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ABSTRACT. We introduce a variational structure for the Fourier-Cattaneo (FC) system which is a second-order
hyperbolic system. This variational structure is inspired by the large-deviation rate functional for the Kac pro-
cess which is closely linked to the FC system. Using this variational formulation we introduce appropriate
solution concepts for the FC equation and prove an a priori estimate which connects this variational structure
to an appropriate Lyapunov function and Fisher information—the so-called FIR inequality. Finally, we use this
formulation and estimate to study the diffusive and hyperbolic limits for the FC system.
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1. INTRODUCTION
Since the pioneering works of Onsager and Machlup [1], it has been known that a force-flux constitutive

law at the macroscopic (coarser) scale is the manifestation of averaging effects that one observes in the
passage from a microscopic (finer) level to a macroscopic (coarser) level of description. Over the last decade,
this intuition has been made precise via the connection between underlying stochastic particle systems and
macroscopic diffusion equations using the language of large deviations [2–4]. Large-deviation theory lends a
natural variational structure—which is tightly linked to gradient-flow theory—to the diffusion equation (and
other related parabolic systems), thereby making the notion of a force-flux constitutive relation precise. Yet,
to the best of the authors’ knowledge, no such link has either been established or investigated for hyperbolic
systems.
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1
FIGURE 1. Plot of the fundamental solution to the diffusion equation )t� = div(�∇�) in red and hyperbolic heat
equation (1.1) in blue for two initial conditions �0 = �0, 1[0,∞) (in green and cyan respectively) in ℝ. The diffusion
equation clearly manifests an infinite speed of propagation with a smooth profile and unbounded support, while the
support of the hyperbolic equation evolves discontinuously with a finite speed.

The first aim of this work is, therefore, to provide a starting point for the development of variational
structures for hyperbolic systems. For this, we consider the so-called hyperbolic heat equation introduced
by Cattaneo [5] (see [6] for a detailed survey)
(1.1) �)2t � + )t� = div(�∇�) .

The relaxation time � quantifies the time the system takes to respond to a force, and can be seen by writ-
ing (1.1) as a system of first-order equations, often called the Fourier-Cattaneo (FC) system

)t� = −div! ,(1.2a)
)t! = −

1
�
(

! + �∇�
)

.(1.2b)
Historically, Cattaneo introduced this model in the context of heat conduction with a modified Fourier law
to overcome the problem of an infinite speed of propagation (see Figure 1). It should be noted that several
models with finite speed of propagation exist in the literature, for instance in [7–9]. However, all of these are
purely parabolic and in this article we will focus on the hyperbolic FC system (1.2).

We will derive a variational structure for the FC system using a stochastic system introduced in [10–12],
and subsequently studied by Kac [13] andMcKean [14]. While the resulting variational structure does reveal
new insights into the FC equation, our procedure has limitations in higher dimensions, as we discuss below;
therefore, in this article, we will restrict ourselves to the FC system in one spatial dimension. We envision
that this first study of variational structures for such equations will provide an alternate physically-motivated
viewpoint to hyperbolic equations and widen the scope of techniques developed to study gradient flows.

The second aim of this work is to use this variational structure to rigorously analyse the asymptotic be-
haviour of the FC system in two limiting regimes, namely, the diffusive limit (Section 4.1) and the hyperbolic
limit (Section 4.2) using evolutionary convergence and the recently introduced FIR inequality [15]. Formal
and rigorous diffusive and hyperbolic limits for kinetic models using various techniques can be found e.g.
in [16–19]. Although asymptotic limits of the FC system have been studied in the past, for instance, via
Chapman-Enskog expansions (e.g. in [14,20]), our method offers an alternative approach to proving asymp-
totic limits using variational techniques and with minimal assumptions on the initial data.
1.1. Stochasticmodel for FC equation. Parabolic equations often arise as hydrodynamic limits of (possibly
interacting) particle systems (see [21] and references therein). For instance, the diffusion equation )t� =
div(�∇�) can either be viewed as the hydrodynamic limit of independent Brownian motions on a continuous
state space or of an exclusion process on a discrete lattice. In comparison, the literature on stochastic particle
systems for second-order hyperbolic equations is far less developed (cf. [22] and references therein). In [13],
Kac studied a simple jump-process model that he formally connected to the FC system and the closely related
telegrapher’s equation. We now briefly describe this particle system and its connection to the FC system (1.1).

2



In Appendix A, we give a heuristic motivation for the large deviations, which provides the basis for the
variational structure.

t

FIGURE 2. A sample path of the Kac process with speed V = 2 and switching rate � = 1
2 .

Consider a particle moving in a one-dimensional torus T with a constant speed V > 0 that may switch
its direction according to a time-homogeneous Poisson process with the rate �—see Figure 2 for a sample
path of this process. This process, called a Kac process in this article, is a piecewise deterministic Markov
process on ΩV ∶= T × {−V , V }. We now considerN independent copies of this process labeled by the pair
of position and velocity (xit, vit) ∈ ΩV . Throughout this article, we use the subscript for the evaluation at
time t. Classical results [23, Section 11.4] state that the empirical measure

(1.3) �Nt ∶= 1
N

N
∑

i=1
�(xit,vit) ,

converges almost surely, in the many-particle limitN →∞, to the measure-valued evolution
(1.4) )t� + v )x� = � (�♯� − �) , with �t = law(xit, v

i
t) ,

where �♯� is the push-forward of � under the velocity-reversal map �(x, v) = (x,−v), and hence (�♯�)(dx, v) =
�(dx,−v). Henceforth, we will refer to (1.4) as the Kac equation. To illustrate the connection of (1.4) to the
FC system, we introduce the density � and the flux ! as
(1.5) �(dx) ∶=

∑

v∈{−V ,V }
�(dx, v) , !(dx) ∶=

∑

v∈{−V ,V }
v �(dx, v) .

The mapping �t ↦ (�t, !t) is in fact a bijection, and the inverse mapping is given by
(1.6) �(dx, v) = 1

2

(

�(dx) +
!(dx)
v

)

.

It is easily checked that the density-flux pair formally evolves according to
)t� = −)x! ,(1.7a)
)t! = −V 2)x� − 2�! ,(1.7b)

which is the FC system (1.2) in one-dimension with � = V 2∕(2�) and � = 1∕(2�).
As stated above, we focus on the one-dimensional FC system (1.7), a rather restrictive setting which is

due to its connection to the Kac process. Consider, instead, a (Kac-type) particle moving in two dimensions,
with the velocity switching randomly between four possibilities {(−V , 0), (V , 0), (0,−V ), (0, V )} =∶ V with
the rate �. The corresponding law of the process, which is also the limit of the empirical measure as above
but now in two-dimensions, reads

)t�(x, v) + v ⋅ ∇x�(x, v) = �
∑

u∈V∖{v}

(

�(x, u) − �(x, v)
)

.

The evolution for the density-flux pair in this two-dimensional setting is given by
)t� = −div! ,
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)t! = −div
[

∑

v∈V
(v ⊗ v) �(x, v)

]

− 4�! .

The evolution for the flux ! is not closed since it requires the second-order moment of � in v. Clearly,
the evolution of this second moment requires information on further higher-order moments, which leads to
an infinite set of equations. This is not an issue in the one-dimensional setting since, for v ∈ {−V , V },
we have v2 = V 2, and therefore the second moment in the flux evolution reduces to the zeroth moment �.
In other words, the relation between � and the pair (�, !) is a bijection only in one dimension. This is a
strong limitation of the Kac process and it is unclear how to construct higher-dimensional analogues which
circumvent this issue. The appearance of an infinite chain of moments is a typical phenomenon in statistical
mechanics and indicates that a few moments are not sufficient to describe the system unless we enforce an
artificial closure [24–26], which only acts as an approximation to the macroscopic FC system, or perform
hyperbolic scaling limits [27–29].
1.2. Outline of results. The first half of the paper is devoted to developing the variational structure for
the FC system (1.7) (Section 2) and deducing the implications of the structure (Section 3). We begin by
introducing a variational structure for the Kac equation (1.4).

Define the functional ℐ ∶ C([0, T ];(ΩV )) ×([0, T ];(ΩV ;ℝ2))→ [0,+∞], with j = (j1, j2) as

(1.8) ℐ (�, j) =

⎧

⎪

⎨

⎪

⎩

∫

T

0
Ent(j2t | � �t) dt if )t� + div j = 0 and j1 = v �,

+∞ otherwise.
Here Ent(⋅|⋅) is the relative entropy of measures and div is the divergence operator; they are defined in
(2.11) and (2.6) respectively (cf. also Definition 2.2 for the definition of the continuity equation). This
functional, which we call the rate functional since it is inspired by the large deviations of the Kac process
(see Appendix A for details), is a variational formulation for the Kac equation (1.4) in the sense that

ℐ ≥ 0 and ℐ (�, j) = 0 ⟺ � solves (1.4).
Using the bijective mapping (1.6), we construct an equivalent variational formulation for the FC system (1.7)
(in the sense as above) via the relation
(1.9) J (�, !) = inf

{

ℐ (�, j) ∶ )t� + div j = 0 , � = � + !∕v
}

.

Both ℐ and J have a logarithmic structure inherited from the relative entropy, which is in sharp contrast to
quadratic structures for related second-order hyperbolic systems [30, Section 5.4].

The variational structure provided by (1.8) allows us to establish the so-called FIR inequality in Section 3:
(1.10) Ent(�t |�) + �∫

t

0
(�r |�) dr ≤ Ent(�0 |�) +ℐ (�, j) , for every t ∈ [0, T ] ,

which relates the free energy Ent(� |�), the Fisher information(� |�) (see (3.1) for its definition), and the
rate function ℐ (�, j) for any pair (�, j) with ℐ (�, j) < ∞. Similar estimates have been discussed in recent
years for a variety of systems [15, 31–33].

By projecting the FIR inequality onto the density-flux pair (�, !), we obtain
Ent(�t |T ) +

1
2� ∫

t

0

‖

‖

‖

‖

d!r
d�r

‖

‖

‖

‖

2

L2(T ,�r)
dr ≤ Ent(�0 |�) +ℐ (�, j) , for every t ∈ [0, T ] ,

where T is the Lebesgue measure on the torus T . This inequality is the main ingredient in establishing
compactness for density-flux-pair sequences in the later part of the paper.

In the second half of the paper, we use the aforementioned variational structures to study two asymptotic
limits of (1.4) (and equivalently of the FC system (1.7)). We now briefly discuss both of these limits and
outline the variational technique used to study these limits.
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Section 2.3
(1.7) J (�, !) = 0

Section 2.2
(1.4) ℐ (�, j) = 0⟺

Section 4.1
(1.11) Diffusive limit

V , �
→ ∞

Section 4.2
(1.12) Hyperbolic limit

�→ 0

Section 3
(1.10) FIR inequality

Appendix A
(A.6) ℐ (�, j)

Appendix B
(B.8) (S , B,ℛ)

FIGURE 3. Schematic outline of the article. The variational structureℐ (�, j) and the corresponding solution concepts
(as zeros of this structure) for the Kac equation (1.4) and the FC system (1.7) are introduced in Sections 2.2 and 2.3
respectively. Section 2.3 also shows that these two equations are equivalent. The FIR inequality for the Kac equa-
tion is introduced in Section 3. The asymptotic parabolic and hyperbolic limits are discussed in Sections 4.1 and 4.2
respectively. In Appendix A we heuristically motivate the variational structure ℐ (�, j) from large deviations, and in
Appendix B we derive a pre-GENERIC structure (S , B,ℛ) for the FC system from the variational structure J (�, !).

The first limit is a diffusive limit where both V and � grow to infinity, such that � ∶= V 2∕(2�) stays
fixed. At the level of the underlying (stochastic) Kac process, this corresponds to the situation where both
the speed V of the particle and the switching rate � of the velocity become large. This is reminiscent of the
usual diffusive/parabolic scaling for stochastic particle systems that leads to diffusive equations in the limit.
This is exactly observed in our setting, with the limiting system given by the parabolic diffusion equation

)t� + )x! = 0 ,(1.11a)
! = −� )x� .(1.11b)

Such a limit is also observed by formally passing � → 0 in the original FC system (1.2).
The damped hyperbolic system (1.7) presents another interesting limit when the switching rate � vanishes

while the speed V remains constant. In this case, we expect that any smoothing effect is completely removed:
the initial mass is transported across space without being distorted. From (1.7), we may directly infer the
limit equations

)t� = −)x! ,(1.12a)
)t! = −V 2)x� .(1.12b)

This is a wave equation with speed of propagation V .
We use a variational technique developed in [31] to study these limits. To illustrate the idea, assume that

the family of pairs (�", j") is a variational (equivalently, weak) solution of the Kac equation (2.1), parame-
terized by some scale-separation parameter " > 0; " = 1∕V , � in the diffusive (with � rewritten in terms of
V , �) and hyperbolic limit respectively. Our aim is to establish the behaviour of the system as " → 0. Since
the solutions are characterized by the rate functional ℐ " via ℐ "(�", j") = 0, we establish the asymptotic
behaviour as "→ 0 by answering the following two questions:

(1) Compactness: Do solutions of ℐ "(�", j") = 0 have sufficient compactness properties allowing one
to extract a converging subsequence in a suitable topology t?

(2) Liminf inequality: Is there a limit functional ℐ̄ ≥ 0 such that
(�", j")

t
⟶ (�̄, |̄) ⟹ lim inf

"↘0
ℐ "(�", j") ≥ ℐ̄ (�̄, |̄)?

And if so, does one have the equivalence
ℐ̄ (�̄, |̄) = 0 ⟺ (�̄, |̄) solves a well-posed limit dynamics?
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We answer both these questions for approximate solutions, i.e., for pairs (�", j") having finite rate function
ℐ "(�", j") <∞ and with well-prepared initial data—note that the right hand side of the FIR inequality (1.10)
corresponds to exactly these requirements. The asymptotic behaviour of the exact solutions ℐ "(�", j") = 0
is a special case of our analysis. The proofs of both these steps in the variational technique crucially hinge
on a dual formulation of the rate functionals (Section 2.2).

