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Deep neural networks have established themselves as one of the most promising machine
learning techniques. Training such models at large scales is often parallelized, giving rise
to the concept of distributed deep learning. Distributed techniques are often employed in
training large models or large datasets either out of necessity or simply for speed. Quantum
machine learning, on the other hand, is the interplay between machine learning and quantum
computing. It seeks to understand the advantages of employing quantum devices in devel-
oping new learning algorithms as well as improving the existing ones. A set of architectures
that are heavily explored in quantum machine learning are quantum neural networks. In this
review, we consider ideas from distributed deep learning as they apply to quantum neural
networks. We find that the distribution of quantum datasets shares more similarities with
its classical counterpart than does the distribution of quantum models, though the unique
aspects of quantum data introduces new vulnerabilities to both approaches. We review the
current state of the art in distributed quantum neural networks, including recent numerical
experiments and the concept of circuit cutting.
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I. INTRODUCTION

By now we have sufficient evidence that classical computers can learn. Decades of research
in artificial intelligence (AI) [1–3] and specifically deep learning (DL) [4–6], have yielded powerful
learning algorithms that are now employed in everyday tasks across several industries. With the rise
of quantum computers, the natural question that arises is whether quantum computers, too, can
learn. Quantum computing is the paradigm of computation which employs concepts from quantum
mechanics [7]. Attempting to answer this question requires a thorough exploration of quantum
computing (QC) and machine learning (ML). With several directions in its agenda, the emerging
field of quantum machine learning (QML) [8–12], explores the intersection of quantum computing
and machine learning. This interaction can have various objectives depending on whether the data
or the environment is either classical or quantum [9, 13, 14]. The direction we consider here is to
consider whether quantum computers can be used to provide benefits in training neural networks
specifically. This question, too, has been asked and explored with various objectives in mind [15].
Present day quantum computers are known as noisy intermediate-scale quantum devices (NISQ)
[16]. They are overshadowed by high error-rates and a small number of qubits, which hinders their
capabilities. However, there is a growing debate over what algorithms these devices can be used
for. In this paper, we overview the concept of distributed quantum neural networks and suggest
that this might underpin the first real application of quantum computers in the NISQ era.

Drawing inspiration from artificial neural networks (ANNs), quantum neural networks (QNNs)
have emerged as a new class of promising quantum algorithms. While there are many approaches to
training quantum neural networks, until recently they have all been inherently sequential, aimed at
training a quantum neural network on a single quantum computer. Yet, training a classical neural
network on a single core is not always feasible in large scale classical machine learning. When
working with large datasets or sophisticated models, training is often distributed [17]. Dubbed
distributed deep learning (DDL), these techniques are employed either because of the size of the
dataset or the model itself are too large to be processed on a single core. Employing multiple
cores or even multiple machines overcomes this problem and typically leads to faster training time.
Distributed deep learning brings together high performance computing communication protocols
and the thriving field of deep neural networks [18–21]. One work that is often cited as a large scale
success story is Ref. [22], which trains the ImageNet dataset [23] across 256 graphical processing
units (GPUs) in 1 hour. In a single node fashion, training of the ImageNet would normally take
several days.

The limitations motivating DDL are even more pronounced in the quantum setting and an
emerging set of techniques are being developed to mirror the classical paradigm. In this paper,
we extend the ideas of distributed deep learning to quantum neural networks by reviewing and
consolidating the existing literature. Our aim is to make more concrete the current set of vaguely
similar ideas directing the research toward a more unified and directed goal of distributed QNNs.
We define a distributed QNN as a quantum machine learning algorithm employing multiple quan-
tum computers (quantum processing units (QPUs), by analogy), which we refer to as nodes. We
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identify some common themes in the distribution of QNNs and discuss the implications.
The rest of this paper is organised as follows. The next three Sections II, III, and IV give a

primer on the ingredients required to understand distributed QNNs. Notably, Section II intro-
duces deep learning concepts and expands on some of the well-known classical distributed deep
learning frameworks. Section III introduces quantum computing along with distributed quantum
computing concepts. Section IV overviews quantum machine learning with a focus on quantum
neural networks. Section V gives a more detailed overview of data parallelism considered through
the quantum lens while emphasizing two data encoding types and their distributed forms: basis
encoding in Sec. V A and amplitude encoding in Sec. V B. Section VI achieves the same for model
parallelism while briefly commenting on vertical splitting of quantum circuits, and expanding more
on some of the recent works in the so called “circuit cutting” schemes. In Section VII we discuss
the relevance of these works in the NISQ era and provide an overview of software that facilitates
distributed deep learning as well as the quantum approaches.

II. DISTRIBUTED DEEP LEARNING

A. A Brief History of Deep Neural Networks

Neural networks are the machinery behind the current most prevalent machine learning method
— deep learning [4]. Fueled by the availability of big data and the increase in processing power,
this disruptive technology provides an ecosystem for creating self-learning agents able to find ab-
stractions that are oftentimes not visible to other types of ML algorithms.

1. Structure of neural networks

The building block of a neural network is the neuron. The artificial neuron — very much inspired
by the human biological neuron — has a classical input-output structure. The first architectural
model was proposed in Ref. [24] in 1943, known as the MP neuron. The input values x of a
neuron, each of which has a corresponding weight coefficient w – the parameter that determines
how important the input is to the output. The goal of a neuron is to connect with other neurons.
A neural network has an input layer, so-called hidden layers, and an output layer. The depth of the
network is determined by the number of hidden layers. The reason deep learning architectures are
preferred to shallow ones, lies on the ability of hidden layers to reach higher levels of abstraction,
thus discovering more intricate patterns in datasets. The ability to extract information typically
increases with the number of hidden layers, and as long as new and useful information is extracted
from the data source, the number of layers is tuned accordingly.

Training begins by calculating the input sum of the weighted parameters (and the bias b), thus:

z =
n∑

i=1

wixi + b. (1)

The output can be noted as y = f(z). Function f is known as the activation function, and it
is highly non-linear. The process of training the weights goes through two main processes: the
first one is computing gradients using the backpropagation algorithm [25, 26], and secondly, an
optimization procedure generally using gradient descent methods [27, 28]. From Eq. (1), the cost
function (i.e., mean squared error) can be defined as:

C(w) =
1

n

n∑
i=1

(y′(i) − yi)2 (2)
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where n is the number of samples, y′ is the predicted value and y the actual value.
In its simplest form, given the one-directional transmission of information in a neural network,

is called feedforward neural network. In the stacked layers of feedforward neural network archi-
tectures, it is, in fact, the output of a layer that defines the input of the following. When a
feedforward neural network has no hidden layers, it is called a perceptron [29]. Besides feedforward
neural networks, there exists another class of neural networks called hopfield neural networks [30],
that represent a class of recurrent and fully interconnected networks.

Several stacked layers of a neural network introduce deep neural networks (DNNs) make such
an architecture a deep architecture. Even though deep learning is a much older paradigm, the
last decades have brought the invention of many widely applied deep learning architectures [5]
based on feedforward and recurrent networks, notably convolutional neural networks (CNNs),
several architectures of recurrent neural networks (RNNs), — such as long-short term memory
(LSTM) — generative adversarial networks (GAN), deep Boltzmann machines (DBMs), variational
autoencoders (VAEs) and others. Each of the available architectures might a better fit for different
problems. CNNs for instance, work particularly well with images and are applied to problems in
computer vision [31, 32]. Computer vision problems are machine learning applications that train
the computer program to identify images. Along with CNNs, RNNs are usually go-to candidates for
natural language processing (NLP) problems [33]. NLP represents a set of problems that usually
require identification of natural human language.

2. Scaling DNNs

It is evident that there are many problems for which neural networks are good candidates as a
solution, including classifying objects, image recognition, forecasting, medical diagnosis and more.
Inspired from the idea that classical approaches of neural networks and deep learning are a machine
learning success story, these techniques have begun their journey in the quantum world as well.
The quantum approaches and their achievements are further explored here in Section IV.

Oftentimes it suffices to have a single machine to perform tasks. But, processing a task requires
computational power. More complex tasks require more computational power in which case the
processing system needs to be scaled in terms of resources. For smaller scales of processing it
remains convenient to add resources to the same processing machine. This approach is known
as scaling up, or vertical scaling (Fig. 1a). In reality, any processing machine can be scaled up,
however the cost of production becomes exponential the higher we need to scale. A more pragmatic
solution is often given by scaling out, also known as horizontal scaling (Fig. 1b). In simple terms,
this means having the required number of resources in different machines, rather than in a single
machine. At large scales, this solution is more cost efficient. This outlines the need for distributed
systems.

