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It has recently been shown that in one-dimensional hard-point gases, there is a mechanism that
induces negative differential thermal resistance (NDTR) between heat baths. We examine this
mechanism in more general higher dimensional fluids described by multiparticle collision dynamics.
We consider fluids in a finite cuboid region of three-dimensional space with each end in contact
with a heat bath. Based on analytical results and numerical models, we find that the mechanism
underlying NDTR also works for high-dimensional fluidic systems with weak interactions and is
very robust to mixed fluids. Our results significantly advance knowledge of NDTR induced by heat
bath and illuminate new directions to explore in fabricating fluid thermal transistors in micro- and
nanosystems.

Introduction. Negative differential thermal resis-
tance (NDTR) is an important heat transport phe-
nomenon [1–3]. NDTR is observed in a system when
the heat current counterintuitively decreases as the tem-
perature difference between heat baths increases; it is
analogous to electronic negative differential resistance.
Our ultimate intention is to fabricate real thermal de-
vices with the NDTR effect that enable us to control and
manage heat current, thus leading to some novel and ex-
citing applications [4].

The study of NDTR at nanoscale is of fundamental
theoretical interest in identifying the basic properties
of heat transport for solid systems. NDTR was origi-
nally observed in nonlinear phononic lattices in 2004 by
Li and colleagues [5]. It was then exploited in the de-
sign of various thermal functional devices such as ther-
mal transistor [1], thermal logic gates [2] and thermal
memory [3], among others [6]. NDTR has since been
observed in various low-dimensional lattice models and
its properties have been found to depend on the various
parameters of different systems [7–14]. At present, the
NDTR phenomenon in a lattice has been understood in
terms of phonon-phonon interactions and nonlinear dy-
namic localization of phonon modes [1, 15]. The nec-
essary conditions for the occurrence of NDTR have al-
ready been analytically identified [14, 16]. These sig-
nificant progresses have created new knowledge for an
important class of lattice systems. Besides, inspired by
the above pioneer works, NDTR has also been exten-
sively investigated in various quantum systems in order
to design quantum thermal devices, typically quantum
thermal transistors [17–22]. And also, the study along
this line has turned out very successful and fruitful.

Fluid flow regulation at micro- and nanoscales is essen-
tial in integrated fluidic devices, which have widespread
application in biology, medicine, chemistry, and engi-
neering [23–26]. Various fluidic thermal control devices
(TCDs), such as fluidic thermal switches, thermal diodes
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and thermal regulators, have been incorporated into ap-
plications at different size scales and temperature ranges;
see Ref. [27] for a review and references. However, despite
these achievements, an effective fluidic thermal transis-
tor has yet to be developed. The principal reason for this
situation, apart from the engineering and material chal-
lenges, stems from a long-term lack of understanding of
NDTR for the fluid systems.

An original step towards such understanding was made
in 2019 by Luo, who showed that in one-dimensional
(1D) hard-point gas systems, representing 1D fluids,
NDTR can be induced by heat baths at different temper-
atures [28]. NDTR in such a system depends on the mo-
tion of particles being weakened by decreasing the tem-
perature of the cold bath so that collisions between the
colder particles and the hot bath become very infrequent.
As a result, there is little thermal current even when the
temperature difference between the heat baths is large.
This observed result provides a new perspective on the
NDTR phenomenon and can inform the design of a fluidic
thermal transistor and other more complex fluidic TCDs.
However, although the mechanism is general, only a ba-
sic model (a 1D chain of hard-point elastically colliding
particles) has been investigated. In order to obtain an in-
depth and comprehensive understanding of NDTR, the
relevant questions now are: How general is this mecha-
nism? Will this mechanism work for more general higher
dimensional fluids, and how robust is it? We need the
answers to these questions in order to promote the wider
practical application of TCDs based on NDTR.

In this paper, we provide a positive answer to both
the preceding questions. It might be initially convenient
to consider a 3D system of fluids described by multi-
particle collision dynamics (MPC) [29]. An important
feature of MPC is that the velocities of conventional
deterministic molecular dynamics are replaced by a set
of stochastically determined velocities which satisfy the
general properties of the hydrodynamic equations in nu-
merical modeling [30]. Using this technique, researchers
gained a considerable understanding of various aspects
of particle transport [31]. This technique has more re-
cently been used to study the coupled particle and heat
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transport [32, 33] and has been instrumental in testing
theoretical conjectures of heat conduction in momentum-
conserving systems [34–36]. In this paper, by analyzing
the more general 3D MPC fluids, we show that the mech-
anism for NDTR induced by heat baths is also in effect
for higher dimensional fluids and is suitable for describ-
ing systems with weak interactions. The universality of
the mechanism is further supported by confirmation of
its robustness in mixed fluids.

