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We develop a Gutzwiller theory for the non-equilibrium steady states of a strongly-interacting
photon fluid driven by a non-Markovian incoherent pump. In particular, we explore the collective
excitation modes across the out-of-equilibrium Mott/superfluid transition, characterizing the dif-
fusive Goldstone mode in the superfluid phase and the particle/hole excitations in the insulating
one. Observable features in the pump-and-probe optical response of the system are highlighted.
Our results appear as experimentally accessible to state-of-the-art circuit-QED devices and open
the way for driven-dissipative fluids of light as quantum simulators of novel many-body scenarios.

Introduction. Quantum fluids of light with effective
photon interactions are rapidly growing as a new branch
of many-body physics [1, 2]. Right after the observation
of Bose-Einstein condensation [3], superfluidity [4] and
hydrodynamic generation of topological excitations [5, 6]
in polariton fluids in semiconductor microcavities, excit-
ing advances in circuit-QED engineering [7–9] are prepar-
ing the ground for the exploration of strongly-interacting
fluids [10–13] and, consequently, the quantum simulation
of bosonic lattice models [14–17]. Specifically, these sys-
tems appear as a new platform to explore Bose-Hubbard
physics [18] and the Mott/superfluid quantum phase
transition [19–22] in a novel out-of-equilibrium context.

In this regard, pioneering theoretical investigations
have explored the rich variety of non-equilibrium steady
states (NESS) under coherent or Markovian pumping
protocols [23–26], also in comparison with the corre-
sponding equilibrium systems [27]. Non-Markovian sce-
narios [28–30] provide us with a whole new direction [31],
as they proved crucial for the experimental creation of
genuine Mott insulating states [32].

These experimental advances call for theoretical ap-
proaches able to investigate the nature of the observed
steady states. This is a challenging task bridging the
quantum optics, condensed matter and many-body com-
munities, which therefore requires to establish a common
language and an interdisciplinary perspective. Among
the open issues, we mention the collective properties and
dynamical correlations of out-of-equilibrium insulators
and strongly-interacting superfluids. Even though vari-
ous techniques are available to describe driven-dissipative
systems, such as variational methods [29, 33–36], matrix-
product states [30, 37–41] and clustering techniques [42],
major hurdles still persist in the extension of these meth-
ods to the dynamics of large and high-dimensional non-
Markovian systems [29–31].

In this Letter, we make use of the Gutzwiller ansatz –
a powerful description of Mott insulator states in generic
condensed matter systems [43–46] – and we extend it

to the non-equilibrium context of strongly-interacting
photons in a cavity array under a non-Markovian in-
coherent pump. The evolution of the collective excita-
tion spectrum across the insulating and superfluid phases
is characterized, and novel features stemming from the
non-equilibrium condition are highlighted. Our predic-
tions represent a first step towards the understanding
of quantum fluctuations in strongly-correlated out-of-
equilibrium many-body systems. Observable fingerprints
are identified in the response of the system to additional
weak probes, a quantity directly accessible to experi-
ments with state-of-the-art circuit-QED technology.
Model and mean-field theory. We consider a d-

dimensional array of coupled optical cavities modeled by
a Bose-Hubbard (BH) Hamiltonian,

ĤBH =
∑

r

(
ωc â

†
r âr + U â†r â

†
r âr âr

)
− J

∑

〈r,s〉
â†r âs , (1)

where âr
(
â†r
)
is the annihilation (creation) operator as-

sociated with the cavity mode at site r, J is the hop-
ping energy, ωc is the bare cavity frequency and U is the
photon-photon interaction energy stemming from the op-
tical non-linearity of the cavity medium [1, 2, 13].

The driven-dissipative dynamics of the BH array is
ruled by photon losses at a rate Γl and the coupling of
each cavity mode to incoherently pumped two-level emit-
ters (TLE’s). The dynamics of the TLE’s coupled to the
cavities is governed by the Hamiltonian

Ĥem = ωat

∑

r

σ̂+
r σ̂
−
r + Ω

∑

r

(
â†r σ̂

−
r + h.c.

)
, (2)

where σ̂±r is the rising (lowering) operator in the pseu-
dospin space of each TLE. These are pumped via some
Markovian mechanism at a rate Γp and decay at a rate
γ. In order to achieve an efficient pumping mechanism
for the cavity modes, we assume Γp � γ, which results in
population-inverted TLE’s. Most notably, this provides
a straightforward realization of a non-Markovian driving
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protocol for the cavity modes, with an energy-dependent
gain [29] which is at the roots of various non-equilibrium
quantum critical regimes [47, 48] and has been predicted
to give a high-fidelity emulation of the BH model [30].

The evolution of the system is described by the Lind-
blad equation for the full density matrix ρ̂,

∂tρ̂ = −i
[
ĤBH + Ĥem, ρ̂

]

+
1

2

∑

r

(
ΓlD

[
âr; ρ̂

]
+ γD

[
σ̂−r ; ρ̂

]
+ ΓpD

[
σ̂+
r ; ρ̂

])
,
(3)

where D
[
Ô ; ρ̂

]
= 2 Ô ρ̂ Ô† −

{
Ô† Ô, ρ̂

}
. For later con-

venience, we introduce the parameter G ≡ Ω2/ (Γp Γl),
which defines the effective strength of the TLE-cavity
coupling. A pictorial sketch of the model is provided in
the top panel of Fig. 1.

We study the NESS of the system within the
Gutzwiller approximation [26, 27, 49]. This consists in a
site-factorized ansatz for the density matrix,

ρ̂ =
⊗

r

∑

n,m

∑

σ,σ′

cn,m,σ,σ′(r) |n, σ〉r 〈m,σ′|r , (4)

where |n, σ〉r is the local state of the cavity at r with n
cavity photons and TLE pseudospin σ. In this way, the
Lindblad equation turns into a set of non-linear dynami-
cal equations for the density matrix elements of the form
i ∂t ~c(r) = L̂[~c(r)] ·~c(r), that we solve by numerical prop-
agation until convergence to the homogeneous solution
ρ̂0 = ρ̂(t→∞) = ~c0 [50]. We stress that the ansatz (4)
entails a non-perturbative local description of the Rabi
interaction (2), which allows also to capture the physics
of the so-called strong-coupling regime G & 1.

In this paper, we restrict ourselves to the hard-core
limit of our model (U/J →∞), intended as an archetypal
scenario of strong photon non-linearities. Moreover, we
choose to set the TLE frequency to ωat = ωc − z J (with
z = 2 d), in order that photons are explicitly pumped at
the bottom of the cavity band and fragmentation effects
due to finite-k condensation are avoided [51]. In this
regime, the main properties of the NESS can be summa-
rized as follows [50].

At fixed Ω and below a critical hopping Jc, the NESS
is found to be in an insulating phase (IP) with vanishing
order parameter ψ0 = Tr

(
ρ̂0 â

)
. In particular, for a large

enough coupling G� 1 and J . Jc, the average photon
density n0 = Tr

(
ρ̂0 n̂

)
reaches a value close to 1, such

that the cavity array hosts an essentially pure Mott in-
sulating state [29, 32]. Increasing the cavity bandwidth
z J , i.e. the kinetic energy, replenishment of lost photons
occurs less efficiently, which leads to a substantial de-
crease in the density, alongside some entropy generation.
At J = Jc, the NESS undergoes a second-order dynami-
cal phase transition [52] to a superfluid phase (SFP), de-
veloping a finite order parameter displaying limit cycles
ψ0 = |ψ0| e−i ω0 t and scaling as |ψ0| ∼

√
J − Jc [53]. In

FIG. 1. Top panel: sketch of the driven-dissipative system un-
der consideration. (a) Mean-field phase diagram of the NESS
for Γl/Γp = 50 γ/Γp = 5 · 10−2. The solid (dashed) green
line corresponds to the horizontal cut at Ω/Γp = 1.6 · 10−1
(
5 · 10−1

)
shown in panel (b) [panel (c)]. The white point

marks the tip of the SFP lobe, while the white dashed lines
enclose the region of hole superfluidity. (b) Mean-field average
density [red], order parameter [blue] and purity [black] across
the Mott/superfluid transition at constant Ω/Γp = 1.6 · 10−1

for the same parameters of panel (a). The green and blue dots
highlight the critical point Jc and the hopping scale Jm, re-
spectively. (c) The equivalent of panel (b) for Ω/Γp = 5·10−1.

the Ω−J projection of the phase diagram [Fig. 1(a)], the
SFP occupies a lobe-shaped region. We stress that here
the formation of a coherent phase is not due to a com-
petition between delocalization and local interactions as
usual in strongly-correlated systems: instead, it is de-
termined by the comparison between the emission band-
width set by Γp and the kinetic energy of holes propa-
gating across the lattice.