It is often implied that a distributed system is running a single process (task) at a time. In
other words, all the participating devices are working towards one single output. Albeit, reliable
distribution of resources and processes has its own challenges. Having resources distributed to form
a cluster requires communication an synchronization protocols. Relevant in this context, one issue
that is prevalent directly in the training of neural networks is the communication overhead.

Another reason that motivates distributed training of deep learning architectures, is the fact
that either the dataset or the model could get prohibitively large. It is because of these two
elements that can be paralleled, that there exist two techniques of distribution: data parallelism
and model parallelism (Fig. 2). In these scenarios either the dataset or the model are split across
nodes, respectively. Parallel or distributed processing often has different connotations. Parallel
processing can be used in terms of multi-core processing in a single device; while distributed
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FIG. 1: Computational architecture scaling. (a) is an illustration of the scaling up method of computation.
In this approach, the processing power is increased as more core processing units are added to a single
device. Whereas in (b), the computational capacity is scaling out, which represents connecting distinct
smaller devices each with an individual number of processing units to achieve higher processing capabilities.
The later is the distributed approach we assume for scalability here.

processing refers to the processing taking place in different nodes. The goal in either processing
remains the same: to output the result coming from all the devices as if it were coming from one.
Which is why oftentimes the two terms are used interchangeably. The data and model-parallel
distribution architectures can be used in either context. In our theoretical assumptions, we assume
that distribution takes place in different devices, which we will refer to as nodes. While we refer
to the collection of nodes in a distributed architecture as cluster.

B. Distributed Deep Learning

When training a deep learning architecture, there are two elements that could become pro-
hibitively large: the dataset or the model [18]. Either the working dataset or the model may be
too large to fit into a single available device. Inspired by techniques from parallel computing, the
solution to overcoming this limitation is in distributing the largest elements. The first to consider
is data parallelism. In this scenario, the dataset is split across the available nodes, while each
node holds an entire copy of the model. The second approach, model parallelism, assumes the
model is split across the nodes, while each node holds an entire copy of the dataset. Distribution
of resources across several nodes takes several forms (Fig. 2). The data and the model approach
are inherently linked to other parameters to consider when building a distributed architecture. In
data parallelism the dataset is distributed across different nodes, while each of the nodes hold an
entire copy of the model. Model parallelism has the same logic, with the model distributed across
the nodes, while each node contains an entire copy of the dataset.
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FIG. 2: Architecture overview of data parallelism and model parallelism approaches in distributed neural
network training. a) The dataset D is split in three equal parts (D1, D2, D3) across n available devices (here
three nodes), where each device holds an identical copy of the entire model M . b) The model M is split
across n devices (here three nodes), while each device holds a copy of the entire dataset D. In both scenar-
ios, parameters are subsequently synchronised among the devices either asynchronously or synchronously.
Gradients are exchanged using one of the parameter exchange protocols such as the MPI.

1. Data and model parallelism

Data parallelism techniques used to train neural networks are very often focused on training
CNNs [34–36]. For more, see Table 1 in Ref. [20] for a categorization based on the proposed ar-
chitectures in the data-parallel approach. Model parallelism on the other hand has been explored
in several works such as Refs. [36, 37]. DistBelief [36] is a framework that allows the training of a
model in a parameter-sever architecture. Data parallelism is more used and explored in the DDL
scheme, in part because it allows better cluster utilisation [21]. In some works, there exists the so
called domain parallelism approach which can be sub-categorized as a data parallel approach [38].
In domain parallelism, the data points themselves are split across different processors. Further-
more, beyond data and model parallel approaches, there are other approaches to classification of
distributed protocols. One such notable architecture is pipeline parallelism [39, 40] which involves
pipelining the network layers in different nodes. It can also be inferred that there exist hybrid
approaches to distribution, which make use of distributing both the model as well as the dataset
[38, 41, 42]. The DistBelief architecture mentioned earlier, is one such hybrid architecture. A
study in Ref. [32] on parallelising the training of CNNs, it proposes to split the two different
type of layers constituting the architecture of modern CNNs, in two different ways. Notably, to
convolutional layers which contain the majority of computation, one can apply data parallelism.
While for fully-connected layers which contain a small amount of computation, model parallelism
may be more suited. In this work however, we focus on the primarily distinctions between data
and model distribution in the quantum setting.
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FIG. 3: Centralised and decentralised exchange of gradients in two distributed setting architectures. In a)
we see the main node and three secondary nodes sending gradients to the main node as well as receiving
gradients broadcasted from the central node. This architecture is known as the parameter server scheme.
In b), four nodes each sending and receiving gradients in an all-reduce scheme without the need for a central
node to orchestrate the communication. In both scenarios the dataset D has been cut into n equal splits,
while the model M remains intact in every node.

2. Centralised and decentralised architecture

When designing concrete architectures based on either distribution, there are a number of
choices one can make. First and foremost, the distributed architecture can be centralised or de-
centralised, as in Fig. 3. In a centralised architectures, there is one appointed node that collects
and broadcasts the information. In the jargon of DDL, this analogy is known as the parameter
server architecture [43, 44]. In contrast, a decentralised architecture does not employ a parameter
node that orchestrates communication [45, 46]. It instead, employs communication techniques such
as the all-reduce algorithm. In this scenario, each of the nodes has the same role of calculating,
sending, and receiving gradients. It remains an open question as to whether the centralized or
the decentralized approach is more suited to which scenarios. Evidently, that depends on several
factors, and there may not be an architecture to fit all use-cases. The obvious drawback for the
parameter server method is that the main nodes can quickly become communication bottlenecks,
potentially leading to failure. On the other hand, in a decentralized architecture the communi-
cation cost increases with the number of nodes. This can lead to increased network maintenance
complexity. There are works which evaluate the two approaches under certain conditions. For in-
stance, Ref. [47] concludes that there exists a regime in which decentralised algorithms outperform
centralised ones in the distributed setting, in the scenario when the communication in the network
remains low. As quantum technology evolves, it is likely that higher-level functions will continue to
be performed by centralized classical devices, while low-level computations are distributed among
several QPU nodes.
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3. Synchronous and asynchronous scheduling

Another distinctive feature of the topology of choice is the way in which parameters are ex-
changed — a problem known as scheduling. In the scenario of the deep learning distribution, the
parameters that need to be exchanged are the calculated gradients. The scheduling can take the
form of synchronous or asynchronous scheduling. In the former, the nodes wait on each other for
the exchange of the gradients and gradients are exchanged only when all the working nodes have
finished the respective calculations. Given that some nodes may be faster than the others, this
technique facilitates a uniform exchange. The result is broadcasted at the same time to all the
nodes, once all the nodes have finished calculation [37, 48]. Asynchronous communication on the
other hand, implies that the gradients are exchanged as soon as respective nodes have finished
their designated calculations. When speaking of good cluster utilization, it is the asynchronous
communication that comes to the picture. In asynchronous communication neither of the nodes
waits for the progress of the other nodes. The faster nodes are not hindered by the slower ones. The
result is broadcasted to the the nodes that have finished the communication without the barrier of
waiting on the slower workers [35, 36, 49]. There are evident advantages and disadvantages with
either of the techniques further discussed in Ref. [19]. Beyond the canonical approaches, there exist
more relaxed scheduling strategies such as the stale synchronous [44, 50] and the non-deterministic
communication methods [18]. In the context of quantum computation, new limitations arise in
communicating quantum information. However, classical co-processors will likely be employed in
any use of QPUs, and will be relied heavily upon in such hybrid scenarios to optimize QNNs.

4. Communication protocols

When it comes to the exchange protocols used to facilitate the communication, this is where
techniques from high performance computing (HPC) come in. One of the most used methods is the
all-reduce algorithm that takes on various forms depending on the architecture [51]. Several out-of-
the-box software packages provide access to distributed training. As such, gradients are exchanged
using certain communication protocols. For instance, in Horovod [45], the training is supported
in the ring-allreduce architecture to facilitate data parallel training approach [52]. Horovod uses
message passing interface protocol (MPI) for sending and receiving the gradients [53] among the
nodes. As we will see shortly, quantum information cannot be copied, so the naive application
of many communication protocols does not apply to the communication of quantum information.
Generalizations exist, but require many advances in quantum technology infrastructure.

