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By using the tensor-network state algorithm, we study a spin-orbital model with
SU(2)×SU(2)×U(1) symmetry on the triangular lattice. This model was proposed to describe
some triangular d1 materials and was argued to host a spin-orbital liquid ground state. In our
work the trial wavefunction of its ground state is approximated by an infinite projected entangled
simplex state and optimized by the imaginary-time evolution. Contrary to the previous conjecture,
we find that the two SU(2) symmetries are broken, resulting in a stripe spin-orbital order with the
same magnitude m = 0.085(10). This value is about half of that in the spin-1/2 triangular Heisen-
berg antiferromagnet. Our result demonstrates that although the long-sought spin-orbital liquid is
absent in this model the spin-orbital order is significantly reduced due to the enhanced quantum
fluctuation. This suggests that high-symmetry spin-orbital models are promising in searching for
exotic states of matter in condensed-matter physics.

Introduction. Symmetry may be one of the fundamen-
tal concepts involved in physics. Of all these symmetries
SU(2) is ubiquitous in condensed-matter physics because
the spin operators are its generators. On the other hand,
the success of larger symmetry groups such as SU(3)
in particle physics raised a natural question whether
high-symmetry groups are relevant for condensed-matter
physics. It was proposed that high symmetries can be
realized in spin-orbit-coupled compounds [1, 2]. This
has inspired a variety of theoretical studies on spin-orbit-
coupled insulators [3–11]. At the meanwhile, the exper-
imental development of measuring the orbital degrees of
freedom in transition-metal oxides [12, 13] has greatly
boosted the investigation on orbital physics in materials
with strong spin-orbit coupling and crystal-field splitting.
A minimal high-symmetry model involving both the spin
and orbital degrees of freedom may be the SU(4) symmet-
ric Kugel-Khomskii model [1, 2, 10, 14–17], where orbital
degrees of freedom are represented as pseudospin and
coupled with the spin degree of freedom on each bond.
It is argued that such a model is relevant to the observed
spin liquid states [18–20] in LiNiO2 [2], Ba3CuSb2O9 [10],
and α-ZrCl3 [14].

On the other hand, Yamada, Oshikawa, and Jack-
eli (YOJ) recently proposed [16] another spin-orbital
model to describe some d1 materials [21–23] on the tri-
angular lattice. In addition to the geometry frustration,
there is a spin-orbital frustration in this model, and it is
argued [16] that such a model may host a spin-orbital liq-
uid ground state. However, there are no systematic stud-
ies so far, which motivates us to investigate this model.

In the YOJ model, there are two kinds of terms in
the Hamiltonian, as plotted in Fig. 1. The lattice sites
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are represented by filled circles. The nearest-neighbor
sites are connected by blue solid or dashed lines, which
represent the two interaction terms, respectively. The
solid lines represent the term

Hij =

(
Si · Sj +

1

4

)(
Ti · Tj +

1

4

)
, (1)

where Si and Ti are both pseudospin-1/2 operators de-
fined on lattice site i, corresponding to effective spin and
orbital degrees of freedom, respectively. The dashed lines
are the term given by

H ′ij =

(
Si · Sj +

1

4

)(
T zi T

z
j − T xi T xj − T

y
i T

y
j +

1

4

)
.

(2)
The Hamiltonian H of the YOJ model is then the sum-
mation of all these terms.
Symmetry and method. Although Eq. (2) breaks the

orbital SU(2) symmetry to U(1), it turns out that this
model has a SU(2)×SU(2)×U(1) symmetry. To see this,
one can construct [25] the generators Xi and Yi as fol-
lows,

Xα
i ≡ Sαi

(
1

2
+ T zi

)
, Y αi ≡ Sαi

(
1

2
− T zi

)
(3)

where α = x, y, z. It can be easily verified that

[Xα
i , X

β
j ] = iεαβγX

γ
i δij ,

[Y αi , Y
β
j ] = iεαβγY

γ
i δij ,

[Xα
i , Y

β
j ] = 0,

[T zi , X
α
j ] = 0,

[T zi , Y
β
j ] = 0 (4)

are satisfied. Moreover, the following seven operators are

ar
X

iv
:2

21
1.