In the diffusive limit, the limit functional ℐ̄ (4.13) turns out to be a reformulation of the Wasserstein
gradient structure for the diffusion equation (1.11) (see Remark 7), suggesting that the corresponding limit
pairs (�̄, |̄) areWasserstein-gradient-flow solutions of the diffusion equation. At the stochastic particle-system
level, this limit can be seen as a transformation of Poissonian noise to Brownian noise as reflected in the
quadratic-Wasserstein limiting functional. In the hyperbolic limit, instead, the limit functional ℐ̄ (4.22)
trivializes, i.e., it takes the value zero for pairs (�, !) satisfying (1.12) and +∞ otherwise. While in stark
contrast with the diffusive limit, it is consistent with the variational structure for the Kac equation when
�→ 0, suggesting the ‘deterministic’ behavior of particle trajectories. At the stochastic particle-system level,
this limit can be seen as a complete removal of randomness which leads to the trivial limiting functional.
Novelty. Considerable literature has been devoted to the study of variational structures for gradient flows in
the last two decades and exploiting them to study asymptotic limits [34–42]. In recent years, connections
with underlying particle systems via large deviations have been exploited to expand this class to systems
with additional non-dissipative effects, albeit mostly for diffusive systems [2–4,15,31,43,44]. In this work,
we push variational structures towards hyperbolic equations via large deviations. The evolution of the flux
in (1.7) depends on the flux itself, which makes our system and the corresponding analysis different from
the latter literature on non-dissipative systems where the evolution of the flux only depends on the density,
effectively making the flux a dummy variable at the macroscopic level (see Section 5 for a discussion).

It should be noted that the well-posedness of the FC system in arbitrary dimensions (andmany other related
models) can be established using classical techniques for hyperbolic equations. Furthermore, the study of the
asymptotic limits for the FC system is a classical problem that has been discussed by Kac [13] and others [20,
45, 46]. Since we are interested in the FC system as arising from a stochastic system, we consider it as a
measure-valued evolution, in contrast to the classical hyperbolic framework. Consequently, our variational
solution-concepts also differ from the classical literature. Furthermore, we study the asymptotic limits of the
FC system via the convergence of the associated variational structures (following ideas in [15, 31]), which
corresponds to the convergence of the FC system and fluctuations around it and requires minimal conditions
on the initial data.
1.3. Summary of the notation.

T One-dimensional torus
V Speed of the Kac particles
� Velocity switch rate of the Kac particles
� ∶= V 2∕(2�) Diffusivity in the FC system
ΩV ΩV ∶= T × {−V , V }
Ω1 Ω1 ∶= T × {−1, 1}
� Velocity-reversal map �(x, v) = (x,−v) Sec. 1.1
� Stationary measure for the Kac equation Sec. 2.1
 Lebesgue measure on the set 
Unif Uniform measure on the set 
() Space of probability measures on 
() Space of finite, signed, Borel measures on 
‖ ⋅ ‖TV Total-variation norm on measures (2.4)
∇, div Gradient and divergence operators on ΩV (2.6)
CE(0, T ; ΩV ) Pairs (�, j) satisfying the continuity equation on ΩV Def. 2.2
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CE(0, T ; T ) Pairs (�, !) satisfying the continuity equation on T Lem. 4.5
ME(0, T ; T ) Triples (�, !,K) satisfying the momentum equation on T Def. 2.6
ℐ Rate function for the Kac equation (2.7)
J Rate function for the FC system (2.13)
ℋ ,ℒ Hamiltonian and Lagrangian for the Kac equation (2.9), (2.10)
ℐ V Rate function used in the diffusive limit (4.2)
ℐ � Rate function used in the hyperbolic limit Sec. 4.2
Ent(⋅|⋅) Relative entropy (2.11)
(⋅|�) Fisher information with respect to � (3.1)
dBL(⋅, ⋅) Bounded Lipschitz metric on probability measures (4.11)

Throughout, we use common measure-theoretic notation and terminology. For a measure � ∈([0, T ]×
), for instance, we often write �t ∈ () for the time slice at time t; we also often use both the notation
�(x) dx and �(dx) when � has Lebesgue density. We equip () and () with the narrow topology, in
which the convergence is characterized by duality with continuous and bounded functions on  . We equip
C(B;()) and C(B;()) with the uniform topology in B ⊆ ℝ and the narrow topology in  .

2. SOLUTION CONCEPTS, CONTINUITY EQUATION, AND VARIATIONAL FORMULATION
The Kac equation (1.4) and the FC system (1.7) are the two main evolution equations studied in this

article. In what follows, we introduce two solution concepts—the one of a weak solution and of a variational
solution—for the Kac equation, where the latter makes use of a variational structure. Theorem 2.5 discusses
the equivalence of these two notions. Both these solution concepts carry over to the FC system using the
bijection (1.5) as is clarified in Theorem 2.10.
2.1. Solution concepts for the Kac equation. Recall the Kac equation

{ )t� + v )x� = � (�♯� − �) ,
�|t=0 = �0 ∈ (ΩV ) ,

(2.1)
where (�♯�)(⋅, v) = �(⋅,−v). Note that this evolution admits the uniform distribution � ∶= T ⊗Unif{−V ,V }as the unique invariant measure.
Definition 2.1 (Weak solution). The curve � ∈ C([0, T ];(ΩV )) in the space of probability measures is a
weak solution to the Kac equation (2.1) if

(1) �|t=0 = �0,(2) for any ' ∈ C1,0(ΩV ) and 0 ≤ s ≤ t ≤ T ,

∫ΩV
'(x, v) �t(dxdv) − ∫ΩV

'(x, v) �s(dxdv) = ∫

t

s ∫ΩV
(Q')(x, v) �r(dxdv) dr ,(2.2)

where the dependence on time is indicated in the subscript and the generator Q is defined as
(2.3) (Q')(x, v) ∶= v )x'(x, v) + �

(

('◦�)(x, v) − '(x, v)
)

.

The existence and uniqueness of weak solutions to the Kac equation will be discussed at the end of this
section in Theorem 2.5. In what follows, we will often make use of the following characterisation of the
total-variation (TV) norm. For � ∈( ;ℝd) ∶= {� = (�1,… , �d) ∶ �i ∈() for 1 ≤ i ≤ d},
(2.4) ‖�‖TV ∶= sup

{

∫
' ⋅ d� ∶ ' ∈ C( ;ℝd), |'i| ≤ 1 for all i = 1,… , d

}

.

We now introduce the notion of a continuity equation which connects a flux j = (j1, j2) to a probability
measure �. Such concepts are standard in nonequilibrium thermodynamics [47, Chapter II] (it is a special
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case of a so-called “balance equation” without a source term) and variational literature [39, Section 8.1], [44,
Def. 4.1].
Definition 2.2 (Continuity Equation). The pair (�, j) ∈ CE(0, T ; ΩV ) if

(1) � ∈ C([0, T ];(ΩV )),(2) (jt)t∈(0,T ) ⊂(ΩV ;ℝ2) is a measurable family satisfying

∫

T

0
‖jt‖TV dt <∞ ,

(3) for any ' ∈ C1,0(ΩV ) and 0 ≤ s ≤ t ≤ T ,
(2.5) ⟨', �t⟩ − ⟨', �s⟩ = ∫

t

s
⟨∇', jr⟩ dr ,

where ⟨a, b⟩ = ∫ΩV a ⋅ db and the divergence and gradient operators are defined as
(2.6) ∇' ∶=

(

)x', )v '
)

, −div j ∶= −)xj1 + �♯j2 − j2 , )v ' ∶= '◦� − ' .

Remark 1. Aweak solution (see Definition 2.1) to the the Kac equation (2.1) can be written in the form (2.5)
with j ∶= (v �, � �), since

∫ΩV
(Q')(x, v) �t(dxdv) = ∫ΩV

(

v )x'(x, v) + � )v '(x, v)
)

�t(dxdv)

= ∫ΩV
∇'(x, v) ⋅ (v, �) �t(dxdv) = ∫Ω

∇' ⋅ djt .

Therefore, a weak solution to the Kac equation with initial datum �0 also satisfies the continuity equation
with (�, (v �, � �)) ∈ CE(0, T ; ΩV ). ○

The continuity equation above is defined in terms of time-independent test functions. However, in the
proofs of asymptotic limits in Section 4.1.3 (Lemma 4.6 in particular) we will need to use time-dependent
test functions in the continuity equation because of the lack of control on the temporal regularity of the fluxes.
Lemma 2.3. Fix V ≥ 1 and (�, j) ∈ CE(0, T ; ΩV ). For any � ∈ C1c ((0, T )) and ' ∈ C

1,0(ΩV ):

∫

T

0 ∫ΩV
�̇(t)'(x, v) �t(dxdv) dt = −∫

T

0 ∫ΩV
�(t) ∇'(x, v) ⋅ jt(dxdv) dt .

Proof. For any � ∈ C1c ((0, T )), ' ∈ C1,0(ΩV ), and for sufficiently small ℎ > 0, we find

∫

T

0 ∫ΩV
1[ℎ,T ](t)

�(t) − �(t − ℎ)
ℎ

'(x, v) �t(dxdv) dt =

= 1
ℎ ∫

T

ℎ

(

�(t) − �(t − ℎ)
)

⟨', �t⟩ dt

= 1
ℎ ∫

T

ℎ
�(t) ⟨', �t⟩ dt −

1
ℎ ∫

T−ℎ

0
�(t) ⟨', �t+ℎ⟩ dt

= −1
ℎ ∫

T−ℎ

ℎ
�(t)

(

⟨', �t+ℎ⟩ − ⟨', �t⟩
)

dt − 1
ℎ ∫

ℎ

0
�(t) ⟨', �t+ℎ⟩ dt +

1
ℎ ∫

T

T−ℎ
�(t) ⟨', �t+ℎ⟩ dt

= −∫

T

0
1[ℎ,T−ℎ](t)�(t)

1
ℎ ∫

t+ℎ

t
⟨∇', js⟩ ds dt ,

where the final equality follows since (�, j) ∈ CE(0, T ; ΩV ) and the last two terms vanish since ℎ may be
chosen so that [ℎ, T − ℎ] fully contains the support of � .
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Note that by the definition of the continuity equation, t↦ ‖jt‖TV ∈ L1((0, T )) and therefore s ↦ ⟨∇', js⟩also belongs to L1((0, T )). In the following we will prove that

∫

T

0
1[ℎ,T−ℎ](t)�(t)

1
ℎ ∫

t+ℎ

t
⟨∇', js⟩ dsdt

ℎ→0
←←←←←←←←←←←←←←←←←→ ∫

T

0
�(t) ⟨∇', jt⟩ dt .

To prove this, we only need to show that for any f ∈ L1loc((0, T )) we have

gℎ(t) ∶= 1
ℎ ∫

t+ℎ

t
f (s) ds⟶ f (t) in L1loc((0, T )) ,

i.e., ‖gℎ−f‖L1(K) → 0 as ℎ→ 0 for every compact setK ⊂ (0, T ). By Lusin’s theorem, we find a sequence
(fj)j ⊂ c((0, T )) satisfying

‖fj − f‖L1((0,T )) → 0 .
Furthermore, for each j ∈ ℕ and ℎ ≪ 1 sufficiently small,

Aℎj ∶= ∫

T

0

|

|

|

|

1
ℎ ∫

t+ℎ

t
fj(s) ds − fj(t)

|

|

|

|

dt ≤ ∫

1

0 ∫

T

0
|fj(t + ℎs) − fj(t)| dt ds

ℎ→0
←←←←←←←←←←←←←←←←←→ 0 ,

due to the uniform continuity of fj . An application of the triangle inequality yields

‖gℎ − f‖L1(K) ≤
‖

‖

‖

‖

gℎ − 1
ℎ ∫

⋅+ℎ

⋅
fj(s) ds

‖

‖

‖

‖L1(K)
+ Aℎj + ‖fj − f‖L1((0,T )) .

For ℎ ≪ 1, the first term may be bounded from above by

∫

1

0 ∫

T−ℎ

ℎ
|f (ℎs + t) − fj(ℎs + t)| dt ds = ∫

1

0 ∫

T+ℎ(s−1)

ℎ(s+1)
|f (t) − fj(t)| dt ds ≤ ‖f − fj‖L1((0,T )) .

Consequently, we can pass first to the limit ℎ→ 0 and then j →∞ to deduce the asserted convergence.
Since � ∈ C1c ((0, T )), using the dominated convergence theorem (and the mean value theorem to provide

an upper bound), we find
lim
ℎ→0∫

T

0 ∫ΩV
1[ℎ,T ](t)

�(t) − �(t − ℎ)
ℎ

'(x, v) �t(dxdv)dt = ∫

T

0 ∫ΩV
�̇(t)'(x, v) �t(dxdv) dt

and thus arrive at the required result. �

2.2. Variational structure for the Kac equation. The goal of this section is to introduce a variational for-
mulation for the Kac equation (2.1) that will (i) induce a variational structure on the FC system (Section 2.3)
and (ii) be used to perform the asymptotic limits in Section 4.

We define the functional ℐ ∶ C([0, T ];(ΩV )) ×([0, T ];(ΩV ;ℝ2))→ [0,+∞] by

(2.7) ℐ (�, j) ∶=

⎧

⎪

⎨

⎪

⎩

∫

T

0
ℒ (�t, jt) dt if (�, j) ∈ CE(0, T ; ΩV ) ,

+∞ otherwise.
Since this functional is inspired by the large-deviation rate functional corresponding to the Kac process (see
Appendix A), hereafter we will refer to (2.7) as the rate functional.

The Lagrangianℒ ∶ (ΩV ) ×(ΩV ;ℝ2)→ [0,+∞],
(2.8) ℒ (�, j) = sup

'∈C(ΩV ;ℝ2)

(

⟨', j⟩ −ℋ (�, ')
)

,

is the Legendre dual of the Hamiltonian
(2.9) ℋ (�, ') = ∫ΩV

[

v'1(x, v) + �
(

e'2(x,v) − 1
)]

�(dxdv) .