III. ESSENTIAL QUANTUM COMPUTING

A. Fundamental concepts

Quantum computing is based on the principles of quantum mechanics. The idea of using the
postulates of quantum mechanics to build a new kind of computer was first introduced in the
1980s in two seminal studies by Benioff and Feynman [54, 55]. Feynman’s proposal of quantum
computation is backed by the idea that our quantum universe can only be simulated by quantum
computers —- per contrast to classical computers. Another negative argument that we must move
to quantum from classical is the end of Moore’s law [56, 57], which famously extrapolated the
trends of computing and predicted that computing power will double every two years. To achieve
this, transistors have been shrinking in size at a comparable rate. However, things can only shrink
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so much before they are the size of an individual atom — at which point, control over them would
effectively render them as components of a quantum computer.

There are, of course, positive arguments for quantum computers as well, which often begin with
the promise of exponential speed-ups for some quantum algorithms [7]. By now, there are dozens
of quantum algorithms that can provide speed-ups over their classical counterparts [58]. Training
of neural networks is one. But, before jumping straight into QNNs, we first overview the basic
quantum information concepts required.

1. Quantum Bits

In quantum computers, the information is processed via the means of its building blocks called
qubits. Unlike bits, qubits have the ability to be in superposition and entanglement. The parallel
of a qubit in the classical world of computing is a bit. A bit has two states 0 and 1, whereas a qubit
has two states |0〉 and |1〉, and many other states as well. The two states |0〉 and |1〉 technically form
a basis in a two-dimensional complex vector space (the |·〉 symbol denotes its vector nature). This
ability of a qubit to be in a continuum of its two basis states is called superposition. Superposition
simply represents a linear combination of classical states:

|ψ〉 = α|0〉+ β|1〉. (3)

Coefficients α and β are complex numbers (α, β ∈ C) and are often called amplitudes.
Multiple qubits are represented as superpositions in a higher-dimensional vector space. For n

qubits, the basis states consist of all binary strings of length n: |b〉 = |b1b1 · · · bn〉. Since there
are 2n such basis vectors, the entire space has dimension 2n and an arbitrary state of quantum
information can be written as

|ψ〉 =
2n∑
b=1

αb|b〉, (4)

where the amplitudes must satisfy a normalization condition,

‖|ψ〉‖2 =

2n∑
b=1

|αb|2 = 1. (5)

2. Superposition and Entanglement

A state |ψ〉 from Eq. (4) may be simply one of the basis states. In this case, there is no
superposition and the information could be represented by the bits labeling it. Often, a quantum
computation is assumed to start in the so-called zero state |00 · · · 0〉.

Two or more interacting qubits exhibiting properties of correlation can be entangled, which
is easiest to introduce by example. The prototypical entangled state is the so-called Bell state:
|Ψ+〉 = 1√

2
(|00〉 + |11〉). The state is entangled because it cannot be written as two individual

single-qubit states. For a system of many qubits, most states are entangled. The easiest way to
interpret entangled states is as a superposition of correlated classical states.

Understanding the entire nature of superposition and entanglement is an open research ques-
tion. But, suffice it to say, at least some of each is necessary to achieve novelty in a computation
— otherwise a classical computer could straightforwardly replicate it. Since most quantum com-
putations are assumed to begin in the unentangled state |00 · · · 0〉, entanglement must be built up
as the computation proceeds.
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gates create entanglement, one qubit gates create superposition.

3. Quantum Gates and Circuits

The high-level ideas of computation remains the same in the quantum setting as in the classical
setting. Similar to classical computers that use gates, quantum computers manipulate qubits via
quantum gates. Gates map quantum states into other quantum states. In digital logic, the NAND
gate is universal — any other logical function can be implemented using only this gate. Similarly
any quantum gate can be decomposed into a sequence of one- and two-qubit gates drawn from a
small finite set of universal gates. As such, is both sufficient and convenient to distinguish between
gates that act on a single qubit and gates that act on two qubits.

We will not need to know here which particular gates can or are often used, so we will imagine
them as abstract and arbitrary. Quantum gates compose operations in a structured pattern forming
quantum circuits. In Fig. 4 the coloured boxes represent one qubit gates and two qubit gates. The
boxes which go through two lines are two qubit gates, while the ones which go through only one
line are one qubit gates.

In general, two-qubit gates create entanglement, which requires either a physical connection
between pairs of qubits or some other communication which mediates the interaction.

4. Measurement

In Fig. 4, the final symbol on the quantum circuit is the measurement. This is how quantum data
is read. Measurement transforms qubits to bits. It is both probabilistic and irreversible, destroying
any entanglement or superpositions in the process. For a general state as in Eq. (4), the outcome
of the measurements is a single binary string b or its corresponding basis state |b〉. The probability
of observing that outcome is |αb|2. A consequence of this is that quantum superpositions cannot
be read in the conventional sense. However, repeatedly measuring many equally prepared copies
of quantum data can give sufficient statistical information to reconstruct it — a process referred
to as tomography.

One of the most fundamental facts about qubits is that no procedure exists which can create
copies of them. This fact is often referred to as the no cloning theorem. Since many communication
protocols are predicated on creating and distributing copies of classical data, no-cloning presents
an immediate challenge to naive generalizations.
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B. Distributed Quantum Computing

The core concept of distributed computation naturally extends from classical to quantum com-
puting. The underlying idea is that of using multiple quantum processors to process quantum
information (input), towards producing one single output. By connecting multiple quantum de-
vices over a network, one can achieve architectural scalability by scaling-out. The same principles
of scaling as in Fig. 1 can apply to quantum devices as well. Here we overview the main techniques
that facilitate and promote distributed quantum computation. The idea of a scalable quantum
architecture peaks with the ambitious project of the quantum internet [59–63] as one of the main
goals for distributed quantum computing.

The quantum internet implies quantum devices connected in a quantum network style with
classical and quantum communication links. This network will thus allow the communication be-
tween qubits on different devices apart from each other. A crucial element in the functionality of
the quantum internet are quantum repeaters. Like classical repeaters, their role is to propagate the
signal into the further nodes. In the same reasoning, the are placed between the nodes. However,
unlike classical repeaters, quantum repeaters operate very differently in how they perforate the
signal. Quantum repeaters perform the so-called entanglement swapping protocol which allows for
entanglement distribution. There exist quantum protocols that facilitate the exchange of classi-
cal information such as quantum key distribution and superdense coding [61]. Whereas quantum
communication can occur over classical channels via quantum teleportation [7]. Informally, tele-
portation requires two classical bits and an entangled pair of qubits to be transmitted between
the sender and the receiver. Other than the hardware challenges which currently hinder most of
the quantum research, the state of the development of the quantum internet remains with many
interesting open challenges [61].

At present day, there exist small quantum devices that can be accessed via the cloud [64].
These cloud-based devices offer access to quantum computation via the internet. Classically, cloud-
based based approaches are certainly convenient due to their complete computation infrastructure
accessible via the internet. However, a lot of the discussion around cloud computation revolves
around the security of the network [65]. On the quantum front, there exists the idea of blind
quantum computation [66, 67] which provides a barrier of encryption to either of the nodes accessing
the information transmitted. In this protocol which is applicable in a cloud-based environment, the
server receives an encrypted algorithm from the client. In this way, the protocol provides security
under the assumption of the hidden calculations. However there are certain aspects the server will
know about the calculation such as the bandwidth of the calculation size and allocated resources
for execution. Much of the current research in this area is focused on the verifiable aspects of the
blind computation [68].