06
85

2v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

3 
N

ov
 2

02
2

mailto:qingtaoxie@ruc.edu.cn
mailto:zhaojz@lzu.edu.cn


2

FIG. 1. Schematic diagram of the triangular lattice and the PESS wavefunction ansatz. The black filled circles (•) represent
the lattice sites. The blue solid and dashed lines connecting two nearest-neighbor lattice sites are the bonds of the lattice,
indicating two different interaction terms corresponding to Eqs. (1) and (2), respectively. The red open circles (◦) sitting at
the center of upward triangles represent the rank-3 simplex tensors S in the PESS wavefunction, and at each lattice site there
is a projection tensor A. The physical indices σ and σ′ perpendicular to the plane are not shown here. The four rhombuses in
green mark the 2 × 2, 4 × 2, 3 × 3, and 4 × 4 periodic clusters used in the trial wave functions.

conserved quantities with respect to the Hamiltonian,

Xα ≡
∑
i

Xα
i , Y α ≡

∑
i

Y αi , T z ≡
∑
i

T zi . (5)

Knowing the commutation relation of these operators,
we have found seven generators of a Lie group which can
be written as SU(2)×SU(2)×U(1), and we can use these
generators to define the corresponding order parameters
as usually done for spin operators [24].

To study the ground-state properties of this model, we
employ the tensor-network method [26–29], which is a
class of numerical methods based on the tensor-network
state representation of the targeted quantum state and
the network contraction techniques arising from the idea
of renormalization group. It is free of the sign problem,
can study the thermodynamic limit directly under the
help of translational invariance, and has been success-
fully applied to study strongly-correlated electron sys-
tems [30, 31], frustrated spin systems [24, 32–34], sta-
tistical models [35–37], topological order [38–42], quan-
tum field theory [43–45], machine learning [46, 47], and
even quantum circuit simulation [48], etc. In this work,
we use the infinite projected entangled simplex state
(PESS) ansatz [49, 50] to represent the trial wavefunc-
tion, and employ the corner transfer-matrix renormaliza-
tion group (CTMRG) method [31, 51, 52] combined with
the nested tensor network technique [53] to estimate the
physical quantities, such as the ground-state energy and
order parameters, etc. Unexpectedly, we find that in
the ground state two SU(2) symmetries are broken. As
we have shown, the generators of two SU(2) groups in-
clude both the spin and orbital operators, which suggests
that the corresponding orders are different from the con-
ventional magnetic order [24]. Hereafter, following the
literature [14, 16] we call it a spin-orbital order.

More specifically, the PESS employed in this work is
a generalization of the projected entangled pair state
ansatz [27], and has been successfully applied to the
highly frustrated antiferromagnetic Heisenberg model on

Kagome lattice [32, 49, 54] and triangular lattice [24].
Similar to that in Ref. [24], in this work, the PESS wave-
function is represented as follows,

|Ψ〉 =
∑
{σ,σ′}

Tr
(
...S

(µν)
iµνjµνkµν

A
(λω)
iλωjλωkλω

[σλωσ
′
λω]...

)
|...σλω...〉|...σ′λω...〉 (6)

as illustrated in Fig. 1. Here (µ, ν) denotes the coordi-
nates of the upward triangles, at the center of which a
rank-3 simplex tensor S is introduced to characterize the
entanglement in that triangle. (λ, ω) denote the coordi-
nates of lattice sites, where a rank-5 projection tensor A
is defined, with three virtual indices labeled as i, j, k and
two physical indices labeled as σ (spin) and σ′ (orbital).
Every two virtual indices associated with the same bond
take the same values. “Tr” is over all the repeated virtual
indices and

∑
is over all the physical indices.

The bond dimension D, which is the highest value that
the virtual indices can take, is an important parame-
ter in tensor network states. Generally, the larger D
is, the more accurate the obtained representation is, but
the heavier the computational cost is at the meanwhile.
Therefore, in practical calculations, one has to make a
good balance between accuracy and cost. In this work,
using the efficient nested tensor network technique [53],
we have pushed D to 18 and obtained reliable features of
the ground state.

