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A PERIODICITY THEOREM FOR EXTENSIONS OF WEYL

MODULES

MIHALIS MALIAKAS AND DIMITRA-DIONYSIA STERGIOPOULOU

Abstract. In this paper, we study periodicity phenomena for modular ex-
tensions between Weyl modules and between Weyl and simple modules of the
general linear group that are associated to adding a power of the characteristic
to the first parts of the involved partitions.

1. Introduction

This article deals with homological aspects of polynomial representations of the
general linear group G = GLn(K) over an infinite field K of characteristic p > 0.

For a positive integer r, let SK(n, r) denote the corresponding Schur algebra ofG.
The category of finite dimensional SK(n, r)-modules is equivalent to the category
of homogeneous polynomial representations of G of degree r. Several important
SK(n, r)-modules are indexed by partitions λ of r with at most n parts, such as the
Weyl modules ∆(λ) and the simple modules L(λ). The study of extension groups
between such modules is one of the main topics in the polynomial representation
theory of G. There are relatively few general results, especially those that relate
extension groups that correspond to different degrees r. One such result is the
row (or column) removal theorem for homomorphism spaces and extension groups
or, more generally, the horizontal (or vertical) cuts theorem, see [3], [5], [7], [19].
Another such result concerns complements of partitions [9]. One also has the degree
reduction theorem [18]. These results are characteristic free. In [13] and [14], among
other results, equalities between p-Kostka numbers are obtained that are related to
adding a power of p to the first parts of the involved partitions.

If λ = (λ1, . . . , λn) is a partition and d a positive integer, we denote by λ+ the
partition (λ1+p

d, λ2, . . . , λn). Let S = SK(n, r) and S′ = SK(n, r+pd). The main
result of the present paper is the following.

Theorem 1.1. Let K be an infinite field of characteristic p > 0, let λ = (λ1, . . . , λn),
µ = (µ1, . . . , µn) be partitions of r and let d be an integer such that pd > r − λ1.

(1) If µ2 ≤ λ1, then ExtiS(∆(λ),∆(µ)) ≃ ExtiS′(∆(λ+),∆(µ+)) for all i.

(2) If λ1 ≥ r/2, then ExtiS(∆(λ), L(µ)) ≃ ExtiS′(∆(λ+), L(µ+)) for all i.

Here the Ext groups are taken in the category of modules over the appropriate
Schur algebra. By a result of Donkin [6] this is the same as considering the Ext
groups in the category of rational G-modules.
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Let us consider two special cases of (1) and their immediate implications for
representations of the symmetric group Sn. Suppose p > 2 and r = n. First,
consider i = 0. By applying the Schur functor to part (1), we obtain an isomorphism
between Hom spaces of Specht modules

HomSn
(Sµ, Sλ) ≃ HomSn′

(Sµ
+

, Sλ
+

),

where n′ = n+ pd (Corollary 5.1). This provides an answer to a question posed by
Hemmer [12, Problem 5.4]. In fact, the previous isomorphism can be generalized to
higher extension groups Exti

Sn
(Sµ, Sλ) by a result of Kleshchev and Nakano [17,

Theorem 6.4(b)(ii)], if p > 3 and 0 ≤ i ≤ p− 2.
Second, suppose µ consists of one part, µ = (n). Then by part (1) of our theorem

we have ExtiS(∆(λ),∆(n)) ≃ ExtiS′(∆(λ+),∆(n+pd)) for all i, λ and p if d satisfies
pd > n−λ1. By [17, Corollary 6.3(b)(iii)], we obtain the following periodicity result
in the cohomology of the symmetric group

Hi(Sn, S
λ) ≃ Hi(Sn′ , Sλ

+

),

for 1 ≤ i ≤ 2p− 4 (Corollary 5.3). This provides an answer to the special case of
Problem 8.3.1 of Hemmer [11] that corresponds to c = (1). A related but different
result has been obtained by Nagpal and Snowden [25, Theorem 5.1] (see Remark
5.4(2)) using the theory of FI-modules. Corollary 5.3 generalizes a result of James
valid for i = 0 [15, Theorem 24.4] and a result of Hemmer valid for i = 1 [11,
Theorem 7.1.8] that was shown under the slightly stronger assumption pd > r
using different methods.

The main tool in the proof of Theorem 1.1 are the characteristic free projective
resolutions B∗(λ) → ∆(λ) → 0 obtained by Santana and Yudin [26]. We show
that, under the hypotheses of Theorem 1.1, the complexes HomS(B∗(λ),∆(µ)) and
HomS′(B∗(λ

+),∆(µ+)) are in fact isomorphic. For this we use computations with
tableaux, properties of multinomial coefficients mod p and combinatorics of Schur
algebras associated to the correspondence ξω 7→ ξω+ of basis elements, where ω+ is
obtained from the n× n matrix ω by adding pd to the entry in position (1, 1).

There are some very specific cases where projective resolutions of Weyl modules
or initial segments thereof are known that are different from those of [26]. At least
in two cases, these have fewer projective summands in each degree. Using these in
place of [26], we observe that the bound pd > r − λ1 in the statement of Theorem
1.1 may be improved for (a) HomS(∆(λ),∆(µ)), where λ, µ are as in Theorem 1.1

and (b) ExtiS(∆(h),∆(µ)), where h is a hook partition (see Section 6).
The paper is organized as follows. In Section 2 we establish notation and recall

basic facts onWeyl modules. In Section 3 we prove a crucial lemma on isomorphisms
of weight subspaces of Weyl modules. Section 4 contains the combinatorial results
needed for the proof of the main theorem which is given in subsections 4.4 and 4.6.
In Section 5 we discuss two consequences of the main result for representations of
the symmetric group. In Section 6 we observe that the bound pd > r − λ1 may be
improved in two specific instances.

2. Notation and recollections

2.1. Notation. Throughout this paper, K will be an infinite field of characteristic
p > 0. We fix positive integers n and r. We will work mostly with homogeneous
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polynomial representations of GLn(K) of degree r, or equivalently, with finite di-
mensional modules over the Schur algebra S = SK(n, r). A standard reference here
is [10].

Let V = Kn be the natural GLn(K)-module. The divided power algebra DV =
∑

i≥0DiV of V is defined as the graded dual of the Hopf algebra S(V ∗), where V ∗

is the linear dual of V and S(V ∗) is the symmetric algebra of V ∗, see [2, I.4].
We denote by Λ(n; r) the set of sequences α = (α1, . . . , αn) of length n of non-

negative integers that sum to r and by Λ+(n, r) the subset of Λ(n, r) consisting of
sequences λ = (λ1, . . . , λn) such that λ1 ≥ λ2 ≥ · · · ≥ λn. Elements of Λ+(n, r) are
referred to as partitions of r with at most n parts.

If α = (α1, . . . , αn) ∈ Λ(n, r), we denote by D(α) or D(α1, . . . , αn) the tensor
product Dα1V ⊗ · · · ⊗Dαn

V . All tensor products in this paper are over K.
For λ ∈ Λ+(n, r), we denote by ∆(λ) the corresponding Weyl module for S and

by π∆(λ) : D(λ) → ∆(λ) the natural projection.
Let Λ(n, n; r) and Λ(n, n, n; r) be the sets of functions (ωij) : n × n → N and

(θstq) : n× n× n → N respectively, where n = {1, 2, . . . , n} and N = {0, 1, 2, . . .},
such that

∑n

i,j=1 ωij = r and
∑n

s,q,t=1 θsqt = r. If d is a positive integer and

α = (α1, . . . , αn) ∈ Λ(n; r), ω = (ωst) ∈ Λ(n, n; r) and θ = (θstq) ∈ Λ(n, n, n; r),
define α+ ∈ Λ(n; r′), ω+ ∈ Λ(n, n; r′) and θ+ ∈ Λ(n, n, n; r) by

α+ = (α1 + pd, α2, . . . , αn),

ω+
st =

{

ω11 + pd (s, t) = (1, 1)

ωst (s, t) 6= (1, 1),

θ+stq =

{

θ111 + pd (s, t, q) = (1, 1, 1)

θstq (s, t, q) 6= (1, 1, 1).

Next we recall some results need for the proof of Theorem 1.1.