The long-term vision of a quantum network, where superposition and entanglement are pre-
served, results in what can simply be interpreted as a single (albeit very large) quantum processor.
Ensuring that processor works well will surely require concepts properly termed distributed quan-
tum computation in analogy with the classical techniques they will borrow from. But, here we are
interested in the bottom-up problem, wherein we assume at some point in the nearer future we
will have access to multiple small QPUs, not necessarily connected to a quantum internet, and ask:
can we use these in parallel to train a QNN?
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IV. QUANTUM MACHINE LEARNING

A. A brief history of QML

Quantum machine learning encompasses a variety of algorithms that are, broadly speaking, of
variational nature, as opposed to the more popular quantum algorithms, such as Shor’s algorithm
[69] that are deterministic in nature. Other kinds of algorithms which can be called deterministic
include Refs. [58, 70–74]. Here we are concerned with the variational ones. Quantum machine
learning is the emerging relationship between quantum computing and machine learning. Collec-
tively, the term QML, is used interchangeably in several distinct scenarios regarding the direction
of the field and the components used. The directions can take the form of quantum phenomena
improving machine learning algorithms, or machine learning algorithms further improving quan-
tum algorithms and designs. The two components needed for this scenario to work — data and
algorithms — in either case, can be quantum or classical. Below we take a look at the four main
paradigms.

1. Four paradigms

The first big chunk and usually the entry point in QML is called quantum-enhanced machine
learning. In this scenario, machine learning analysis of classical data is processed on a quantum
computer. In Ref. [75] propose an agent-environment paradigm in four scenarios in which either is
Classical or Quantum (CC, CQ, QC, QQ) (Fig. 5) as an attempt to give this new field more orga-
nization and perhaps a direction. The context of quantum-enhanced machine learning is desirable
due to the power of quantum computers to work with complex linear and matrix computations,
as well as the idea of quantum parallelism. The inspiration stems from the fact that the large
amount of data needed for machine learning algorithms to yield better results will harness this
power, consequentially leading to improvements in runtime and convergence time [76]. That is also
the main goal of this type of setup — speedups. However, in this case, data needs to be encoded
into a quantum state, then queried and retrieved from a quantum RAM — that introduces issues
of its own such as whether the time cost of this action is too high to pay for, in turn, quantum
speedups.
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The second direction, quantum-applied machine learning is concerned with finding optimal ways
to apply machine learning in quantum experiments with the goal of enhancing their performance
or finding solutions. These various applications encompass accomplishments beyond quantum
computing application and in particle physics, quantum many-body physics, chemical and material
physics, and more [77, 78]. To zoom in, some important implementations in quantum computing
that have shown promising results take place in quantum control [79, 80], quantum error-correction
[81, 82], quantum state tomography [83, 84].

The third paradigm, quantum-inspired machine learning, comes up with new ways to design and
evaluate classical machine learning algorithms, that are primarily inspired by quantum theory. As
reviewed in Ref. [85], the complexity gap between classical and quantum algorithms keeps changing
with the new algorithms coming into the picture and the complexity bounds are still somewhere
between polynomial and exponential. Due to their relevance in machine learning algorithms, the
study in question reviews the “flagship” algorithms of quantum computing – quantum algorithms
for linear algebra [86, 87]. Ref. [85] questions whether these asymptotic bounds achieved via
quantum processing in several quantum-inspired algorithms may be useful in practical real-life
applications. The study in Ref. [88] explores the realm of linear-algebraic operations applied in
recommendation systems which builds on the work of in Ref. [87] that proves exponential improve-
ments over classical algorithms for recommendation systems. However, Ref. [88] narrows that gap
by proving that another class of classical algorithms reaches the same exponential improvements.

The fourth category, quantum-generalized machine learning or fully-quantum machine learning
is the case where the data, as well as the infrastructure, are bona fide quantum. Given the still lag-
ging state-of-the-art of the two components, this approach remains rather futuristic, to be answered
at its full scale at this point in time. Nevertheless, among the first attempts to generalize classical
machine learning models have been proposed in line with unsupervised classification protocols for
quantum data [89] and quantum anomaly detection [90], among others.

2. Translational QML

Several of the classical machine learning algorithms have been appropriated in the quantum
realm: quantum support vector machines [91], quantum principal component analysis [92], quan-
tum reinforcement learning [93], quantum algorithms for clustering [13], quantum recommendation
systems [87] and many others. A notable subroutine on which many such QML works are based on
is the so-called HHL algorithm [86], which proposes a solution to the linear systems of equations
using quantum operations. In turn, HHL achieves exponential improvement in time complexity
over the best known classical algorithm for the same task. However, there are certain strict con-
ditions that must be met that could otherwise hinder the time advantage. For an analysis of its
caveats see Ref. [94], while for an overview of the HHL in some QML methods, see Ref. [95].

More recently, QML research has slightly shifted focus beyond beyond computational complexity
comparisons with the classical counterparts, to the flavour of building better quantum models [96].
In this context, several works [97–103] explore expressibility, generalization power and trainability
of a model — all crucial elements when building robust learning algorithms. Attention is also
given to the complexity bounds that shift between classical and quantum data for quantum models
[90, 104, 105].

B. Quantum Neural Networks

Quantum neural networks represent a class of hybrid quantum-classical models that are executed
in both quantum processors as well as classical processors to perform one single task. QNNs are
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FIG. 6: A basic structure of the parameterized quantum circuits with qubits and gates analogy, involving
the data encoding stage, the ansatz to be optimized, measurement and an optimization scheme.

currently one of the most trending topics in quantum machine learning [106]. They are often
interchangeably referred to as variational or parameterized quantum circuits (VQCs or PQCs)
[107–109]. Several studies review more in-depth the increasing body of proposed methods for
implementing a QNN or similar model classes [15, 110, 111].

Some of the first works that address the question of quantum neural networks do so from a
biological perspective extending on the idea of cognitive perspectives [112–114]. Others similarly
early ones do so from a hardware perspective [115, 116]. However, with more contemporary ap-
proaches concerning QNNs, its definition has evolved with now to refer to tangents in classical
artificial neural network research due to their parameters which require optimization via a training
procedure.

The QNN architecture has a structure which loosely resembles that of classical neural networks,
depicted in Fig. 6, hence the analogous name. Evidently, when working with quantum data, a
preliminary step is to encode the classical data into quantum states. Otherwise, the first step of
the QNN training procedure is to define a cost function C, which as in the classical case, maps
the actual parameter values to the predicted ones. This step is then followed by the circuit with
parameters U(θ) which need to be optimized using an optimization strategy — often referred to
as ansatz or the parameterized quantum circuit (i.e., [117]). This step of the procedure resembles
the multi-layered architecture of neural networks, as the ansatz can be composed of multiple layers
with the same architecture. The estimation of the gradients C(θ) occurs in a quantum machine.
The optimization task is thus to minimize the value of the cost function. This is followed by the
measurement step which is used to introduce non-linearity. The output of the measurement is then
compared with the cost function dependent on the task via the training procedure and then the
parameters are updated accordingly. Different types of classical optimizers are used for training θ
often based on the gradient descent methods [109, 118].

Evidently, it is natural that there remain several open issues in quantum neural networks re-
search. One of the main challenges for QNNs remains the linear-nonlinear compatibility between
neural network computation and quantum mechanics. Neural network computation is done in a
non-linear fashion, that is, the activation function which triggers each neuron is non-linear, other-
wise the idea of layers in neural networks would serve no purpose. On the other hand, quantum



15

systems behave in a linear way, which gives rise to the first incompatibility. Among other works
and proposals in response to this caveat, Ref. [119] designs a quantum neuron as a building block
to quantum neural networks based on the so-called repeat-until-success technique to get past the
linearities of quantum circuits. Several other fundamental issues are discussed and summarized
in Ref. [120] including, the sequential nature of training neural networks, which clashes with
the parallel processing power of quantum algorithms. In essence, taking advantage of quantum
superposition and managing to parallelize the training of neural networks is a step in the right
direction, however in training neural networks data is calculated and stored at many intermediate
steps — an inherent property of the backpropagation algorithm. A recent approach suggest using
the rule called parameter-shift, which mimics the way backpropagation works [121–123]. Finally,
the parameters needed for training needs to be encoded in quantum states, a process which is
time-consuming, and the topic of further discussion in Sec. V.

To add to the discussion, QNNs are prone to the so-called barren plateaus phenomenon [124, 125]
which entail flat region in the optimization landscape for even modest numbers of qubits and gates.
Although there has been progress towards escaping this phenomenon be it by initialisation methods
[126] or newer QNN architecture that are not prone to barren plateaus [127]. Despite the inherent
drawbacks, there are continuous attempts to resolve these issues and unite the two paradigms of
AI and QC due to the seemingly promising rewards. To support this, there have been a number of
notable works which go along the lines of optimizing versions of parameterized quantum circuits
for quantum data [106, 128]. Furthermore, to align with the deep learning architectures, there are
several proposals that extend the main deep architectures into quantum structures such as RNNs
[129], CNNs[128, 130, 131], GANs [132–134] and more [111]. Further enhancing the capabilities
of these structures is one potential avenue where the research will go. In the context of QNNs
as well, there is an emphasis on the expressibility, trainability and generalization power of these
model classes.