9



Since
⟨', j⟩ −ℋ (�, ') = ∫ΩV

'1
(

j1 − v �
)

+ ∫ΩV

[

'2 j
2 − �

(

e'2 − 1
)

�
]

,

we deduce that

(2.10)
ℒ (�, j) =

⎧

⎪

⎨

⎪

⎩

sup
'∈C(ΩV )∫ΩV

[

'dj2 − �
(

e' − 1
)

d�
] if j1 = v �,

+∞ otherwise,

=

{

Ent(j2 | � �) if j1 = v �,
+∞ otherwise,

where Ent(⋅|⋅) is the relative entropy on(ΩV ) ×(ΩV ), defined as

(2.11) Ent(� | �) ∶=

⎧

⎪

⎨

⎪

⎩

∫ΩV
(f log f − f + 1) d� if � ≪ � with f ∶= d�

d�
,

+∞ otherwise.
Note that ℋ is convex in the second argument and, therefore, ℒ (�, ⋅) and ℋ (�, ⋅) are convex bi-duals.
Furthermore, ℐ ≥ 0, which is seen by choosing ' = 0 in (2.10).
Remark 2. In the Hamiltonian (2.9), the cotangent vectors ' are functions on the state space ΩV instead
of functions on the ‘space of edges’ TΩV ≅ ΩV × ΩV , as would be expected in the general case of jump
processes [44]. This discrepancy is due to the identification of jump kernels on ΩV with measures on ΩVthat we make at the end of Appendix A. ○

We now introduce the notion of a variational solution for the Kac equation as the zero level set of the rate
functional (2.7).
Definition 2.4 (Variational solution). The curve � ∈ C([0, T ];(ΩV )) is a variational solution to the
Kac equation (2.1) if there exists a measurable family (jt)t∈(0,T ) ⊂ (ΩV ;ℝ2) such that the pair (�, j) ∈
CE(0, T ; ΩV ) and

Ent
(

�|t=0 | �0
)

+ℐ (�, j) = 0 .

The following result discusses the existence and uniqueness of solution to the Kac equation (2.1) and the
equivalence of the two solution concepts introduced above.
Theorem 2.5. Given �0 ∈ (ΩV ), there exists a unique weak solution � ∈ C([0, T ];(ΩV )) to the Kac
equation (2.1). Moreover, � is a weak solution of (2.1) if and only if it is a variational solution.

Proof. Since the solution to the Kac equation is the law of a Markov process with a generator that satisfies
the maximum principle, classical results [48, Chapter 4] imply the existence of a unique martingale solution,
which in turn implies the existence of a unique weak solution.

We now discuss the equivalence of the two solution concepts. Assume that � ∈ C([0, T ];(ΩV )) is aweak solution to (2.1). Then, using Remark 1 with the choice jt = (v �t, � �t) for any t ∈ [0, T ], the pair
(�, j) ∈ CE(0, T ; ΩV ). This choice yields ℐ (�, j) = 0 and, since �t → �0 narrowly as t → 0, we also have
Ent(�|t=0|�0) = 0. Therefore, � is a variational solution. We now assume that � ∈ C([0, T ];(ΩV )) is avariational solution to (2.1). Sinceℒ ≥ 0, it follows that jt = (v �t, � �t) for almost every t ∈ [0, T ]. Since
(�, j) ∈ CE(0, T ; ΩV ), using Definition 2.2(3), we conclude that � is a weak solution of (2.1). �

10



2.3. Variational structure for the FC system. In this section, we discuss the implications of a finite rate
function ℐ for the FC system (1.7). To do so, we make a change of variables from the probability measure
� to (�, !) and the corresponding fluxes.

We begin by defining the bijection ΠV ∶ (ΩV )→ (T ) ×(T ) as
(

ΠV j
)

(dx) ∶=
(

∑

v∈{−V ,V }
j(dx, v) ,

∑

v∈{−V ,V }
v j(dx, v)

)

,

with inverse
(

Π−1V J
)

(dx, v) = 1
2

(

J1(dx) +
1
v
J2(dx)

)

, J = (J1, J2) .

The density � and the flux !, defined as (recall the motivating discussion in Section 1.1)
�(dx) ∶=

∑

v∈{−V ,V }
�(dx, v) , !(dx) ∶=

∑

v∈{−V ,V }
v �(dx, v) ,

are then given by (�, !) = ΠV �.Now, let (�, j) ∈ CE(0, T ; ΩV ). Formally multiplying the continuity equation for (�, j) by (1, v) and
summing over v ∈ {−V , V }, we obtain the following linear system

(2.12) )t� + )xJ 11 = 0 ,

)t! + )xJ 12 = −2J
2
2 ,

with (�, !) = ΠV �, J i = ΠV ji, i = 1, 2 .

Suppose that ℐ (�, j) <∞ with � = Π−1V (�, !) and j1 = Π−1V J 1. Then, the condition
(Π−1V J

1)(dx, v) = j1(dx, v) = v �(dx, v) = v
(

Π−1V (�, !)
)

(dx, v)

necessarily implies J 11 = ! and J 12 = V 2�.
We then arrive at the functionalJ ∶ C([0, T ];(T ))×C((0, T );(T ))×((0, T );(T ;ℝ2))→ [0,+∞]

given by

(2.13) J (�, !, J ) ∶=

⎧

⎪

⎨

⎪

⎩

∫

T

0
Ent

(

Π−1V Jt | �Π
−1
V (�t, !t)

)

dt, if (�, !, J2) ∈ ME(0, T ; T ),
+∞, otherwise,

where ME(0, T ; T ) is the class of solutions to the linear “momentum” system
)t� + )x! = 0 , )t! + V 2)x� = −2J2 ,

in the following sense.
Definition 2.6 (Momentum Equation). The triple (�, !,K) ∈ ME(0, T ; T ) if

(1) (�, !) ∈ C([0, T ];(T )) × C((0, T );(T ))
(2) (Kt)t∈(0,T ) ⊂(T ) is a measurable family satisfying

∫

T

0
‖Kt‖TV dt <∞,

(3) for any ', ∈ C1(T ) and 0 ≤ s ≤ t ≤ T ,

∫T
'(x) �t(dx) − ∫T

'(x) �s(dx) = ∫

t

s ∫T
)x'(x)!r(dx) dr ,(2.14a)

∫T
 (x)!t(dx) − ∫T

 (x)!s(dx) = V 2
∫

t

s ∫T
)x (x) �r(dx) dr − 2∫

t

s ∫T
 (x)Kr(dx) dr .(2.14b)

We now define the notion of a variational solution for the FC system.
11



Definition 2.7 (Variational solution). The pair (�, !) is a variational solution to the FC system (1.7) if there
exists a measurable family (Jt)t∈(0,T ) ⊂(T ;ℝ2) such that (�, !, J2) ∈ ME(0, T ; T ) and

Ent
(

Π−1V (�, !)|t=0 |Π
−1
V (�0, !0)

)

+ J (�, !, J ) = 0 .

Notice that if ℐ (�, j) = 0, then also J (�, !,ΠV j) = 0 with (�, !) = ΠV �. Hence, a variational solution
(�, j) of the Kac equation (2.1) gives a variational solution to the FC system (1.7). Moreover, observe that
J (�, !, J ) = 0 implies J2 = �!, and we recover a weak solution of the FC system (1.7), which we introduce
next together with the well-posedness.
Definition 2.8 (Weak solution). The pair (�, !) is a weak solution to the FC system (1.7) with initial datum
(�0, !0) ∈ (T ) ×(T ) if (�, !, �!) ∈ ME(0, T ; T ) with (�, !)|t=0 = (�0, !0).
Theorem 2.9. Consider the initial datum (�0, !0) ∈ (T ) ×(T ) satisfying the bounded-speed condition
(2.15) − V �0 ≤ !0 ≤ V �0 .
Then, there exists a unique weak solution to the FC system (1.7).
Proof. By the assumption on the initial datum, �0 ∶= Π−1V (�0, !0) ∈ (ΩV ). By Theorem 2.5, there exists
a unique weak solution � ∈ C([0, T ];(ΩV )) to the Kac equation (2.1). Hence, the pair ΠV � =∶ (�, !) ∈
C([0, T ];(T )) × C([0, T ];(T )) satisfies (2.14) with K = �!, and therefore is a weak solution to the FC
system (1.7) with initial datum (�0, !0).Let (�1, !1) and (�2, !2) be two weak solutions to the FC system with initial datum (�0, !0). It followsthat �i ∶= Π−1V (�i, !i), i = 1, 2, are both weak solutions to the Kac equation (2.1). From the uniqueness of
the weak solution to the Kac equation (Theorem 2.5), we find

Π−1V (�
1, !1) = Π−1V (�

2, !2) in (ΩV ) for all t ∈ [0, T ] ,
thus implying that �1 = �2 and !1 = !2. �

The following result makes the equivalence of the Kac equation and the FC system precise and follows on
the lines of the proof above.
Theorem 2.10. Let � be the weak solution to the Kac equation (2.1) with initial datum �0 ∈ (ΩV ). Then,
(�, !) ∶= ΠV � is the weak solution to the FC system (1.7) with initial data (�0, !0) = ΠV �0.

Conversely, if the pair (�, !) is the weak solution to the FC system (1.7) with initial datum (�0, !0) ∈
(T ) ×(T ) such that
(2.16) − V �0 ≤ !0 ≤ V �0 ,

then � ∶= Π−1V (�, !) is the weak solution to the Kac equation (2.1) with initial datum �0 = Π−1V (�0, !0).

The following remarks discuss the bounded-flux assumption (2.16) on the initial flux and the literature
related to the FC system.
Remark 3. The condition −V �0 ≤ !0 ≤ V �0 ensures that �0 ∶= Π−1V (�0, !0) a probability measure. It
propagates to all times and implies that, for any given measurable set, (i) the system cannot transport more
mass than themass contained in that set, and (ii) themaximum speed at which themass is transported does not
exceed V since |d!0∕d�0| ≤ V . This condition is not a distinctive feature of the FC system, but originates
from its connection to the Kac equation, i.e., the solutions to the Kac equation and the FC system can be
connected only under this bounded-flux assumption at initial time. General FC systems, however, may have
solutions � that are not probability measures but rather signed measures or Sobolev functions. The latter is
typical of the standard hyperbolic literature which works with initial data in Sobolev spaces [49]. ○

Remark 4. The FC system is related to the partially damped isothermal compressible Euler equations, where
an additional convective term is present in (1.7b). Global bounded solutions exist for initial data satisfying
condition (2.15) (cf. [50, Section 3]). In [30, Section 5.4] similar models, but for hyperbolic heat transport,
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are constructed in the form of GENERIC and differ from the FC system. The FC system, instead, possesses
only a weaker version known as pre-GENERIC [51]. Since showing this fact requires the introduction of
additional notation, we postpone the pre-GENERIC structure of the FC system to Appendix B, which may
be of independent interest. ○

3. FIR INEQUALITY
In the last section we introduced a variational structure for the Kac equation by which we defined a vari-

ational solution as its zero level set. As we shall see in the rest of this article, this variational structure also
allows us to study approximate solutions, which correspond to the non-zero level sets of the rate functional.
The regularity properties of such sub-level sets are made explicit by an a priori estimate that, for the Kac
equation, connects the relative entropy and the Fisher information (defined below) to the rate functional.
This estimate will play a crucial role in studying asymptotic limits in Section 4. Specifically, this inequality
provides control on the Fisher information (which encodes regularity properties of the flux) in terms of the
values of the rate functional.

To present this estimate, we first define the Fisher information (⋅|�)∶ (ΩV )→ [0,+∞] as

(3.1) (� |�) ∶=
⎧

⎪

⎨

⎪

⎩

1
2 ∫ΩV

(

√

d�
d�
◦� −

√

d�
d�

)2

d� if � ≪ �,
+∞ otherwise,

where � is the invariant measure for the Kac equation (2.1). The Fisher information has several useful prop-
erties, such as non-negativity, convexity, and lower semicontinuity, which are summarized in Proposition 3.2
below. It is closely related to entropy dissipation and is a natural object that appears in the variational ap-
proaches of [15, 31, 44]. We now state the FIR inequality.
Theorem 3.1. Consider a pair (�, j) ∈ CE(0, T ; ΩV ) satisfying
(3.2) Ent(�0 |�) +ℐ (�, j) <∞ ,
with �|t=0 = �0. Then, for any t ∈ [0, T ], we have

(3.3) Ent(�t |�) + �∫

t

0
(�r |�) dr ≤ Ent(�0 |�) +ℐ (�, j) .

An obvious consequence of Theorem 3.1 is that the relative entropy with respect to the stationary measure
is a Lyapunov function for the Kac equation, as we may verify by choosingℐ (�, j) = 0 and by the positivity
of the Fisher information. We comment on the assumptions of Theorem 3.1 in the following remark.
Remark 5. The initial datum being well-prepared via Ent(�0 |�) < ∞ implies that, in the x-variable, the
initial data �0(⋅, v) ≪ T for all v. Since the Kac equation is well-posed for a considerably larger class
of initial data (cf. Theorem 2.10 and Figure 1 with a Dirac initial datum), we expect that this assumption
can be relaxed to allow for such singular initial data—we give formal arguments for this observation in
Remark 6. Making these formal arguments rigorous would require significant technical machinery which
we wish to avoid in this article both to simplify the presentation and since it would not considerably improve
the underlying understanding of the system.

The assumption that the rate functional ℐ (�, j) is bounded arises naturally in the context of the large-
deviation principle (cf. Appendix A), wherein it implies that the pair (�, j) solves the Kac equation approxi-
mately. In other words, such a pair is a fluctuation around a variational solution, which is the zero level set
of the rate functional. Intuitively, Theorem 3.1 states that the connection between entropy and Fisher infor-
mation not only applies to solutions, where the Fisher information quantifies the rate of decay of entropy, but
also to fluctuations (in the large-deviation sense) around solutions. In Section 4, the FIR inequality will play
a central role in studying asymptotic limits, and a consequence of this bounded-rate-functional assumption
is that we study asymptotic convergence of both solutions and fluctuations. ○
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We now illustrate the intuitive ideas behind the proof of Theorem 3.1. The heuristic motivation makes use
of an appropriate choice for the test functions ' in the dual formulation for the Lagrangian (2.10). Assuming
that � has a smooth density �t in time, we formally calculate

1
2
d
dt ∫ΩV

�t log
�t
�
= 1
2 ∫ΩV

)t�t log
�t
�
+ 1
2 ∫ΩV

)t�t

= 1
2 ∫ΩV

)x
(

log
�t
�

)

j1t +
1
2 ∫ΩV

)v
(

log
�t
�

)

j2t + 0

= 1
2 ∫ΩV

)x
(�t
�

)

v � + 1
2 ∫ΩV

)v
(

log
�t
�

)

j2t

= 0 + 1
2 ∫ΩV

)v
(

log
�t
�

)

j2t .

