m>
n.
=1
= Y P@e(B)=ai;i=1,...,mi=1,..n)

ai,j+tan j=n;
a;,;=0,1

Since the sets By, ..., B, are disjoint, if a; ; = 1 for some j, then a;, = 0 for any other k£ # j since
the opposite would imply that there is a point in B; N By. Thus, using independence of the random
variables & we get

Z P (B)=a;;,j=1,....myi=1,...,n) = Z H]P’ (0¢;(B) =a;;,j=1,...,m)

ai jttan j=n; ai,jt+tan,j=n; i=1
ai,;=0,1 a; 1+ t+a;m=1
a;,;=0,1

> II(4%
w(X)
a1j+ +anj 77/]2 1
aj, 1+ tag, m=1
a¢7j20,1

Consider a; ; = 0, 1 a solution to a; j+- - -+a,; = n;, forany j = 1,..., msuch that a; 1+ - -+a; ,, = 1.
The second equation says that for each 7 there must be only one j with a;; # 0. So we proceed in
the following way. To produce a solution to a; ; + --- + a,; = n; satisfying this constraint, we first
choose ny indices ¢ to put as equal to 1 and the rest we put equals to zero. For j = 2 we now have
n —n, indices avaible, so we choose ny of those to put as equal to 1. We can proceed inductively until

we reach the case j = m. This reasoning implies that the number of possible solutions a; ; is exactly

n\ /n—n nN—"ny—- " — N1 n!
ny No N, nglne! . ny,!

P(N =1 I | P
(Noommt =t = g L

Hence,

rearranging the terms and using that u(X) = pu(By) +- - -+ u(B,,) yields the desired result. Consider
now the general case, i.e., any family of disjoint measurable sets By, ..., B,,. Write B = U" | B; and
using our previous calculations we get

]P)(]\/VBZ :ni,izl,...,m) :Z]P)(NB, :ni,izl,...,m,NX\B:k)

k>0
= [[P(N5, =n) > P(Nx\5 = k) = [[P(N5, = ni)
i=1 k>1 i=1

Poisson point process also has a uniqueness property in the sense that for any Poisson process
with a given intensity measure p are equal in distribution. The proof of this fact can be found in
Theorem 1.2.1 in [39]. We need to introduce an important construction in measure theory before we
discuss how to integrate functions with respect to a Poisson Point Process.

Definition A.2. The coproduct or the disjoint union of countably infinitely many measure spaces
(X, Gy, o) 18 defined as

UXn::U{(x,n)::ceXn}, M::{uAn:Ane%}a

neN neN neN
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and the measure of each set is given by

u (I_I An) =Y (A

neN neN

It is easy to check that the set o/ is a o-algebra and that p is a measure. The fact that we have
a countable collection of spaces in our definition does not mean that one needs to restrict to this
case: we could, as well, consider an uncountable family of measurable spaces. Notice that we can
also define injections i, : X,, = Unen X, by in(z) = (x,n). These are measurable since

it <|_| An> = Ay, € Sy,

neN

by definition of disjoint union. Also, it is easy to see that the image of measurable sets are measurable.
Thus, if we have a family of measurable functions f, : X,, — Y, we can define a unique measurable
function f: U,en X, — Y by f(in(2)) = fu(z). Indeed, given B € & we have

Uf B) Nin(X,) = Uln<f1;1(B))a

neN neN

hence f is measurable. This shows that the measurable functions on the coproduct as in one-to-one
correspondence with sequences { f,, }n>1 of measurable functions f, : X,, — Y.

Proposition A.3. Let f: N(X) — R be a bounded measurable function and N : Q — X a Poisson
point process. Then, the following holds,

|50 N@IB@) = fuye 0+ ST  fl  )dn an),

n>1

Xn

where pu®™ is the n-fold product measure.

Proof. First, let 7,&;,&, ... be the random variables given by the Poisson point process (A.1l). Let
X" be the product space, with the product o-algebra. For the case X° = {O}~and X the countable
infinity product space with the cylinder o-algebra. We will define the function N : Q — | | . (000} X"
given by

1o T(w) =0

This function is measurable. Given an integrable function f: | |, .y, (0,00} X" — R and f, its restric-
tions to the subspace X". We have

/QfoNdIP’( — /OO LS [ R @), @) dPw)

n>1YT="n

N(w) = {(f1(w),§2(w), b (W), Tw) #£0

Suppose that f, = 1p,«..xB,, for measurable sets B; € %(X). Independence of the random variables
&; yields
| e () ap) = Bl =) [T P& € B)
= i=1
efﬂ(X)

- / 1B, sxB, (T1, oy Tp)dpu®™ (21, ..., 2p).

n!

Standard measure theoretic techniques allow us to extend the above result for general integral func-
tions. Hence

/foNd]P’ +Z

e H(X)

fn(xl, e T ) A (21, ).
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Let the function ¢ : N(X) = [ |, cnyq0.00) X" e defined by

On(T1, ... ) = Zéxr
i=1

Notice that N = gooN . We claim that this function is measurable. Indeed, by previous considerations,
we only need to show that ¢, 4 : X" — Ny is measurable. It is sufficient to show that the pre-images
of the singletons are measurable. Thus

0 n<m,
UUGF BJ n Z m,

Pra{m}) = {

where FF'={o: {1,...,n} = {0,1}: 3" , 0(i) = m}, B, =[]\ Asq:), where A; = A and Ay = A°.
Hence for any f: N(X) — R, it holds

/foN )P (w /f (¢ 0 M) (w)dP(w)