However, whatever direction QNN research and applications take, the need to scale-out will
soon become apparent, which brings us to distributed QNNs.

V. DATA PARALLELISM: SPLITTING THE DATASET

The concept of data in quantum processing is very different from that in the classical world.
Straightforwardly, quantum data is the data which is output from any quantum computer or
quantum processor. To explain it, one can contrast it with how classical data works [135]. Classical
data can be saved in permanent storage, moved, and copied as needed. On the other hand, quantum
data is rather short-lived. Its lifetime ends with the end of the execution of a program. A very
different property is that quantum data cannot be copied as per the no-cloning theorem. The
no-cloning theorem does not allow the creation of an identical copy of an arbitrary quantum state
[136]. The discussion on quantum data is tightly linked to its processing mechanism, such as a
quantum random access memory (QRAM) [137–139]. Being able to retain quantum states longer
or query them requires storage capacities to be put in place. This becomes particularly relevant in
the discussion in quantum machine learning. In what we call quantum-enhanced machine learning,
classical data needs to a priori be encoded into quantum states, which inherently is a time-costly
process [94]. Additionally, for many of the proposed approaches, the presence of a QRAM is
a mandatory feature. On the other hand, fully quantum machine learning that operates with
quantum data is starting to sprout, and there are reasons to believe that it will be more of an
effective direction, as it removes the need for quantum pre-processing.

As is the case with the enhanced QML algorithms workflow, the dataset first needs to be encoded
into quantum states [9]. In this context this is the case when working with classical data and
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quantum algorithms (CQ). As such, data encoding is a crucial part in designing quantum machine
learning algorithms. There exist several methods of encoding classical data applied across several
works in QML make use of data encodings frameworks [86, 123, 140–146] and further push the on-
going research in this domain. Some of the most explored encodings in the context of QML include
basis encoding, amplitude encoding, angle encoding (tensor product encoding) and hamiltonian
encoding. We refer the reader to other encodings as well as more in-depth analysis in Refs.
[9, 147, 148]. Depending on the purpose of the computation, there are certain techniques better
suited than the others. Ref. [147] concludes that amplitude encoding allows for compact storage
and as such can be useful for storing a large amount of data in a small number of qubits. Whereas
basis encoding is preferred should arithmetic computations take place. Ref. [149] explores several
encoding types in a noiseless environment as well as under the influence of noise for binary quantum
classifiers. In general, encoding data into quantum states is far from being a straightforward
process. This part of the workflow is often a bottleneck [94] in achieving practical advantage.
The research is still on-going and crucial to the success of quantum machine learning algorithms.
Moreover, the question of data encoding is relevant beyond QML, such as in quantum simulations,
another promising area of research.
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FIG. 7: The split of the quantum dataset across three
quantum nodes (QPUs). The quantum model is kept
unchanged and loaded into all three nodes.

Below we discuss two main data encoding
techniques and how they would perform in data
distributed equivalents.

First and foremost, let D be a classical
dataset of size M , where each data point x is
an N -feature vector.

D = {x(1), ...x(m), ..., x(M)} (6)

The process of data distribution begins with
splitting D into L available nodes:

D1 = {x(1), . . . , x(K)}, (7a)

D2 = {x(K+1), . . . , x(2K)}, (7b)

...

Dj = {x((j−1)K+1), . . . , x(jK)}, (7c)

...

DL = {x(L−1), . . . , x(M)}. (7d)

where D = D1 +D2 + · · ·+DL. Each of the
L splits of data is processed in a different node.
They each hold an equal amount K of different
data points from the same dataset. Here we consider classical data to be quantum data after it is
encoded into quantum states. When D is encoded into quantum states using either of the available
encoding techniques, what is produced is quantum data. We can denote the obtained quantum
dataset with |D〉.
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A. Basis encoding with data distribution

The first encoding technique we consider is the basis encoding. This procedure has two substan-
tial steps. Prior to encoding, each data point needs to be approximated to some finite precision in
bits. Typically, single bit precision is assumed for brevity. Otherwise, a constant number of extra
qubits is required. We will follow convention here and assumed each feature is specified by a single
bit such that each data point is an N -bit string.

Each of the data points is encoded in a computational basis state uniquely defined by its bit
string. The entire dataset is encoded as a uniform superposition of these computational states.
The dataset defined in Eq. (6) in the basis encoding will result in the following quantum data:

|D〉 =
1√
M

M∑
m=1

∣∣∣x(m)
〉
, (8)

where x(m) represents a single random data point in the dataset. To encode the classical dataset
D into a quantum dataset, N qubits are required (and a constant factor more if the features are
represented with more bits). Preparing |D〉 requires O(NM) gates [116].

Examples of basis encoding [150] of QML techniques employed for different tasks include neu-
ral networks for classification [140, 151], quantum data compression [152], quantum Boltzmann
machines [153], to name a few.

In the distributed context, assuming the split according to Eq. (7), to encode each of the portions
of the dataset (i.e, Eq. (7c)) it also requires N qubits for each of the dataset chunks. We consider
|D〉 to be one quantum state on LN qubits. This will result in:

|D〉 = |D1〉 ⊗ |D2〉 ⊗ · · · ⊗ |Dj〉 ⊗ . . . |DL〉 (9)

where each |Dj〉 is,

|Dj〉 =
1√
K

jK∑
m=(j−1)K+1

∣∣∣x(m)
〉
. (10)

The preparation of each {Dj} requires O(NK) gates since each partition contains K data
points. In total, across all partitions, O(NKL) gates are needed. Replacing the parameters from
KL = M yields O(NM) gates, the same as in the undistributed scenario. This is not surprising,
of course, but one still wonders what has been gained.

There are a few observations we can make. Firstly, using this approach of data encoding to
perform data distribution, in the end, requires more qubits than the single node approach. While
single node dataset requires N qubits, L splits of the dataset require LN qubits. This way, the
number of qubits required grows with the number of splits. However, the total number of the gates
NM remains the same. In the end, what has been achieved with this splitting technique is the
reduction of gates per node, precisely by a factor of L.

Therefore, the positive aspect yielded in this procedure is the lower depth of state preparation
per each individual split in comparison to the preparation of the larger circuit. Lower depth circuits
obviously require less time to implement, but also incur fewer errors, which again translates to time
in the error-corrected regime, but is far more relevant in the NISQ era. Errors grow at least linearly
in the depth of the circuit, hence so-called shallow circuits are of great interest, a fact we will discuss
later.

More subtle is the notion of quantumness in the distributed approach. While it is clear in
splitting we may have lost the naive parallelism afforded by quantum data, it is also likely that
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a significant amount of entanglement will also be lacking. This can be naively inferred to as less
quantum as a solution, but not necessarily less powerful. As these considerations will be relevant
to all splitting procedures we consider, further discussion of parallelism and entanglement will be
deferred to Sec. VII B.

B. Amplitude encoding with data distribution

Amplitude encoding is another widespread encoding technique that is a widely used in the
context of quantum machine learning. This technique uses amplitudes of the quantum state to
encode the dataset [9].

All the data samples with their attributes are concatenated and can be constructed as,

α =
(
x
(1)
1 , . . . , x

(1)
N , x

(2)
1 , . . . , x

(2)
N , . . . x

(j)
1 , . . . , x

(j)
N , . . . , x

(M)
1 , . . . , x

(M)
N

)
, (11)

which is a single vector of length MN . The dataset D encoded in amplitudes can be characterized
as:

|D〉 =
1

|α|

MN∑
i=1

αi|i〉, (12)

where |α| is the normalization, or length of the vector α:

|α|2 =
MN∑
i=1

α2
i , (13)

which is necessary recalling that all quantum states require normalization.
Amplitude encoding is certainly a more compact way of encoding data in comparison to the

basis encoding given that it requires log(MN) qubits to encode the dataset defined in Eq. (6).
Regarding the splitting of the dataset, here, as well, we assume Eq. (9). The full dataset will be a
tensor product of quantum splits which encodes each of the subsets of data.