The 3D fluid model. The 3D fluid model we use
in this study is shown in Fig. 1. The system consists of
N interacting point particles with equal mass m, with
all particles are confined in a cuboid volume of length
L, width W , and height H in the x, y and z coordinate
system shown. At x = 0 and x = L in longitudinal
direction, the particles exchange heat with a heat bath
of temperature Th or Tc; the heat baths are modeled as
thermal walls [37]. When a particle arrives the x = 0
(or x = L) boundary (of area WH), it is reflected back
with a newly assigned velocity (vx, vy and vz in the x, y
and z directions) determined by sampling from a given
distribution [37]:

f (vx) =
m|vx|
kBTα

exp

(
− mv2x

2kBTα

)
,

f(vy,z) =

√
m

2πkBTα
exp

(
−
mv2y,z
2kBTα

)
,

(1)

where Tα (α = h, c) is the temperature of the heat bath
in dimensionless units and kB is the Boltzmann constant.
The particles are subject to periodic boundary conditions
in the y and z directions. We point out that the numerical
results also apply to fixed boundary conditions since, in
both cases, vy,z > 0 and vy,z < 0 with equal probability
p = 0.5.

The dynamics of the system are described by MPC [29–
31], which simplifies the numerical modeling of parti-
cle interactions by coarse-graining the time and space at
which interactions occur. In MPC, the system changes
in discrete time steps, each step consisting of noninterac-
tive propagation during a time interval τ followed by an
instantaneous collision event. During propagation, the
velocity vi of a particle is unchanged, and its position is
updated as

ri → ri + τvi. (2)

To model collisions, the system volume is partitioned into
cubic cells of side a and, for all particles in a cell, their ve-
locities are rotated around a randomly chosen axis, with
respect to their center of mass velocity Vc.m. by an angle,
θ or −θ, randomly chosen with equal probability p = 0.5.
The velocity of a particle in a cell is thus updated as

vi → Vc.m. + R̂±θ (vi −Vc.m.) , (3)

where R̂±θ is the rotation operator through the angle
±θ. The movements described maintain the total mo-
mentum and energy of the fluid system. Note that the

FIG. 1. (Color online) Schematic illustration of the 3D fluid
of interacting particles in a cuboid volume described by the
multi-particle collision dynamics. The system is coupled at
its left and right ends to one of two heat baths at fixed tem-
perature Th and Tc (See text for more details).

angle θ = π/2 corresponds to the most efficient mixing
of the particle momenta. Note also that the probabil-
ity of collision between particles increases as τ decreases,
and thus the time interval τ between successive collisions
can be used to tune the strength of the interactions and
consequently affect the transport of the particles.

In our modeling, we set Th = 1 and Tc = 1 − ∆T ,
where ∆T is the temperature differential of the sys-
tem. Then the main parameters are set as follows:
m = kB = W = H = 1, a = 0.1, θ = π/2, and the aver-
aged particle number density ρ = N/(LWH) = 88. To
guarantee Galilean invariance of the stochastic rotation
dynamics, the collision grid is shifted randomly before
each collision step [38]. Numerically, after the system
reaches the steady state, we compute the thermal cur-
rent J that crosses the system according to its definition
(i.e., the average energy exchanged in the unit time and
unit area between particles and heat bath). The distri-
butions of temperature T (x) and particle density ρ(x),
where x is the space variable, are similarly measured, as
described in [28]. For all data points shown in the figures
in this paper, the errors are ≤ 1%; as the error bars are
smaller than the symbols, they are omitted.