In the SFP, n0 is still an overall decreasing func-
tion of J , which acts similarly to a chemical potential
for the system. Indeed, the oscillation or lasing fre-
quency of the coherent field shows only a little devia-
tion from its mean-field value at equilibrium, i.e. ω0 ≈
z J (2n0 − 1) + ωc [50], meaning that the energy is low-
ered at large J by depleting photons. On the other hand,
the condensate density ρc = |ψ0|2 is generally a non-
monotonous function of J and its behavior crucially de-
pends on the value of Ω. In the weak-coupling regime
G ∼ 1, located below the tip of the SFP lobe [Fig. 1(b)],
ρc shows a maximum for J = Jm, after which it saturates
n0 to give an extremely pure and dilute condensate. This
behavior can be understood as follows. For J < Jm, lo-
cal losses Γl become a non-negligible dissipation source
and favour quantum coherence: since photon losses make
the condensate density increase, the NESS can be clas-
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sified as a hole superfluid [54, 55]. For J > Jm, the
large bandwidth z J overcomes the effect of all dissipa-
tive effects, so that cavity photons form a dilute particle
superfluid [56], whose purity increases with J . Interest-
ingly, in the strong-coupling regime G & 1 [Fig. 1(c)], a
second maximum of ρc develops for Jc < J < Jm, corre-
sponding to a particle superfluid nearing the equilibrium
hard-core state [50].
Collective excitations. Inspired by well-known lin-

earization methods at equilibrium [57, 58], we general-
ize the approach introduced in [26] and consider small
oscillations around the NESS configuration as

~c(r, t) = ~c0 + ~uk e
i(k·r−ωk t) + ~v∗k e

−i(k·r−ω∗k t) , (5)

as seen from the rotating frame of the coherent field [50].
Here, ~uk (~vk) weighs a particle (hole) excitation with en-
ergy ωk (−ω∗k). Linearizing the Lindblad equation with
respect to the fluctuations, one obtains the Bogoliubov-
de Gennes equations

ωk

(
~uk
~vk

)
= L̂k

(
~uk
~vk

)
, (6)

where the superoperator L̂k = diag
(
Âk,−Â∗k

)
is block-

diagonal because of the relation ~vk = (~uk)
T , due to the

built-in Hermiticity of the density matrix [50]. As a main
result of this work, the eigenvalue equation (6) provides
the energy spectra ωα,k of the collective many-body exci-
tations of the NESS as well as the strength of the response
of the collective excitations to different perturbation
channels. For instance, from the linearized expression
of the photon density, n(r) = n0 +

(
Nα,k e

ik·r + c.c.
)
, we

can extract the spectral weight Nα,k =
∑
n,σ nun,n,σ,σ of

each mode in the density channel. Analogously, we can
define the weight of particle (hole) excitations Uα,k (Vα,k)
through the fluctuations of the order parameter, ψ(r) =
ψ0 + Uα,k e

ik·r + V ∗α,k e
−ik·r [50].

Insulating phase. The low-energy part [59] of the exci-
tation spectrum in the IP phase [Fig. 2(a)-(a′)] consists of
two dispersive branches ω±(k) = ± εph(k)− iΓph(k) [red
lines] and a purely dissipative local mode ωD = −iΓD

[blue lines], to which we refer as the D-mode. The for-
mer bands correspond to distinct quasiparticle (quasi-
hole) excitations respectively (U−,k = V+,k = 0), while
the latter excites density fluctuations only. Deep in the
IP phase [solid lines], the quasiparticle (QP) damping
Γph(k) has a gapped, quadratic dispersion which ex-
tends up to the energy scale of the effective pumping
rate Γem ' 4 Ω2/Γp = 4 ΓlG [60], indicating that non-
local QP excitations at small |k| have a longer lifetime.
As the hopping reaches the lasing threshold Jc [dotted
lines], the D-mode damping ΓD approaches the bare cav-
ity losses Γl [gray solid line in Fig. 2(a′)], while the imag-
inary part of the longest-lived mode, corresponding to
the so-called Liouvillian gap Γph(0) vanishes proportion-
ally to Jc − J [52] as expected from quantum field the-
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FIG. 2. (a)-(a′) Excitation spectrum of the IP for Ω/Γp =
5 · 10−1 [see Fig. 1(c)] and increasing z J/Γp. The gray
dot in panel (a) pinpoints the critical lasing frequency ω∗.
The acronym QP (QH) denotes the “quasiparticle” (“quasi-
hole”) branch. (b)-(b′) Excitation spectrum of the SFP for
Ω/Γp = 3 · 10−1 and two values of z J/Γp below/above the
anti-adiabatic crossover at J = Jm. The letters G, A and
D indicate the (standard) Goldstone, amplitude and D-mode
branches. In panels (a′)-(b′), the gray solid line specifies the
cavity loss rate Γl/Γp. All panels refer to a d = 2 array.

ory [48]: this substantiates the physical picture of long-
lived QP’s as precursors of the non-equilibrium transition
to the SFP.

Tuning the hopping has a dramatic effect also on the
real part of the QP excitation energy, which is well fitted
by εph(k) ≈ J(k) (1− 2n0) + ωc [where J(k) is the free-
particle dispersion on the lattice] and is characterized by
a density-dependent bandwidth. In detail, at small J
where n0 > 1/2, εph(k) has an inverted profile with min-
imal gap at k = π, while a more usual QP dispersion
is found at larger J when n0 < 1/2. Eventually, εph(0)
nears the lasing frequency ω∗ = ωc0 [gray dot in Fig. 2(a)]
at the transition point, which therefore can be regarded
as an authentic finite-frequency criticality [53, 61]. This
behavior finds an intuitive explanation in the aforemen-
tioned competition between hopping and dissipation. For
n0 > 1/2, photon pumping is efficient enough to prevent
holes from moving around the hard-core lattice: thus,
local particle-hole excitations are energetically favoured,
despite their shorter lifetime. By contrast, in the op-
posite case the IP becomes hole-dominated and delocal-
ized QP’s are more likely to be excited. Importantly, we
observe that there always exists a value of J for which
n0 = 1/2, such that the QP band εph(k) is completely
flat [dashed lines].
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Superfluid phase. As the onset of the SFP corresponds
to a spontaneous breaking of U(1) symmetry, the QP
mode is replaced by a Goldstone branch ωG(k) whose
dispersion vanishes in the long-wavelength limit [61, 62].
Physically, this mode can be understood as a slow rota-
tion of the condensate phase across the cavity array. Let
us analyze the main features of different SFP regimes in
more detail [50], starting from the region J . Jm.

For this case, a typical example of the excitation spec-
trum is given by the solid lines in Fig. 2(b)-(b′). Here,
we recover in a novel strongly-correlated regime the usual
behavior of out-of-equilibrium condensates with a diffu-
sive ImωG(k) ∼ −k2 and non-propagating Goldstone
mode [red line with Reω > 0] [63–66]. Besides the Gold-
stone branch, we retrieve also its conjugate or ghost mode
ωA(k) for negative energies [63, 66], while the D-mode
ωD(k) ∼ −iΓl acquires a non-trivial dispersion and re-
tains a strong density character. The relationship be-
tween the latter mode and the Goldstone branch is piv-
otal to grasping the physics of the deep SFP, as we dis-
cuss in the following. For J . Jm, there is a clear scale
separation between the imaginary parts of the Goldstone
energy ΓG(k) and the D-mode ωD(k), but such separa-
tion gets reduced for increasing J .

Indeed, the above situation changes dramatically at
the boundary between particle and hole superfluidity
J = Jm: here, the comparable time scales of pumping
and loss processes cause the condensate to be dilute, so
that the dissipative dynamics of the TLE’s can no longer
be adiabatically separated from that of the BH lattice.
This translates into a stable cross-hybridization of the D-
mode ωD(k) with the Goldstone branch ΓG(k) at small
momenta, which anyway leaves the real part of the en-
ergy spectrum unaltered [dashed lines in Fig. 2(b)-(b′)].
Dynamical response to a weak probe. Further light on

the collective modes can be obtained from the linear re-
sponse functions of the NESS, e.g. to an additional weak
probe. A pioneering experiment of this family was re-
ported in [32], which suggests the experimental feasibility
of our proposal. In particular, we focus on the retarded
Green’s function of the NESS to a one-particle coher-
ent perturbation of the Hamiltonian (1), whose Fourier-
space form GR(k, ω) directly provides the transmission
T (k, ω) = −iΓlGR(k, ω) and the reflection R(k, ω) =
1 + T (k, ω) amplitudes for a weak probe beam of wave
vector k and frequency ω [1, 67, 68]. For these exper-
imentally accessible quantities, our theory provides the
semi-analytical result GR(k, ω) =

∑
α Zα,k/ (ω − ωα,k)

with Zα,k ∼ Uα,k [50].
In the deep IP, we find that the transmittivity

|T (k, ω)|2 [50] displays a peak at the QP pole but re-
mains well below unity. The situation is strikingly dif-
ferent in the reflectivity channel [Fig. 3(a′)], which ex-
hibits amplification as |R(k, ω)|2 > 1. This result is
tightly linked with the intrinsic out-of-equilibrium na-
ture of the IP. While for the transmittivity we simply

FIG. 3. (a)-(c) DoS in the IP for the same parameters of
Fig. 2(a)-(a′) and increasing z J/Γp from top to bottom. (a′)-
(c′) The related reflectivity spectrum. (d) Transmittivity in
the SFP corresponding to the excitation spectra in Fig. 2(b)-
(b′) for z J/Γp = 10 (anti-adiabatic regime). The white hori-
zontal lines indicate the effective chemical potential ω∗.

have |T (k, ω)| ∝ |GR(k, ω)|, the reflectivity reads

|R(k, ω)|2 =
[
1− π Γ2

l A(k, ω)
]2

+Γ4
l |ReGR(k, ω)|2 (7)

and is greater than 1 when the Density of States (DoS)
A(k, ω) ∝ −ImGR(k, ω) is negative, see Fig. 3(a). The
DoS negativity, already observed in the presence of
Markovian dissipation [53, 69, 70], is a signature of the
pump-induced population inversion taking place in the
deep IP and is conventionally associated with energy
gain [71, 72] but, at the same time, competes with the
onset of macroscopic coherence. Thus, we can draw a
Janus-faced portrait of the IP state: although behaving
as an insulator from the viewpoint of its many-body ex-
citations and lacking long-range coherence, its dynamical
response is a precursor of a lasing state, with a broadband
amplification distributed along the QP dispersion.