Assuming L splits, and applying Eq. (7) and Eq. (9) invokes the following in amplitude encoding,
a |Dj〉 split will be characterized as:

Dj = {x(j−1)(K+1), . . . , x(jK)}. (14)

then αj :

αj = (x
(j−1)K+1
1 , . . . , x

(j−1)K+1
N , . . . , x

(jK
1 , . . . , x

(jK
N ) (15)

where α ∈ RKN . A split Dj can then be written:

|Dj〉 =
1

|αj |

KN∑
i

αj,i|i〉. (16)

Consequently, encoding each of the splits L requires log(KN) qubits. Each split has K data
points with N features. Assuming an equal split of the dataset where K = M

L , all the splits
L together subsequently yield L log(ML N). Assuming M � L, the total number of qubits is
L log(MN), and again we see that data splitting has increase the number of qubits need by a
factor of L.
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One thing to be noted about the splitting of the data vector in amplitude encoding is on the role
of the normalization constant. Distribution of the dataset will result in L different normalization
constants per data split, which may in turn disproportionately change the structure of data in
L different ways. Of course, it could also be the case that the variance in magnitude of the of
normalization constant is insignificant, which we might expect for very large data sets.

An obvious splitting technique in amplitude encoding is between data samples, such that each
node receives a state |Dj〉 consisting of the feature vector x(j) of single data point from D. In-
terestingly, arriving at this splitting is natural when starting from the hybrid quantum-classical
approach to QNNs. There, the dataset is paired with labels y(j), for each x(j), which is compared
to output of the QML model in sequential fashion. One notable exception is a recent set of sim-
ulated experiments [104] which make natural uses of TensorFlow’s built-in distributed computing
ecosystem to distribute the dataset over 30 nodes.

C. Data parallelism discussion

Basis and amplitude encoding are the prototypical techniques for constructing quantum data.
Due to the current limitations of quantum hardware, other more “natural” encodings have been
considered dubbed hardware-efficient. Angle encoding [145, 146, 154], which is done at the single
qubit level and hence does not entangle states within feature vectors, is more akin to basis encoding.
Whereas, encoding at the Hamiltonian level [142, 155–157] typically involves two-qubit entangling
gates and, in the context of parallelization, more akin to amplitude encoding.

The angle encoding technique was recently used in data parallelization experiments to distin-
guish letters from the MNIST database [158]. There, the authors devised a protocol to execute
multiple rounds of local gradient training before communicating with a central node which av-
eraged the current parameter values before redistributing them. The experiments investigated
accuracy versus number of local gradient evaluations, finding fewer local gradient evaluations to
perform better independent of the number of local nodes. The overall speedup to a given accuracy
threshold, however, scaled linearly with the number of local nodes.

A generic approach to encoding classical data is to consider,

|Dj〉 = Uenc(x
(j))|0〉, (17)

where Uenc is some encoding circuit. In this context we are somewhat constrained in types of
data splitting we ought to consider. By the very nature of the set-up, we already have an implicit
splitting between feature vectors. As noted, this is typically processed in series, but in the hybrid
quantum-classical setting can be naively distributed using existing classical protocols. In this style
of splitting, no entanglement is generated across features, while intradata entanglement would
presumably persist. However, we do note that even within this paradigm, quantum training (with
access to QRAM, for example) may recover interdata entanglement [159–161]. On the other hand,
further splitting within each feature vector could be considered. However, detailed knowledge of
Uenc would be required, and this may consist of removing entanglement between features, which is
likely the only advantage the QML model is empowered by — be it computational or expressive.
We mention the possibility, though, as such a split might properly be considered a model splitting
rather than a data splitting, which is an excellent segue.

VI. MODEL PARALLELISM: SPLITTING THE MODEL

Model parallelism makes use of the idea of distributing the neural network and its parameters.
In quantum machine learning, a model can be understood as a parameterized quantum circuit —
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FIG. 8: Model parallelism example architectures. a) Horizontal and vertical split of a neural network model.
b) A visual representation of the DistBelief [36] architecture that features both data and model parallelism
as an example architecture of hybrid parallelism. Here the dataset as well as the model are split across the
available nodes. c) Quantum-inspired horizontal and vertical split of a quantum circuit. The horizontally
cut sub-circuits Nn would require classical communication among the nodes. The vertical cuts Vn would
require quantum tomography. d) A visualisation of the quantum-inspired hybrid approach following the
architecture of DistBelief in b. The quantum circuit is split across 4 devices using both data and model
parallelism.

i.e., a quantum circuit with variably specified gates. How these circuits are “split” is superficially
the same as how models are split classically, but differs greatly in the details.

Classically, we can point out two types of model splits: horizontal and vertical splitting as in
Fig. 8a. In horizontal splitting, it is the layers of the network that are split. While vertical splitting
is applied between the layers, leaving individual layers unaffected. The latter feature makes vertical
splitting a more versatile technique. This is why classical vertical splitting is generally preferred
over horizontal splitting [21]. This, however, cannot be used as a naive heuristic for quantum
scenarios, as we will see below.

That existing quantum literature in distributed QNNs explores horizontal splits rather than
vertical splits. Interestingly, there are certain limitations in the classical analogue which make the
horizontal splitting approach the last resort to turn to for distribution [21]. In addition, it is often
left implicit that model parallelism does not always yield concurrent working nodes due to the
inherent property of data dependency in neural networks.

The straightforward model architectures we have considered in Fig. 8c involves splitting the
quantum circuit horizontally or vertically, although several other different split methods can be
approximated. Intuitively, splitting the quantum circuit vertically may not necessarily yield an
advantage. As will be discussed below, each gate or wire cut incurs a cost that grows exponentially.

In the case where a splitting strategy is restricted to communicate classical information between
nodes, merging the different parts of the circuit requires the exponentially difficult task of quantum
tomography. A strictly vertical split then is maximally inefficient. As in the literature, then, we
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FIG. 9: The two of the main paradigms of horizontal splitting introduced in the quantum circuit cutting
literature. In a) is depicted the paradigm of splitting gates (or wires) incoherently (classically) as in Ref.
[162]. Whereas the architecture in In b) splits the gates coherently (quantumly) as in Ref. [163].

will mostly focus on horizontal splitting.
At present, there exist several architectures which can be considered horizontal splits on the

model. Generally speaking, these works correspond to a few major classes of horizontal splitting,
as we will describe below. The taxonomy can be of different flavours, however below we choose to
differentiate among incoherent and coherent splitting, presence of communication throughout the
calculation, and sampling.

We summarize the general techniques in Fig 9. Consider the gate G as a two-qubit gate whose
action is to be split across two separate quantum computing nodes. For any G there are a number of
recipes that allow exact or approximate emulation using only pairs of gates Lk that act separately
on each node. The labels carry some ”physical” meaning here in that gates which act across
subsystems are referred to as ”global” while gates that act individually on subsystems are termed
”local”. Properly, the action of the global gate G can be computed as a sum of locally acting gates
Lk:

G =
∑
k

ckLk, (18)

where ck are known real-valued coefficients. Each term in the sum requires a unique computation,
the results of which need to be combined in post-processing. The key differentiating factor for how
this is accomplished is whether it achieved using quantum measurements or not.

A. Incoherent versus coherent splitting

In horizontal model splitting, as depicted in Fig 9, either there is measurement or there is no
measurement. Not depicted, however, is idea of simply cutting a wire [162], which is analogous
to the measurement-based gate splitting scenario, which we discuss first. Note that, in the jargon
of quantum physics, things which preserve quantum information are termed coherent while things
that do not are incoherent.
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1. Incoherent splitting

Incoherent splitting refers to methods as depicted in Fig 9a. In these schemes, the overall
global circuit is simulated by a sequence of local circuits that include a quantum measurement
on the qubits affected by the cut. Since a measurement is an operation which destroys quantum
information — transforming it into classical information — this approach is called incoherent
splitting. We note that it has elsewhere been referred to as “time-like” splitting [164], but we will
avoid this terminology as it references a concept in relativistic physics.