The second equality follows since the pair (�, j) satisfies the continuity equation, and the zero follows since
�t ∈ (ΩV ) for every t. The third equality follows since ℐ (�, j) <∞ implies that j1t = v �t, and the zero inthe final equality follows by using integration by parts in the first integral. Using the variational form (2.10)
of the Lagrangian with the choice ' = 1

2 )v log(�t∕�), the above calculation leads to
(3.4) 1

2
d
dt ∫ΩV

�t log
�t
�

≤ ℒ (�t, jt) − �(�r |�) .

Integrating in time over [0, T ], we arrive at the FIR inequality (3.3).
To make these calculations rigorous, we need to ensure that: (i) a chain rule holds for the map t ↦

∫ΩV �t log(�t∕�), and (ii) this function is admissible in the dual formulation of the Lagrangian ℒ . Using
Proposition 3.2, which collects some required properties of the Fisher information, in Lemma 3.3 we prove a
general chain rule for appropriately regularised functions of measures. The proof of Theorem 3.1 applies this
lemma to a regularised version of �t log(�t∕�) and then passes to the limit in the regularisation parameter to
arrive at the FIR inequality.
Proposition 3.2. The Fisher information satisfies

(i) (⋅ |�) ≥ 0 on (ΩV ) and (� |�) = 0 if and only if � = �;
(ii) (⋅ |�) is convex and weakly lower semicontinuous on (ΩV ).

We skip the proof since it follows by standard arguments that may be found, for instance, in [44].
Lemma 3.3. Let (�, j) ∈ CE(0, T ; ΩV ) with

ℐ (�, j) = ∫

T

0
ℒ (�t, jt) dt <∞ ,

and, for any t ∈ [0, T ], define

�"t (dxdv) ∶= ∫T
M"(x − y) �t(dydv) dx and j"t (dxdv) ∶= ∫T

M"(x − y) jt(dydv) dx ,

whereM" is the heat kernel on T , given by

(3.5) M"(x) ∶=
1

√

2�"

∑

k∈ℤ
e−

|x−k|2

2" for " > 0 and x ∈ T .

Then, for every " > 0, the pair (�", j") satisfies the following:
(1) (�", j") ∈ CE(0, T ; ΩV ) with

�"t ⇀ �t narrowly in (ΩV ) for all t ∈ [0, T ] ,
j"t ⇀ jt narrowly in(ΩV ) for almost every t ∈ [0, T ] .
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(2) ℒ (�"t , j
"
t ) ≤ ℒ (�t, jt) for almost every t ∈ [0, T ].

(3) For any " > 0, the curve t↦ �"t is absolutely continuous with respect to the total variation norm.
(4) Let � ∈ C2([0,∞)) and  ∶ (ΩV )→ [0,+∞] be defined by

 (�) ∶=
⎧

⎪

⎨

⎪

⎩

∫ΩV
�
(d�
d�

)

d� if � ≪ �,

+∞ otherwise.

If supt∈[0,T ]  (�"t ) < ∞, then (0, T ) ∋ t ↦  (�"t ) is absolutely continuous and the following chain
rule holds:

d
dt

 (�"t ) = ∫ΩV
)v �

′
(d�"t
d�

)

dj2,"t for almost every t ∈ (0, T ) .

Proof. Ad (1): From the properties of the heat kernelM", it is not difficult to see that the pair (�", j") satisfies
the continuity equation. Moreover, for any test function ' ∈ C(ΩV ) and t ∈ [0, T ], we have

⟨', �"t ⟩ = ⟨'", �t⟩
"→0
←←←←←←←←←←←←←←←←←→ ⟨', �t⟩ ,

with
'"(x, v) ∶= ∫T

M"(x − y)'(y, v) dy ,

where the first equality follows since M"(x − y) = M"(y − x), and the dominated convergence theorem
applies. A similar argument holds for j1 since j1t = v �t for almost every t ∈ [0, T ].

As for the convergence of the flux j2, using (2.10), we first observe that a finite rate functional gives, for
almost every t ∈ [0, T ],

⟨', j2t ⟩ ≤ Ent(j
2
t | � �t) + ∫ΩV

�
(

e' − 1
)

d�t ≤ Ent(j2t | � �t) + � (e − 1) ,

for any function ' ∈ C(ΩV ) with |'| ≤ 1. Taking the supremum over such functions ' yields
‖j2t ‖TV ≤ Ent(j2t | � �t) + � (e − 1) for almost every t ∈ [0, T ] .

As a consequence, the argument for �"t holds for j2,"t since the dominated convergence applies.
Ad (2): By construction, j1,"r = v �"t . Using Jensen’s inequality, for any ' ∈ C1,0(ΩV ) we find

⟨', j2,"t ⟩ − ∫ΩV
�
(

e' − 1
)

d�"t = ⟨'", j2t ⟩ − ∫ΩV ∫T
�
(

e'(x,v) − 1
)

M"(x − y) �(dydv) dx

≤ ⟨'", j2t ⟩ − ∫ΩV
�
(

e'
"(y,v) − 1

)

�(dydv) ≤ Ent(j2t | � �t) .

Therefore, taking the supremum over ' yields Ent(j2,"r |� �"r ) ≤ Ent(j
2
t | � �r) and, as a consequence,

ℒ (�"t , j
"
t ) ≤ ℒ (�t, jt) for almost every t ∈ [0, T ] .

For the next two points, we first notice that �"t ≪ � for " > 0 and every t ∈ [0, T ]. Since j1,"t = v �"t and
j2,"t ≪ �"t for almost every t ∈ [0, T ], we also have that j"t ≪ �. We introduce

&"t ∶= d�
"
t ∕d�, w2,"t = dj2,"t ∕d�, t ∈ [0, T ]

and observe that (t, x, v)↦ &"t (x, v) is continuous on [0, T ] × ΩV for any " > 0, and thus bounded.
Ad (3): Observe that the regularity ofM" for " > 0 allows one to obtain the estimate

∫ΩV
|)x&

"
t | d� ≤ C"
15



for some constant C" > 0 with C" →∞ as " → 0. Consequently, for any ' ∈ C(ΩV ) with |'| ≤ 1,
|

|

⟨', �"t ⟩ − ⟨', �"s ⟩|| =
|

|

|

|

∫

t

s
⟨)v ', j

2,"
r ⟩ dr − ∫

t

s ∫ΩV
'v )x&

"
r d� dr

|

|

|

|

≤ 2∫

t

s
Ent(j2,"r | � �"r ) dr + 2∫

t

s
�
(

e2 − 1
)

dr + ∫

t

s
C"V dr =∶ ∫

t

s
g"(r) dr ,

where v ∈ {−V , V }. Taking the supremum over such ' gives
‖�"t − �

"
s‖TV ≤ ∫

t

s
g"(r) dr with g" ∈ L1((0, T )) for all " > 0 .

In particular, the curve t↦ �"t is absolutely continuous with respect to the total variation norm.
Ad (4): From the continuity equation, we deduce that, for any t ∈ (0, T ) and 0 < ℎ < T − t,

&"t+ℎ − &
"
t = −∫

t+ℎ

t

(

divvw2,"r + v )x&"r
)

dr �-almost everywhere.
We can then write

(3.6)

 (�"t+ℎ) −  (�"t )
ℎ

= 1
ℎ ∫ΩV

[

�(&"t+ℎ) − �(&
"
t )
]

d�

= 1
ℎ ∫ΩV

(

∫

1

0
�′
(

(1 − �)&"t + �&
"
t+ℎ

)

d�
)

(&"t+ℎ − &
"
t ) d�

= −∫ΩV

(

∫

1

0
�′
(

(1 − �)&"t + �&
"
t+ℎ

)

d�
)

(

1
ℎ ∫

t+ℎ

t

(

divvw2,"r + v )x&"r
)

dr
)

d�.

The absolute continuity of t ↦  (�"t ) follows since supt∈[0,T ] ‖&"t ‖L∞(ΩV ) < ∞, �′ ∈ C([0,∞)), and both
divvw2," and v )x&" ∈ L1

(

(0, T ) × ΩV ,(0,T ) ⊗ �
), where (0,T ) is the Lebesgue measure on the interval

(0, T ).
Applying Lebesgue differentiation theorem to the inner integral in (3.6) we find

1
ℎ ∫

t+ℎ

t

(

divvw2,"r + v )x&"r
)

dr ⟶ divvw
2,"
t + v )x&"t in L1(�) for almost every t ∈ (0, T ).

Therefore passing ℎ→ 0 in (3.6) leads to
d
dt

 (�"t ) = −∫ΩV
�′(&"t )

(

divvw
2,"
t + v )x&"t

)

d�

= ∫ΩV
)v �

′(&"t ) dj
2,"
t − ∫ΩV

v )x�(&"t ) d� = ∫ΩV
)v �

′(&"t ) dj
2,"
t ,

which holds for almost every t ∈ (0, T ), as asserted. �

We now present the proof of Theorem 3.1.
Proof of Theorem 3.1. Consider the regularized pair (�", j") as in Lemma 3.3. Since (�", j") ∈ CE(0, T ; ΩV )and ℐ (�", j") ≤ ℐ (�, j) < ∞, by the characterisation (2.10) of the rate function and Lemma 3.3, it follows
that j" = (j1,", j2,") with j1," = v �". As in Lemma 3.3, we set &"t ∶= d�"t ∕d�, t ∈ [0, T ]. We also note that
&"t ∈ L

∞(ΩV , �) for all " > 0 and all t.
Step 1. For a fixed � > 0, consider the map f�(r) = r log(r + �) and its derivative

f ′�(r) = log(r + �) +
r

r + �
.
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Clearly, f� ∈ C2([0,∞)) and, since &"t ∈ L∞(ΩV , �), we have that

∫ΩV
f�(&"t ) d� ≤ log

(

‖&"t ‖L∞ + �
) for all t ∈ [0, T ] .

In particular, the assumptions of Lemma 3.3(4) are satisfied. It follows that
1
2
d
dt ∫ΩV

f�(&"t ) d� =
1
2 ∫ΩV

)v f
′
�(&

"
t ) dj

2,"
t for almost every t ∈ (0, T ) ,

and therefore, using the characterisation (2.10), we arrive at
(3.7) 1

2
d
dt ∫ΩV

f�(&"t ) d� ≤ ℒ (�"t , j
"
t ) − �∫ΩV

(

1 − e
1
2 )v log(&

"
t +�)

)

d�"t +
1
2 ∫ΩV

)v
[ &"r
&"r + �

]

dj2,"t .

We may explicitly write out the second term on the right-hand side in (3.7) to find

∫ΩV

(

1 − e
1
2 )v log(&

"
t +�)

)

d�"t = ∫ΩV

(

1 −
√

&"t ◦� + �
&"t + �

)

&"t d�

= 1
2 ∫ΩV

[(

1 −
√

&"t ◦� + �
&"t + �

)

&"t +
(

1 −
√

&"t + �
&"t ◦� + �

)

&"t ◦�
]

d�

= 1
2 ∫ΩV

(

&"t −
√

(&"t + �) (&
"
t ◦� + �)

&"t
&"t + �

)

d�

+ 1
2 ∫ΩV

(

&"t ◦� −
√

(&"t + �) (&
"
t ◦� + �)

&"t ◦�
&"t ◦� + �

)

d�

= 1
2 ∫ΩV

[

&"t −
√

(&"t + �) (&
"
t ◦� + �)

( &"t
&"t + �

+
&"t ◦�

&"t ◦� + �

)

+ &"t ◦�
]

d�

≥ 1
2 ∫ΩV

[

&"t − 2
√

(&"t + �) (&
"
t ◦� + �) + &

"
t ◦�

]

d�

= 1
2 ∫ΩV

(√

&"t + � −
√

&"t ◦� + �
)2
d� − � = (�"t + � � |�) − � .

Substituting back into (3.7), integrating in time over [0, t], and sinceℒ ≥ 0, we find

(3.8) 1
2 ∫ΩV

f�(&"t ) d� + �∫

t

0
(�"r + � � |�) dr

≤ � � + 1
2 ∫ΩV

f�(&"0) d� +ℐ (�
", j") + 1

2 ∫

t

0 ∫ΩV
)v

&"r
&"r + �

dj2,"r dr .

Step 2. We now pass � → 0 for fixed " > 0. Using ∫ΩV &"0 d� = ∫ΩV &
"
t d�, we first rewrite (3.8) as

(3.9) 1
2 ∫ΩV

(

&"t log(&
"
t + �) − (&

"
t + �) + 1

)

d� + �∫

t

0
(�"r + � � |�) dr

≤ � � + 1
2 ∫ΩV

(

&"0 log(&
"
0 + �) − (&

"
0 + �) + 1

)

d� +ℐ (�", j") + 1
2 ∫

t

0 ∫ΩV
)v

&"r
&"r + �

dj2,"r dr .

Since j2," ∈([0, T ] × ΩV ) and ‖j2,"‖TV([0,T ]×ΩV ) <∞, we can pass � → 0 in the final term in (3.9) using
the dominated convergence theorem:

lim
�→0

1
2 ∫

t

0 ∫ΩV
)v

&"r
&"r + �

dj2,"r dr = 0 .
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Using ⟨f, �⟩ = ∫ΩV fd� for convenience, for the second term in the right-hand side of (3.9) we calculate
⟨&"0 log(&

"
0 + �), �⟩ − ⟨&"0 + �, �⟩ + ⟨1, �⟩ ≤ ⟨&"0 log &

"
0 , �⟩ + � − ⟨&"0 + �, �⟩ + ⟨1, �⟩

= ⟨&"0 log &
"
0 − &

"
0 + 1, �⟩ = Ent(�

"
0 |�) ,

where the first inequality follows by the concavity of x↦ log x. Using �(s) ∶= s log s− s+ 1, the first term
in the left-hand side of (3.9) satisfies

lim
�→0

(

⟨&"t log(&
"
t + �), �⟩ − ⟨&"t + �, �⟩ + ⟨1, �⟩

)

≥ lim inf
�→0

⟨�(&"t + �), �⟩ − lim�→0⟨� log(&
"
t + �), �⟩

≥ ⟨�(&"t ), �⟩ − lim�→0 � log(1 + �) = Ent(�
"
t |�) ,

where the second inequality follows by using Fatou’s lemma (since �(s) ≥ 0) for the first term and Jensen’s
inequality applied to the logarithm for the second term. The second term in the left-hand side of (3.9) can
be handled similarly with Fatou’s lemma. Thereby, passing � → 0 in (3.9), we arrive at
(3.10) 1

2
Ent(�"t |�) + �∫

t

0
(�"r |�) dr ≤

1
2
Ent(�"0 |�) +ℐ (�

", j") .