2.2. Semistandard basis of ∆(µ). We will record here a fundamental fact from
[2]. Consider the order e1 < e2 < · · · < en on the natural basis {e1, F, en} of
V = Kn. We will denote each element ei by its subscript i. For a partition
µ = (µ1, . . . , µn) ∈ Λ+(n, r), a tableau of shape µ is a filling of the diagram of µ
with entries from {1, . . . , n}. The set of tableaux of shape µ will be denoted by
Tab(µ).

A tableau is called row semistandard if the entries are weakly increasing across
the rows from left to right. A row semistandard tableau is called semistandard if
the entries are strictly increasing in the columns from top to bottom. (We should
point out that the terminology used in [2] is ’co-standard’). The set of semistandard
tableaux of shape µ will be denoted by SST(µ).

The weight of a tableau T is the tuple α = (α1, . . . , αn), where αi is the num-
ber of appearances of the entry i in T . The subset of SST(µ) consisting of the
semistandard tableaux of weight α will be denoted by SSTα(µ).

For example, let n = 4. The following tableau of shape µ = (6, 4)

T =
1 1 1 2 2 4

1 2 3 4

is row semistandard but not semistandard because of the violation in the first
column. It has weight α = (4, 3, 1, 2). We will use ’exponential’ notation for row
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semistandard tableaux. Thus for the previous example we write

T =
1(3)2(2)4
1234

.

To each row semistandard tableau T of shape µ = (µ1, . . . , µn) we may associate
an element xT = xT (1)⊗· · ·⊗xT (n) ∈ D(µ1, . . . , µn), where xT (j) = 1(a1j) . . . n(anj)

and aij is equal to the number of appearances of i in the j-th row of T . For T in

the previous example we have xT = 1(3)2(2)4 ⊗ 1234. According to [2, Theorem
II.2.16] we have the following.

Theorem 2.1 ([2]). The set {π∆(µ)(xT ) : T ∈ SST(µ)} is a basis of ∆(µ).

If U ∈ Tab(µ), we will denote the element π∆(µ)(xU ) ∈ ∆(µ) by [U ]. According
to the previous theorem, there exist cT ∈ K such that

(2.1) [U ] =
∑

T∈SST(µ)

cT [T ].

From the proof of the previous theorem in [2] (in particular, last line of p. 235 and
the top of p. 236), it follows that each semistandard tableau T appearing in the
right hand side of eqn. (2.1) with nonzero coefficient is obtained by a rearrangement
of the entries of U . Thus we have the following remark.

Remark 2.2. Each semistandard tableau T appearing in the right hand side of eqn.
(2.1) with nonzero coefficient has weight equal to the weight of U .

2.3. Weight subspaces of ∆(µ). Let α, β ∈ Λ(n, r) and let ω = (ωij) ∈ Λ(n, n; r)
such that

∑n

j=1 ωij = αi (for each i) and
∑n

i=1 ωij = βj (for each j), where α =

(α1, . . . , αn) and β = (β1, . . . , βn). For each i = 1, . . . , n consider the indicated
component

∆ : D(αi) → D(ωi1, ωi2, . . . , ωin),

of the comultiplication map of the Hopf algebra DV . If x ∈ D(αi), the image
∆(x) ∈ D(ωi1, ωi2, . . . , ωin) is a sum of elements of the form xs(ωi1, 1)⊗xs(ωi2, 2)⊗
· · · ⊗ xs(ωin, n), where for each i we have xs(ωij , j) ∈ D(ωij). By a slight abuse of
notation we will write xs(ωij) in place of xs(ωij , j). Thus we will write

∆(x) =
∑

s

xs(ωi1)⊗ xs(ωi2)⊗ · · · ⊗ xs(ωin).

Definition 2.3. With the previous notation, define the map φω : D(α) → D(β)
that sends x1 ⊗ x2 ⊗ · · · ⊗ xn to

∑

s1,...,sn

x1s1(ω11) · · ·xnsn(ωn1)⊗ · · · ⊗ x1s1(ω1n) · · ·xnsn(ωnn).

Now suppose that β = µ. For a row standard T ∈ Tabα(µ),

T =
1(a11)2(a21) · · ·n(an1)

· · ·

1(a1n)2(a2n) · · ·n(ann),

define ω(T ) = (αij). The corresponding map φω(T ) : D(α) → D(µ) will be denoted
by φT for short.

Let us denote by ∆(µ)α the weight subspace of the Weyl module ∆(µ) corre-
sponding to the weight α. According to [1, Section 2], we have the following result.
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Proposition 2.4 ([1]). Let α ∈ Λ(n, r) and µ ∈ Λ+(n, r). Then there is an
isomorphism of vector spaces ∆(µ)α ≃ HomS(D(α),∆(µ)) such that [T ] 7→ π∆ (µ) ◦
φT for all row semistandard T ∈ Tabα(µ). Moreover, a basis of HomS(D(α),∆(µ))
is the set {π∆(µ) ◦ φT : T ∈ SSTα(µ)}.

3. Isomorphism of weight spaces

If T ∈ Tabα(µ), let T
+ ∈ Tabα+(µ+) be obtained from T by inserting pd 1’s in

the beginning of the top row.
From Proposition 2.4 we have the basis elements π∆(µ) ◦ φT of the vector space

HomS(D(α),∆(µ)), where T ∈ SSTα(µ) and likewise we have the basis elements
π∆(µ+) ◦ φX of HomS′(D(α+),∆(µ+)), where X ∈ SSTα+(µ+) .

Lemma 3.1. Let α ∈ Λ(n, r) and µ ∈ Λ+(n, r) such that µ2 ≤ α1. Then the maps

SSTα(µ) → SSTα+(µ+), T 7→ T+

SSTα+(µ+) → SSTα(µ), T
+ 7→ T

are inverses of each other and bijections. Hence the map

HomS(D(α),∆(µ)) → HomS′(D(α+),∆(µ+)),
∑

T∈SSTα(µ)

cTπ∆(µ) ◦ φT 7→
∑

T∈SSTα(µ)

cTπ∆(µ+) ◦ φT+ ,

is an isomorphism.

Proof. From the definition of semistandard tableau, it is clear that if T ∈ SSTα(µ),
then T+ ∈ SSTα+(µ+) . It is also clear that the first map of the lemma is injective.

If X ∈ SSTα+(µ+), then there are no 1’s below the first row. Hence the first row
of X contains α1 + pd 1’s. Let T ∈ Tabα(µ) be the tableau obtained from X by
deleting pd 1’s. Since µ2 ≤ α1, we have that T is semistandard, i.e. T ∈ SSTα(µ).
It is clear that T+ = X . �

3.1. Straightening law for two rows. First we record from [23, Lemma 4.2], the
following that is a particular case of the straightening law for Weyl modules with
two parts.

Lemma 3.2. Let µ = (µ1, µ2) be a partition consisting of two parts and consider

an element [T ] =

[

1(a1) · · ·n(an)

1(b1) · · ·n(bn)

]

∈ ∆(µ). Then we have the following.

(1) If a1 + b1 > µ1, then [T ] = 0.
(2) If a1 + b1 ≤ µ1, then

[T ] = (−1)b1
∑

i2,...,in

(

b2+i2
b2

)

· · ·
(

bn+in
bn

)

[

1(a1+b1)2(a2−i2) · · ·n(an−in)

2(b2+i2) · · ·n(bn+in)

]

,

where the sum ranges over all nonnegative integers i2, . . . , in such that i2+
· · ·+ in = b1 and is ≤ as for all s = 2, . . . , n.

The point of the above lemma is that in case (2), the coefficients that appear do
not depend on a1.
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3.2. A crucial lemma. We want to show that the map in the last statement
of Lemma 3.1 may be defined in a similar way without the assumption that the
tableaux T are semistandard. Thus we need to show compatibility with the straight-
ening law. We will use ideas from Lemma II.2.15 of [2] which is stated and proven
for costandard modules but the main steps are valid for Weyl modules also, see
Lemma II.3.15 loc.cit.

Lemma 3.3. Let α ∈ Λ(n, r) and µ ∈ Λ+(n, r) such that µ2 ≤ α1.