Ideas similar to classical horizontal parallelism have been proposed in the quantum circuits
literature, oftentimes unrelated to the quantum machine learning literature. An equivalent to the
idea of a horizontal circuit split has been proposed in Ref. [162]. This solution is offered precisely
to get across the limited number of qubits available in individual devices. Overall, the scheme
involves some classical computation to cut and distribute circuit descriptions among the nodes and
also to post-process the results of measurements. The bulk of the overhead occurs in the number
of quantum circuits that need to be run, which grows exponentially with the number of cuts.
However, as they point out, actual overhead could be much less depending on the structure of the
circuit. In the extreme case where two clusters of qubits have no entanglement across them, the
splitting can be achieved with no overhead at all. Some applications (e.g. Hamiltonian simulation)
which fall between these extremes are discussed.

These splitting methods were used in Ref. [165] to simulate random 56 qubit quantum circuits
of depth 22 on a single personal computer. In Ref. [166], the technique was referred to as entangle-
ment forging and used to enact 10 qubit quantum circuits with a single 5 qubit nuclear magnetic
resonance (NMR) quantum processor.

Since measurements are made in an incoherent splitting procedure, the problem of data analysis
can be considered a statistical one. In response to this, Ref. [167] introduced a maximum likelihood
tomography to approximate the result of the measurements which need to be performed across all
circuit splits. They found a slightly enhanced performance in some numerical experiments over the
naive recombination of the measurement data.

As noted in the canonical work of Ref. [162], the success of splitting techniques will depend
highly the the existent structure of the circuit to be split, assuming an optimal (or at least sensibly
obvious) choice of split location. The examples considered possessed a clustering structure where
the cut location would obviously correspond to cluster links. If such structure needs to be first
found, the classical pre-processing may become difficult. In Ref. [168], the authors introduce an
automated tool, called CutQC, which uses the framework of integer programming to optimize the
location of circuit cuts (effectively minimizing the number required). They demonstrate the tool
with various simulations of quantum algorithms by obtaining not only orders of magnitude speed-
ups in simulation time, but also the ability to go well beyond was is simulatable classically. In
particular, they demonstrate the simulation of 100-qubit algorithms, whereas full circuit simulations
on typical classical hardware are limited to roughly 30 qubits. Similarly, Ref. [169] use a graph-
based approach to optimize the cut locations in the wire-cutting scenario.

The most recent example of incoherent wire-splitting is Ref. [170], which utilizes randomized
measurements and one-way classical communication to create a conceptually simple splitting pro-
cedure which again has an exponential overhead in the number of wire cut. The authors were able
to classically simulate a 129-qubit QAOA circuit using this technique.
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2. Coherent splitting

In contrast to incoherent splitting, Fig 9b depicts the same cut location, but a simulation
strategy that preserves quantum information by using quantum gates rather than measurements.
Since quantum information is preserved in each circuit, this is dubbed coherent. It was first
introduced in Ref. [164] where it was called “space-like” cutting.

While conceptually similar to Ref. [162], the coherent splitting technique [164] can achieve
some quantifiable advantages depending on which gates are cut. In essence, efficiency comes down
to how many terms are in the sum of Eq. (18), and that depends on which G is being split and
how many times. Moreover, in a real device, it may be more applicable to enact single qubit
gates than perform measurements. The same authors improved upon the gate decomposition
technique, substantially reducing the number local terms Lk in Eq. (18). They also introduced a
novel sampling technique we discuss further below.

More recently, Ref. [171] proposed a method called “circuit knitting” which again is motivated
by the promise of using present day quantum processors through the partitioning of large quantum
circuits into smaller sub-circuits. The resulting output of each sub-circuit is then “knitted” using
classical communication. This work is conceptually different from all those previously discussed
in that those works considered only classical communication in the final post-processing of the
data. Ref. [171] found that classical communication is advantageous when multiple instances of
the same gate will be split. However, prior entanglement between the nodes is necessary to realize
this advantage.

These ideas have further motivated explorations in specifically splitting QNNs in the context of
quantum machine learning [163]. Rather than minimizing the number of cuts as in previous work,
Ref. [163] focuses on minimizing the size of the sub-circuits needed to approximate the result.
They further test this hybrid circuit cutting architecture in the MNIST dataset, but training
a quantum classifier with 64 qubits using eight nodes (each, of course having 8 qubits). Such
a simulation directly on 64 qubits would be infeasible both in classical simulation and in today’s
quantum hardware. This work point out an important additional features of the idea of distribution
in QNNs. Notably, the problem of barren plateaus is eased because sub-circuits have a smaller
number of qubits leading to larger gradients. This has been corroborated in Ref. [172], which
explores parallel execution and combination of small sub-circuits in QNNs, finding an avoidance of
barren plateaus.

B. Model parallelism discussion

Here we have made a distinction between incoherent and coherent splitting techniques. There
are two points to make in this regard. First, it is not likely that one technique is strictly better than
that other and the use of either technique will depend heavily on the context of the circuits being
executed. Indeed, Ref. [173] considers the case of a hybrid technique in which multiple splits in a
single circuit may use a combination of both incoherent and coherent splitting. The second point
is that this dichotomy is not the only current differentiator in the horizontal splitting techniques
existing in the literature.

We have alluded to two other distinctions already. The first is whether or not communication
is used in the protocol. The existence of communication is not strictly optional, but borne out of
necessity of cutting procedure. Communication takes place in Refs. [170, 171] in order to merge the
different sub-circuits on the fly rather than in post-processing. Again, since the cutting protocol
will depend on the context, the existence of communication will as well. Indeed the context may
even preclude communication due to technical limitations.
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The second distinction requires more thought. Since the coefficients ck are generically negative
numbers, the total sum may require high precision to accurately calculate exactly or estimate. To
get around this, let us rewrite Eq. (18) as follows,

G = N
∑
k

|ck|
N

ck
|ck|

Lk, (19)

where N =
∑

k |ck|. From here we can see that the quantities pk = |ck|/N form a discrete
probability distribution. By treating the application of Lk as a random variable, the expectation of
G can be Monte Carlo sampled, which may result in fewer circuits to run. This was first considered
by Ref. [173], where it was pointed out that the quantity N2 corresponds to the overhead incurred
due to splitting. Since there is no loss in generality in making this move, and standard probabilistic
bounds can be straightforwardly applied, it is likely that this sampling-based splitting approach
will be more favored.

Recall that in data parallelism, the same classical protocols applied to quantum data parallelism.
However, we see that for model splitting, the resultant quantum protocol is fundamentally differ-
ent as it requires potentially many different models to be run serially and then post-processed.
Whereas, in classical horizontal splitting, the models do not actually change — communication
protocols are introduced to retain the capacity of the full model. It thus not likely that powerful
classical hybrid protocols utilizing both vertical and horizontal model parallelism, such as DistBe-
lief [36] depicted in Fig. 8b, will be generalized to the quantum setting. However, we can naively
infer a quantum hybrid architecture in which both quantum data and quantum model are split
as in Fig. 8d. Such a model might be realized when distribution can be achieved with efficient
entanglement distribution or a fully coherent quantum communication network is available.

Finally, we mentioned the implied classical-quantum hybrid horizontal splitting technique of
Ref. [174], which makes use of both quantum and classical resources to simulate large quantum
systems with “virtual qubits” running in parallel to a quantum computer.

VII. DISCUSSION

This overview paper was an introduction of the distributed techniques present in classical deep
learning as applied to the novel field of quantum neural networks. In this final discussion we
mention some related ideas and comment on the nascent topics of NISQ and quantum software
before concluding.

A. Related techniques

Beyond data parallelism, there exist other strategies that go along the lines of optimizing the
amount of data for learning algorithms. Data reduction techniques, often known as coreset tech-
niques in classical machine learning [175], are a prime example. The main idea behind coresets
is that for a dataset D, there exists a subset S which approximates D for a particular task. Im-
portance sampling is typically the first step in the process of finding such S. Coreset techniques
are typically algorithm-type specific, however can also be generalized. Making the same parallels
to quantum computation, the size of the datasets remains an obvious problem when qubits are at
a premium. The question of whether one can use coreset techniques in hybrid quantum-classical
architectures has been explored in [176, 177]. Ref. [176] work presents several examples of hybrid
algorithms making use of data reduction techniques, notably in clustering, regression and boost-
ing. Ref. [177] builds on this work by extending it to the realm of variational algorithms. The
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works in question can certainly be part of the greater solution to handling large quantum datasets.
Data reduction techniques are not typically discussed in the context of distributed learning. The
underlying principles that guide data reduction techniques are not necessarily similar.