Step 3. We now pass " → 0 in (3.10). By construction, �"t , j"t converge to �t, jt for all t ∈ [0, T ] with
respect to the narrow topology on (ΩV ) and(ΩV ) respectively, and therefore

Ent(�"0 |�) = ∫ΩV
�
(

∫T
M"(x − y) &0(y, v) dy

)

�(dxdv)

≤ ∫ΩV ∫T
M"(x − y)�

(

&0(y, v)
)

dy �(dxdv)

= ∫ΩV

(

∫T
M"(x − y) dx

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1 by translational invariance

�
(

&(y, v)
)

�(dydv) = Ent(�0 |�) ,

where the inequality follows by Jensen’s inequality, which applies since � is convex and ∫T M" = 1.From Lemma 3.3(2), we have thatℒ (�"t , j"t ) ≤ ℒ (�t, jt) for all t ∈ [0, T ] and hence
ℐ (�", j") ≤ ℐ (�, j) .

Finally, using theweak lower-semicontinuity of the relative entropy and the Fisher information (Lemma 3.2)
and the pointwise-in-time narrow convergence �"t ⇀ �t for all t ∈ [0, T ], the final result follows, since

∫

t

0
(�r |�) dr ≤ ∫

t

0
lim inf
"→0

(�"r |�) dr ≤ lim inf"→0 ∫

t

0
(�"r |�) dr ,

where the first inequality follows from the weak lower-semicontinuity of, and the second one from Fatou’s
lemma. �

As we anticipated in Remark 5, the well-preparedness condition (3.2) forces the initial datum to be abso-
lutely continuous with respect to the the Lebesgue measure in the x-variable. The Kac equation, however,
is well-posed for a larger class of initial data, namely for any probability measure on ΩV . In the following
remark, we discuss a generalisation of the FIR inequality without the restrictive assumption on the initial
data.
Remark 6. Given an arbitrary initial datum �̂0 ∈ (ΩV ), let �̂ ∈ C([0, T ];(ΩV )) be the corresponding
weak solution to the Kac equation (2.1). Obviously, �̂t converges to the stationary solution � as t → ∞.
We now provide formal arguments for an FIR inequality to hold for any pair (�, j) ∈ CE(0, T ; ΩV ) whichsatisfies

Ent(�0 | �̂0) +ℐ (�, j) <∞ .
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Here the requirement on the initial data is considerably relaxed since �̂0 need not be absolutely continuous
with respect to the stationary measure � as required in Theorem 3.1. A straightforward consequence is that
we can use Dirac measures as initial datum for the Kac equation.

Assuming densities for all measures involved and following the ideas in the formal arguments before
Proposition 3.2, we find

1
2
d
dt ∫ΩV

�t log
�t
�̂t
= 1
2 ∫ΩV

)v
(

log
�t
�̂t

)

j2t −
�
2 ∫ΩV

(�t
�̂t
◦� −

�t
�̂t

)

�̂t ,

where the final term on the right-hand side drops out if �̂t is replaced by �. Using the variational form (2.10)
of the Lagrangian with the choice ' = 1

2 )v log
�t
�̂t
, the above calculation, after integrating in time, leads to

the generalised FIR inequality

(3.11) Ent(�t | �̂t) + ∫

T

0
̂(�t | �̂t) dt ≤ ℐ (�, j) + Ent(�0 | �̂0) .

Comparing this to the FIR inequality (3.3), we note that the stationary solution � to the Kac equation has
now been replaced by the time-dependent solution �̂t. Consequently, (3.3) is a special case of this inequality.

For densities � ≪ � , the generalised Fisher information ̂ is defined as

̂(� | � ) ∶= ∫ΩV

{(�
�
◦�
)

� − � − 1
2

[(�
�
◦�
)
1
2 (� �)

1
2 − �

]}

.

This generalised Fisher information is analogous to similar notions introduced for Markov chains in [15]
(specifically, cf. [15, Eq. (15b)] with � = 1∕2) and inherits the properties in Proposition 3.2 (see [15, Section
2]). Similar generalised FIR inequalities also hold for Markov chains [15, Theorem 1.6] and stochastic
differential equations [32, Eq. (2.55)]. ○

4. ASYMPTOTIC LIMITS
In this section we make use of the preceding results to study asymptotic limits of the Kac equation, which

is equivalent to studying the corresponding limits of the FC system (recall the discussion in Section 2).
Specifically, in Section 4.1 we study the parabolic (or diffusive) limit, which corresponds to V , �→∞ such
that the ratio V 2∕2� stays fixed, and in Section 4.2 we study the hyperbolic limit, which corresponds to
� → 0 with a fixed speed V > 0. For an explanation of these asymptotic limits and the expected limiting
dynamics, we refer back to Section 1.2.

The technique that we use in this paper is variational in nature. It consists of proving compactness proper-
ties of (approximate) solutions and a liminf inequality for the rate functional. In the following, compactness
will be established using the Arzelà-Ascoli theorem, where the equicontiuity property will make use of the
FIR inequality, and specifically the bound on the Fisher information. To prove the liminf inequality, we
will use the duality structure of the Lagrangian (2.10); by making educated choices for the test functions in
this duality formulation and using the compactness properties, we will construct a limiting functional which
characterises both the limiting solution and the fluctuations as "→ 0.

The results below are valid for initial data that satisfy (3.2) and are thus absolutely continuous with respect
to the Lebesgue measure in the x-variable. An extension to initial conditions in the larger space of probability
measures would require the generalized FIR inequality (3.11) and more technical machinery which we skip
here.
4.1. Diffusive limit V , � → ∞. As stated above, in the diffusive limit, we consider the limits V , � → ∞
such that

� = V 2

2�
is a constant.
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To achieve this, we rescale the velocity space via
rV ∶ ΩV → Ω1; (x, v)↦

(

x, v
V

)

,

where Ω1 ∶= T × {−1, 1}. Setting �̂ ∶= (rV )♯� ∈ (Ω1), for any ' ∈ C1,0(ΩV ), we find (recall (2.2))

∫Ω1
'◦r−1V d�̂t − ∫Ω1

'◦r−1V d�̂s = ∫

t

s ∫Ω1
(Q')◦r−1V d�̂r dr .

Since �◦r−1V = r−1V ◦�, it is not difficult to see that the rescaled generator takes the form
(Q')◦r−1V = V v )x +

V 2

2�
(

 ◦� −  
)

=∶ QV  ,  = '◦r−1V .

Moreover, since rV is a smooth diffeomorphism for any V > 0, it induces an isomorphism between 1,0(ΩV )and 1,0(Ω1). In particular, a weak solution �V of (2.2) gives rise to a weak solution �̂V of
(4.1) ∫Ω1

'd�̂t − ∫Ω1
'd�̂s = ∫

t

s ∫Ω1
QV 'd�̂r dr ,

i.e., in strong form, �̂ ∈ C([0, T ];(Ω1)) solves
)t�̂ + V v )x�̂ =

V 2

2�
(

�♯�̂ − �̂
)

.

Henceforth, we will use � instead of �̂ for simplicity of notation.
The functional ℐ V ∶ C([0, T ];(Ω1)) × ([0, T ];(Ω1)) → [0,+∞] corresponding to the rescaled

equation (4.1) is

(4.2) ℐ V (�, j) =

⎧

⎪

⎨

⎪

⎩

∫

T

0
ℒV (�r, jr) dr if (�, j) ∈ CE(0, T ; Ω1),

+∞ otherwise,
where CE(0, T ; Ω1) is defined analogously to Definition 2.2 andℒV ∶ (Ω1) ×(Ω1)→ [0,+∞] is

(4.3)

ℒV (�, j) =

{

Ent
(

j2 ||
|

V 2

2� �
)

if j1 = V v �,
+∞ otherwise,

=

⎧

⎪

⎨

⎪

⎩

sup
'∈C(Ω1)∫ΩV

(

'dj2 − V 2

2�
(

e' − 1
)

d�
)

if j1 = V v �,
+∞ otherwise.

4.1.1. A priori estimates. As a preparation for the variational technique, which consists of proving com-
pactness results and a liminf inequality, we need to establish a priori estimates for the rescaled system for
an arbitrarily fixed V > 0. These include an FIR inequality for pairs (�, j) ∈ CE(0, T ; Ω1) and a few related
results for �, !, and a derived flux J .
Theorem 4.1 (Rescaled FIR). Fix V > 0 and let (�, j) ∈ CE(0, T ; Ω1) with
(4.4) Ent(�0 |�) +ℐ V (�, j) <∞ ,
where �|t=0 = �0. Then, for any t ∈ [0, T ], we have

(4.5) Ent(�t |�) +
V 2

2� ∫

t

0
(�r |�) dr ≤ Ent(�0 |�) +ℐ V (�, j) .

The inequality (4.5) is the rescaled version of Theorem 3.1. Since, in the limit, we expect a diffusion
equation for �, we now derive a similar estimate that involves the pair (�, !) at a fixed V > 0.
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Corollary 4.2. Let us make the same assumptions of Theorem 4.1. Define � ∈ C([0, T ];(T )) and ! ∈
((0, T ) × T ) as

�t(dx) ∶=
∑

v∈{−1,1}
�t(dx, v) , !(dtdx) = !t(dx) dt ∶= V

∑

v∈{−1,1}
v �t(dx, v) dt ,

and t ∶ ≥0((0, T ) × T ) ×((0, T ) × T )→ [0,∞] as

t(�, !) ∶=
⎧

⎪

⎨

⎪

⎩

∫

t

0 ∫T

|

|

|

d!
d�
(r, x)||

|

2
�(drdx) if ! ≪ �,

+∞ otherwise,

where ≥0([0, T ] × T ) is the space of non-negative Borel measures and �(dtdx) = �t(dx) dt.
Then, for any t ∈ [0, T ], we have the bound

(4.6) Ent(�t |T ) +
1
2�

t(�, !) ≤ Ent(�t |�) +
V 2

2� ∫

t

0
(�r |�) dr ,

where T is the Lebesgue measure on T . In particular, we find a V -independent constant c > 0 such that

(4.7) sup
V ≥1

‖!‖TV(B) ≤ c ‖�‖
1
2
TV(B) for any Borel set B ∈ ((0, T ) × T ) .

Proof. Standard properties of relative entropy imply that
Ent(�t |T ) ≤ Ent(�t |�) .

Since (⋅ |�) ≥ 0, (4.5) implies that Ent(�t |�) < ∞, i.e., �t ≪ � for any t ∈ [0, T ]. Using &t ∶= d�t
d�

and
�(dx, 1) = �(dx,−1) = 1

2
dx, we can rewrite � and ! as

�(dtdx) = 1
2

∑

v∈{−1,1}
&t(x, v) dtdx and !(dtdx) = V

2
∑

v∈{−1,1}
v &t(x, v) dtdx .

For almost every t ∈ [0, T ], we have

|

|

|

d!t
d�t

(x)||
|

2
�t(dx) =

V 2 |
|

|

∑

v∈{−1,1}
v &t(x, v)

|

|

|

2

2 ||
|

∑

v∈{−1,1}
&t(x, v)

|

|

|

dx =
V 2 |

|

|

√

&t(x, 1) −
√

&t(x,−1)
|

|

|

2
|

|

|

∑

v∈{−1,1}

√

&t(x, v)
|

|

|

2

2 ||
|

∑

v∈{−1,1}
&t(x, v)

|

|

|

dx

≤
V 2 |

|

|

√

&t(x, 1) −
√

&t(x,−1)
|

|

|

2
|

|

|

∑

v∈{−1,1}
&t(x, v)

|

|

|

|

|

|

∑

v∈{−1,1}
&t(x, v)

|

|

|

dx = V 2 |
|

|

√

&t(x, 1) −
√

&t(x,−1)
|

|

|

2
dx ,

where the inequality follows by Jensen’s inequality. Therefore, for any t ∈ [0, T ],

∫

t

0 ∫T

|

|

|

d!r
d�r

(x)||
|

2
�r(dx) dr ≤ V 2

∫

t

0
(�r |�) dr ,

and the required bound (4.6) then follows. In particular, for B ∈ ((0, T ) × T ), we find

‖!‖TV(B) = ∫B
|

|

|

d!
d�
(x, r)||

|

�(dxdr) ≤
(

∫B
|

|

|

d!
d�
(x, r)||

|

2
�(dxdr)

)
1
2
‖�‖

1
2
TV(B) ≤ c ‖�‖

1
2
TV(B) ,

where the final inequality follows from (4.4), (4.5), and (4.6) for c independent of V . �
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The probability measure � has been transformed into the pair of measures (�, !) via the bijection (1.6).
From the fluxes (j1, j2), we may derive another four fluxes, but only one—the first moment in v of the flux
j2—is relevant when the rate functional is finite (recall Section 2.3). Here we present an a priori estimate for
a rescaled version of such a derived flux. The reason for such a rescaling will become clear in Section 4.1.3.
The proof of this estimate makes use of the dual formulation of the rate functional.
Lemma 4.3. Under the assumptions of Theorem 4.1, we have that j2 ≪ �, and we can thus define J ∈
((0, T ) × T ) as

J (dtdx) = Jt(dx) dt ∶=
∑

v∈{−1,1}

v
V
j2t (dx, v) dt .

For any B ∈ ((0, T )), C ∈ (T ) and � > 0, we have the bound

‖J‖TV(B×C) ≤
c
�
+ c
2��

(e� − 1) max
{

‖�‖
1
2
TV(B×C), ‖�‖TV(B×C)

}

,

where c > 0 is independent of V .