Analytical results. Here, we show that NDTR can
be induced in a fluidic system by heat baths and we in-
fer its mechanism. Note that our model is interacting
and nonintegrable. However, if no particles interact (i.e.,
each particle maintains unchanged velocity as it crosses
the system from one heat bath to the other), the model
becomes integrable. In the integrable case, by an analysis
similar to that performed in [28], we obtain an analytical
expression for the thermal current:

J = (d+ 1)

√
ρ2k3B
2πm

√
ThTc

(√
Th −

√
Tc

)
, (4)

where d is the spatial dimension (the analytical results
presented here apply also to one- and two-dimensional
systems.). To illustrate, putting Th = 1 and Tc = 1−∆T
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FIG. 2. (Color online) The thermal current J/Jmax as a func-
tion of the temperature difference ∆T for the 3D fluid system
with different τ values. Here and in Fig. 3, the data are ob-
tained for L = 16. The red line is the analytical result given
by Eq. (5). Hereafter, the symbols are modeling results and
the black dot-dashed line at critical temperature difference
(∆T )cr = 0.75 is drawn for reference.

into Eq. (4), we rewrite the thermal current as:

J = 4Jmax
√

1−∆T
(

1−
√

1−∆T
)
. (5)

Here Jmax = (d+1)
4

√
ρ2k3B
2πm is obtained at critical temper-

ature difference (∆T )cr, which is determined by solving
the equation ∂J/∂(∆T ) = 0. This result is shown in
Fig. 2 with a red line. It is clear that for ∆T > (∆T )cr =
0.75, J decreases when ∆T increases and thus exhibits
the NDTR phenomenon.

The mechanism inferred for NDTR induced in this sys-
tem can be understood from the following argument. As
Tc decreases (or as ∆T is increased), the particles will be
reflected from the cold bath boundary at a reduced veloc-
ity; the propagation time taken by the reflected particles
to return to the hot bath will increase, which in turn de-
creases the collision rate f of particles colliding with the
hot bath. To illustrate this, we can equivalently rewrite
f , given by Eq. (6) in Ref. [28], as a function of ∆T :

f =
N

L

√
2kB
πm

/

(
1 +

1√
1−∆T

)
. (6)

This analytical expression is also plotted with a red line
in Fig. 3 that shows that f decreases as ∆T increases,
as expected. This decrease implies that f will become
too small for a thermal exchange between heat baths.
Thus, by decreasing Tc to increase ∆T , the thermal ex-
change will be promoted in the conventional way through
increasing ∆T but it will be inhibited in a new way by
decreasing f . Both actions contribute to the thermal ex-
change between the baths but they compete with each

FIG. 3. (Color online) The collision rate f/fmax at which
the particles collide with the hot bath versus the temperature
difference ∆T for the noninteracting case (τ = ∞) and the
interacting cases (τ = 1.00, 0.01). Here, the red line is drawn

from Eq. (6) and fmax = 2N
L

√
2kB
πm

.

other: at first, the conventional method dominates, so J
increases as ∆T increases; however, when ∆T > (∆T )cr,
the effect of f becomes dominant, so J decreases as ∆T
increases, thus causing the NDTR effect. The preced-
ing analysis leads us to conclude that for the MPC fluid
system, NDTR can be induced by decreasing the tem-
perature of the heat bath.

Numerical results. To check the analytical results
and provide a numerical example, we first quantify the
noninteracting system (i.e., the integrable case). In Fig. 2
and Fig. 3, the thermal current (Eq. (5)) and the colli-
sion rate (Eq. (6)) are compared with our models (black
circles). It can be seen that they agree very well with
each other. These models clearly strongly support our
analysis.

We now turn to the interacting systems with collisions
to investigate the dependence of the mechanism on in-
teraction strength. Here, the time interval τ between
successive collisions will be used to tune the strength of
the interactions. For the noninteracting case, τ = ∞;
thus for the interacting case, a lower value of τ produces
greater interaction strength. We can see in Fig. 2 that
although for a given system dimension (L = 16), de-
creasing τ decreases the thermal current and the region
of NDTR decreases in size and finally disappears, NDTR
still exists for a wide range of τ > 0.1. This observation
implies that the mechanism is more effective under rel-
atively weak interactions. It is worth pointing out that
the mechanism of NDTR for the interacting case is the
same as for the noninteracting case because, as shown in
Fig. 3, for the interacting case (τ = 1), f decreases as
∆T increases, as in the noninteracting case.