QNNs require classical optimization, which has been studied in a parallelized context in Ref.
[178], where the procedure is called information sharing. The novelty of their proposal is in its
application to a particular style of optimizing, but the general idea could be consider a form of a
distributed QNN where the parameters are distributed across nodes. Although most optimizers are
adaptive — meaning the QNNs parameters at one point in time depending on measurement results
at a previous point it time — many optimizers require evaluation of costs at several simultaneous
parameter values. This suggests an obvious form of distribution, as in Ref. [178].

B. NISQ and beyond

The primary motivation for many of the existing QML techniques is to serve the needs, or
limitations, of the NISQ era. Recall, NISQ devices are both small (in qubit number) and noisy
(limiting circuit depth) [16, 179], which is why shallow circuits are of great interest [14, 180, 181].
Many of the techniques we have discussed above are suitable in the NISQ regime, not requiring a
fixed (large) number of densely interacting qubits and not restricted to noiseless computation.

Combining the training of QNNs across many of the nodes may yield advantages be it in terms
of time complexity, or in terms of generalisation power, scalability, and explainability. Of the two
main architectures, in classical deep learning, data parallelism is the more explored one. That is
for several reasons. Firstly, it is practically easier to split the dataset rather than the model. When
it comes to splitting the model there exist different strategies which can be more suited to the task
at hand. Secondly, it is widely accepted that data parallelism allows better cluster utilization [21].

Naive data splitting is straightforwardly applied when using mature AI software packages [104].
We expect such techniques to find use in the first NISQ implementations of QNNs. However, the
restricted size of NISQ devices will also see the use of horizontal splitting techniques. Incoherent
splitting is likely more suited to early NISQ devices since no new capabilities are required. In
addition to reducing the demand on the number of qubits, splitting techniques can reduce the
depth of the circuit as well — depending of course on the structure.

One may wonder why such techniques have not been widely adopted and applied to existing
devices? Typically, the larger the dataset is, the more relevant it becomes to distribute the dataset.
Distributing smaller datasets may not yield obvious advantages. In the initial works that here
we consider equivalent to model distribution, there are assumptions that can be made on the
complexity of the datasets. For instance, [163] observes that synthetic quantum data performs
better in their technique than classical high-dimensional data. As it currently stands, the number of
qubits available may be sufficient, but the level of noise needs to be reduced to allow for sufficiently
deep circuits. Determining what types of data and what structural features of circuits are most
suited to splitting is open area of research. What is clear, however, is that a principled approach
to the development of software for this purpose is needed.

C. Software tools

There exist a number of software packages and libraries that implement distributed deep learn-
ing strategies. The Tensorflow software [182], for instance, implements distributed training tech-
niques as an out-of-the-box feature. In TensorFlow there are several strategies for distributing
over resources [183]. For instance, the MirroredStrategy as a distributed technique makes use of
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all the available central processing units (CPU) or GPU resources in a single device. MultiWork-
erMirroredStrategy is a synchronous distributed strategy that makes use of multiple devices, each
potentially containing multiple GPUs or CPUs. All of the aforementioned strategies support syn-
chronous training. A few all-reduce implementations of choice are also available. Other than the
methods above, there exists the ParameterServerStrategy which implements asynchronous com-
munication. In addition to Tensorflow, there exist a number of other libraries one of which is
the Horovod library [45], that implements the ring-allreduce algorithm across a distributed cluster
using NCCL [184] as the communication library. Other software that facilitate the same principles
are MXNet [185], PyTorch [186], CNTK [187] etc. A more complete list of software available that
support distributed deep learning can be found in Table 3 in Ref. [20].

Tensorflow Quantum [188] is the quantum machine learning extension that allows simulating
hybrid quantum circuit models. As an example in terms of how the distributed implementation
would look like in quantum neural networks, TensorFlow Quantum provides a blog-post setting up
the architecture [189] for distributed training of QNNs. This example implements the MultiWork-
erMirroredStrategy. The backbone architecture of these experiments is the quantum convolutional
neural network (QCNN) architecture developed in Ref. [128]. Fig. 10 gives an overview of the ar-
chitecture stack enabling such experiments. Further on the the quantum front, quantum software
such as Qiskit [190] or Pennylane [191] can be used either for simulations or experiments on actual
quantum devices [192]. Table 2 in Ref. [15] summarizes some of the works which implement QNNs
across different quantum hardware platforms for different tasks [193–200].

In relation to the techniques useful for the distributed approaches, Ref. [168] mentioned above,
develops CutQC which is a software package that automates the location of wire cuts when splitting
a quantum circuit. In similar lines, Ref. [201] builds Interlin-q on top of the real time quantum
networks simulator QuNetSim [202]. Interlin-q is a software package which helps in designing dis-
tributed algorithms. It follows a general centralised architecture where a client node is responsible
for propagating information to the computing nodes, via a middle point controller node.

D. Closing remarks

A lot of work in circuit cutting schemes give special attention to the role of entanglement when
distributing qubits. The question of entanglement is heavily addressed in distributed quantum
computing and quantum internet research [203, 204]. The first step in distributed quantum net-
works is to establish entanglement via entanglement distribution techniques. There exist several
strategies for entanglement distribution which can be cost effective [205]. However, entanglement
can be fragile and lost over time and as such it needs robust techniques for its preservation over
long-distances. This is a crucial element to consider in distributed quantum machine learning
schemes as well. In the avenue of quantum neural networks, Ref. [206] demonstrates the crucial
role of entanglement in training QNNs. The work in question expands on the data as a resource
in classical machine learning, by demonstrating entanglement as an asset in the quantum setting.
More concretely, the presence of entanglement reduces the demand for quantum data, something
that was once thought to be of necessity in exponential order. Following this, it is pivotal to
account for entanglement as a resource in distributed training. Such accounting directly relates to
the overhead in distributed quantum learning.

One possible avenue of development in the distributed scenario is to see how splitting of the cir-
cuit plays out in different proposed quantum deep learning architectures, beyond the feed-forward
QNNs. Some of the possible questions we are interested in exploring include a comparison of
classical versus quantum training time and training accuracy. Tangentially, we note that all of
the proposals for QNNs assume the circuit model of quantum computation. Following classical
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FIG. 10: Architecture stack of an example software infrastructure running numerical experiments as in [189].
The process is initiated by Kubernetes pulling the two docker images from the container registry: Tensorflow
QCNN image and the Tensorboard image (Tensorboard is Tensorflows’ graphical user interface of results
overview). The images were built locally and uploaded to the container registry. After pulling the images
Kubernetes creates pods (which can be thought of as actual processors or in software as jobs), the number
of which is determined by the number of the replica parameter. Parallelism is managed by the number of
pods. Pods are then deployed in Kubernetes nodes. Pod distribution over nodes is transparently managed
by Kubernetes. At the end of the job, the master pod which writes to Google Cloud Storage bucket. At
the same time, results get uploaded to Comet.ml via REST APIs. Note that Tensorboard can be used as
a visual tool for reading the results without the need for external software. TFJob operator, part of the
Kubeflow project, is Kubernetes’ custom resource that facilitates the deployment of tensorflow instances in a
Kubernetes cluster. The entire process can be categorized into two parts: the deployment phase responsible
for the setup, and the runtime or in our scenarios of ML optimization, the training phase.

DDL literature, there remain several scenarios to consider in the quantum front regarding pa-
rameter scheduling, architectural centralisation and further into communication protocols. It may
also be more natural to consider distributed quantum computing in alternative models such as
measurement-based quantum computing [207].

A natural descendent of the distributed architectures is the concept of federated learning [208]
which makes use of end-user data locally rather than assuming one single central storage. This
paradigm is proposed to mitigate privacy and security issues that concern centralized training
architectures. Federated learning from a quantum perspective has been initiated in Refs. [209, 210].
These techniques may eventually overlap with the distributed QNN approach we considered here.

In a recent issue of Quantum Science and Technology, leaders in the field of quantum comput-
ing were asked, ”What would you do with 1000 qubits?” [211]. As in one response [212], many
have suggested QML as one of the first applications that may provide an advantage over classical
techniques. However, this question — and much of the reaction — was posed before distributed
techniques became popular in the quantum information community. Anything you can do with
1000 qubits, you can do with ten 100-qubit devices and a bit of time. So perhaps this threshold is
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much closer than many suspect.
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