Proof. For any C ∈ (T ), define 1�C ∶= 1C∗M�, whereM� is the heat kernel on T (cf. (3.5) for its defini-
tion). Choosing '(x, v) = � (x)1�C (x) vV for any C ∈ (T ),  ∈ C(T ) with ‖ ‖L∞(T ) ≤ 1 and � > 0 in the
rate functional (2.10), we find

1
�
|

|

|∫Ω1
� 1�C  

v
V
dj2t

|

|

|

≤ 1
�
ℒV (�t, jt) +

1
�
|

|

|

V 2

2� ∫Ω1

(

e� 1
�
C  

v
V − 1

)

d�t
|

|

|

≤ 1
�
ℒV (�t, jt) +

1
�
|

|

|

V 2

2� ∫Ω1 ∫T
M�(x − y)

(

e� 1C (y) (x)
v
V − 1

)

dy �t(dxdv)
|

|

|

= 1
�
ℒV (�t, jt) +

1
�
|

|

|

V 2

2� ∫Ω1
1�C v sinh

�  
V

d�t
|

|

|

+ 1
�
|

|

|

V 2

2� ∫Ω1
1�C

(

cosh
�  
V

− 1
)

d�t
|

|

|

≤ 1
�
ℒV (�t, jt) +

V
2��

sinh
�
V
|

|

|∫T
1�C d!t

|

|

|

+ V 2

2��

(

cosh
�
V
− 1

)

|

|

|∫T
1�C d�t

|

|

|

≤ 1
�
ℒV (�t, jt) +

1
2��

sinh � ||
|∫T

1�C d!t
|

|

|

+ 1
2��

(cosh � − 1) ||
|∫T

1�C d�t
|

|

|

.

Using the dominated convergence theorem, we pass � → 0 in the inequality above to arrive at
‖Jt‖TV(C) ≤

1
�
ℒV (�t, jt) +

1
2��

sinh � ‖!t‖TV(C) +
1
2��

(cosh � − 1) ‖�t‖TV(C) .

Therefore, for any B ∈ ((0, T )) along with (4.7) and ‖�‖TV(B×C) ≤ T , we have

∫B
‖Jt‖TV(C) dt ≤

1
� ∫B

ℒV (�t, jt) dt +
1
2��

sinh � ‖!‖TV(B×C) +
1
2��

(cosh � − 1) ‖�‖TV(B×C)

≤ 1
�
ℐ V (�, j) + c

2��
sinh � ‖�‖

1
2
TV(B×C) +

1
2��

(cosh � − 1) ‖�‖TV(B×C)

≤ 1
�
ℐ V (�, j) + c

2��
(e� − 1) max

{

‖�‖
1
2
TV(B×C), ‖�‖TV(B×C)

}

,

where c is independent of V ≥ 1. �

4.1.2. Compactness. We now discuss the compactness properties of various objects involved as V → ∞.
Essentially, there are two levels of compactness, a weaker notion for !V and the derived flux JV , and a
stronger notion for the density �V .
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Proposition 4.4. Let a sequence (�V , jV ) ∈ CE(0, T ; Ω1) satisfy

(4.8) sup
V ≥1

{

Ent(�V0 |�) +ℐ V (�V , jV )
}

≤ C for some constant C > 0 .

Define �V , !V , JV ∈([0, T ] × T ) as

(4.9)
�V (dtdx) ∶=

∑

v∈{−1,1}
�Vt (dx, v) dt , !V (dtdx) ∶= V

∑

v∈{−1,1}
v �Vt (dx, v) dt ,

JV (dtdx) ∶=
∑

v∈{−1,1}

v
V
j2,Vt (dx, v) dt .

Then, there exist subsequences (not relabeled) such that
(1) �V → �̄ in C([0, T ];(T )) with respect to the narrow topology in space.
(2) !V → !̄ in([0, T ] × T ) with respect to the narrow topology.
(3) JV → J̄ in((0, T ) × T ) with respect to the narrow topology.

Moreover, �̄t ≪ T for every t ∈ [0, T ] and both !̄ and J̄ have densities in time, i.e., !̄(dtdx) = !̄t(dx) dt,
J̄ (dtdx) = J̄t(dx) dt, where !̄t and J̄t are defined via disintegration.

Proof. The narrow convergence of !V(dtdx) = !Vt (dx) dt is implied by (4.7), which gives
sup
V ≥1

‖!V ‖TV((0,T )×T ) < c ‖�
V
‖

1
2
TV((0,T )×T ) ≤ c

√

T ,

where c > 0 is independent of V ≥ 1 and ‖�t‖TV(T ) = 1. The narrow convergence of JV follows from
Lemma 4.3 since, for any � > 0,

sup
V ≥1

‖JV ‖TV((0,T )×T ) ≤
c
�
+ c
2��

(e� − 1) max
{

√

T , T
}

,

where c is independent of V . Using the same lemma and [52, Page 181, Corollary A5], it follows that there
exists a measurable family J̄t ∈(T ) such that J̄ (dtdx) = J̄t(dx) dt.For every t ∈ [0, T ], the sequence (�Vt )V >0 ⊂ (T ) is pre-compact with respect to the narrow topology.
Moreover, since �V ∈ C([0, T ];(Ω1)), we have that t ↦ �Vt ∈ C([0, T ];(T )). Therefore, to prove
part (1), we will make use of the Arzelà-Ascoli theorem to show that �V → � in C([0, T ];(T )) with
respect to the uniform topology in time and narrow topology in space. To prove equicontinuity of �V in
C([0, T ];(T )), we will show that
(4.10) sup

V ≥1
sup

t∈[0,T−ℎ]
dBL(�Vt+ℎ, �

V
t )

ℎ→0
←←←←←←←←←←←←←←←←←→ 0 ,

where dBL is the bounded Lipschitz metric on the space of probability measures (it induces the narrow
topology) and is given by
(4.11) dBL(�, �) ∶= sup

{

|⟨f, �⟩ − ⟨f, �⟩| ∶ f ∈ BL(T ), ‖f‖ ≤ 1
}

,

where BL(T ) = W 1,∞(T ) is the space of bounded Lipschitz functions. Since C1(T ) (with ‖ ⋅‖C1(T )) is dense
inW 1,∞(T ), (4.10) is equivalent to showing
(4.12) sup

V ≥1
sup

t∈[0,T−ℎ]
sup

 ∈C1(T )
‖ ‖C1(T )≤1

∫T
 
(

d�Vt+ℎ − d�
V
t
) ℎ→0
←←←←←←←←←←←←←←←←←→ 0 .

Since (�V , jV ) ∈ CE(0, T ; Ω1), making the choice '(x, v) =  (x) in the continuity equation and using
j1,Vt = v V �t, we find

∫T
 d�Vt − ∫T

 d�Vs = ∫

t

s ∫T
)x d!

V
r dr .
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Repeating the arguments as in Corollary 4.2 with B = [t, s] × T , we have
‖!V ‖TV([s,t]×T ) ≤ c

(

∫

t

s
‖�Vr ‖TV(T ) dr

)
1
2 ≤ c

√

t − s ,

where c is independent of V . Note that, as in the case for J̄ , the previous estimate and [52, Page 181,
Corollary A5] provide a measurable family !̄t ∈(T ) such that !̄(dtdx) = !̄t(dx) dt.Using the variational formulation of the total-variation norm, for any  with ‖ ‖C1(T ) ≤ 1, we have the
bound

∫T
 
(

d�Vt+ℎ − d�
V
t
)

≤ ∫

t+ℎ

t
‖!Vr ‖TV(T ) dr ≤ c

√

ℎ .

Equicontinuity follows since the right-hand side is independent of t and V . Note that this estimate, in par-
ticular, implies a uniform 1

2 -Hölder estimate with respect to the Wasserstein-1 distance.
Therefore, by the Arzelà-Ascoli theorem, �V → �̄ in C([0, T ];(T ))with respect to the uniform topology

in time and narrow topology in space and, consequently, we have the pointwise convergence �Vt → �̄t in
(T ) with respect to the narrow topology for any t ∈ [0, T ]. Note that we have used �̄(dtdx) = �̄t(dx) dt,which is true since �V (dtdx) = �Vt (dx) dt, �V (dtdx) → �̄(dtdx) and �Vt (dx) → �̄t(dx) for any t ∈ [0, T ].By uniqueness of the limit and disintegration, this implies that �̄(dtdx) = �̄t(dx) dt.Finally, the fact that �̄t ≪ T for all t ∈ [0, T ] follows from the induced FIR inequality on � in (4.6) and
on the narrow lower semicontinuity of the relative entropy. �

4.1.3. Properties of the limit system. Recall from Section 2.3 that the sequences �V , !V , and JV , with a
finite rate functional, satisfy the momentum system (2.14). In the following two lemmas, we pass to the
limit in these objects and show that the limiting pair (�̄, !̄) satisfies a continuity equation and that J̄ is the
distributional derivative of �̄.
Lemma 4.5. Under the assumptions of Proposition 4.4, let �V → �̄, !V → !̄ in((0, T ) × T ) with respect
to the narrow topology, and �Vt → �̄t in (T ) with respect to the narrow topology for every t ∈ [0, T ].
Then, !̄ ≪ �̄ in ((0, T ) × T ), !̄(dtdx) = !̄t(dx) dt, and !̄t ≪ �̄t in (T ) for almost every t ∈ [0, T ].
Furthermore, the pair (�̄, !̄) ∈ CE(0, T ; T ), namely it solves

)t�̄ + )x!̄ = 0 ,

in the sense that, for any  ∈ C1(T ) and 0 ≤ s ≤ t ≤ T , we have

∫T
 d�̄t − ∫T

 d�̄s = ∫

t

s ∫T
)x d!̄r dr .

Proof. Since �V → �̄ and !V → !̄ narrowly in ((0, T ) × T ), using the lower-semicontinuity of T [53,
Theorem 2.34], we find

T (�̄, !̄) ≤ lim infV→∞
T (�V , !V ) <∞ ,

where the second inequality follows from (4.6) and (4.8). Therefore, !̄ ≪ �̄ in ((0, T ) × T ). From
Proposition 4.4, we know that �̄(dtdx) = �̄t(dx) dt. Hence, we conclude that !̄(dtdx) = !̄t(dx) dt and
!̄t ≪ �̄t for almost every t ∈ [0, T ].

Choosing '(x, v) =  (x) in the continuity equation and using j1,V = v V �V , we find

∫T
 d�Vt − ∫T

 d�Vs = ∫

t

s ∫T
)x d!

V
r dr .

Passing V →∞, it follows that (�̄, !̄) ∈ CE(0, T ; T ). �

In Lemma 4.5, we projected the continuity equation for � to the corresponding continuity equation for the
density � and studied the limit V → ∞. In the next lemma, we perform an analogous operation and find a
continuity equation for the flux !. In the limit, under the conditions of Proposition 4.4, we prove that the
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flux J̄ is in a one-to-one correspondence with a distributional derivative of ū, where ū is Lebesgue density
of �̄. With a slight abuse of notation, we will often write D�̄ as the distributional derivative of ū.
Lemma 4.6. Under the assumptions of Proposition 4.4, let �V → �̄, !V → !̄, and JV → J̄ in((0, T )×T )
with respect to the narrow topology, and �Vt → �̄t for any t ∈ [0, T ] in (T ) with respect to the narrow
topology. Then, for any  ∈ C1(T ), we have

∫T

(

)x d�̄t − 2 dJ̄t
)

= 0 almost every t ∈ [0, T ] ,

i.e. D�̄t = −2J̄t for almost every t ∈ (0, T ).
In particular, the Lebesgue density ūt = d�̄t∕dT ∈ BV (T ) for almost every t ∈ (0, T ), where BV (T )

denotes the space of functions of bounded variation in T .

Proof. From Lemma 2.3 (which holds unchanged in the rescaled situation with V = 1), we know that, for
any � ∈ C1c ((0, T )) and ' ∈ C1,0(Ω1), we have

∫

T

0 ∫Ω1
�̇(t)'(x, v) �Vt (dxdv) dt = −∫

T

0 ∫Ω1
�(t) ∇'(x, v) ⋅ jVt (dxdv) dt .

Using '(x, v) = − (x) v
V
, j1,Vt = v V �Vt , and JV (dtdx) ∶=

∑

v

v
V
j2,Vt (dx, v) dt, we find

− 1
V 2 ∫

T

0
�̇(t)∫T

 (x)!Vt (dx) dt = ∫

T

0
�(t)∫T

(

)x (x) �Vt (dx) − 2 (x) J
V
t (dx)

)

dt .

Passing V →∞, we obtain

∫

T

0
�(t)∫T

(

)x (x) �̄t(dx) − 2 (x) J̄t(dx)
)

dt = 0 ∀� ∈ C1c ((0, T )) ,

where we have used Proposition 4.4. Therefore, for almost every t ∈ (0, T ), we have

∫T

(

)x d�̄t − 2 dJ̄t
)

= 0 ∀ ∈ C1(T ) .

Since �̄t = ūtT and J̄t is a finite Radon measure, the previous equality implies ūt ∈ BV (T ) for almost every
t ∈ (0, T ) (cf. [53, Definition 3.1]). �

4.1.4. Liminf inequality. We now prove the liminf inequality, which is the final step of the variational tech-
nique. As a special case, this inequality implies that that the sequence of solutions to the FC system, which
correspond to minimizers of ℐ V , will converge to the minimizers of the limiting functional.

Define the (limiting) functional J̄ ∶ C([0, T ];(T )) ×((0, T ) × T )→ [0,∞] by

(4.13) J̄ (�, !) =

⎧

⎪

⎨

⎪

⎩

1
4� ∫

T

0 ∫T

|

|

|

�
dD�
d�

(t, x) + d!
d�
(t, x)||

|

2
�t(dx) dt if ! ≪ �, D� ≪ �,

(�, !) ∈ CE(0, T ; T ),
+∞ otherwise,

where CE(0, T ; T ) is defined in Lemma 4.6. The minimizers of this functional satisfy the limiting projected
continuity equations together with the identity ! = −�D� �-almost everywhere. Combining all these rela-
tions, we have, for every  ∈ C2(T ),
(4.14) ∫T

 d�t − ∫T
 d�s = � ∫

T

0 ∫T
)2x d�r dr ,

which is the weak form of the diffusion equation
(4.15) )t� = � )2x� .
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Although seemingly different at first sight, the limiting variational formulation (4.13) is closely connected
to the widely known Wasserstein gradient-flow structure [4,35,39] of the diffusion equation, as we sketch in
Remark 7.
Theorem 4.7 (Liminf inequality). Under the same conditions as in Proposition 4.4, let �V → �̄, !V → !̄,
and JV → J̄ in((0, T ) × T ) with respect to the narrow topology, and �Vt → �̄t in (T ) with respect to the
narrow topology for every t ∈ [0, T ]. Then,

lim inf
V→∞

ℐ V (�V , jV ) ≥ J̄ (�̄, !̄) .