(1) Let U ∈ Tabα(µ) and write

[U ] =
∑

T∈SST(µ)

cT [T ], [U+] =
∑

T∈SST(µ)

cT+ [T+],

in ∆(µ) and ∆(µ+) respectively, where cT , cT+ ∈ K. Then cT = cT+ for
all T ∈ SST(µ).

(2) The map

HomS(D(α),∆(µ)) → HomS′(D(α+), ∆(µ+)), π∆(µ) ◦ φU 7→ π∆(µ+) ◦ φU+ ,

where U ∈ Tabα(µ) is row standard, is a well defined isomorphism.

Proof. First some notation. If ν = (ν1, . . . , νn) is a partition and T ∈ Tab(ν) is a
tableau, let ν = (ν2, . . . , νn) be the partition obtained from ν by deleting the first
part and let T be the tableau obtained from T by deleting the first row. Note that
ν = ν+ and T = T+.

(1) Let U ∈ Tabα(µ). We proceed with a number of reductions.

Step 1. We may assume that the tableau U = U+ is semistandard. Indeed,
By Theorem 2.1 there exist semistandard tableaux Y ∈ SST(µ) and coefficients
cY ∈ K such that

(3.1) [U ] = [U+] =
∑

cY [Y ].

By attaching the first row of U to U and each Y and likewise by attaching the first
row of U+ to U+ and each Y , we obtain (as in the last paragraph of the proof of
Lemma II.2.15 of [2])

(3.2) [U ] =
∑

cY [Y
′] and [U+] =

∑

cY [(Y
′)+].

Here we have that the tableaux Y ′ = (Y ′)+ are semistandard.

Step 2. We may assume that the tableau U = U+ contains at least one 1. Indeed,
by Step 1, we may assume that the tableau U = U+ is semistandard. If it contains
no 1, then the tableaux U and U+, after row-standardizing the first row of each,
are semistandard because the number of 1’s in the first row of U and the first row
of U+ is equal to α1 and α1 + pd respectively and we have α1 ≥ µ2. In this case
the conclusion of part (1) of the lemma is clear.

Step 3. We apply Lemma 3.2 to the first two rows of U and to the first two rows
of U+ in order to express each as a linear combination of tableaux that have all 1’s
(if any) in the first row. Since the coefficients appearing in the right hand side of
the equation in part (2) of that Lemma do not depend on the number of 1’s, we
may assume that all the 1’s of the tableau U are located in the first row.

Step 4. We repeat Step 1 to the tableau U = U+. By the previous step and
Remark 2.2, this tableau has no 1’s. Thus the Y in the right hand side of eqn.
(3.1) are semistandard and have no 1’s. From this and the fact that α1 ≥ µ2 we
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conclude that the Y ′ and (Y ′)+ appearing in the right hand sides of equations (3.2)
are semistandard.

Since the sets {[T ] ∈ ∆(µ) : T ∈ SST(µ)} and {[T+] ∈ ∆(µ+) : T ∈ SST(µ)} in
part (1) of the lemma are linearly independent, the result follows.

(2) This follows from (1) of the lemma and Lemma 3.1. �

An immediate consequence of part (2) of the previous lemma and Proposition
2.4 is the following.

Corollary 3.4. Let α ∈ Λ(n, r) and µ ∈ Λ+(n, r) such that µ2 ≤ α1. Let ci ∈ K
and Ui ∈ Tabα(µ), for i = 1, 2, . . . , s. Then

∑

i ci[Ui] = 0 in ∆(µ) if and only if
∑

i ci[U
+] = 0 in ∆(µ+).

We note that the map of Lemma 3.3(2) may not be well defined if the assumption
µ2 ≤ α1 is relaxed. For example, let α = (µ1− 1, µ1+1), where µ = (µ1, µ1). Then

[U ] = 0, but [U+] 6= 0 for all d > 0, where [U ] =

[

1(µ1−1)2
2(µ1)

]

4. Periodicity in Ext

4.1. Binomial coefficients mod p. If a, a1, . . . , as are nonnegative integers such
that a = a1+· · ·+as, we denote the multinomial coefficient a!

a1!a2!···as!
by

(

a
a1,a2,...,as

)

.

Then

(4.1)
(

a
a1,a2,...,as

)

=
(

a
a1

)(

a−a1
a2

)

· · ·
(

a−a1−···−as−1

as

)

.

We will need the following well known property of multinomial coefficients.

Lemma 4.1. Let p be a prime.

(1) Let a, b nonnegative integers. If d is a positive integer such that pd > b,

then
(

a+pd

b

)

≡
(

a
b

)

mod p.
(2) let a, a1, . . . , as be nonnegative integers such that a = a1 + · · ·+ as. If d is

a positive integer such that pd > a− a1, then
(

a+pd

a1+pd,a2,...,as

)

≡
(

a
a1,a2,...,as

)

mod p.

Proof. (1) This follows, for example, from Lemma 22.5 of [15].
(2) Using (4.1) and part (1) of the lemma, we have

(

a+pd

a1+pd,a2,...,as

)

=
(

a+pd

a1+pd

)(

a−a1
a2

)

· · ·
(

a−a1−···−as−1

as

)

=
(

a+pd

a−a1

)(

a−a1
a2

)

· · ·
(

a−a1−···−as−1

as

)

≡
(

a
a−a1

)(

a−a1
a2

)

· · ·
(

a−a1−···−as−1

as

)

≡
(

a
a1,a2,...,as

)

mod p.

�

4.2. The resolutions of Santana and Yudin. We define here the projective
resolution of ∆(λ) obtained by Santana and Yudin [26]. Their construction is valid
over any commutative ring R with identity but we will continue to assume here
that R = K is an infinite field of characteristic p > 0.

First we fix some notation. Recall the dominance partial ordering on Λ(n; r).

For α, β ∈ Λ(n; r) we write α D β if
∑t

s=1 αs ≥
∑t

s=1 βs for all t. If α D β and
α 6= β we write α ⊲ β.
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If ω = (ωst) ∈ Λ(n, n; r) and θ = (θstq) ∈ Λ(n, n, n; r), let ω1, ω2 ∈ Λ(n; r) and
θ1, θ2, θ3 ∈ Λ(n, n; r) be defined by

(ω1)t =

n
∑

s=1

ωst, (ω
2)s =

n
∑

t=1

ωst

(θ1)tq =

n
∑

s=1

θstq, (θ
2)sq =

n
∑

t=1

θstq, (θ
3)st =

n
∑

q=1

θstq.

For i, j ∈ I(n, r), let us denote the element ξi,j of the Schur algebra S = SK(n, r)
defined in [10, Section 2.3] by ξω, where ω = (ωst) ∈ Λ(n, n; r) is defined by

ωst = |{q ∈ {1, 2, . . . , r} : (iq, jq) = (s, t)}|.

Also, if ν = (ν1, . . . , νn) ∈ Λ(n, r), we denote by ξν the element ξω, where ω =
diag(ν1, . . . , νn) is the indicated diagonal matrix.

Second we recall the multiplication rule of Santana and Yudin [26, Proposition
2.3]. If ω, π ∈ Λ(n, n; r), then

(4.2) ξωξπ =
∑

θ∈Λ(n,n,n;r)

θ3=ω,θ1=π

[θ]ξθ2 ,

where [θ] is the following product of multinomial coefficients

(4.3) [θ] =

n
∏

s,t=1

(

(θ2)st
θs1t,θs2t,...,θsnt

)

.

In particular, if α ∈ Λ(n, r), ω ∈ Λ(n, n; r) and α = ω2, then

(4.4) ξαξω = ξω.

Let Λ1(n, n; r) be the subset of Λ(n, n; r) consisting of the ω that are upper
triangular and not diagonal and let J be the subspace of S spanned by the ξω,
where ω ∈ Λ1(n, n; r). The projective resolution B∗(λ) → ∆(λ) → 0 of [26],
denoted there by B∗(Wλ), is defined as follows. For k = 0 we have B0(λ) = Sξλ
and for k ≥ 1 we have

Bk(λ) =
⊕

µ(1)⊲···⊲µ(k)⊲λ

µ(1),...,µ(k)∈Λ(n;r)

Sξµ(1) ⊗ ξµ(1)Jξµ(2) ⊗ · · · ⊗ ξµ(k)Jξλ.