Upon increasing J , the QP branch εph(k) is shifted to
larger energies and gradually crosses the critical lasing
frequency ω∗. Interestingly, ω∗ acts here as an effective
chemical potential, as the DoS smoothly acquires a posi-
tive sign for ω > ω∗. This spectral redistribution strongly
reflects on the IP response, especially when the QP band
becomes flat [Fig. 3(b)-(b′)]. Whereas the transmittivity
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concentrates around the condensation point (k = 0, ω∗),
the reflectivity has a Fano-like shape around ω∗: namely,
|R(k, ω)|2 is above (below) 1 for ω < ω∗ (> ω∗), as a
result of the sign flip of the DoS.

In proximity of the critical point [Fig. 3(c)-(c′)], the
DoS is mostly positive and bounded by ω∗ from below,
while the divergence of ReGR(k, ω) around ω∗ [53] marks
the onset of condensation. This is visible as a sharp in-
crease of the transmission and reflection response at low
momenta even before the transition. The only remaining
trace of the compresence of high-energy QP states with a
sizeable DoS and of the imminent onset of coherence, i.e.
the first and second contributions to Eq. (7), is a residual
dark resonance of |R(k, ω)|2, which eventually fades out
at the critical point.

On the SFP side, the behavior of our strongly-
interacting system differs from other out-of-equilibrium
superfluids [73] in that the transmittivity and reflectivity
are able to clearly resolve both the Goldstone and ghost
branches [Fig. 3(d)]. In analogy with strongly-interacting
BH superfluids at equilibrium [55], this can be explained
in terms of the emergent particle-hole symmetry of the
long-wavelength SFP excitations, namely |Uα,k| = |Vα,k|
for each α [50]. However, the k-space extension of the dif-
fusive plateau of the Goldstone mode remains quite lim-
ited in the anti-adiabatic limit, and the mode is mostly
visible as an enhancement of |T (k, ω∗)|2 for k→ 0. Since
the density amplitude ND,k of the D-mode drastically
changes across the anti-adiabatic crossover [50], we ex-
pect that a deeper insight into this regime could be ob-
tained from dynamical observables probing the photon
number statistics.
Conclusions. In this Letter, we have developed

a Gutzwiller approach to the collective excitations of
a driven-dissipative fluid of light in the regime of
strong photon-photon interactions, focusing on the non-
equilibrium Mott/superfluid transition of the system. In
particular, our results highlight experimentally accessi-
ble signatures of the surprising peculiarities of the non-
equilibrium Mott state, shown to enable light amplifica-
tion in a pump-and-probe configuration, and of the rich
interplay between coherence and dissipation underlying
the diffusive nature of the Goldstone mode. Thanks to
its flexibility, our theory paves the way to a more general
understanding of the exotic quantum phases that emerge
in lattice systems driven out of equilibrium and can find
experimental realization in the next generation of circuit-
QED experiments.
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S1. FROM THE MEAN-FIELD LINDBLADIAN L̂[~c] TO STEADY-STATE EXPECTATION VALUES

Adopting the vectorial representation of density matrices, also known as Choi-Jamiolkowski isomorphism [1, 2], the
Lindblad equation transforms into a system of dynamical equations for the density matrix elements. The mean-field
ansatz (4) allows to find an approximate solution to the non-equilibrium evolution at the price of introducing non-
linearities. More precisely, the entries of the Gutzwiller-approximated Lindblad operator L̂[~c(r)] have the expression

Ln
′,m′,µ,µ′

n,m,σ,σ′ [~c(r)] ≡− J



(√

n′ + 1 δn,n′+1 δm,m′ δσ,µ δσ′,µ′ −
√
m′ δn,n′ δm,m′−1 δσ,µ δσ,µ

)∑

s(r)

ψ(s)

+
(√

n′ δn,n′−1 δm,m′ δσ,µ δσ′,µ′ −
√
m′ + 1 δn,n′ δm,m′+1 δσ,µ δσ′,µ′

)∑

s(r)

ψ∗(s)




+

{
ωc (n′ −m′) + U [n′ (n′ − 1)−m′ (m′ − 1)] + ωat

µ− µ′
2

}
δn,n′ δm,m′ δσ,µ δσ′,µ′

+ Ω
(√

n′ + 1 δn,n′+1 δm,m′ δσ,−1 δσ,−µ δσ′,µ′ −
√
m′ δn,n′ δm,m′−1 δσ′,1 δσ,µ δσ′,−µ′

+
√
n′ δn,n′−1 δm,m′ δσ,1 δσ,−µ δσ′,µ′ −

√
m′ + 1 δn,n′ δm,m′+1 δσ′,−1 δσ,µ δσ′,−µ′

)

+ iΓl

[√
n′m′ δn,n′−1 δm,m′−1 δσ,µ δσ′,µ′ −

1

2
(n′ +m′) δn,n′ δm,m′ δσ,µ δσ′,µ′

]

+ i γ

(
δσ,−1 δσ′,−1 δn,n′ δm,m′ δσ,−µ δσ′,−µ′ −

2 + µ+ µ′

4
δn,n′ δm,m′ δσ,µ δσ′,µ′

)

+ iΓp

(
δσ,1 δσ′,1 δn,n′ δm,m′ δσ,−µ δσ′,−µ′ −

2− µ− µ′
4

δn,n′ δm,m′ δσ,µ δσ′,µ′

)
,

(S1)

where the notation s(r) labels the nearest-neighbouring sites of r, the indices n, n′,m,m′ and σ, σ = ±1 run over the
occupation numbers of the cavity modes and the TLE pseudospin states respectively, and

ψ(r) ≡ Tr(ρ̂ âr) =
∑

n

∑

σ

√
n+ 1 cn+1,n,σ,σ(r) (S2)

is the superfluid order parameter, namely the condensate amplitude. The mean-field stationary state of the system
~c0 is determined either by propagating in time the Gutzwiller-Lindblad equation i ∂t ~c(r) = L̂[~c(r)] · ~c(r) through a
fourth-order Runge-Kutta algorithm until it converges to the NESS or by directly solving the linear problem for the
NESS.

Besides the order parameter value, other local expectations values are straightforwardly evaluated through the
following formulas,

n(r) ≡ Tr(ρ̂ n̂r) ≡
∑

n

∑

σ

n cn,n,σ,σ(r) , (S3)
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2

∆n2(r) ≡ Tr
{
ρ̂ [n̂r − n(r)]

2
}

=
∑

n

∑

σ

n2 cn,n,σ,σ(r)− n(r)
2
, (S4)

Sz(r) ≡ 1

2
Tr(ρ̂ σ̂zr ) =

1

2

∑

n

∑

σ

σ cn,n,σ,σ(r) , (S5)

S−(r) ≡ 1

2
Tr
(
ρ̂ σ̂−r

)
=

1

2

∑

n

cn,n,1,−1(r) , (S6)

providing respectively the average photon density (namely, the average occupation number of the cavity mode) and
its variance, and the population difference and polarization of the TLE coupled to the cavity (not examined in this
work) at site r. Moreover, we can easily estimate the purity

P ≡ Tr
(
ρ̂2
)

=
∑

n,m

∑

σ,σ′

|cn,m,σ,σ′ |2 (S7)

and the von-Neumann entropy

S ≡ −Tr[ρ̂ ln (ρ̂)] = −
∑

i

λi ln (λi) (S8)

of the NESS, where we have made the hypothesis of a uniform steady state under our local approximation of ρ̂. In
particular, we notice that the purity P is identical to the Frobenius norm of the density matrix. In Eq. (S8), the
summation runs over the eigenvalues λi of the density matrix ρ̂.

S2. DETAILS ON THE PHASE DIAGRAM OF THE HARD-CORE STATIONARY STATE

A. Approximate estimation of the Mott/superfluid critical boundary

Quantitative insights on the energy scales involved in the development of coherence inside the IP and in the breaking
of U(1) symmetry in the SFP can be obtained by an exact derivation of the NESS density matrix ~c0. Formally, this
calculation amounts to simply determine the unique eigenvector of L̂[~c(r)] with vanishing eigenvalue, which corresponds
to the mean-field approximation of the IP state. As a final result, in the hard-core limit U/J →∞ (where the bosonic
occupation number is restricted to 0, 1) we find that the density matrix consists of five independent coefficients only,
having expressions

(c0)0,1,1,−1 =
z J Γl
Γp Ω

+ i
(Γp + Γl + γ) Γl

2 Γp Ω
, (S9a)

(c0)0,0,−1,−1 =
γ

Γp
c0,0,1,1 +

(Γl + γ) Γl
Γ2
p

, (S9b)

(c0)0,0,1,1 =
γ

Γp
+

Γp Γl
4 Ω2

[(
2 Ω

Γp

)2

+

(
1 +

Γl + γ

Γp

)2

+

(
2 z J

Γp

)2
]
, (S9c)

(c0)1,1,−1,−1 =
Γl + γ

Γp
, (S9d)

(c0)1,1,1,1 = 1 , (S9e)

to be normalized by the trace Tr(ρ̂) =
∑
n

∑
σ (c0)n,n,σ,σ. Now, assuming to work in the limit γ � Γp, so that the

TLE’s are most of the time in their excited state σ = 1, and under the realistic condition Γl � Γp, the order of
magnitude of the critical value of the photon bandwidth z Jc can be straightforwardly obtained by imposing

(c0)
J=Jc
0,0,1,1

(c0)
J=Jc
1,1,1,1

' 1 , (S10)
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FIG. S1. Panel (a): mean-field behavior of the NESS observables across the Mott/superfluid transition at constant Ω/Γp =
Γl/Γp = 1.6 · 10−1 and γ/Γp = 10−3 in the weak-coupling regime, see also the solid lines in Fig. 1(b) of the main text. Panel
(b): the equivalent of panel (a) at a larger value of Ω/Γp = 5 · 10−1 in the strong-coupling regime, see also the dot-dashed
lines in Fig. 1(b) of the main text. Color code: average photon density [red]; density variance [orange]; cavity order parameter
[blue]; purity [black]; entropy [green]. The white (orange-shaded) area indicates the SFP (IP) region, while the cyan-shaded
stripe in panel (b) highlights the values of z J for which a dynamical instability due to the Goldstone mode appears, see
Subsection S6(B).