Next, we explain why the mechanism does not work for
systems with strong interactions. To this end, we plot
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FIG. 4. (Color online) (a) The particle density ρ(x)/ρ and
(b) temperature T (x) as a function of x/L for different values
of τ . Here, we set L = 16 and ∆T = 0.75.

the particle density ρ(x) and temperature profile T (x)
of the system with different τ values. It can be seen in
Fig. 4(a) that ρ(x) at the right (cold bath) side of the
system increases as τ decreases. This implies that when
the interaction strength increases, a particle with low ve-
locity that is reflected from the cold bath will become
less and less likely to transit from the cold bath to the
hot bath without interacting with other particles. As
a result, momentum exchange between particles will in-
crease and low velocity particles will increase in velocity,
resulting in an increase in f for τ = 0.01 over a small
range of approximately ∆T > 0.9, as shown in Fig. 3.
It also can be seen in Fig. 4(b) that for lower values of
τ , T (x) will be close to a linear response described by
Fourier’s law, which indicates that for τ = 0.01, the con-
tribution of increasing ∆T to the thermal current again
becomes dominant (see the data in Fig. 2 for reference).
This analysis supports the inference that the mechanism
will fail in the case of strong interactions.

To further support the universality of this mechanism,
we show that it is also applicable to mixed fluids. MPC
dynamics make it convenient to numerically analyze the
behavior of mixed fluids by modeling it using the method
described in Ref. [31]. As an illustration, we consider the
simple binary fluids as follows. The particles are set to
two different masses, m and M , with equal probability
p = 0.5. For convenience, we set m = 1 so that M is the
mass ratio M/m of the different binary fluids. The model
results for different values of M are shown in Fig. 5. It
can be seen that the mechanism works both in a pure
fluid (M = 1) and in different mixed binary fluids. More
importantly, our data show that for a given interaction
strength (τ = 1), the NDTR region remains unchanged
when M is increased from 1 to 1000, which implies that
this mechanism is robust for many binary fluids. In the
inset of Fig. 5, we emphasize that for M = 1000, the

FIG. 5. (Color online) The thermal current J/Jmax as a func-
tion of the temperature difference ∆T for the 3D binary fluid
system with different mass ratios M . Here, we set L = 20,
τ = 1.0 and p = 0.5. Inset: J/Jmax as a function of ∆T for
M = 1000 with different τ values. The red line in the inset is
the analytical result for the integrable case (τ = ∞) obtained
by generalizing Eq. (4).

interaction when τ = 1 is not too weak because the ther-
mal current for τ = 1, when compared to the integrable
case (τ =∞), obviously changes; once again, we see that
the mechanism will break down if τ decreases further, as
shown in Fig. 2. In addition, we have numerically checked
that for various binary fluids, using different values of p,
the mechanism works for systems with weak interactions.
These results may be helpful for understanding and con-
trolling thermal transport of mixed fluids under specific
conditions [39–41].

Summary and discussion. In studying a 3D fluid
described by MPC dynamics, we have shown, for the first
time, that NDTR can be induced by heat baths in clas-
sical fluids with weak interactions. The induced mecha-
nism depends on the simple fact that decreasing the tem-
perature of the cold bath weakens the motion of particles
and decreases the collision rate between particles and the
hot bath, thus impeding thermal exchange between cold
and hot baths. We demonstrated the universality of the
mechanism by showing that it is operable and very robust
for various mixed fluids. The results we obtained sig-
nificantly advance knowledge of NDTR induced by heat
baths and clearly answer the two questions raised in the
introduction.

We note that in nonequilibrium two-qubit systems,
negative differential thermal conductance can also be in-
duced by the strong system-bath coupling [22]. This ob-
servation, together with our results, provides strong evi-
dence that heat baths are important in inducing NDTR
in both quantum systems and classical fluid systems. To
the best of our knowledge, there are no reports of NDTR
being used to design fluidic TCDs, although a theoreti-
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cal thermal transistor using gas-liquid transition has been
proposed [42]. Thus we expect that the mechanism for
NDTR we present here will be exploited to design a flu-
idic thermal transistor and other more complex fluidic
TCDs, as was done for the lattice system [1–3]. As well
as being of fundamental theoretical interest, our results
may find application in the context of ultracold atoms,
where a thermoelectric heat engine for weakly interacting
particles has already been demonstrated [43]. Finally, we

point out that the MPC fluids we used in this study is
a very popular model in mesoscopic physics [31] and we
therefore conjecture that the mechanism can be experi-
mentally verified in mesoscopic fluid systems. We foresee
a range of interesting applications based on this work.
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