Definition 4.2. [26, p. 2587]. If k > 0 and α ⊲ λ, define Ωk(λ, α) as the set of all
k-tuples (ω1, . . . , ωk), where ω1, . . . , ωk ∈ Λ1(n, n; r) satisfy

(4.5) α = (ω1)
2, (ω1)

1 = (ω2)
2, (ω2)

1 = (ω3)
2, . . . , (ωk−1)

1 = (ωk)
2, (ωk)

1 = λ.

A K-basis of B0(λ) is {ξω : ω ∈ Λ(n, n; r), ω1 = λ} and a K-basis of Bk(λ) for
k ≥ 1 is

{ξω0 ⊗ ξω1 ⊗ · · · ⊗ ξωk
: (ξω0 , ξω1 , . . . , ξωk

) ∈ b̃k(λ)},

where

b̃k(λ) = {(ω0, ω1, · · · , ωk) : ω0 ∈ Λ(n, n; r), (ω1, . . . , ωk) ∈ Ωk(λ, (ω0)
1).

In terms of these bases, the differential ∂k : Bk(λ) → Bk−1(λ) of B∗(λ) is given by

(4.6) ∂k(ξω0 ⊗ · · · ⊗ ξωk
) =

k−1
∑

t=0

(−1)tξω0 ⊗ · · · ⊗ ξωt
ξωt+1 ⊗ · · · ⊗ ξωk

.
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Moreover, each summand Sξµ(1) ⊗ ξµ(1)Jξµ(2) ⊗ · · · ⊗ ξµ(k)Jξλ in the right hand
side of the definition of Bk(λ), where k > 0, is isomorphic as an S-module to a
direct sum of copies of Sξµ(1) and the multiplicity of Sξµ(1) is equal to |Ωk(λ, µ

(1))|.
It will be convenient for our purposes to use the following notation.

Definition 4.3. Suppose k > 0, α ⊲ λ and (ω1, . . . , ωk) ∈ Ωk(λ, α) .

(1) Let M [ω1, . . . , ωk]= Sξα.
(2) If k > 1 and i ≥ 1, let

M [ω1, . . . , ωiωi+1, . . . , ωk] =
⊕

θ

M [ω1, . . . , ωi−1, θ
2, ωi+2, . . . , ωk],

where the sum is over all θ ∈ Λ(n, n, n; r) such that θ3 = ωi and θ
1 = ωi+1.

Remark 4.4. With the above notation, the restriction of the differential ∂k, where
k > 1, to the summand M [ω1, . . . , ωk] is the map

M [ω1, . . . , ωk] →M [ω2, . . . , ωk]
⊕⊕

i

M [ω1, . . . , ωiωi+1, . . . , ωk]

whose componentM [ω1, . . . , ωk] →M [ω2, . . . , ωk] is right multiplication by ξω1 and
whose component M [ω1, . . . , ωk] → M [ω1, . . . , ωi−1, θ

2, ωi+2, . . . , ωk] is multiplica-
tion by (−1)i[θ2] ∈ K. For k = 1 the restriction of the differential ∂1 to M [ω1] is
the map M [ω1] → Sξλ that is right multiplication by ξω1 .

4.3. The correspondence ξω 7→ ξω+ . The remark and lemma that follow show
that for all k there is a bijection between the summands of Bk(λ) and the summands
of Bk(λ

+) given by Sξα ↔ S′ξα+ .

Remark 4.5. It is clear that the following map is a bijection

{α ∈ Λ(n, r) : α D λ} → {β ∈ Λ(n, r + pd) : β D λ+}, α 7→ α+.

Lemma 4.6. If k > 0 and α ⊲ λ, then |Ωk(λ, α)| = |Ωk(λ
+, α+)|.

Proof. If ω = (ωij) ∈ Λ1(n, n; r) then ω+ ∈ Λ1(n, n; r′). Using relations (4.5), it

easily follows that if (ω1, . . . , ωk) ∈ Ωk(λ, α), then (ω+
1 , . . . , ω

+
k ) ∈ Ωk(λ

+, α+). We
claim that the following correspondence is 1-1 and onto

Ωk(λ, α) ∋ (ω1, . . . , ωk) → (ω+
1 , . . . , ω

+
k ) ∈ Ωk(λ

+, α+).

Indeed, if (ζ1, . . . , ζk) ∈ Λ1(n, n; r′), then

(4.7) α+ = (ζ1)
2, (ζ1)

1 = (ζ2)
2, (ζ2)

1 = (ζ3)
2, . . . , (ζk−1)

1 = (ζk)
2, (ζk)

1 = λ+.

From this and the fact that each ζi is upper triangular with nonnegative entries,
we obtain

α1 + pd ≥ (ζ1)11 ≥ (ζ2)11 ≥ · · · ≥ (ζk)11 = λ1 + pd,

where (ζi)st is the entry of ζi at position (s, t). For each i = 1, . . . , k, define
ωi ∈ Λ1(n, n; r) by

(ωi)st =

{

(ζi)11 − pd, (s, t) = (1, 1)

(ζi)st, (s, t) 6= (1, 1).

Then one checks that relations (4.5) hold, that is (ω1, . . . , ωk) ∈ Ωk(λ, α), and
(ω+

1 , . . . , ω
+
k ) = (ζ1, . . . , ζk). �
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Lemma 4.7. Let ω, π ∈ Λ(n, n; r). If ω is upper triangular or if π is lower trian-
gular, then the map

{θ ∈ Λ(n, n, n; r) : θ1 = π, θ3 = ω} → {η ∈ Λ(n, n, n; r′) : η1 = π+, η3 = ω+},

θ 7→ θ+,

is a bijection

Proof. First assume ω is upper triangular. It is clear from the definitions that if
θ ∈ Λ(n, n, n; r′) satisfies θ1 = π, θ3 = ω, then θ+ ∈ Λ(n, n, n; r) and (θ+)1 =
π+, (θ+)3 = ω+.

Suppose η ∈ Λ(n, n, n; r′) satisfies η1 = π+, η3 = ω+. Since ω+ is upper trian-
gular we have

∑

t ηsqt = 0 if s > q. In particular,
∑

t ηs1t = 0, s > 1. Since the ηsqt
are nonnegative, we obtain ηs1t = 0 for all s > 1 and all t. From this and π+ = η1

we have

π11 + pd =
∑

s

ηs11 = η111.

Hence η111 ≥ pd. Using this one easily checks that we have a map

{η ∈ Λ(n, n, n; r′) : η1 = π+, η3 = ω+} → {θ ∈ Λ(n, n, n; r) : θ1 = π, θ3 = ω}, η 7→ η−,

where η−111 = η111 − pd and η−sqt = ηsqt for all (s, q, t) 6= (1, 1, 1). Also it is clear

from the definition that (θ+)− = θ and (η−)+ = η. Hence the map of the lemma is
a bijection.

The proof when π is lower triangular is similar and thus omitted. (Alternately,
one may use the first case and the algebra anti-automorphism S → S defined by
ξω 7→ ξωt , where ωt denotes the transpose of ωt.) �

In general the map S → S′, ξω 7→ ξω+ , is not a homomorphism of algebras. In
the next lemma, however, we have two instances where the product rule is ‘well
behaved’ with respect to this map. A third instance will be treated in Lemma 4.11.

We note that thus far the assumption on the characteristic p > 0 of K has not
been used. In particular, Lemmas 4.6 and 4.7 are valid for any positive integer in
place of pd. Case (3) of the next lemma is the first instance where the characteristic
p > 0 assumption is needed.

Lemma 4.8. Let ω, π ∈ Λ(n, n; r) such that ω is upper triangular and let θ ∈
Λ(n, n, n; r) such that θ1 = π, θ3 = ω.

(1) If π is upper triangular, then [θ] = [θ+].
(2) If π is lower triangular, ω1 D λ and pd > r − λ1, then [θ] ≡ [θ+] mod p.
(3) Under the assumptions of either (1) or (2) above, we have the equivalence

ξωξπ =
∑

θ∈Λ(n,n,n;r)

θ3=ω,θ1=π

[θ]ξθ2 ⇔ ξω+ξπ+ =
∑

θ+∈Λ(n,n,n;r′)

(θ+)
3
=ω+,(θ+)

1
=π+

[θ]ξ(θ+)2 .