Proof. Choosing '(x, v) =  (x) v
V
in (4.2), we find

(4.16) ℐ V (�V , jV ) ≥ ∫

T

0 ∫Ω1

(

 (x) v
V
j2,Vt (dxdv) − V 2

2�
(

e (x)
v
V − 1

)

�Vt (dxdv)
)

dt .

For almost every t ∈ [0, T ], we have

V 2
∫Ω1

(

e (x)
v
V − 1

)

�Vt (dxdv) ≤ ∫Ω1

[

V v (x) + 1
2
 (x)2

]

�Vt (dxdv) + O
( 1
V

)

= ∫T

[

 (x)!Vt (dx) +
1
2
 (x)2 �Vt (dx)

]

+ O
( 1
V

)

,

where the inequality follows since  ∈ L∞(T ).
Substituting back into (4.16), we arrive at

ℐ V (�V , jV ) ≥ ∫

T

0

(

∫T
 (x)

(

JVt (dx) −
1
2�
!Vt (dx)

)

− 1
4� ∫T

 (x)2�Vt (dx)
)

dr + O
( 1
V

)

.

Passing V →∞, using Lemma 4.5 and Proposition 4.4, we obtain

lim inf
V→∞

ℐ V (�V , jV ) ≥ ∫

T

0 ∫T

[

 (x)
(

J̄ (dtdx) − 1
2�
!̄(dtdx)

)

− 1
4�
 (x)2 �̄(dtdx)

]

= 1
2� ∫

T

0 ∫T

(

 (x)
(

2�dJ̄t − d!̄t
)

− 1
2
 (x)2 d�̄t

)

dt .
(4.17)

Since the left-hand side is finite, we now claim that J̄t ≪ �̄t for almost every t ∈ (0, T ). Indeed, should
this not be the case, for a fixed Lebesgue point t ∈ (0, T ), we find a pre-compact set E ⊂ T with �̄t(E) = 0and |J̄t|(E) > 0. By the Hahn decomposition theorem, Jt = J+t − J−t , where J±t are nonnegative measures
that are mutually singular. Denoting the supports of J±t by P± respectively, and considering the function
 k = k (1E∩P+ − 1E∩P−), k ≥ 1, from (4.17), via a smoothing argument, we obtain

∞ > lim inf
V→∞

ℐ V (�V , jV ) ≥ 2�k∫

T

0
|J̄t|(E) dt for all k ≥ 1 ,

where we used !̄t ≪ �̄t (cf. Lemma 4.5). Sending k → ∞, we arrive at a contradiction, thus implying
J̄t ≪ �̄t. Hence, (4.17) leads to

lim inf
V→∞

ℐ V (�V , jV ) ≥ 1
2� ∫

T

0 ∫T

[

 (x)
(

2�
dJ̄t
d�̄t

−
d!̄t
d�̄t

)

− 1
2
 (x)2

]

d�̄t dt .

Using D�̄t = −2Jt from Lemma 4.6 and taking the supremum over  ∈ C(T ), we arrive at the required
result by Legendre duality. �
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Remark 7. The variational structure (4.13) resembles the “density-flux” version of the well-known Wasser-
stein gradient-flow structure for diffusion. To see this, note that since the limiting � ≪ T and D� ≪ �, it
follows that � ∈ W 1,1(T ) and therefore we can writeD�∕d� = )x�∕�. Expanding the square in (4.13) yields

2J̄ (�, !) = �
2 ∫

T

0 ∫T
|)x log �t|2�t dt +

1
2� ∫

T

0 ∫T

|

|

|

d!t
d�t

|

|

|

2
�t dt + ∫

T

0 ∫T
)x(log �t)!t dt

= �
2 ∫

T

0 ∫T
|)x log �t|2�t dt +

1
2� ∫

T

0 ∫T

|

|

|

d!t
d�t

|

|

|

2
�t dt + Ent(�T |T ) − Ent(�0 |T ) ,

where the second equality follows from integration by parts in the final integral and using the continuity
equation )t� = −)x!. The right-hand side of the second equality is exactly the Wasserstein (Ψ − Ψ∗)
formulation of the diffusion equation [4,39] where the first term is the Fisher information (or quadratic dual
dissipation potential), the second term is the metric derivative in the Wasserstein distance, and the final two
terms are the entropy difference. ○

4.2. Hyperbolic limit �→ 0. Wenow intend to study the hyperbolic limit wherein the switching rate �→ 0,
while the speed V is kept constant in the Kac equation (2.1). This limit does not require any rescaling and
therefore we directly use the rate functional (2.7). Since the proof strategy is similar to the diffusive limit,
here we only outline the proofs.
Proposition 4.8 (FIR&Compactness). Let a sequence (��, j�) ∈ CE(0, T ; ΩV ) satisfy, for a constantC > 0,
the estimate

sup
�>0

{

Ent(��0 |�) +ℐ
�(��, j�)

}

≤ C .

Define ��, !�, J � ∈([0, T ] × T ) as

��(dtdx) ∶=
∑

v∈{−V ,V }
��t (dx, v) dt , !�(dtdx) ∶=

∑

v∈{−V ,V }
v ��t (dx, v) dt ,

J �(dtdx) ∶=
∑

v∈{−V ,V }
v j2(dx, v) dt .

For any t ∈ [0, T ], we have the inequalities

(4.18) Ent(��t |T ) +
�
V 2

t(��, !�) ≤ Ent(��t |�) + �∫

t

0
(��r |�) dr ≤ Ent(�

�
0 |�) +ℐ

�(��, j�) .

Furthermore, there exist subsequences (not relabeled) such that
(1) �� → �̄ in C([0, T ];(T )) with respect to the narrow topology in space.
(2) !� → !̄ in C([0, T ];(T )) with respect to the narrow topology in space.
(3) J � → J̄ in ((0, T ) × T ) with respect to the narrow topology and J̄ (dtdx) = J̄t(dx) dt, where J̄t

is defined via disintegration.
The limit !̄ ∈ AC([0, T ];(ΩV )), where (ΩV ) is endowed with the bounded-Lipschitz metric, and, for
any  ∈ C1(T ) and 0 ≤ s < t ≤ T , satisfies

(4.19) ∫T
 (d!̄t − d!̄s) = ∫

t

s ∫T

(

V 2)x d�̄r − 2 dJ̄r
)

dr .

In particular, t↦ !̄t is differentiable almost everywhere with the time-derivative given by

)t!̄t = −V 2D�̄t − 2J̄t ,

where D�̄t is the distributional derivative of the distribution  ↦ ∫T  d�̄t.
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Proof. The second inequality in (4.18) is proved in Theorem 3.1 and the first inequality follows as in Corol-
lary 4.2. The convergence �� → �̄ in C([0, T ];(T )) follows as in Proposition 4.4.

For the convergence of !� in C([0, T ];(T )), we will make use of the Arzelà-Ascoli theorem. To prove
equicontinuity, we will show that (see Proposition 4.4 for a discussion of the equivalence of the condition
below to the usual equicontinuity)
(4.20) sup

0<�≤1
sup

t∈[0,T−ℎ]
sup

 ∈C1(T )
‖ ‖C1(T )≤1

∫T
 
(

d!�t+ℎ − d!
�
t
) ℎ→0
←←←←←←←←←←←←←←←←←→ 0 .

Using '(x, v) = v (x) with  ∈ C1(T ) in the continuity equation (2.5) along with j1,� = v ��, for any
� > 0, we find

∫T
 
(

d!�t+ℎ − d!
�
t
)

= V 2
∫

t+ℎ

t ∫T
)x (x) ��r (dx) dr − 2∫

t+ℎ

t ∫ΩV
v (x) j2,�r (dx) dr

≤ V 2
‖ ‖C1(T ) ℎ +

1
� ∫

t+ℎ

t
Ent(j2,�r | � ��r ) dr +

1
� ∫

t+ℎ

t ∫ΩV

(

e−2� v (x) − 1
)

� ��r (dx) dr

≤ V 2
‖ ‖C1(T ) ℎ +

C
�
+ �
�
(

e2� V ‖ ‖C1(T ) − 1
)

ℎ ,

where the first inequality follows from the variational form of relative entropy and the second inequality
follows since the rate functional is bounded. Since � is arbitrary, we can choose it to be sufficiently small
such that equicontinuity (4.20) follows.

Repeating the arguments as in Corollary 4.2, there exists c > 0 independent of � such that
(4.21) ‖!�‖2TV([0,T ]×ΩV ) < c‖�

�
‖TV([0,T ]×ΩV ) .

The narrow convergence of �� and �� follows from Prokhorov’s theorem, since [0, T ] × ΩV is compact and
��t , �

�
t ∈ (ΩV ) for every t ∈ [0, T ]. The narrow convergence of !� follows similarly as a consequence

of (4.21). Since the rate functional is finite, j1,� = v �� → v �̄ narrowly.
Now we discuss the convergence of the fluxes j2,� and J �. For almost every t ∈ [0, T ] and ' ∈ C(ΩV )with |'| ≤ 1, we find

⟨', j2,�t ⟩ ≤ Ent(j2,�t | � ��t ) + ∫ΩV
�
(

e' − 1
)

d��t ≤ Ent(j2,�t | � ��t ) + � (e − 1) ,

and taking the supremum over these functions yields
‖j2,�‖TV([0,T ]×ΩV ) ≤ ℐ

�(��, j�) + � T (e − 1) ≤ C ,

since the rate functional is bounded and � < 1. Therefore, j2,� converges narrowly in ([0, T ] × T ).
The narrow convergence of J � to J̄ follows by repeating the arguments above with �(x, v) = v (x) for any
 ∈ C(T ). The absolute continuity J̄ (dtdx) = J̄t(dx) dt and the convergence of ��t → �̄t for every t ∈ [0, T ]follow as in Proposition 4.4.

Finally, (4.19) follows by once again choosing '(x, v) = v (x) with  ∈ C1(T ) in the continuity equa-
tion (2.5) and passing �→ 0 with the compactness properties presented above. �

Lemma 4.9. Under the same assumptions of Proposition 4.8, let �� → �̄ and !� → !̄ in([0, T ]×T ) with
respect to the narrow topology and ��t → �̄t in (T ) with respect to the narrow topology for every t ∈ [0, T ].
We then find

(1) !̄ ≪ �̄ in ((0, T ) × T ) with !̄(dtdx) = !̄t(dx) dt,
(2) (�̄, !̄) ∈ CE(0, T ; T ) in the sense of Lemma 4.5.
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The proof of points (1) and (2) of Lemma 4.9 follows as in the proof of Lemma 4.5.
We define J̄ ∶ C([0, T ];(T )) × C([0, T ];(T )) ×((0, T );(T ))→ [0,+∞] by

(4.22) J̄ (�, !, J ) ∶=
{0 if (�, !, J ) ∈ ME([0, T ], T ) with J = 0,
+∞ otherwise.

Therefore, the minimizers are the weak solution to the wave equation
)t� = −)x! ,(4.23a)
)t! = −V 2)x� .(4.23b)

in the sense of Definition 2.6 with J = 0.
Remark 8. The combination of the two equations above formally yields the wave equation in both variables:

)2t � = V
2)2x� , )2t ! = V

2)2x! .

Also note that J̄ in (4.22) is the �→ 0 limit of the variational formulation ℐ̂ (2.13) for the FC system. ○

The variational structure (4.22) for the hyperbolic limit is substantially different from the analogous struc-
ture (4.13) for the parabolic limit. The functional (4.22) is simply a characteristic function in the sense of
convex analysis: the solutions of the wave equation are the only admissible curves—there are no “approx-
imate” solutions. This is fully consistent with the interpretation for the limit of the stochastic Kac process
as � → 0. In this regime, we expect a fully deterministic dynamics where probabilities are simply rigidly
transported along the straight motion of the particles.

We now discuss the liminf inequality.
Theorem 4.10 (lim inf inequality). Under the same conditions as in Proposition 4.4, let �� → �̄, !� → !̄,
and J � → J̄ in((0, T ) × T ) with respect to the narrow topology, and ��t → �̄t in (T ) with respect to the
narrow topology for every t ∈ [0, T ]. Then,

lim inf
�→0

ℐ �(��, j�) ≥ J̄ (�̄, !̄, J̄ ) .

Proof. Choosing '(x, v) =  (x) v in (2.10), we find
ℐ �(��, j�) ≥ ∫

T

0 ∫ΩV

(

 (x) v j2,�t (dxdv) − �
(

e (x) v − 1
)

��t (dxdv)
)

dt

= ∫

T

0

(

∫T
 (x) J �t (dx) − ∫ΩV

�
(

e (x) v − 1
)

��t (dxdv)
)

dt .

Passing �→ 0 and using the compactness results, we obtain
lim inf
�→∞

ℐ �(��, j�) ≥ ∫

T

0 ∫T
 (x) J̄t(dx) dt .

Taking the supremum over  ∈ C(T ), we arrive at the required result. �

5. DISCUSSION
In this article, we have presented a variational structure for the second-order hyperbolic Fourier-Cattaneo

(FC) system by using the large deviations of the (stochastic) Kac process, which is a piecewise-deterministic
Markov process. The key ingredient is a bijective mapping which links the law of the Kac process to the
FC system and is used to construct the aforementioned variational structure. We then use this structure to
present appropriate solution concepts and FIR inequality for these systems. Finally, we study the limiting
behaviour of these systems in the diffusive and hyperbolic asymptotic regimes. This work is the first study
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which offers a variational perspective to measure-valued hyperbolic equations by introducing new solution
concepts and variational techniques for scale-bridging.

Although we have limited ourselves to the one-dimensional torus T as the spatial state-space, we expect
that all the ideas readily generalise to the unbounded setting of ℝ with a possible modification—e.g., we
may add a spatial confining potential in the Kac equation to ensure tightness. Since we are interested in con-
nections to the hyperbolic FC system, we are limited to the one-dimensional setting (recall the discussion in
Section 1.1). However, the Kac process and the corresponding Kac equation exist in higher dimensions [46]
and we will explore these systems and corresponding asymptotic limits in future work.