namely that the probability of a cavity to be either occupied or empty is about the same. From this condition, we get

z Jc
Γp
' 1

2

√
Γem

Γl
− 1 , (S11)

where Γem = 4 Ω2/Γp is the effective photon emission rate into the cavities and which is in good agreement with
the location of the Mott/superfluid boundary for a moderately large Ω. Importantly, we note that the critical point
exists as long as Γem/Γl ≥ 1, namely when the light emission rate exceeds losses, which sets a lasing condition for
the stabilization of the superfluid state. Therefore, Γem can be regarded as a reliable estimation of the effective
pumping rate as stated in the main text. Instructive information can be also extracted from the off-diagonal element
(c0)0,1,1,−1, which quantifies the degree of quantum coherence in the IP. Comparing its (unnormalized) modulus at
J = 0 with the value at J = Jc, we find

∣∣∣(c0)
J=0
0,1,1,−1

∣∣∣ =
(Γp + Γl + γ) Γl

2 Γp Ω
<
∣∣∣(c0)

J=Jc
0,1,1,−1

∣∣∣ '
√

Γl
Γp

(S12)

where the inequality holds compatibly with the usual hypothesis Γp � Γl, γ and, not surprisingly, when the lasing
condition Γem/Γl ≥ 1 is fulfilled. Therefore, coherence in the IP state develops upon increasing the hopping and
strongly relates to the photon leakage rate Γl around the critical point, as we also observed by commenting the
excitation spectrum of the IP in the main text. This result points out once more the key role played by different
dissipation mechanisms in building coherence in the system.

B. Additional features of the phase diagram

In this Subsection, we give a more detailed account of the mean-field properties of the NESS that we touch upon
in the main text discussion.

In Fig. S1, we provide a complete view of the mean-field predictions for local observables across the phase diagram
in the weak-coupling [panel (a)] and strong-coupling [panel (b)] regimes, corresponding to TLE-cavity couplings G ∼ 1
and G & 1 respectively, where G = Ω2/ (Γp Γl). In the former case, the entropy S (purity P ) of the NESS is maximal
(minimal) in the deep IP: here, the effective pumping is not sufficiently large compared to photon losses to stabilize a
Mott-like state, but leads to a mixed state with a large density variance. The onset of coherence by the introduction
of hopping processes purifies the NESS, as the average density rapidly approaches conditions of diluteness. Quite
different behaviors and non-monotonicities appear instead in the strong-coupling regime, as already pointed out in
the main text. In this case, the entropy (purity) is an increasing (decreasing) function of J in the IP, except for
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FIG. S2. Panel (a): J-dependence of the relative deviation of the lasing frequency of the superfluid order parameter from its
equilibrium value ωeq = z J (2n0 − 1) +ωc for Ω/Γp = 5 · 10−1, Γl/Γp = 5 · 10−2 and γ/Γp = 10−3. The white (orange-shaded)
area indicates the SFP (IP) region. Panel (b): J-dependence of the order parameter of the SFP for different constant values of
Ω, ranging from the weak-coupling regime (light-blue line) to the strong-coupling limit (purple line), corresponding to distinct
horizontal cuts of the phase diagram shown in Fig. 2(a) of the main text. Panel (c): Ω-dependence of the order parameter of
the SFP for increasing constant values of J , corresponding to distinct vertical cuts of the same phase diagram.

a neighbourhood of the Mott/superfluid critical point. In the SFP, the behaviors of S and P change abruptly and
follow again symmetrically opposite trends, with the former reaching a minimum where the order parameter develops
its absolute maximum. We finally notice that, in the strong-coupling regime, the density variance is maximal in the
vicinity of the Mott/superfluid transition; notably, we also find that the maximal value of the condensate density is
remarkably close to its equilibrium value ρc = ∆n2/n0, a quantitative match that further supports our description of
the strongly-coupled SFP at optimal J as the closest realization of the hard-core bosonic state at equilibrium found
in our system.

Turning our attention specifically to the SFP, we first comment on the oscillation or lasing frequency ω0 of the
order parameter, the typical behavior as a function of the hopping J is shown in the leftmost panel of Fig. S2.
Here, we show the deviation of ω0 from the effective chemical potential of the hard-core system at equilibrium
ωeq = z J (2n0 − 1) + ωc, see also Subsection S3(B). ω0 is exactly equal to its equilibrium counterpart at the critical
point Jc and displays a highly non-monotonic behavior across the various regimes of the SFP. Eventually, the relative
deviation (ω0 − ωeq) /ωeq converges to a finite value in the dilute limit of the system.

A more intriguing property of the SFP is represented by its particle/hole character, which we addressed by comparing
the different behaviours of the condensate density ρc = |ψ0|2 and the cavity filling n0 either at fixed J or at fixed
Ω. In Fig. S2(b) and (c), we illustrate the behavior of the order parameter modulus |ψ0| as a function of J and Ω
respectively, showing in particular how the strong-coupling behavior discussed in the main text gradually develops
upon increasing Ω in the former panel. In particular, we verify that the SFP regions where |ψ0| is an increasing
function of J at constant Ω coincide exactly with the regions where |ψ0| is a decreasing function of Ω at constant
J . In other words, J and Ω turn out to have opposite physical roles from the point of view of the superfluid order
parameter. This justifies the diagonal orientation of the hole-superfluidity area highlighted in the mean-field phase
diagram reported in Fig. 1(a) of the main text. Importantly, the same observation applies also to n0, which is always
an overall decreasing (increasing) function of J (Ω). It immediately follows that the particle/hole superfluid character
R = sgn(∂ρc/∂n0) does not depend on which quantity is held fixed while evaluating the derivative.

S3. MEAN-FIELD THEORY AND COLLECTIVE EXCITATIONS OF THE HARD-CORE BOSE GAS

A. Holstein-Primakoff mapping

In the hard-core limit U/J →∞, the BH model (1) can be recast into the Hamiltonian of a XXZ model through the
Holstein-Primakoff mapping of hard-core bosons to spin operators τ̂ ir. In particular, under the identifications âr → τ̂−r
and n̂r → (τ̂zr + 1) /2, we obtain

ĤBH = −J
∑

〈r,s〉
τ̂+
r τ̂−s +

Ū

4

∑

〈r,s〉
τ̂zr τ̂

z
s +

2ωc + z Ū

4

∑

r

(τ̂zr + 1) , (S13)
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where we have also included a nearest-neighbour interaction term with energy scale Ū for the sake of generality. More
in detail, this is exactly the non-local repulsive coupling that emerges from second-order perturbation theory on top
of the Mott state of the model when one considers a very large but finite value of the Hubbard interaction energy
U : in this case, Ū ∝ t2/U . The equations of motion of the spin operators can be readily found via the Heisenberg
equation, yielding

i ˙̂τzr = −2 J
∑

s(r)

(
τ̂+
r τ̂−s − h.c.

)
, (S14)

i ˙̂τ−r = J τ̂zr
∑

s(r)

τ̂−s +
Ū

2
τ̂−r
∑

s(r)

τ̂zs +
2ωc + z Ū

2
τ̂−r . (S15)

B. Mean-field theory at equilibrium

Within the mean-field approximation, we consider the average values of the operators appearing in Eqs. (S14)-(S15)
and decouple those fields that act on different sites. Renaming 〈τ̂zr 〉 → 2n(r)− 1 and 〈τ̂−r 〉 → ψ(r) (which stands for
the photonic order parameter), we have

i ṅ(r) = −J
∑

s(r)

[ψ∗(r)ψ(s)− c.c.] , (S16)

i ψ̇(r) = 2J n(r)
∑

s(r)

ψ(s) + Ū ψ(r)
∑

s(r)

n(s)− J
∑

s(r)

ψ(s) + ωc ψ(r) , (S17)

which can be regarded as the Gross-Pitaevskii equations (GPE) for the hard-core regime. Let us now assume that
the stationary state of the system is provided by a uniform ansatz for the average local density n(r) = n0 and for the
order parameter ψ(r) = ψ0 e

−i ω t. Therefore, we are left with only one equation,

ω ψ0 = z J (2n0 − 1)ψ0 + z Ū n0 ψ0 + ωc ψ0 , (S18)

providing the oscillation frequency of the order parameter,

ωeq = z J (2n0 − 1) + z Ū n0 + ωc , (S19)

which can be also regarded as the effective chemical potential of a quantum degenerate gas [3]. In particular, we
point out that, in the case of the hard-core lattice, the mean-field shift of the energy due to interactions is solely due
to the hopping and reads ∆µ = z

(
2 J + Ū

)
n0. Notice also that a special property of the hard-core regime is the

coupling between the density and order parameter fields. A noteworthy consequence of this fact is the exact relation
|ψ(r)|2 = n(r) [1− n(r)] valid within mean-field theory at equilibrium, meaning that the order parameter modulus is
the geometric average of the particle and hole densities.