Proof. (1) Since θsqt = θ+sqt if (s, q, t) 6= (1, 1, 1) it suffices by eqn. (4.3) to show
that

(

(θ2)11
θ111,θ121,...,θ1n1

)

=
( ((θ+)2)11
(θ+)111,(θ+)121,...,(θ+)1n1

)

.

Since θ1 = π and π is upper triangular, we have
∑

s θsq1 = 0 for all q > 1. Since
the θsq1 are nonnegative, we obtain θ121 = θ131 = · · · = θ1n1 = 0 and the above
multinomial coefficients are equal to 1.
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(2) By the first line of the previous paragraph, it suffices to show that
(

(θ2)11
θ111,θ121,...,θ1n1

)

≡
( (θ2)11+p

d

θ111+pd,θ121,...,θ1n1

)

mod p.

We will show that pd > (θ2)11 − θ111 and hence the above congruence follows from
Lemma 4.1(2). As in the second paragraph of the proof of Lemma 4.7 (for θ in
place of η), we have θ111 = π11. Using that π is lower triangular and the hypotheses
π2 = ω1 and ω1 D λ, we have

π11 = (π2)1 = (ω1)1 ≥ λ1.

Hence θ111 ≥ λ1. Since r =
∑

s,q,t θsqt and the θsqt are nonnegative, we have

r ≥ (θ2)11. Hence p
d > r − λ1 ≥ (θ2)11 − λ1 ≥ (θ2)11 − θ111.

(3) This follows from parts (1) and (2) of the lemma and Lemma 4.7. �

Let α ∈ Λ(n, r). In [26, Theorem A.4] it was shown that the map

(4.8) ψα : D(α) → Sξα, e
(π) 7→ ξπ ,

is an isomorphism of GLn(K)-modules, where π ∈ Λ(n, n; r), π1 = α and

e(π) = 1(π11)2(π21) · · ·n(πn1) ⊗ · · · ⊗ 1(π1n)2(π2n) · · ·n(πnn).

In the next lemma, we identify the map of Lemma 3.3(2) under the above isomor-
phism.

Recall the following definition from subsection 2.3. For T ∈ RSSTα(µ),

T =
1(a11)2(a21) · · ·n(an1)

· · ·

1(a1n)2(a2n) · · ·n(ann),

define ω(T ) = (αij). Then ω(T )1 = µ and ω(T )2 = α. According to [26, p. 2593],
this defines a bijection between the sets T ∈ RSSTα(µ) and Ω(α, µ), where for any
β ∈ Λ(n; r),

Ω(α, β) = {ω ∈ Λ(n, n; r) : ω1 = β, ω2 = α}.

Remark 4.9. With the previous notation we note that if T ∈ RSSTα(µ) is semis-
tandard, then ω(T ) is lower triangular.

For µ ∈ Λ+(n, r) we write π∆(µ) : Sξµ → ∆(µ) and πL(µ) : Sξµ → L(µ) for the
indicated natural projections. Recall we have the maps φω of Definition 2.3.

Lemma 4.10. Let α ∈ Λ(n, r).

(1) Let β ∈ Λ(n, r) and ω ∈ Ω(α, β). Then under the isomorphism

HomS(D(α), D(β)) ≃ HomS(Sξα, Sξβ)

induced by the map in (4.8), the image of φω is the map Rξω : Sξα → Sξβ
defined as right multiplication by ξω .

(2) Let µ ∈ Λ+(n, r) such that µ2 ≤ α1. Then under the isomorphism

HomS(Sξα,∆(µ)) → HomS′(S′ξα+ ,∆(µ+))

induced by Lemma 3.3(2) and (4.8), the image of π∆(µ) ◦ Rξω , where ω ∈
Ω(α, µ), is π∆(µ+) ◦Rξω+ .

Proof. (1) We need to check that the following diagram commutes.
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D(α) D(β)

Sξα Sξβ

ψα

φω

ψβ

Rξω

Since this is a diagram of S-homomorphisms and as a S-module D(α) is cyclic
generated by e(α), it suffices to show that ψβ(φω(e

(α))) = Rξω (ψα(e
(α))). We have

Rξω (ψα(e
(α))) = Rξω (ξα) = ξαξω = ξω ,

the last equality owing to eqn. (4.4). On the other hand we have

ψβ(φω(e
(α))) = ψβ(e

(ω)) = ξω.

(2) This follows from part (1) for β = µ. �

4.4. Proof of Theorem 1.1(1). We will show that the complexes of vector spaces
HomS(B∗(λ),∆(µ)) and HomS′(B∗(λ

+),∆(µ+)) are isomorphic, where B∗(λ) and
B∗(λ

+) are the projective resolutions of ∆(λ) and ∆(λ+), respectively, of Santana
and Yudin that we recalled in subsection 4.2.

From Remark 4.5 and Lemma 4.6 it follows that the map of Lemma 4.10(2)
yields an isomorphism

HomS(Bk(λ),∆(µ)) → HomS′(Bk(λ
+),∆(µ+))

for every k. Adopting the notation of Remark 4.4, it suffices to show that the
following diagrams commute

HomS(M [ω2, . . . , ωk],∆(µ)) HomS(M [ω1, . . . , ωk],∆(µ))

HomS′(M [ω+
2 , . . . , ω

+
k ],∆(µ+)) HomS′(M [ω+

1 , . . . , ω
+
k ],∆(µ+))

and

HomS(M [ω1, . . . , ωiωi+1, . . . , ωk],∆(µ)) HomS(M [ω1, . . . , ωk],∆(µ))

HomS′(M [ω+
1 , . . . , ω

+
i ω

+
i+1, . . . , ω

+
k ],∆(µ+)) HomS′(M [ω+

1 , . . . , ω
+
k ],∆(µ+))

where the vertical maps are the isomorphisms of Lemma 4.10(2) and the hori-
zontal maps are the indicated components of the differentials of the complexes
HomS(B∗(λ),∆(µ)) and HomS(B∗(λ

+),∆(µ+)).
Consider the first diagram. We know that HomS(M [ω2, . . . , ωk],∆(µ)) is gener-

ated by maps of the form f = π∆(µ) ◦ Rξω , where ω is lower triangular (Remark
4.9). We have

HomS(Rξω1
,∆(µ))(f) = π∆(µ) ◦Rξω1ξω

.

Using eqn. (4.2) and applying the vertical isomorphism, we see that that the image
of f in the clockwise direction is the map

π∆(µ+) ◦ (
∑

θ

[θ2]Rξ(θ2)+
) :M [ω+

1 , . . . , ω
+
k ] → ∆(µ+),
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where the sum ranges over all θ ∈ Λ(n, n; r) such that θ3 = ω1, θ
1 = ω. In the

counterclockwise direction, the image of f is the map

π∆(µ+) ◦Rξ(ω1)+ξω+ :M [ω+
1 , . . . , ω

+
k ] → ∆(µ+).

Since ω1 is upper triangular (cf. Definition 4.2) and ω is lower triangular, we may
apply Lemma 4.8(3) to conclude that the two images coincide and the diagram
commutes.

Consider the second diagram and Remark 4.4. Since both ωi and ωi+1 are upper
triangular, we may apply Lemma 4.8(3) to conclude that it suffices to show that
the following diagram commutes

HomS(M [ω1, . . . , θ
2, . . . , ωk],∆(µ)) HomS(M [ω1, . . . , ωk],∆(µ))

HomS′(M [ω+
1 , . . . , (θ

2)+, . . . , ω+
k ],∆(µ+)) HomS′(M [ω+

1 , . . . , ω
+
k ],∆(µ+))

for each θ ∈ Λ(n, n, n; r) such that θ3 = ωi and θ
1 = ωi+1. But this is clear as both

horizontal maps are multiplication by (−1)i[θ2] ∈ K.

4.5. Weight subspaces of simples modules. For the proof of Theorem 1.1(2),
we will need an analog of Lemma 4.10(2) for the simple modules L(µ) and L(µ+) in
place of the corresponding Weyl modules. Recall that ∆(λ) has a unique maximal
submodule rad∆(λ) and that L(λ) = ∆(λ)/ rad∆(λ), see [16, Part II, 2.14].