The ground-state wavefunction is obtained by
imaginary-time evolution. In order to make the calcu-
lation more efficient, the wavefunction is updated by the
simple update algorithm [55, 56]. Though for a given D,
simple update might be less accurate than the full update
[57] or direct variational calculation [58], it can produce
wavefunction with a much larger D and the numerical ac-
curacy can thus be remedied properly, as exemplified in
Ref. [32]. Moreover, to avoid bias and reduce the Trotter
error, we start from a wavefunction randomly generated
on complex field, and gradually reduce the Trotter step τ
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from 0.5 to 10−3, which turns out to be sufficiently small
to estimate the physical quantities.

After mapping the obtained infinite PESS wavefunc-
tion to a square network [59], we measure the physical
observables through the CTMRG method developed for
an arbitrary unit cell on the square lattice [31]. The cen-
tral idea of this method is to represent the surrounding
environment of a local tensor in terms of corner matri-
ces and edge tensors approximately. A key parameter
therein is the bond dimension χ of the environment ten-
sors, which controls both the accuracy and cost during
the measurement. In principle, our results should also
depend on χ. We will show later such dependence is very
weak and thus it can be neglected when the χ is large
enough, i.e., χ ≥ D2. In our calculation, the maximal χ
is no less than D2 to ensure a reliable result.
Ground-state energy. In the tensor-network simula-

tions, the cluster size should be compatible with the unit
cell if the ground state has a long-range order. However,
since the ground state is unknown a priori, we need to
try different cluster sizes to determine the unit cell. A
correct cluster size should have the lowest energy in cor-
respondence to the ground state. For this purpose, we
compare the energy obtained from the PESS ansatz with
various clusters. We have checked four different clusters
compatible with the Hamiltonian symmetry, i.e., 2 × 2,
3 × 3, 4 × 2, 4 × 4, which are all illustrated in Fig. 1.
The energy E obtained from the ansatz with these four
clusters is shown in Fig. 2 for comparison. It shows that
the energy obtained on the 2 × 2 and 3 × 3 clusters is
obviously higher than that on the 4 × 2 and 4 × 4 clus-
ters. Moreover, the energy is the same on the latter two
clusters, suggesting that the 4× 2 is the minimal cluster
compatible with the ground state. Therefore, in all the
rest calculations, we focus on the ansatz on the 4 × 2
cluster.
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FIG. 2. The energy per bond E obtained from the wavefunc-
tion ansatz with different clusters are shown as a function of
1/D.

In Fig. 2, we extrapolate the energy per bond E as a
function of 1/D to the large-D limit by the formula

E(1/D) = Eg + a0(1/D) + a1(1/D)2, (7)

where Eg, a0 and a1 are the fitting parameters. We fi-
nally end with the ground-state energy per bond Eg =

−0.0793(5). It may serve as a benchmark for future
works.

Spin-orbital order. It is argued that the quantum fluc-
tuation is strong [14, 60, 61] in high-symmetry models
and thus spin-orbital liquid is favored therein. This ar-
gument is supported by several works [10, 15, 17] on
the SU(4) spin-orbital model on various lattices. In this
context, the main concern on this model is whether its
symmetries are broken or not, in particular, whether
the SU(2)×SU(2)×U(1) symmetry is broken or not. To
check this, we calculate the corresponding local order pa-
rameters, which are defined as the expectation values
of the generators in the ground state. The magnitude
of the spin-orbital order at site i is defined by mX

i =√∑
α 〈Xα

i 〉
2

and mY
i =

√∑
α 〈Y αi 〉

2
corresponding to

two SU(2) groups. Their average in one unit cell is then

defined by mX/Y =
∑
im

X/Y
i /N with N = 4× 2 = 8.
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FIG. 3. The magnitude of the spin-orbit order obtained with
D ranging from 4 to 18. Various polynomial functions are
used to fit the curve. The dashed line denotes a linear fitting.
It is estimated that mX/Y = 0.085(10) in the large-D limit.

