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Abstract. We study the long-time asymptotic behavior of the position distribution

of a run-and-tumble particle (RTP) in two dimensions in the presence of translational

diffusion and show that the distribution at a time t can be expressed as a perturbative

series in (γt)−1, where γ−1 is the persistence time of the RTP. We show that the

higher order corrections to the leading order Gaussian distribution generically satisfy

an inhomogeneous diffusion equation where the source term depends on the previous

order solutions. The explicit solution of the inhomogeneous equation requires the

position moments, and we develop a recursive formalism to compute the same. We

find that the subleading corrections undergo shape transitions as the translational

diffusion is increased.

1. Introduction

Active particles form a class of nonequilibrium systems that can self-propel by consuming

energy from their surroundings [1, 2, 3]. They are found abundantly in nature, ranging

from birds in a flock [4, 5], fish schools [6, 7], micro-organisms like bacteria [8] to

artificial objects like Janus particles and micro and nano-robots used for targeted drug

delivery [9, 10]. An important theoretical approach involves minimal stochastic modeling

of active particles, mimicking the different types of self-propelled dynamics seen in

nature [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. These models typically describe

the motion of an overdamped particle with a propulsion velocity that is correlated

in time—effectively generating a persistent motion. The propulsion velocity has a

stochastic dynamics of its own, which differ based on the kind of active motion it

is used to model [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Active motions

break the detailed balance condition, violate the fluctuation-dissipation relations,

exhibit non-diffusive scalings [34, 30, 32] and non-Boltzmann stationary states in

presence of confining potentials [35, 36, 37, 38, 39, 40], as well as unusual first-

passage properties [41, 42, 30, 32], etc. Due to the inherent nonequilibrium nature

of the dynamics, the exact analytical treatment is non-trivial. In fact, there is no

general formalism to understand these active dynamics, and one has to approach the

different models of self-propulsion in different ways to extract their statistical properties.

Recently, however, it was shown [43] that the long-time dynamics of active particles
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show certain universal behavior irrespective of the specific dynamics of the stochastic

propulsion velocity, namely, the leading order position distribution is a Gaussian with

a diffusive scaling and the subleading corrections to this leading order Gaussian follow

an inhomogeneous diffusion equation. The specificity of the different active dynamics

enters through the source term only, which, at each order, depends on the previous order

solutions.

One of the earliest and most popular models of active motion is the run-and-

tumble particles (RTP) [44] that mimics the dynamics of bacteria like E. coli. The

motion consists of segment of ‘run’ phases, where the particle propels itself along an

internal orientation at a constant speed, intermittently interrupted by ‘tumbling’ events

where the internal orientation changes randomly. The simplest and the most studied

version is the one-dimensional RTP, where the internal orientation can flip between two

possible values ±1. The equations of motion describing this dynamics correspond to

the Telegraphers equations [45, 46] and are very well-studied in the literature. However,

the usual observations of run-and-tumble processes in nature are in higher dimensions.

In fact, in the image tracking experiments, one usually looks at the projected motion

of RTP in two-spatial dimensions [22]. In two dimensions, the internal orientation is

characterized by a continuous angle θ, which evolves through a jump process [47]. The

exact position distribution of this dynamics has been previously calculated in [26, 48]—

where it was found that, at early times, starting from a randomized initial orientation,

the position distribution at early times is concentrated along a ring around the origin

that grows in time ballistically. In contrast, at large times, the typical [x ∼ O(
√
t)]

fluctuations are Gaussian, and the signatures of activity are encoded in the atypical

fluctuations x ∼ O(t) that are characterized by a large deviation function [26].

To understand the effects of the activity of an RTP at late times via the large

deviation functions experimentally is challenging as the O(t) events are rare. In this

paper, we study the O(
√
t) fluctuations beyond Gaussian, of the two-dimensional RTP

at long-times using the formalism developed in [43]. Starting from the Fokker-Planck

equation, we show that at the leading order, the position distribution satisfies a diffusion

equation, which yields a leading order Gaussian position distribution. Further, we

show that the subleading contributions follow inhomogeneous diffusion equations at each

order. We solve the first few of these explicitly to obtain the corrections to the leading

order Gaussian distribution in the typical region. These corrections, of O(
√
t), are more

accessible experimentally and are thus better markers of the signature of activity at

large times from an experimental point of view.

The simplest model outlined above does not take into account the translational

diffusion due to the thermal fluctuations of the medium, which can be important in

realistic situations. Here we also study the long-time behavior of two-dimensional RTP

in the presence of translational diffusion, for which the exact position distribution is not

known. We calculate the subleading corrections in this case and show that the universal

structure of the long-time position distribution remains the same. Interestingly,

however, the corrections undergo some interesting shape transitions at the origin as
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the translational diffusion is enhanced.

The paper is organized as follows. We first describe the two-dimensional RTP

dynamics and the associated Fokker-Planck equation without the translational diffusion

in Sec. 2. The position moments are calculated in Sec. 3. The leading order position

distribution at long-times and its subleading corrections are computed in Sec. 4. We

incorporate the translational diffusion in Sec. 5 and study the position distribution at

long-times by calculating the leading order distribution and its subleading corrections.

Finally, we conclude with some general remarks in Sec. 6.