- fO(:u@)e w0 +e ~H(X) Z f(5x1 +oeee 51‘n)d/“’b®n(l‘17 cee ,i’n).

n>1 xn

O

Another important example that we will use to construct random representations for spin systems
is the Bernoulli point process. We will focus on a more concrete case, where X = [0,1]. Given two
point process N, N it is straightforward to see that N + N is again a point process. Consider \ € R
and {&; ;}ienj=1,..n & sequence of i.i.d variables such that

A
P(&n;=0)=1-P(&,;=1) = —,

for 1 < j < n. These are probabilities for n large enough. Define the point process

= > 6us(@)0.(B) (A2)

where B C [0, 1] is a Borel set.
Proposition A.4. Let N,, be the Bernoulli point process defined in ([A2)). Then, we have that

| 7N - 2. 2 P o) (1-2) ()

Proof. The strategy of this proof will be the same as the one employed in Proposition A3l Let
N:Q— |l,.en, [0, 1] defined by

N, (%77%)7 fn,jlzl and fnvjzo’j?éjl’lglgk’
07 Z?:l gnv] =0.
It holds

/f o Ny (w)dP(w MZ:O/ fm © Ny (w)dP(w).

Zgnj m

It is straightforward to see that the r.h.s of the equation above is equal to
> ) -n) G
n n n n
jle{o 7777 nfl}

Using the map ¢ defined in Proposition [A.3] yields the desired result. O
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Corollary A.1. Let N, ;, | = 1,...,m, be Bernoulli point processes with probability \;/n. Then, for

N, =N
/Q f o Ny (w)dP(w) =

Proof.

/ foN,(w)dPw)=>" > /Z kgn’k’l:leoNn(W)dP(w)

M>0 Mi+-+Mp=M

/Z e M) = Zn 1})f <§:25%> lij (1 _ _)an (%)M

JieP{o,..., — =1 j&J
1<I<m
O
Suppose that we have a sequence of probability measures p,, in the coproduct space |_|meNO [0, 1]™

Then, one can define measures on [0, 1]™ by restriction. Let these restrictions be denoted by fi .
Then, if we have that each p, ,, converges weakly to a f,,, then the monotone convergence theorem
implies that j,, converges to pt = Y fi,,,. Let By, ..., B,, be Borel sets in [0, 1]. Then, for a continuous
function f : [0,1]™ — R, we have

jl i )\ n—m )\ m_ )\ n—m .
> ! G (=0) () =(-3) [ e

where the function g, : [0,1]™ — R is defined by

o .
gnm:f(f_l,...,ﬂ), it xle(ﬂ J_}
n n n n

and d\ = Adx, where dr is the Lebesgue measure. Notice that lim, ,. g, = f pointwise. The
Lebesgue dominated convergence theorem gives us that,

lim (1—5) / Gn(2)dNE™ = e / f(z)d ™,
oo n [0,1]™ [0,1]™

Thus, we get that the Bernoulli point processes converge weakly to a Poisson point process with
intensity measure d\. In the case both are independent Poisson Point processes, the sum is again a
Poisson point process, as the following proposition shows.

Proposition A.5. Let N, N:Q— N(X) be two Poisson point processes. Then the point process
N + N s Poisson.

Proof. Take B € %(X), and consider Ng + Ng. Then, the independence of N and N imply the
independence of Ng and Np, thus

P(Np+Np =k) =) P(Np=k—j)P(Np = j)
_ Z u(B)*v(B) o~ (H(B)+v(B))

(k= 3)'3!

e~ (B +v(B) E - A
— > (s oney

(1u(B) + v(B))re= )15

J=0
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Consider By, ..., B,, disjoint measurable sets.

P(Np,+ Np, =kyi=1,....m)= > P(Np, =kis,Np, =kip,i=1,...,m)

kz 1+kz 2= k

Since N and N are independent and the following holds, we have

P(Ng, = ki1, Np, = kia,i=1,...,m) =P(N € ng!({ki1}), N € m5! ({ki2})i = 1,...,m)
=P(N € mp, Yk} )i=1,...,mP(N € ’1({1@2})2 =1,.

Hence,
P(N € mp/ ({kin}), N € mg! ({kip})i = 1....,m) = | | P(N € m5! ({kia}))P(N € 75 ({kiz}))

i=1 kl,1+kl o=k;

=11 P(Np, = ki1, Np, = ki2)

i=1 k; 1+k;2=k;

This yields the desired result. O

The probability that two independent poisson point processes with nonatomic probability mea-
sures p, v will draw the same point is zero. Indeed, let € X be a point and Bi(z) be the balls
centered at = with radius 1/n. Then we have that

~ ~ —v(B1 (x —uw(B1 (=
P(NB, @) N, @) > 1) =P(Np, @) > 1)P(Np, ;) > 1) =(1—¢ (B3 )))(1 — e P )))-

3=

Since the measure v is finite, we have that lim,, . ¥(B1(x)) = v({z}) = 0. The same holds for pu.
Thus we have that !

P(N, N draws the point z) = lim IP’(NB1 @, N, @ >1)=0.

n—00 L -

The result above implies that when we have a finite number of independent Poisson point process
we can associate to each draw a definite label allowing us to integrating more general functions, that
even have a dependence on these labels.

Corollary A.2. Let N;, for i = 1,...,M be independent Poisson point processes on [0,1] with
intensity measures \;dt, for \; > 0. Let N =Y. N; and f : N([0,1] x {1,..., M}) = R be a bounded
measurable function. Then, it holds

/foN )dP(w —eﬁzzkzn'/ Z f(Zétm>HAdt"

n>0 [0,1™ ;. eli]

-----
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