Lemma 4.11. Let α ∈ Λ(n; r) such that αD λ. Suppose pd > r − λ1.

(1) Let ω, π ∈ Λ(n, n; r) such that π is lower triangular and ω1 = α D λ. We
have the equivalence

ξωξπ =
∑

θ∈Λ(n,n,n;r)

θ3=ω, θ1=π

[θ]ξθ2 ⇔ ξω+ξπ+ =
∑

θ+∈Λ(n,n,n;r′)

(θ+)
3
=ω+, (θ+)

1
=π+

[θ]ξ(θ+)2 .

(2) Suppose λ1 ≥ r
2 and let g ∈ HomS(Sξα,∆(µ)). We have the equivalence

Img ⊆ rad∆(µ) ⇔ Img+ ⊆ rad∆(µ+),

where g+ is the image of g under the isomorphism of Lemma 4.10 (2).

Proof. (1) According to Lemma 4.7, it suffices to show that [θ] = [θ+] in K for all
θ ∈ Λ(n, n, n; r) such that θ1 = π and θ3 = ω and hence it suffices to show that

(

(θ2)11
θ111,θ121,...,θ1n1

)

≡
( (θ2)11+p

d

θ111+pd,θ121,...,θ1n1

)

mod p.

Since θ3 = ω and ω1 = α, we have

θ121 + · · ·+ θ1n1 ≤ α2 + · · ·+ an = r − α1

and since ω1 D λ we have α1 ≥ λ1. Hence θ121 + · · · + θ1n1 ≤ r − λ1 < pd. The
desired result follows from Lemma 4.1(1).

(2) Since ∆(µ) and ∆(µ+) are highest weight modules with corresponding highest
weights µ and µ+ respectively, it suffices to show that

(4.9) (Sξα)µ ⊆ ker g ⇔ (S′ξα+)µ+ ⊆ ker g+.
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Since HomS(Sξα,∆(µ)) is generated by the maps π∆(µ)◦Rξπ , where π ∈ Λ(n, n; r)

satisfies π1 = µ, π2 = α and is lower triangular (cf. Remark 4.9), write

g =
∑

j

djπ∆(µ) ◦Rξπj

accordingly, where dj ∈ K. The hypothesis µ2 ≤ α1 of Lemma 4.10(2) holds
because we have λ1 ≥ r

2 ⇒ α1 ≥ λ1 ≥ r
2 = 1

2 (µ1 + µ2 + · · ·+ µn) ≥
1
2 (µ2 + µ2) =

µ2 and thus we obtain

g+ =
∑

j

djπ∆(µ+) ◦Rξ(πj)
+ .

Assume (Sξα)µ ⊆ ker g and suppose y ∈ (S′ξα+)µ+ . The vector space (S′ξα+)µ+

is spanned by the ξρ, where ρ ∈ Λ(n, n; r′), ρ1 = α+ and ρ2 = µ+. We claim
that the hypothesis λ1 ≥ r

2 implies that each such ρ is of the form ρ = ω+, where

ω ∈ Λ(n, n; r), ω1 = α and ω2 = µ. Indeed, using ρ2 = µ+ we have

µ1 + pd = ρ11 + ρ12 + · · ·+ ρ1n ≤ ρ11 + α2 + · · ·+ αn = ρ11 + r − α1,

the inequality owing to ρ1 = α+. Thus ρ11 − pd ≥ µ1 + α1 − r ≥ 2λ1 − r ≥ 0
because µ D λ and α D λ. Thus ρ = ω+ for some ω ∈ Λ(n, n; r) such that ω1 = α
and ω2 = µ. Hence y =

∑

i ciξ(ωi)+ for some ci ∈ K and ωi ∈ Λ(n, n; r) such that

(ωi)
1 = α and (ωi)

2 = µ. Substituting we obtain

(4.10) g+(y) =
∑

i,j

cidjπ∆(µ+)(ξ(ωi)+ξ(πj)+).

Letting x =
∑

i ciξωi
we note that x ∈ (Sξα)µ and thus by hypothesis we have

g(x) = 0 in ∆(µ), that is

(4.11)
∑

i,j

cidjπ∆(µ)(ξωi
ξπj

) = 0.

In the above equation each πj is lower triangular and thus we may apply the first
part of the lemma to (4.10) and (4.11) to obtain

(4.12) g+(y) =
∑

i,j

cidjπ∆(µ+)

(

∑

θ+∈Λ(n,n,n;r′)

(θ+)
3
=(ωi)

+, (θ+)
1
=(πj)

+

[θ]ξ(θ+)2

)

.

and

(4.13)
∑

i,j

cidjπ∆(µ)

(

∑

θ∈Λ(n,n,n;r)

θ3=ωi, θ
1=πj

[θ]ξθ2
)

= 0.

Now each element π∆(µ)(ξθ2) ∈ ∆(µ) in eqn. (4.13) is of the form [Uθ], where
Uθ ∈ Tabµ(µ). Hence we may apply Corollary 3.4 to eqns. (4.12) and (4.13) to
conclude that g+(y) = 0.

Conversely, assume (S′ξα+)µ+ ⊆ ker g+ and suppose x ∈ (Sξα)µ. This is similar
to the previous case. The vector space (Sξα)µ is spanned by the ξω, where ω ∈
Λ(n, n; r), ω1 = α and ω2 = µ. Write x =

∑

i ciξωi
accordingly for some ci ∈ K

and let y =
∑

i ciξωi
+ ∈ (S′ξα+)µ+ . From the hypothesis g+(y) = 0 we obtain

∑

i,j

cidjπ∆(µ+)(ξ(ωi)+ξ(πj)+) = 0.
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On the other hand, upon substitution we have

g(x) =
∑

i,j

cidjπ∆(µ)(ξωi
ξπj

).

Since each πj is lower triangular we may apply the first part of the lemma and
Corollary 3.4 to conclude that g(x) = 0 in ∆(µ+). �

Proposition 4.12. Suppose pd > r − λ1 and λ1 ≥ r
2 . Let α ∈ Λ(n, r) such that

α D λ. Then there is an isomorphism HomS(Sξα, L(µ)) → HomS′(S′ξα+ , L(µ+))
such that

πL(µ) ◦Rξω 7→ πL(µ+) ◦Rξω+

for all ω ∈ Ω(α, µ).

Proof. Let f ∈ HomS(Sξα, L(µ)). Since Sξα is a projective S-module, there is a
f1 ∈ HomS(Sξα,∆(µ)) such that f = prµ ◦ f1, where prµ : ∆(µ) → L(µ) is the

natural projection. Define f+ = prµ+ ◦ f+
1 , where f+

1 ∈ HomS′(S′ξα+ ,∆(µ+)) is
the image of f1 under the isomorphism of Lemma 4.10(2).

In order to show that the map f → f+ is well defined, suppose prµ ◦ g = 0,
where g ∈ HomS(Sξα,∆(µ)). Then Img ⊆ rad∆(µ). By Lemma 4.11(2), Img+ ⊆
rad∆(µ+) and hence prµ+ ◦ g+ = 0.

In light of Lemma 4.11(2), the previous argument can be reversed and thus the
map f → f+ is 1-1. To show that it is onto, let h ∈ HomS′(S′ξα+ , L(µ+)). Since
S′ξα+ is a projective S′-module, there is a h1 ∈ Hom′

S(S
′ξα+ ,∆(µ+)) such that

h = prµ+ ◦ h1. By Lemma 4.10(2), h1 = g+ for some g ∈ HomS(Sξα,∆(µ)). �

Remark 4.13. Denote by Kα,µ the dimension of the vector space HomS(Sξα, L(µ)).
These are known as p-Kostka numbers. Under the hypotheses of the previous
proposition we have that Kα,µ = Kα+,µ+ . This was proved using different means

by Henke in [13, Corollary 6.2] under the weaker hypothesis pd > λ(α)2, where
λ(α) = (λ(α)1, . . . , λ(α)n) is the partition obtained by rearranging the parts of α.
However, Proposition 4.12 says a bit more in that we have an explicit (well defined)
isomorphism. This is needed in the proof that follows.