Taking advantage of the identity |ψ0|2 = n0 (1− n0), we can calculate the optimal value of n0 through the mini-
mization of the mean-field energy

EBH/V = −z J |ψ0|2 +
z Ū n2

0

2
+ ωc n0 , (S20)

where V is the lattice volume. In particular, we obtain

n0 =
z J − ωc

z
(
2 J + Ū

) , (S21)

so that

|ψ0|2 =
(z J − ωc)

[
z
(
J + Ū

)
+ ωc

]

z2
(
2 J + Ū

)2 . (S22)

With reference to the strong-coupling regime of our driven-dissipative model, we find that the more pure is the hard-
core state approached by the SFP for Jc < J < Jm (where Jm marks the crossover to the dilute regime of the SFP),
the closer the average density is to the half-filling value n0 = 1/2, see e.g. Figure S1(b).
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C. Collective excitations of the superfluid state at equilibrium

The elementary excitations on top of the mean-field hard-core state determined before can be accessed by considering
small-amplitude fluctuations around the condensate order parameter and the average density as follows,

n(r) = n0

[
1 + wk e

i(k·r−ωk t) + w∗k e
−i(k·r−ωk t)

]
, (S23)

ψ(r) = ψ0

[
1 + uk e

i(k·r−ωk t) + v∗k e
−i(k·r−ωk t)

]
e−i ω t . (S24)

Inserting the linearized fields (S23)-(S24) into the GPE (S16)-(S17), we obtain the eigenvalue equation



(1− 2n0) J(k) + z Ū n0 + ωc 0
[
2 z J + Ū(k)

]
n0

0 (2n0 − 1) J(k)− z Ū n0 − ωc −
[
2 z J + Ū(k)

]
n0

(1− n0) [z J + J(k)] − (1− n0) [z J + J(k)] 0





uk

vk
wk


 = ωk



uk

vk
wk


 , (S25)

where we have defined Ū(k) = 2 Ū
∑d
a=1 cos (ka). The eigenvalues ωk provide the energy spectrum of the collective

modes of the hard-core state, the most relevant of which is the Goldstone branch

ωhc
G (k) =

√√√√
(
z Ū + 2ωc

)2

z2
(
2 J + Ū

)2 [z J + ε(k)]
2

+ 2 |ψ0|2
[
2 z J + Ū(k)

]
[z J + ε(k)] , (S26)

which is an acoustic excitation with sound velocity [4]

chc
s =

√
2 z J

(
2 J + Ū

)
|ψ0| =

√
2 z J

(
2 J + Ū

)
n0 (1− n0) =

√
2 J (z J − ωc)

[
z
(
J + Ū

)
+ ωc

]

z
(
2 J + Ū

) . (S27)

To conclude, we notice that the sound velocity becomes imaginary (signalling a dynamical instability of the ground
state) for ωc < −z

(
J + Ū

)
and ωc > z J .

S4. COMPLETE EXPRESSION AND PROPERTIES
OF THE BOGOLIUBOV-DE GENNES SUPEROPERATOR L̂k

Fluctuations on top of the NESS are formally expressed as

~c(r, t) = ~c0(t) + δ~c(r, t) = Û(t)
[
~c0 + ~uk e

i(k·r−ωk t) + ~v∗k e
−i(k·r−ω∗k t)

]
Û†(t) , (S28)

where the unitary operator Û(t) = e−i(n̂+σ̂z/2)ω0 t rotates the density matrix in the reference frame of limit cycles (if
present). Hence, the matrix elements of the upper diagonal block of the Bogoliubov-de Gennes Lindbladian L̂k are
given by

An
′,m′,µ,µ′

n,m,σ,σ′ (k) = Ln
′,m′,µ,µ′

n,m,σ,σ′ [~c0] + J(k)
[(√

n (c0)n−1,m,σ,σ′ −
√
m+ 1 (c0)n,m+1,σ,σ′

)√
n′ δn′−1,m′ δµ,µ′

+
(√

n+ 1 (c0)n+1,m,σ,σ′ −
√
m (c0)n,m−1,σ,σ′

)√
n′ + 1 δn′+1,m′ δµ,µ′

]

− ω0

(
n−m+

σ − σ′
2

)
δn,n′ δm,m′ δσ,µ δσ′,µ′ .

(S29)

The Bogoliubov equations governing the particle (~uk) and hole (~vk) sectors are essentially related by complex conju-
gation, as a direct consequence of the Hermitian connection between the elements of the density matrix cn,m,σ,σ′(r).
As a result, we obtain that particle and hole fluctuations are related to each other by transposition through
uα,k,n,m,σ,σ′ = vα,k,m,n,σ′,σ. We additionally notice that, as a byproduct of the global U(1) invariance of the ansatz (4),
there is a single zero-energy eigenmode ωα=0,k = 0 corresponding to the NESS itself [5]. Also, the eigenvalues of L̂k

with Re
(
ωα,k

)
6= 0 can be grouped into anti-conjugate pairs as ωα,k = ±ω′α,k + i ω′′α,k, since Re

[
Tr
(
Âk

)]
= 0; however,

a less intuitive relation holds between positive- and negative-energy eigenvectors.
For the sake of clarity, we specify that in the present work we never fix the normalization of the two (distinct)

components of the right eigenvectors (~uα,k, ~vα,k), as the semi-analytical expression of the observables of interest will
be shown to be always independent of its choice, see Subsection S8(A).
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S5. FLUCTUATIONS OF RELEVANT OBSERVABLES

In this Section, we describe in detail how the fluctuation amplitudes of the collective modes in different observables
channels are properly defined within our linear response approach.

Inserting the density matrix expansion (5) into the expression of Eq. (S3), we find that linear fluctuations of the
local photon density due to the (α,k) excitation behave as

n(r) =
∑

n

∑

σ

n
[
(c0)n,n,σ,σ + uα,k,n,n,σ,σ e

ik·r + v∗α,k,n,n,σ,σ e
−ik·r

]
= n0 +

(
Nα,k e

ik·r + c.c.
)
, (S30)

where we have the density spectral weight

Nα,k ≡
∑

n

∑

σ

nuα,k,n,n,σ,σ . (S31)

Similarly, the order parameter is perturbed according to

ψ(r) =
∑

n

∑

σ

√
n+ 1

[
(c0)n+1,n,σ,σ + uα,k,n+1,n,σ,σ e

ik·r + v∗α,k,n+1,n,σ,σ e
−ik·r

]
= ψ0 + Uα,k e

ik·r + V ∗α,k e
−ik·r ,

(S32)
where

Uα,k ≡
∑

n

∑

σ

√
n+ 1uα,k,n+1,n,σ,σ (S33)

and

Vα,k ≡
∑

n

∑

σ

√
n+ 1 vα,k,n+1,n,σ,σ =

∑

n

∑

σ

√
n+ 1uα,k,n,n+1,σ,σ (S34)

measure the particle and hole character of a given excitation with respect to the photon field, respectively.
We highlight that, whereas particle and hole fluctuations of the density matrix are related by simple transposition

~vk = (~uk)
T , there is no obvious particle-hole symmetry condition for excitations of the photon field, since |Uα,k| 6=

|Vα,k| in principle. This is due to the fact that uα,k,n,m,σ,σ′ 6= u∗α,k,m,n,σ′,σ in general, meaning that either particle or
hole fluctuations of the density matrix are not individually bound to be Hermitian. For completeness, we also stress
that the spectral amplitudes determined above should be interpreted as relative weights of the excitation modes in
each excitation channel, since we never specify the normalization of the Bogoliubov components (~uα,k, ~vα,k).

Using Eq. (S32), we can also estimate the spectral contribution of each excitation mode to amplitude and phase
perturbations of the order parameter. To lowest order, upon writing the order parameter as ψ(r) = |ψ(r)| exp [i ϕ(r)],
the former kind of fluctuations reads

δ |ψ(r)| ≈ δ {|ψ(r)| cos [ϕ(r)]} =
1

2
δ [ψ(r) + c.c.] =

1

2
(Uα,k + Vα,k) eik·r + c.c. , (S35)

while phase fluctuations are approximately captured by

δϕ(r) ≈ δ {|ψ(r)| sin [ϕ(r)]}
|ψ(r)| =

1

2 i |ψ(r)|δ [ψ(r)− c.c.] ∝ 1

2 i
(Uα,k − Vα,k) eik·r + c.c. (S36)

S6. ADDENDA ON THE EXCITATION SPECTRUM IN THE SUPERFLUID PHASE

A. Fluctuation amplitudes of the collective modes in the SFP

In Fig. S3, we illustrate how the fluctuation amplitudes of the collective modes of the SFP change by increasing
J across the anti-adiabatic crossover, which takes place at z J/Γp ≈ 5.5 for the chosen parameters. Interestingly, we
notice that the Goldstone hybridization takes place also at the level of the fluctuation amplitudes, see in particular the
comparison between panels (A.2)-(A.3) and (B.2)-(B.3). More precisely, upon increasing the hopping J , the D-mode
gradually loses its density character and acquires the same amplitude character of the ghost mode in the diffusive
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FIG. S3. Fluctuation amplitudes of the collective modes of the SFP with respect to different excitation channels for the same
parameters of Fig. 2 in the main text. Columns from left to right correspond to increasing values of the hopping J , in particular:
(a)-(a′) z J/Γp = 3; (b)-(b′) z J/Γp = 5.5 ≈ z Jm/Γp; (c)-(c′) z J/Γp = 10. Rows from top to bottom: modulus of the density
weight Nα,k and amplitude/phase weights Uα,k ± Vα,k amplitudes for each collective mode.

momentum region just before the hybridization point. Moreover, in panels (C.1)-(C.3), we explicitly show that the
D-mode is always characterized by a large phase character, comparable to the one of the non-hybridized Goldstone
branch, and indeed becomes the excitation with the highest phase character after the anti-adiabatic crossover.

As mentioned in the main text, the observed drastic change in the density character of the D-mode across the SFP
could indicate that more general dynamical observables probing two-body correlations of the SFP – corresponding to
intensity correlations in the present quantum optical context – could be the ideal targets of measurement protocols
aimed at detecting the spectral properties of the hybridized Goldstone mode. Since the Gutzwiller approximation is
known to underestimate pair correlations at the level of Gaussian fluctuations, such a topic goes beyond the scope of
the present work, and we leave it as an open problem for future investigations.