In Fig. 3, we show mX/Y as a function of 1/D with
D ranging from 4 to 18. One may notice that mX and
mY coincide very well. This can be understood as fol-
lows. Let us check the two SU(2) groups. Although

their generators Xα
i and Y βi commute, we can see that

Xα
i ↔ Y αi under the transformation T zi → −T zi . In addi-

tion, mX/Y decreases monotonically as D increases. We
try to fit such a curve by various polynomial functions
of 1/D, which gives mX/Y = 0.085(10) in the large-D
limit. Obviously, the finite magnitudes tell us that two
SU(2) symmetries are spontaneously broken. Moreover,
the magnitudes are about half of that of the spin-1/2 an-
fiferromagnetic Heisenberg model (see, for example, Ta-
ble I in Ref. [24]). This is consistent with the argument
that quantum fluctuation is enhanced [14, 60, 61] in high-
symmetry models. In addition, |〈T z〉| =

∑
i |〈T zi 〉|/N is

always zero within our error bar, suggesting that the U(1)
symmetry is not broken.

Now we have demonstrated that there is a stable long-
range spin-orbital order in the YOJ model. Next, we
will show the pattern of such an order. In Fig. 4 the
spin-orbital order corresponding to the three components
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of Xi is plotted as a vector. It shows clearly that the
ground state exhibits a stripe long-range order. From
Fig. 4(a) we can see that along the dashed bonds, where
the interaction is given in Eq. (2), the spins are ferro-
magnetic, and along the two solid bonds the spins are
antiferromagnetic. However, we want to point out that
the spins can be ferromagnetic along one of two solid
bonds, i.e., (b) and (c) are also the ground-state configu-
rations. This can be understood as follows. First, let us
see the equilateral triangle in Fig. 4 with its three sides
α, β, and γ. The lines α and β join at the site, say, m.
Lines α and γ join at site n. After the transformation
T xm → −T xm, T ym → −T ym, T xn → −T xn , T yn → −T yn , the
side β becomes solid and side γ becomes dashed. By a
similar operation, all the bonds parallel to side β can be-
come solid, and all bonds parallel to side γ can be dashed.
Keep in mind that our order parameters do not depend
on T xi and T yi , which means their expectation values do
not change. We then rotate the lattice counterclockwise
by 2π/3 around an axis perpendicular to the plane at
any lattice site, and we obtain the figure in panel (b).
Similarly, we can obtain the configuration in panel (c).

m n
(a)

(b)

(c)

FIG. 4. Degenerate stripe spin-orbital configurations for the
ground state. The data are obtained with D = 18 and χ =
D2.

Convergence analysis. In order to obtain reliable data,
we not only pushed the bond dimensionD as large as pos-
sible, but also checked the convergence of the expectation

values with respect to the environment tensor dimension
χ for each D as in Refs. [24, 32, 53]. For example, in
Fig. 5 we plot mX as a function of χ for several Ds.
It shows that the data converge quickly as χ increases,
which demonstrates that χ ∼ D2 is sufficiently large to
produce a reliable result for all Ds up to 18. Therefore,
with χ ≥ D2 our results should be reliable.
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FIG. 5. mX is shown as a function of 1/χ for D = 11, 12, 14
and 18.

Conclusion. In summary, by using tensor-network al-
gorithms with PESS wavefunction ansatz [49, 50], we
have studied the ground state of the spin-orbit-coupled
YOJ model [16] on the triangular lattice, which pos-
sesses a SU(2)×SU(2)×U(1) symmetry. The trial wave-
function was optimized by the imaginary-time evolution
method, and the expectation values were estimated by
the multi-sublattice CTMRG algorithm in combination
with the nested tensor-network technique. We found
that the two SU(2) symmetries are broken, leading to
long-range spin-orbital orders with a stripe pattern. The
origin of these orders is different from the conventional
magnetic order. A careful finite bond-dimension scaling
analysis gives the magnitudes of the spin-orbital orders
mX = mY = 0.085(10). The reason for mX = mY is also
discussed. Our resuls impose a strong constraint on the
microscopic Hamiltonian in searching for quantum spin-
orbital liquid in real materials on the triangular lattice.
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