4.6. Proof of Theorem 1.1(2). The proof that the complexes HomS(B∗(λ), L(µ))
and HomS′(B∗(λ

+), L(µ+)) are isomorphic is similar to the proof in subsection 4.4;
one uses Proposition 4.12 in place of Lemma 4.10(2) and the following remark in
place Remark 4.9.

Remark 4.14. If α D λ, µ D λ and λ1 ≥ r
2 , then HomS(Sξa, L(µ)) is generated by

maps of the form Sξa
Rξω−−−→ ∆(µ)

prµ
−−→ L(µ), where is ω is lower triangular. Indeed,

by Remark 4.9, HomS(Sξa,∆(µ)) is generated by maps of the form Sξa
Rξω−−−→ ∆(µ),

where ω is lower triangular. Since Sξa is a projective S-module, we have a surjective
map HomS(Sξa,∆(µ)) → HomS(Sξa, L(µ)) induced from the natural projection

∆(µ)
prµ
−−→ L(µ).

5. Representations of the symmetric group

In this section we assume that p > 2. For λ a partition of n we denote by Sλ

the Specht module corresponding to λ for the group algebra KSn of the symmet-
ric group Sn. By a classical result of Carter and Luzstig [4], the vector spaces
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HomS(∆(ν),∆(ν′)) and HomSn
(Sν

′

, Sν) are isomorphic for all partitions ν, ν′ of
n, where S = SK(n, n). Hence from Theorem 1.1(1) we obtain the following result.

Corollary 5.1. Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) be partitions of n. If
pd > n− λ1 and µ2 ≤ λ1, then

HomSn
(Sµ, Sλ) ≃ HomSn′

(Sµ
+

, Sλ
+

).

This provides an answer to a question posed by Hemmer, [12] Problem 5.4.
By a result of Kleshchev and Nakano [17, Theorem 6.4b(ii)] we obtain more

generally from Theorem 1.1(1) the following.

Corollary 5.2. Suppose p > 3 and 0 ≤ i ≤ p − 2. Let λ = (λ1, . . . , λn) and
µ = (µ1, . . . , µn) be partitions of n. If pd > n− λ1 and µ2 ≤ λ1, then

ExtiSn
(Sµ, Sλ) ≃ ExtiSn′

(Sµ
+

, Sλ
+

).

Let Hi(Sn, S
λ) be the degree i cohomology group of Sn with coefficients in Sλ.

By a result of Kleshchev and Nakano [17, Corollary 6.3b(iii)],

Hi(Sn, S
λ) ≃ ExtiS(∇(n),∇(λ)),

if 0 ≤ i ≤ 2p − 4, where ∇(λ) is the costandard module of G corresponding to λ.
By contravariant duality, [16, eqn. 4.13 (3)], we have

ExtiS(∇(n),∇(λ)) ≃ ExtiS(∆(λ),∆(n)).

Therefore from Theorem 1.1(1) we obtain the following corollary.

Corollary 5.3. Let λ be a partition of n. If pd > n− λ1, then

Hi(Sn, S
λ) ≃ Hi(Sn+pd , S

λ+

),

for 0 ≤ i ≤ 2p− 4.

Remarks 5.4. (1) It is well known that the case i = 0 in the above corollary
holds. This follows from the explicit description of H0(Sn, S

λ) given by James [15,
Theorem 24.4]. The case i = 1 under the slightly stronger assumption pd > n is
due to Hemmer [11, Theorem 7.1.8] with a completely different proof. An explicit
description of H1(Sn, S

λ) was obtained by Donkin and Geranios in [8].
(2) A related but different result has been obtained by Nagpal and Snowden [25,
Theorem 5.1]. For example, their theorem assumes λ (denoted by µ[n]) satisfies
λ1 − λ2 ≥ λ2 + · · · + λn. Also, an upper bound on i is determined by λ1 in [25],
whereas in the above corollary an upper bound is determined by p.
(3) The above corollary provides an answer to the special case of Problem 8.3.1 of
[11] corresponding to c = (1).

6. Better bound on the period

The purpose of this section is to observe that in two examples, the bound pd >
r − λ1 in the statement of Theorem 1.1(1) may be improved. This is done using
specific projective resolutions for these examples that involve fewer terms than those
of [26]. The proofs are similar (and simpler) but we provide details for completeness.
From Section 4 we use only Lemma 4.1.
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6.1. First example: Hom spaces.

Theorem 6.1. Let λ = (λ1, . . . , λn), µ = (µ1, . . . , µn) be partitions of r. Suppose
pd > min{λ2, µ1−λ1} and µ2 ≤ λ1. Then HomS(∆(λ),∆(µ)) ≃ HomS′(∆(λ+),∆(µ+)).

Example 6.2. We note that if either of the assumptions pd > min{λ2, µ1 − λ1} and
µ2 ≤ λ1 of Theorem 6.1 is relaxed, then the conclusion is not necessarily true, as
the following examples show. First, let p = 3, λ = (8, 3), µ = (11) and d = 1 so that
λ+ = (11, 3) and µ+ = (14). Here we have pd = min{λ2, µ1 − λ1}. The dimensions
of the spaces HomS(∆(λ),∆(µ)),HomS′(∆(λ+),∆(µ+)) are 1 and 0 respectively.
Second, let p = 3, λ = (1, 1, 1, 1), µ = (2, 2) and d = 1 so that λ+ = (4, 1, 1, 1)
and µ+ = (5, 2). The dimensions of the corresponding Hom spaces are 1 and 0
respectively. These dimensions follow, for example, from Theorem 3.1 of [21] since
in each case a hook is involved.

We note that the previous theorem was proven in the unpublished manuscript
[24] which is superseded by the present paper.

Proof of Theorem 6.1. Recall from [2, Theorem II.3.16] that we have the following
beginning of a resolution of ∆(λ),

n−1
∑

i=1

λi+1
∑

t=1

Mi(t)
�λ−−→ D(λ)

π∆(λ)
−−−→ ∆(λ) → 0,

where the restriction of �λ to the summand Mi(t) = D(λ1, . . . , λi + t, λi+1 −
t, . . . , λn) is the composition

Mi(t)
1⊗···⊗∆⊗···⊗1
−−−−−−−−−−→ D(λ1, . . . , λi, t, λi+1 − t, . . . , λm)

1⊗···⊗m⊗···⊗1
−−−−−−−−−−→ D(λ),

where ∆ : D(λi + t) → D(λi, t) and m : D(t, λi+1 − t) → D(λi+1) are the in-
dicated components of the comultiplication and multiplication respectively of the

Hopf algebra DV . Likewise we have the exact sequence
∑n−1

i=1

∑λi+1

t=1 M+
i (t)

�
λ+

−−−→

D(λ+)
d′
λ+

−−→ ∆(λ+) → 0, where M+
i (t) = D(λ+1 , . . . , λi + t, λi+1 − t, . . . , λn)

By left exactness of the functors HomS(−,∆(µ)) and HomS′(−,∆(µ+)), in order
to prove the theorem it suffices to show that the following diagram commutes

HomS(D(λ),∆(µ)) HomS(Mi(t),∆(µ))

HomS′(D(λ+),∆(µ+)) HomS′(M+
i (t),∆(µ+))

ψ

πi,t◦HomS(�λ,∆(µ))

ψi,t

π
+
i,t◦HomS′(�λ+ ,∆(µ+))

for all i = 1, . . . , n − 1 and t = 1, . . . , λi+1, where the vertical maps are isomor-
phisms from Lemma 3.3(2) and πi,t (respectively, π+

i,t) is the natural projection

HomS(
∑n−1

i=1

∑λi+1

t=1 Mi(t),∆(µ)) → HomS(Mi(t),∆(µ)) (respectively,

HomS′(
∑n−1

i=1

∑λi+1

t=1 M+
i (t),∆(µ+)) → HomS′(M+

i (t),∆(µ+)) ).