B. Additional comments on the anti-adiabatic regime of the SFP

It is important to highlight that the TLE losses (γ) turn out to have little effect on the spectral properties discussed
previously: increasing γ/Γp has the simple outcome of spoiling population inversion in the IP and pushing the critical
hopping Jc to larger values. It is instructive to compare this result with what happens in an exciton-polariton
condensate when dissipation of the reservoir polaritons is faster than losses in the condensate: in that context,
the Goldstone mode strongly entangles with the dissipative channels as well, but the condensate is prone to density
modulations due to the repulsive interaction with the reservoir [6, 7]. By contrast, in the present case phase excitations
are always stable in the anti-adiabatic regime, independently of the ratio γ/Γl. This suggests a different physical origin
for the present Goldstone hybridization: indeed, we argue that the Rabi coupling with the TLE’s is key to a stable
mixing of dissipation and coherent dynamics at large J . As a side note, we point out that such anti-adiabatic limit
of the SFP does not admit a simple Gross-Pitaevskii description. This would in fact require a mean-field decoupling
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FIG. S4. Panel (a): imaginary part of the excitation spectrum of the SF state for Ω/Γp = 5 · 10−1, Γl/Γp = 5 · 10−2

and γ/Γp = ·10−3. Different line styles refer to distinct hopping values in a neighbourhood of the absolute maximum of the
condensate density ρc = |ψ0|2 appearing in the strong-coupling regime, see panel (b) of Fig. S1. The hopping value z J/Γp ≈ 2.5
corresponds to the maximum of ρc and the largest energy separation between the amplitude mode damping ΓA(k) and the
D-mode damping ΓD(k). Panels (b)-(b′): excitation spectrum of the SF state stabilized for Ω/Γp = 1, Γl/Γp = 5 · 10−2 and
γ/Γp = ·10−3 with the hopping energy z J/Γp = 6.5, inside the equivalent of the cyan-shaded area in Fig. S1(b). The dashed
green line indicates the incommensurate momentum for which the NESS is maximally unstable. As in the main text, the
expression ω − ω0 indicates that the excitation energy is calculated with respect to the lasing frequency ω0.

of the Rabi interaction and hence would neglect all those local fluctuations that are instead fully incorporated by our
Gutzwiller theory.

C. Peculiarities of the SFP spectrum in the strong-coupling regime

In panel (a) of Fig. S4, we illustrate how the developing of an absolute maximum in the condensate density in
the strong-coupling regime (associated with a purification of the NESS into the true hard-core state at equilibrium)
reflects into the excitation spectrum, focusing in particular on the damping rates of the collectives modes. Starting
from values of J just beyond the critical point (z J/Γp = 2.1), we observe that the energy scale of the amplitude
damping decreases significantly and reaches its minimal value exactly where the maximum of the condensate density is
located (z J/Γp = 2.5). At the same time, the D-mode damping reaches larger values. Thus, the maximal separation
between the two branches takes place at the optimal hopping. It must be noted that also the radius of the sphere of
diffusive momenta displays the same kind of behavior.

Whereas in the previous Subsection we have shown that the SFP is not affected by dynamical instabilities in the
dilute regime of the system, a different scenario is obtained when considering the superfluid states preceding the
anti-adiabatic crossover (J . Jm) in the strong-coupling limit, as illustrated in panels (b) and (b′). Here, we find
that the Goldstone damping rate ΓG(k) becomes positive over a finite momentum range if the effective TLE coupling
G = Ω2/ (Γp Γl) exceeds a specific threshold. Additional proof of the prominent physical role played by the light-
matter interaction is given by the fact that the Goldstone energy εG(k) corresponding to the maximum value of ΓG(k)
[see the red point in panel (b) and the green dashed line in panel (b′)] scales linearly with Ω.
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S7. CALCULATION OF LINEAR RESPONSE FUNCTIONS

A. General equations

Let us consider a generic perturbation in the momentum-frequency channel (k, ω) represented by the operator F̂r,

ĤP(t) ≡
∑

r

[
Vk,ω e

i(k·r−ω t)F̂r + V ∗k,ω e
−i(k·r−ω t)F̂ †r

]
. (S37)

Gaussian fluctuations induced by such perturbation can be evaluated by considering its contribution at linear order
to the dynamical equations of quantum fluctuations (6), which simply generalize into

ω

(
~uk
~vk

)
= L̂k

(
~uk
~vk

)
+ Ŵk,ω

(
~c0

(~c0)
∗

)
, (S38)

where Ŵk,ω ≡ diag
(
ŵ1,k,−ŵ∗2,k

)
, with the matrix blocks ŵ1,k ∼ Vk,ω and ŵ2,k ∼ V ∗k,ω given by the Lindbladian terms

corresponding the perturbation operators F̂r and F̂ †r respectively. By inverting Eq. (S38), we obtain a convoluted
extension of the original Bogoliubov-de Gennes eigenvalue problem,

(
~uk
~vk

)
=
(
ω 1̂− L̂k

)−1
(
ŵ1,k,ω 0

0 −ŵ2,k,ω

)(
~c0

(~c0)
∗

)
. (S39)

To unfold the previous expression, we resort to the standard spectral theory of Lindbladian operators [8, 9] to
conveniently introduce the left eigenvectors (~xα,k, ~yα,k) of the Lindbladian L̂k as

(
~xα,k
~yα,k

)†
L̂k = ωα,k

(
~xα,k
~y†α,k

)
, (S40)

which form an orthonormal basis and a complete set with the right eigenvectors (~uα,k, ~vα,k), such that

(
~xα,k
~yα,k

)†(
~uβ,k
~vβ,k

)
= δα,β ,

∑

α

(
~xα,k
~yα,k

)†(
~uα,k
~vα,k

)
= 1̂ . (S41)

Therefore, making use of the spectral decomposition of L̂k

L̂k =
∑

α

(
~uα,k
~vα,k

)
ωα,k

(
~xα,k
~yα,k

)†
, (S42)

we can rewrite Eq. (S39) as

(
~uk
~vk

)
=
∑

α

(
~uα,k
~vα,k

)
1

ω − ωα,k

(
~xα,k
~yα,k

)†(
ŵ1,k,ω 0

0 −ŵ2,k,ω

)(
~c0

(~c0)
∗

)

= R̂ · Ω̂(ω) ·
[
R̂−1 · Ŵk,ω ·

(
~c0

(~c0)
∗

)]
,

(S43)

where Ω̂αβ(ω) = δα,β/ (ω − ωα,k) and the matrix R̂ gathers the right eigenvectors of L̂k on its columns. After carrying
out the calculation of the right-hand side of Eq. (S43), the linear response function for a given observable Ô(r, t) is
directly provided by the corresponding linear expansion in terms of the fluctuation amplitudes (uk, vk), see Section S5.

It is important to observe that Eq. (S43) is independent of the choice of the normalization of the right/left eigen-
vectors of L̂k. In fact, fixing the normalization of the two components of the right eigenvectors to some number Nk,
the left eigenvectors have to scale with N−1

k , since the latter are given by the rows of R̂−1.



11

B. Density fluctuations from the Bragg response

As a first illustrative example, let us consider a Bragg perturbation

ĤBragg(t) ≡
∑

r

Vk,ω cos (k · r− ω t) n̂r . (S44)

This Hamiltonian perturbation produces a modulation in the photon density according to the identity δ〈n̂r〉 =
ρk,ω e

i(k·r−ω t) + c.c., where ρk,ω = χn(k, ω)Vk,ω with χn(k, ω) being defined as the density response function. In this
case, Eq. (S39) specializes into

(
~uk
~vk

)
=

1

2

∑

α

(
~uα,k
~vα,k

)
1

ω − ωα,k

(
~xα,k
~yα,k

)† [ ~N0

−
(
~N0

)∗
]
Vk,ω , (S45)

where (N0)n,m,σ,σ′ = (n−m) (c0)n,m,σ,σ′ . The density fluctuation amplitude ρk,ω ≡ Nk is given by contracting the
left-hand side of Eq. (S45) by a tensor with elements n δn,n′ δm,m′ δn,m δσ,µ δσ′,µ′ δσ,σ′ in both the ~uk and ~vk sectors,
hence

2 ρk,ω =
∑

α

Nα,k
ω − ωα,k

(
~xα,k
~yα,k

)† [ ~N9

−
(
~N0

)∗
]
Vk,ω

=
∑

α

Nα,k

[
~x∗α,k · ~N0 − ~y∗α,k ·

(
~N0

)∗]

ω − ωα,k
Vk,ω

= 2
∑

α

Nα,k

(
~x∗α,k · ~N0

)

ω − ωα,k
︸ ︷︷ ︸

χn(k,ω)

Vk,ω .

(S46)

Therefore, we observe that the density spectral weightNα,k sets directly the strength of the dynamical density response
of the system in the NESS. We remark that, since the analytic continuation of χn(k, ω) can be identified with the
two-particle Green’s function of the system, a suitable manipulation of its Fourier transform provides the lowest-order
estimation of spatial and temporal density correlations.

S8. LINEAR RESPONSE OF ONE-BODY OPERATORS

A. Calculation of the retarded Green’s function

Similarly to the case of a density perturbation, we start our derivation by studying the response of the photon field
to a perturbation creating a particle (removing a hole) with a given momentum in the NESS, namely

Ĥp(t) ≡ 1

2

∑

r

[
ηk,ω e

i(k·r−ω t) â†r + η∗k,ω e
−i(k·r−ω t) âr

]
, (S47)

which breaks the U(1) symmetry of the model explicitly and therefore is coupled to fluctuations of the order parameter
ψ(r). The linear response equations corresponding to the perturbation (S47) have the form

(
~uk
~vk

)
=

1

2

∑

α

(
~uα,k
~vα,k

)
1

ω − ωα,k

(
~xα,k
~yα,k

)† [ ~P0

−
(
~Q0

)∗
]
ηk,ω , (S48)

where we have defined the vectorized matrices

(P0)n,m,σ,σ′ =
√
n (c0)n−1,m,σ,σ′ −

√
m+ 1 (c0)n,m+1,σ,σ′ (S49)

and

(Q0)n,m,σ,σ′ =
√
n+ 1 (c0)n+1,m,σ,σ′ −

√
m (c0)n,m−1,σ,σ′ . (S50)
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Now, the previous expression allows us to calculate two different types of response functions, either in the (i) particle
or in the (ii) hole channel.