The variational structure presented in Section 2 for the Kac and FC equations are closely related to recent
large-deviation-inspired variational formulations [2, 4, 33, 44] for (possibly nonlinear) systems of the type

)t� = div j, j = j(�),

where the flux j only depends on �. Note that, even though j plays a similar role to the one in this article, at
the level of the macroscopic dynamics, it is a dummy variable. This is in stark contrast to systems studied in
this paper where the flux ! has an associated evolution equation making the density-flux pair truly a coupled
system. This is to be expected since the hyperbolic heat equation is of hyperbolic type with first and second
order derivatives in time.

The ‘passing to the limit’ via the variational structure in Section 4 is closely related to (Gamma-)limits of
(Ψ,Ψ∗)-type variational formulations for gradient flows [4, 37, 54]. This literature, as in our case, crucially
uses the duality structure of the variational formulation and typically assumes well-prepared initial data.
Our additional assumption of bounded rate functional arises naturally in the context of large deviations,
and our results in some sense capture the convergence of typical behaviour and fluctuations around it. The
main difference, as opposed to the aforementioned literature, is that the systems studied in this paper are not
gradient flows. This is for instance directly seen from the deterministic transport term in the Kac equation.
Acknowledgements. The authors thank Davide Gabrielli, Massimiliano Giona and Michiel Renger for en-
lightening discussions on the Kac process. The research of AM was funded by the Swiss National Science
Foundation via the Early Postdoc.Mobility fellowship. The work of US is supported by the Alexander von
Humboldt foundation. OT acknowledges support from NWO Vidi grant 016.Vidi.189.102 on “Dynamical-
Variational Transport Costs and Application to Variational Evolution”.

APPENDIX A. FROM PATH TO FLUX LARGE DEVIATIONS
In this section, we motivate the variational structure of the Kac equation (1.4) introduced in Section 1.2

via a formal reformulation of the large-deviation rate function corresponding to the Kac process.
Let us considerN independent copies of theKac process on the state spaceΩV ∶= T×{−V , V }with initial

distribution �̄. The single-particle process is a piecewise deterministic Markov process with deterministic
drift v and jump kernel �(x, v; ⋅) ∶= � �(x,−v), i.e., at each jump, which occurs at rate �, the position remains
fixed, and the velocity is switched. We denote the law of such a process by p̂�̄ ∈ (D([0, T ],ΩV )). As inSection 1.1, we then construct the empirical process ℙN ∶ (D([0, T ],ΩV ))N → (D([0, T ],ΩV )) as

ℙN
(

x1⋅ , v
1
⋅ , x

2
⋅ , v

2
⋅ ,… , xN⋅ , v

N
⋅

)

∶= 1
N

N
∑

i=1
�(xi⋅ ,vi⋅) .

Since the particles are independent, by the large of large numbers, ℙN converges almost surely to p̂�̄ as
N → ∞. Here, however, we are not only interested in the most probable behavior of ℙN as N → ∞, but
also in the atypical deviations from it. We thus want to find a large-deviation principle for the sequence of
measure-valued stochastic processes ℙN , which we express informally as

Prob
(

ℙN ≈ p
)

≍ e−NI(p) asN →∞ .
30



This means that the fluctuations of the random variable ℙN decay withN in an exponential way, and the rate
of decay is quantified in terms of the rate function I.

Since the particles are independent, by Sanov’s theorem, the empirical process satisfies a large-deviation
principle in (D([0, T ],ΩV )) with rate function
(A.1) I(p) = Ent(p | p̂�̄) ,

where Ent(⋅|⋅) is the relative entropy on (D([0, T ],ΩV )) × (D([0, T ],ΩV )), defined as

(A.2) Ent(p | r ) ∶=

{

Ep

[

log dp
dr

]

if p≪ r ,
+∞ otherwise.

In this expression, Ep denotes the expectation value with respect to the probability measure p and dp∕dr is
the Radon-Nikodym derivative of p with respect to r , which exists whenever p is absolutely continuous with
respect to r , namely p ≪ r . We note that the rate function is minimal and zero at p = p̂�̄ , i.e., at the most
probable realization of the empirical process.

Following [55, Theorem 2.8], one obtains an alternative formulation of the relative entropy (A.1) when
p̂�̄ is the law of a Markov process. Indeed, when p has finite relative entropy with respect to p̂�̄ , then p is
a solution to the martingale problem with drift |̂1t (x, v) = (v, 0)⊤ and some (time-dependent) jump kernel
|̂2t ≪ � = � �(x,−v) for every t ∈ [0, T ]. In particular, the time marginal flow t ↦ �t ∶= (et)♯p (with et beingthe time evaluation map) satisfies the Kolmogorov forward equation
(A.3) )t� + v )x� = ∫ΩV

|̂2(x′, v′, ⋅) �(dx′dv′) − � ∫ΩV
|̂2(⋅, dx′dv′) .

Moreover, the relative entropy takes the expression

Ent(p | p̂�̄) = E�0
[

log
d�0
d�̄

]

+ ∫

T

0 ∫ΩV
E|̂2t (x,v;⋅)

[

log
d|̂2t (x, v; ⋅)
d�(x, v; ⋅)

]

�t(dxdv) dt .

Therefore, one formally obtains the final formulation of the rate function

(A.4) I(p) =
⎧

⎪

⎨

⎪

⎩

Ent(�0 | �̄) + ∫

T

0 ∫ΩV
Ent

(

|̂2t (x, v; ⋅) |�(x, v; ⋅)
)

�t(dxdv) dt if (A.3) holds,
∞ otherwise.

This is almost the starting point of the rest of the paper—all that is left is a slight adjustment of the notation.
Let us note that, when |̂2 ≪ �, we have

∫ΩV ∫ΩV ⧵{x,v}
log

d|̂2(x, v; ⋅)
d�(x, v; ⋅)

(x′, v′) |̂2(x, v; dx′dv′) �(dxdv)

= ∫ΩV ∫ΩV ⧵{x,v}
d|̂2(x, v; ⋅)
d�(x, v; ⋅)

(x′, v′) log
d|̂2(x, v; ⋅)
d�(x, v; ⋅)

(x′, v′) � �x,−v(dx′dv′) �(dxdv)

= ∫ΩV

d|̂2(x, v; ⋅)
d�(x, v; ⋅)

(x,−v) log
d|̂2(x, v; ⋅)
d�(x, v; ⋅)

(x,−v) � �(dxdv)

= ∫Ω
u(x, v) log u(x, v) � �(dx dv) = Ent(j2 | � �) ,

where we have defined the measure
j2 ∶= u � � ∈(ΩV ), with u(x, v) ∶=

d|̂2(x, v; ⋅)
d�(x, v; ⋅)

(x,−v) .
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Because of the simple form of the jump kernel �, we may choose j2 as a flux variable instead of the full jump
kernel |̂2. Similarly, we define

j1 ∶= v � ∈(ΩV ) .
In terms of j = (j1, j2), the Kolmogorov forward equation becomes

(KFE) )t� + )xj1 = �#j2 − j2 with j1 = v � ,
and the rate function now reads
(A.5) I(p) = Ent(�0 | �̄) +ℐ (�, j) ,
with

(A.6) ℐ (�, j) ∶=

⎧

⎪

⎨

⎪

⎩

∫

T

0
Ent(j2t | � �t) dt if (KFE) and j1 = v �,

∞ otherwise,
which is precisely the functional defined in (1.8).
Remark 9. Rate functions of the form (A.4) appear when establishing large-deviations results related to
fluctuations of the fraction of time spent in each state of a random system. This is commonly known in the
large-deviation community as large deviations at the level 2.5 (cf. [56] and a series of papers by Donsker and
Varadhan starting with [57]). ○

Another large-deviation principle that is relevant for us involves the invariant measure of the Kac process,
namely the uniform distribution � ∶= T ⊗Unif{−V ,V }. Specifically, there is a large-deviation principle forthe empirical measure

ΣN ∶ ΩNV → (ΩV ) , ΣN (x1, v1, x2, v2,… , xN , vN ) ∶= 1
N

N
∑

i=1
�xi,vi ,

when {(xi, vi)}i=1,…,N are i.i.d. random variables distributed according to the invariant measure �. Again,
Sanov’s theorem gives the large-deviation principle
(A.7) Prob

(

ΣN ≈ �
)

≍ e−NS(�) asN →∞

with rate function
(A.8) S(�) = Ent(� |�) .

APPENDIX B. PRE-GENERIC STRUCTURE FOR THE FC SYSTEM
It turns out the variational structures introduced in this paper for the Kac equation and the FC system

induce pre-GENERIC structures [51] on the respective state spaces. Similar structures, but fully GENERIC
and quadratic in nature, have been proposed for equations similar to the FC system [30, Section 5.4]. In this
appendix we focus on the pre-GENERIC structure for the FC system—the one for the Kac equation being
completely analogous. In contrast to [51], here we give a formulation in terms of a continuity equation for the
pair (�, !). This extends the formulation of gradient structures in continuity-equation format given in [58].

Let us consider the projection of CE(0, T ; ΩV ) onto T , namely the system (2.12), which we recall here
)t� + )xJ 11 = 0 ,(B.1)
)t! + )xJ 12 = −2J

2
2 .(B.2)

We want to write it shortly as
)t(�, !) + d̃iv J = 0 ,

and therefore introduce a new notion of a continuity equation.
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Definition B.1 (Projected Continuity Equation). The quadruple (�, !, J1, J2) ∈ PCE(0, T ; T ) if
(1) (�, !) ∈ C([0, T ];(T )) × C((0, T );(T ))
(2) ((Ji)t)t∈(0,T ) ⊂(T ;ℝ2), i = 1, 2, are measurable families satisfying

∫

T

0
‖(Ji)t‖TV dt <∞,

(3) for any  ∈ C1(T ;ℝ2) and 0 ≤ s ≤ t ≤ T ,

⟨ 1, �t⟩ − ⟨ 1, �s⟩ = ∫

t

s

⟨

(∇̃ )1, (J1)r
⟩

dr ,(B.3)

⟨ 2, !t⟩ − ⟨ 2, !s⟩ = ∫

t

s

⟨

(∇̃ )2, (J2)r
⟩

dr .(B.4)

where ∇̃ ∶= (

()x 1, 0), ()x 2,−2 2)
) and ⟨a, b⟩ ∶= ∫T a ⋅ db.

The projection of the functional (2.10) is then given by

(B.5) J̃ (�, !, J ) ∶=

⎧

⎪

⎨

⎪

⎩

∫

T

0
ℒ̃ (�t, !t, Jt) dt if (�, !, J ) ∈ PCE(0, T ; T ),

+∞ otherwise,
with

(B.6)
ℒ̃ (�, !, J ) ∶= ℒ

(

Π−1V (�, !),Π
−1
V J

1,Π−1V J
2)

=

{

Ent
(

Π−1V J
2
| �Π−1V (�, !)

) if Π−1V J 1 = vΠ−1V (�, !),
+∞ otherwise.

and dual
ℋ̃ (�, !,  ) = sup

J∈(T )

(

⟨ 1, J1⟩ + ⟨ 2, J2⟩ − ℒ̃ (�, !, J )
)

= ∫T

(

 11 d! + V
2 12 d� + � e

 21
(

cosh(V  22 ) − 1
)

d� + �
V
e 

2
1 sinh(V  22 ) d!

)

.(B.7)
From this functional, one may construct a pre-GENERIC structure, which we now define for our specific
case.
Definition B.2 (Pre-GENERIC structure and flow in continuity-equation format). A pre-GENERIC structure
in continuity-equation format on the state space Z ∶= (T ) ×(T ) is a quadruple (∇̃,S , B,ℛ) where

(1) a gradient operator ∇̃∶ C1(T ;ℝ2)→ C(T ;ℝ2) × C(T ;ℝ2) with the transpose − d̃iv;
(2) a continuously differentiable function S ∶ Z → [0,∞], often called the driving function;
(3) a vector field B ∈(T ;ℝ2) ×(T ;ℝ2) that satisfies ⟨∇̃ dS (z), B(z)⟩ = 0 for all z ∈ Z;
(4) a dissipation potentialℛ ∶ (T ) ×(T ) × C(T ;ℝ2) × C(T ;ℝ2) → [0,∞] such that � ↦ ℛ(z, �)

is convex, lower semicontinuous and satisfies minℛ(z, ⋅) =ℛ(z, 0) = 0 for all z ∈ Z.
The pre-GENERIC flow in continuity-equation format corresponding to such structure is the evolution equa-
tion given by

)tz + d̃iv J = 0 and J = B(z) + )�ℛ
(

z,− ∇̃ dS (z)
)

= B(z) + ) ℋ̃ (z, 0) .
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This definition implies that the dynamics generated by B preserves the driving function S . Furthermore,
along the dynamics generated by the dissipation potentialℛ the driving function is Lyapunov. In this sense,
B is the nondissipative part of the evolution, and the rest is the purely dissipative—the driving function
usually has the interpretation of a free energy or (minus) thermodynamic entropy.

Let us discuss the three building blocks S , B, andℛ one by one. The driving function is again inspired
by large deviations [51] (see Appendix A) which yield the function
(B.8a) S (�, !) ∶= Ent

(

Π−1V (�, !) |Π
−1
V (T , 0)

)

.

The nondissipative vector field B = (B1, B2), which can be read off from the linear term in the Hamiltonian
has the components
(B.8b) B1(�, !) ∶=

(

!
0

)

and B2(�, !) ∶=
(

V 2�
0

)

.

Finally, the dissipation potential may be recovered from the Hamiltonian by the translation [59, Eq. (39)],
which gives

ℛ(�, !, �) = 2
[

ℋ
(

�, !, 1
2
(

� + ∇̃ dS (�, !)
)

)

−ℋ
(

�, !, 1
2
∇̃ dS (�, !)

)]

−
⟨

�, B(�, !)
⟩

= 2�∫T

( d�−
dT

d�+
dT

)
1
2 eV

�21
2
(

cosh(V �22) − 1
)

dT with �± ∶=
1
2

(

� ± !
V

)

.(B.8c)

Apart from the additional exponential dependence on �21 , this is the classical dissipation potential associated
with Markov jump processes [44]. The additional dependence plays no role, since the operator d̃iv does not
act on the component J 21 .
Remark 10. Note that the functional (B.5) is equivalent to (2.13) as long as we set J 21 = ! and J 12 = V 2� in
(B.5), which indeed are the two conditions that arise from the constraint Π−1V J 1 = vΠ−1V (�, !) in (B.5). Thenotion of the Momentum Equation incorporates the two conditions directly in its definition. ○
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