For i = 1, . . . , n− 1 and t = 1, . . . , λi+1, let xi,t = 1(λ1)⊗· · ·⊗n(λn) ∈Mi(t) and

x+i,t = 1(λ1+p
d) ⊗ · · · ⊗ n(λn) ∈ M+

i (t). We know that Mi(t) is a cyclic S-module

with generator xi,t and M
+
i (t) is a cyclic S′-module with generator x+i,t.
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Let T ∈ SSTλ(µ). Then

T =

1(λ1)2(a12)3(a13) · · ·n(a1n)

2(a22)3(a23) · · ·n(a2n)

· · ·

n(ann)

,

where
∑

i aij = λj for j = 2, . . . , n. We know that the set {π∆(µ) ◦ φT : T ∈
SSTλ(µ)} generates HomS(D(λ),∆(µ)) by Proposition 2.4. We distinguish two
cases.

Case i = 1. Consider x1,t, where 1 ≤ t ≤ λ2. By computing we see the image of

x+1,t under the map ψ1,t ◦ π1,t ◦HomS(�λ,∆(µ))(π∆(µ) ◦ φT ) is

(6.1)
∑

j1+j2=t

(

λ1+j1
j1

)









1(λ1+p
d+j1)2(a12−j1)3(a13) · · ·n(a1n)

1(j2)2(a22−j2 )3(a23) · · ·n(a2n)

· · ·

n(ann)









.

A similar computation in the other direction of the diagram yields that the image
of x+1,t under the map π+

1,t ◦HomS(�λ+ ,∆(µ+)) ◦ ψ(π∆(µ) ◦ φT ) is

(6.2)
∑

j1+j2=t

(

λ1+p
d+j1
j1

)









1(λ1+p
d+j1)2(a12−j1)3(a13) · · ·n(a1n)

1(j2)2(a22−j2 )3(a23) · · ·n(a2n)

· · ·

n(ann)









.

By Lemma 3.2(i) we may assume in eqns.(6.1) and (6.2) that λ1+ pd+ t ≤ µ1+ pd,

that is, λ1 + t ≤ µ1. By Lemma 4.1(1) we have
(

λ1+j1
j1

)

=
(

λ1+p
d+j1
j1

)

in K since

pd > min{λ2, µ1 − λ1} ≥ j1. Thus the expressions in (6.1) and (6.2) are equal.
Since x+1,t generates the S

′-module M+
1 (t), we conclude the diagram commutes.

Case i > 1. This is similar to the previous case, but simpler. Consider xi,t,

where i > 1 and 1 ≤ t ≤ λi+1. Then the image of x+i,t under the map ψi,t ◦ πi,t ◦

HomS(�λ,∆(µ))(π∆(µ) ◦ φT ) is

∑

j1+···+ji+1=t

(

a1i+j1
j1

)

· · ·
(

aii+ji
ji

)













1(λ1+p
d) · · · i(a1i+j1)(i+ 1)(a1i+1−j1) · · ·n(a1n)

2(a22) · · · i(a1i+j2)(i+ 1)(a2i+1−j2) · · ·n(a2n)

3(a33) · · · i(a3i+j3)(i+ 1)(a3i+1−j3) · · ·n(a3n)

· · ·

n(ann)













and this is equal to image of x+i,t under the map π+
i,t◦HomS′(�λ+ ,∆(µ+))◦ψ(π∆(µ)◦

φT ). Hence the diagram commutes.

6.2. Second example: λ is a hook. Suppose λ ∈ Λ+(n, r) is a hook, that is,
a partition of the form h = (a, 1b), where b ≥ 0 and a + b = r. We will show in
this case that the bound pd > b in Theorem 1.1(1) may be improved slightly to
pd > i. This is indeed an improvement because for i > b both ExtiS(∆(h),∆(µ))

and ExtiS′(∆(h+),∆(µ+)) are zero since both ∆(h) and ∆(h+) have projective
resolutions over S and S′ respectively of length b [20].
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We use the the explicit finite projective resolution P∗(a, b) of △(h), 0 → · · · →

P2(a, b)
θ2(a,b)
−−−−→ P1(a, b)

θ1(a,b)
−−−−→ P0(a, b) of [20] which we now recall. We have

Pi(a, b) =
∑

D(α1, . . . , αb+1−i), where the sum ranges over all sequences (α1, . . . , αb+1−i)
of positive integers of length b + 1 − i such that α1 + · · · + αb+1−i = a + b and
a ≤ α1 ≤ a+ i. For further use we note that

(6.3) αj ≤ i+ 1

for all j > 1. The differential θi(a, b), i ≥ 1, is defined be sending x1⊗· · ·⊗xb+1−i ∈
D(α1, . . . , αb+1−i) to

b+1−i
∑

j=1

(−1)j+1x1 ⊗ · · · ⊗ △(xj)⊗ · · · ⊗ xb+1−i ∈ D(α1, . . . , u, v, . . . , αb+1−i),

where△(xj) is the image of xj under the two-fold diagonalizationD(αj) →
∑

D(u, v),
where the sum ranges of all positive integers u, v such that u + v = αj and
D(α1, . . . , u, v, . . . , αb+1−i) is a summand of Pi−1(a, b) with u located in position j.

For T ∈ SSTα(µ) and t ∈ {1, . . . ,m}, where α = (α1, . . . , αm), let T (t) ∈
Tab(µ) be obtained from T by replacing each occurrence of j > t by j − 1. Thus
π∆(µ)◦φT (t) ∈ HomS(D(α1, . . . , αt+αt+1, . . . , αm),∆(µ)) and by extending linearly
we obtain for each degree i a map of vector spaces

Φa,t : HomS(Pi−1(a, b),∆(µ)) → HomS(Pi(a, b),∆(µ)), π∆(µ) ◦ φT 7→ π∆(µ) ◦ φT (t).

We have suppressed the dependence of Φa,t on i and µ in order to avoid overwhelm-
ing notation. According to [22], Remark 2.2, we have the following description for
the differential of HomS(P∗(a, b),∆(µ)),

HomS(θi−1(a, b),∆(µ)) =
∑

t≥1

(−1)t−1Φa,t,

where it understood that φT (t) = 0 if t > m.

Theorem 6.3. Let λ = (a, 1b), µ = (µ1, . . . , µn) be partitions of r and let d be an
integer. If pd > i, then

ExtiS(∆(h),∆(µ)) ≃ ExtiS′(∆(h+),∆(µ+)).

Proof. In order to show that the complexes HomS(P∗(a, b),∆(µ)) and HomS′(P∗(a+
pd, b),∆(µ+)) are isomorphic it suffices to show that the following diagram com-
mutes

HomS(D(α),∆(µ)) HomS(D(β),∆(µ))

HomS′(D(α+),∆(µ+)) HomS′(D(β+),∆(µ+))

ψ

HomS(Φa,t,∆(µ))

ψi,t

HomS′(Φa+pd,t
,∆(µ))

where α = (α1, . . . , αt, αt+1, . . . , αb+2−i), β = (α1, . . . , αt + αt+1, . . . , αb+2−i) and
the vertical maps are isomorphisms from Lemma 3.3(2). Note that in the diagram,
the module HomS(D(α),∆(µ)) is a summand of HomS(Pi−1(a, b),∆(µ)) of degree
i− 1 and thus by eqn. (6.3) we have aj ≤ (i− 1) + 1 = i for all j > 1.
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Let T ∈ SSTα(µ),

T =

1(a11)2(a12)3(a13) · · ·n(a1n)

2(a22)3(a23) · · ·n(a2n)

· · ·
n(ann)

.

By computing we have that the image of π∆(µ) ◦ φT ∈ HomS(D(α),∆(µ)) in the

clockwise direction of the above diagram is
∏n−1
j=t

(

a1j+a1j+1

a1j+1

)

π∆(µ+) ◦ φT (t)+ and in

the counterclockwise direction is
{

(

a11+p
d+a12

a12

)
∏n−1
j=2

(

a1j+a1j+1

a1j+1

)

π∆(µ+) ◦ φT (t)+ , t = 1
∏n−1
j=t

(

a1j+a1j+1

a1j+1

)

π∆(µ+) ◦ φT (t)+ , t > 1.

Using the hypothesis we have pd > i ≥ αj = α12 + α21 ≥ α12 and thus by Lemma

4.1(1),
(

a11+p
d+a12

a12

)

=
(

a11+a12
a12

)

in K. Hence the diagram commutes. �
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