The first kind of response requires to determine the particle fluctuation amplitude Uα,k defined in
Eq. (S33): this is given by contracting both the sides of Eq. (S48) by an operator with tensor components√
n+ 1 δn+1,n′ δn,m′ δn,m+1 δσ,µ δσ′,µ′ δσ,σ′ in the ~uk sector and

√
n+ 1 δn,n′ δn+1,m′ δn,m−1 δσ,µ δσ′,µ′ δσ,σ′ in the ~vk

sector. As a result, we obtain

2 Ψk,ω =
∑

α

Uα,k
ω − ωα,k

(
~xα,k
~yα,k

)† [ ~P0

−
(
~Q0

)∗
]
ηk,ω

=
∑

α

Uα,k

[
~x∗α,k · ~P0 − ~y∗α,k ·

(
~Q0

)∗]

ω − ωα,k
=

= 2
∑

α

Uα,k

(
~x∗α,k · ~P0

)

ω − ωα,k
︸ ︷︷ ︸

GR(k,ω)

ηk,ω ,

(S51)

where Ψk,ω is the order parameter variation. Physically speaking, the response of the order parameter to the pertur-
bation (S47) in the particle channel can be interpreted as the normal component of the retarded Green’s function of
cavity photons [10, 11]. More explicitly, the explicit expression of our prediction for the Green’s function is

GR(k, ω) ≡
∑

α

Zα,k
ω − ωα,k

=
∑′

α

[
Zα,k

ω − ωα,k
+

Y ∗α,k
ω + ω∗α,k

]
, (S52)

which has been written in a more symmetric form in the last equality. Here, we have defined the quasiparticle

Zα,k ≡ Uα,k
(
~x∗α,k · ~P0

)
(S53)

and quasihole

Yα,k ≡ Vα,k
(
~y∗α,k · ~P∗0

)
(S54)

weights, while the summation on the right-hand side of Eq. (S52) is restricted to excitations with positive real energy.
The second type of dynamical fluctuations which can be drawn out of Eq. (S51) encodes the response of the order

parameter in the hole channel. This corresponds to extracting the hole amplitude Vα,k from the right-hand side of
Eq. (S48) in the same way as outlined above for the normal component. The final result of this procedure is the
retarded anomalous component of the Green’s function, having the expression

∆R(k, ω) ≡
∑

α

Zα,k
ω − ωα,k

=
∑′

α

[
Zα,k

ω − ωα,k
+

Y
∗
α,k

ω + ω∗α,k

]
, (S55)

where we have introduced the anomalous quasiparticle Zα,k = (Vα,k/Uα,k)Zα,k and quasihole Y α,k = (Uα,k/Vα,k)Yα,k
weights. As one could expect by physical intuition, anomalous correlations play a major role in the SF phase of the
NESS and, in analogy with the case of exciton-polariton condensates [12], can be exploited for directly probing the
excitation spectrum of the system, as we will discuss more in depth in the following Subsections S8(C)-(D).

Applying the concepts of Keldysh field theory [13], the simplest object provided by the retarded Green’s function
is the DoS of the NESS, reading

A(k, ω) ≡ − 1

π
Im[GR(k, ω)] = − 1

π

∑

α

ω′′α,k Z
′
α,k +

(
ω − ω′α,k

)
Z ′′α,k

(
ω − ω′α,k

)2

+
(
ω′′α,k

)2 (S56)

where the symbols ′ and ′′ indicate real and imaginary parts respectively. It is worth noticing that the DoS is not a
plain weighted sum of Lorentz distributions g(ω) ∝ Λ/

[
(ω − ωp)2

+ Λ2
]
centered around the real parts of the poles of

the Green’s function (as it would happen at equilibrium), but in principle could get a finite contribution from terms
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with the functional form f(ω) ∝ (ω − ωp) /
[

(ω − ωp)2
+ Λ2

]
, which is an odd function of ω with respect to ω′α,k and

therefore corresponds to a sort of Fano resonance of the collective modes. This is indeed the case of the DoS profile
shown in Figure 3(b) of the main text and is a crucial consequence of the fact that the quasiparticle weight Zα,k
can generically acquire a complex value out of equilibrium, since it quantifies no longer the overlap of a collective
mode with a single-particle excitation of the NESS, but depends on the spectral decomposition of the Lindbladian in
a non-trivial way [14]. In particular, this is inherently connected to the fact that right and left eigenvectors are not
related by simple conjugation, meaning that the creation and destruction of an elementary excitation on top of the
stationary state are not inverse processes. This is the reason why the sign of A(k, ω) can become negative when the
NESS is far from being an equilibrium configuration of the system, which we have shown to be the case of the IP in
the main text. In this respect, we notice that the local DoS A(ω) ≡ V −1

∑
kA(k, ω) satisfies the sum rule

∫
dω A(ω) = 1− 2 〈n̂〉 (S57)

as a product of the commutation relation between hard-core bosonic operators. This automatically implies that
A(k, ω) < 0 for some values of (k, ω) at least for n0 > 1/2: once again, this hints at the fundamental role of strong
interactions in building the insulating regime of the model in combination with strong dissipation [15].

B. Dynamical response to a weak probe: transmittivity, reflectivity and four-wave mixing functions

In this Subsection, we briefly review the input-output theory of optical cavities in the specific context of our driven-
dissipative setting in order to introduce the response functions of interest in our study, namely those giving the
transmittivity and reflectivity of the cavity array.

Along the same conceptual lines of Subsection S8(A), an alternative quantum description of the driving of a
cavity photon mode by an incident coherent light beam can be obtained by resorting to the so-called input-output
theory [16, 17] for optical cavities [18]. In particular, the Hamiltonian term describing the external driving of a
standard two-sided cavity by an incident field of amplitude Ein(r, t) is akin to the perturbation of Eq. (S47) and can
be written in k-space as

Ĥdrive(t) ≡ i
∑

k

[
ηF,k Ẽin(k, t) â†k − η∗F,k Ẽ∗in(k, t) âk

]
, (S58)

where Ẽin(k, t) is the Fourier transform of Ein(r, t) and ηF,k is the transmission amplitude of the front mirror of the
cavity. In the following, we will also denote the transmission amplitude of the back mirror by ηB,k. We remark that
these coefficients are physically linked with the radiative damping Γl by the simple relation 2 Γl = |ηF,k|2 + |ηB,k|2.
For the sake of simplicity, we always assume that the cavity has a fully symmetric geometry such that the transmission
amplitudes read

∣∣ηF/B,k

∣∣ =
√

Γl and are independent of momentum. We also recall here that ηF/B,k can be usually
extracted from transmission and reflection measurements on the unloaded cavity.

The finite transmittivity of the front and the back mirrors of the cavity is responsible for the re-emission of light
with an amplitude proportional to the intra-cavity field 〈âk〉. By means of the boundary conditions set by the two
cavity mirrors, in the linear-response regime the reflected and transmitted fields can be related to the intra-cavity
field within the input-output framework as [19, 20]

ẼT(k, ω) = T (k, ω) Ẽin(k, ω) (S59a)

ẼR(k, ω) = R(k, ω) Ẽin(k, ω) (S59b)

respectively, where we have now formally introduced the transmission

T (k, ω) ≡ −i ηF,k η
∗
B,kGR(k, ω) (S60)

and reflection

R(k, ω) ≡ 1− i |ηF,k|2GR(k, ω) = 1 +

(
ηF,k

ηB,k

)∗
T (k, ω) (S61)

functions discussed in the main text. Thus, we can write the expression of the reflectivity as

|R(k, ω)|2 =
[
1− π |ηF,k|2A(k, ω)

]2
+ |ηF,k|4 Re[GR(k, ω)]

2
, (S62)
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FIG. S5. Pictorial sketch of the FWMmeasurement protocol. The colored lines represent an instance of the collective excitations
of the SFP. The black arrows illustrate the scattering process from which the FWM signal is generated: the system is perturbed
at (k, ω) (lower green dot) and its response is probed at (−k,−ω).

which recovers the result of Eq. (7) in the main text.
Importantly, it must be noted that the standard sum rule

|T (k, ω)|2 + |R(k, ω)|2 = 1 + 2 |ηF,k|2
{

Γl |GR(k, ω)|2 + Im[GR(k, ω)]
}

?
= 1 (S63)

is fulfilled only if Γl |GR(k, ω)|2 = −Im[GR(k, ω)] = π A(k, ω). Whereas this condition is usually satisfied in many
common situations at equilibrium, it could be instead largely violated in the presence of peculiar out-of-equilibrium
effects, for instance when the NESS is characterized by spontaneous energy emission. In the main text and in
Subsection (S8)(B), we have shown that this is not only the case of the SFP, where the k = 0 lasing state naturally
enhances both T (k, ω) and R(k, ω), but remarkably also of the IP, for which we uncover an anomalous behavior of the
response functions as a consequence of the population inversion phenomenon. Indeed, since we know that A(k, ω) < 0

for some specific values of (k, ω) across the whole IP, we straightforwardly obtain that |R(k, ω)|2 > 1 from Eq. (S62)
and that Eq. (S63) is always violated in this regime, as given by the numerical results presented in Fig. 3 of the main
text.

We conclude this Subsection by introducing a third useful response function of interest in the SFP, going under the
name of Four-Wave Mixing (FWM) signal, which has been proven useful to attain a solid experimental evidence of the
amplitude excitation branch in exciton-polariton condensates [12]. The physical process underlying the measurement
protocol of the FWM response is sketched in Fig. S5. Elementary excitations are created on top of the condensate by
injecting extra photons with a probe laser beam with a finite momentum k and tuned at a frequency ω. The response
of the system is then observed via the coherent light emission at an opposite wave vector −k and energy 2ω0−ω: the
existence of a coherent coupling between the frequencies ω and 2ω0 − ω (located symmetrically around the effective
chemical potential ωc) and the momenta ±k from the fact that the elementary excitations of the condensate consist
of a coherent superposition of plane waves at (k, ω) and (−k, 2ω0 − ω): this can be in turn interpreted as a clue of
the existence of anomalous correlations in the system. Indeed, it turns out that the FWM signal is simply provided
by the retarded anomalous propagator,

F (k, ω) ≡ −i ηF,k η
∗
B,k ∆R(k, ω) (S64)

which has been shown to couple positive- and negative-energy modes of the system, see Eq. (S55) and the following
Subsection.

C. Comparison between the DoS and the transmittivity spectrum in the IP

In this Subsection, we provide a more complete discussion of the DoS structure and transmittivity spectra in the
IP to integrate the discussion on dynamical response functions in the main text. In particular, in Figure S6 we place
side by side the DoS and |T (k, ω)|2 profiles as done for the reflectivity.

In the Mott-like regime at low J [Fig. S6(a)], most part of A(k, ω) lies well below the effective chemical potential
ω∗ and has a dual profile depending on the momentum of QP excitations. In particular, whereas the DoS reaches its
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FIG. S6. Spectral profiles of the DoS (left column) and the transmittivity (right column) for the same parameters considered
in Figure 3 of the main text. In particular, Ω/Γp = 5 · 10−1, Γl/Γp = 5 · 10−2 and γ/Γp = 5 · 10−3. From top to bottom, the
hopping energy is (a)-(a′) z J/Γp = 0.5, (b)-(b′) z J/Γp = 2 and (c)-(c′) z J/Γp = 2.5.

minimal value at low momenta, it covers a wider range of states at the border of the Brillouin zone, where it splits into
two peaks. This behavior can be elegantly explained in terms of the key role played by the quasiparticle weight Z+,k

in the DoS expression (S56). The real part of Z+,k, associated with the Lorentzian component of A(k, ω), is negative
and gives a leading contribution for non-local QP states, which explains the well-visible peak of the DoS at small
momenta. By contrast, the imaginary part of Z+,k, which instead weighs the odd resonance of QP modes, favours
localized states and yields the corresponding double-peaked profile of the DoS for |k| ≈ π. However, since we always
have |Z ′+,k| > |Z ′′+,k| at small J , the latter contribution is never sufficiently large to flip the DoS sign in the Mott-like
regime. Therefore, we realize that both the negativity of Z ′+,k and a significant imaginary component Z ′′+,k strongly
relate to the appearance of population inversion and, more generally, hint at the strong non-equilibrium character of
the NESS. The shape of the DoS carries over to the transmittivity [Fig. S6(a′)]. However, the latter function shows no
signature of the non-equilibrium effects due to population inversion, in stark contrast with the reflectivity spectrum
discussed in the main text.

As J increases, population inversion is progressively lost: this manifests into the QP band nearing the frequency
threshold ω∗ starting from non-local states at k = 0. In particular, as underlined in the main text, we notice that states
lying above ω∗ acquire a significant positive weight. Once again, we can quantitatively understand this mechanism
from the point of view of the quasiparticle weight. Moving towards the point where the QP band flattens out and
n0 = 1/2 [Fig. S6(b)], both the components of Z+,k decrease in amplitude towards comparable values and become
flat in momentum. Thus, the DoS has precisely the shape of a Fano resonance around the QP energy ω+,k ≈ ω∗,
determined by the imaginary part of Z+,k. As before, the anomalous features of the DoS have little effect on |T (k, ω)|2
[Fig. S6(b′)]: the only byproduct of the spectral redistribution of the DoS is the non-monotonic dependence of the
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FIG. S7. Panel (a): particle-hole character Cα,k = (|Uα,k| − |Vα,k|) / (|Uα,k|+ |Vα,k|) of the collective modes of the SFP.
Specifically, Cα,k = ±1 for pure particle (hole) excitations, respectively. Panel (b): typical profile of the DoS in the SFP.
Panels (c)-(e): behavior of the transmittivity, reflectivity and FWM signals in the SFP, respectively. All the panels refer to the
representative case of the SF state at z J/Γp = 10 for Ω/Γp = 5 · 10−1, Γl/Γp = 5 · 10−2 and γ/Γp = 10−3, see the excitation
spectrum in Fig. 2(b)-(b′) of the main text.

transmittivity, which uniformly decreases as compared to its small J values and starts accumulating at ω∗ as expected.
Increasing further J towards the Mott/superfluid transition [Fig. S6(c)], the real part of the quasiparticle weight

becomes large and positive for states for which ω > ω∗, while the imaginary component remains a vanishingly
small number and gives the residual negative DoS below ω∗. Ultimately, the DoS becomes strictly non-negative
exactly before the critical point J = Jc. Here, the whole spectral weight has been transferred above the effective
chemical potential ω∗: then, this frequency scale can be rigorously identified with the critical energy of delocalized
QP excitations, which are then free to condense. The transmittivity profile quite mimics the very same behavior of
the DoS [Fig. S6(c′)], reaching values above 1 already inside the IP. Indeed, the IP critical state close to the transition
is the only regime where both the transmittivity and the reflectivity are found to allow for light amplification in the
absence of long-range coherence, anticipating the physics of the lasing state.

D. More details on the dynamical response of the SFP

We start our supplementary analysis of dynamical response in the SFP by looking at the DoS. In Fig. S7 (b), we
report the typical form of A(k, ω) in the symmetry-broken phase, including the anti-adiabatic limit of the model.
On the whole, the DoS gets a non-negligible contribution from the Goldstone branch only and exhibits a butterfly
shape with a perfectly asymmetric structure around ω = ω0. On the one hand, states at ω > 0 have a non-vanishing
and positive distribution in the range of diffusive momenta ∆kdiff , which is peaked around (k = 0, ω = 0) because
of condensation, such that it connects continuously to the DoS of quasiparticle excitations of the critical IP [see
Fig. S6 (d)]; on the other hand, states belonging to the ghost branch at ω < 0 have a negative weight which mirrors
exactly A(k, ω > 0).

Such a reflection symmetry is another indirect consequence of the particle-hole symmetry characterizing the Gold-
stone and amplitude excitations at low momenta. This feature is explicitly shown in Fig. S7 (a), where we plot the
particle-hole character Cα,k ≡ (|Uα,k| − |Vα,k|) / (|Uα,k|+ |Vα,k|) of the SFP excitations. In particular, we highlight
that the particle/hole amplitudes of the excitation modes are all equal and satisfy |Uα,k| = |Vα,k| in the window
of diffusive momenta: this means that the non-equilibrium superfluid state, in spite of its non-trivial particle-hole
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character depending on J , is characterized by an emergent particle-hole symmetry on long-range spatial scales. Such
a symmetry is then gradually broken by the Goldstone and ghost branches only as the momentum is increased, with
the two excitations acquiring predominantly a particle and a hole character, respectively.

For the sake of clarity, we remark that the odd behavior of the DoS around ω = 0 is a genuine product of the Gold-
stone diffusivity out of equilibrium and must not be confused with the well-known DoS structure of positive/negative-
norm modes in an interacting bosonic system at equilibrium: in particular, we find that an essential ingredient for the
functional form of the DoS in the SFP is again the imaginary component of the quasiparticle weight of the Goldstone
mode Z ′′G,k < 0, which is negligible everywhere but in the region of diffusive momenta as expected. Hence, we find
that the DoS is well-approximated by the expression

A(k, ω) = − 1

π

Z ′′G,k ω

ω2 +
(
ω′′G,k

)2 , (S65)

from which we can extract also a prediction for the local DoS at low frequency by analytical integration. In d
dimensions, we obtain

A(ω) = − 1

π

Ωd

(2π)
d

Z ′′G√
D

arctan

(√
DΛD

ω

)
, (S66)

where we have assumed Z ′′G,k ≈ Z ′′G, D is the Goldstone diffusion coefficient and ΛD is a momentum cutoff enclosing the
diffusive momentum regime where ω′′G,k ≈ −D k2. Notably, the static limit of the local DoS reads A(ω → 0) ∼ Z ′′G/

√
D

and provides direct information on the diffusion coefficient. We remind here that ω′′G,k and Z ′′G,k refer also to the
hybridized D-mode becoming gapless in the anti-adiabatic regime of the SFP.

As already illustrated in the main text, the very same symmetry that governs the DoS behavior at low energy reflects
in the response functions of the photon field, whose profiles are compared in Fig. S7(c)-(e) for the same value of J as
the DoS. Differently from the case of exciton-polariton condensates, the signals of the upper and lower branches have
equally strong intensities in both the transmittivity and the reflectivity spectra, with a weak asymmetry appearing
when the particle-hole symmetry of the excitations is increasingly broken at large momenta. Thus, the inherent
symmetry properties of the hard-core NESS make the T (k, ω), R(k, ω) and F (k, ω) as equally sensitive probes of the
low-energy excitations of the superfluid state of the photon fluid. A secondary property of the transmittivity spectrum
is the appearance of a dark resonance for ω < 0 [see Fig. S7(c)], well below the signal of the ghost mode, which moves
to larger energies and acquires a broader dispersion as J increases. For this reason, we interpret this feature as the
effect of the destructive interference between the amplitude mode and the Goldstone/D-mode branches at the level
of the Green’s function, postponing a deeper understanding of such finer aspects to a more detailed study of the SFP
dynamical behavior.
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