2. The model and the Fokker-Planck equation

The run-and-tumble dynamics describes the overdamped motion of a particle that ‘runs’

at a constant speed v0 along an internal orientation that changes stochastically, via

‘tumbling’ at a constant rate γ. In two dimensions, the orientation is characterized by

a unit vector n̂ = (cos θ, sin θ) and the tumbling results in θ → θ′, where θ′ is chosen

uniformly from [0, 2π]. The dynamics of this two dimensional RTP is described by the

following overdamped Langevin equation,

~̇x = ~v(t), with v1(t) = v0 cos θ(t), v2(t) = v0 sin θ(t). (1)

In reality, there can also be a Brownian noise in addition to the active noise v(t).

However, in many practical situations, for example, a bacterium swimming in water at

room temperature, the effect of this thermal noise is negligible—in one second, a living

E. coli moves about 20− 30µm, whereas the typical displacement of a dead one due to

thermal noise is about 1µm. Therefore, we first consider the scenario described by (1),

ignoring the effect of thermal noise. We study the system with the thermal noise later

in Sec. 5.

We consider the initial condition where the particle starts at the origin with an

orientation chosen uniformly from [0, 2π], implying that 〈cos θ(t)〉 = 〈sin θ(t)〉 = 0.

Consequently, the components of stochastic velocity have zero mean. Furthermore, if

there is at least one tumbling event during the interval [t, t′], then θ(t) and θ(t′) are

independent. On the other hand, the orientation θ(t) = θ(t′) remains unchanged if

there are no tumbling events during [t, t′]. Consequently,

〈cos θ(t) cos θ(t′)〉c = 〈sin θ(t) sin θ(t′)〉c =

0 for at least one tumbling event in [t, t′],
1

2
for no tumbling events in [t, t′],

(2)

where the subscript c indicates conditional expectations. The probability that there

is no tumbling event within the duration |t − t′| is exp (−γ|t− t′|). Therefore, the

components of the stochastic velocity have exponentially decaying autocorrelations,

〈vx(t)vx(t′)〉 = 〈vy(t)vy(t′)〉 =
v20
2
e−γ|t−t

′|. (3)
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It is evident from the above equation that the stochastic velocity becomes weakly

correlated at times |t− t′| � γ−1, the persistence time, and hence, by appealing to the

central limit theorem, we expect a Gaussian distribution for the typical fluctuations with

〈x21(t) = 〈x22(t)〉〉 ' 2DRTt where DRT = v20/2γ. However, corrections to the Gaussian

distribution cannot be obtained from this heuristic argument. In the following, starting

from the Fokker-Planck equation, we rigorously derive this late-time diffusive behavior

as well as the subleading corrections to it systematically.

The position distribution remains isotropic at all times when the initial orientation

is chosen uniformly in [0, 2π]. Therefore, it suffices to consider only Pr(r, t), the

distribution of the radial part r =
√
x21 + x22, which is, in turn, related to the Cartesian

marginal distribution P (x1, t) by Pr(r, t) = 2P (x1 = r, t). The Fokker-Planck equation

for the joint distribution P (x1, θ, t) is given by,[
∂

∂t
+ v0 cos θ

∂

∂x1

]
P (x1, θ, t) = γLθP (x1, θ, t), (4)

where Lθ is the Markov operator corresponding to the θ dynamics,

LθP (x1, θ, t) = −P (x1, θ, t) +

∫ 2π

0

dθ′

2π
P (x1, θ

′, t). (5)

To obtain the solution of (4) in the long time regime (t � γ−1), it is convenient to

introduce the scaled variable y = x1/
√
DRT =

√
2γ x1/v0, such that the corresponding

distribution Q(y, θ, t) satisfies,[
ε2
∂

∂t
+ ε
√

2 cos θ
∂

∂y

]
Q(y, θ, t) = LθQ(y, θ, t), (6)

where ε2 = γ−1. In the following, we solve the above equation perturbatively, by treating

ε2/t as a small parameter following the framework developed recently [43]. To explicitly

obtain the coefficient of the (ε2/t)k term in the perturbative series, the knowledge of the

position moments 〈y2k(t)〉 is required. Hence, we first develop a recursive procedure to

compute the position moments in the next section.

3. Moments

To compute the position moments of the two-dimensional RTP, it is convenient to start

with the correlation functions,

M(k, n, t) =

∫ ∞
−∞

dy

∫ 2π

0

dθ yk cos(nθ)Q(y, θ, t), (7)

where k ≥ 0, n ≥ 0 are integers. Note that, M(k, 0, t) = 〈yk(t)〉, i.e., the position

moments are obtained by putting n = 0 in (7). The normalization condition of the joint

distribution Q(y, θ, t) and the fact that 〈cos(nθ)〉 = 0 for n > 0, leads to the condition,

M(0, n, t) = δn,0. (8)
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The time evolution equations for M(k, n, t) can be derived by multiplying both

sides of the Fokker-Planck equation (6) by yk cos(nθ) and integrating over y and θ,

which leads to, for k > 0,(
ε2
d

dt
+ 1

)
M(k, n, t) =

εk√
2

[M(k − 1, n− 1, t) +M(k − 1, n+ 1, t)] for n > 0, (9)

and ε
d

dt
M(k, 0, t) = k

√
2M(k − 1, 1, t). (10)

Since we assume that the particle starts from origin at t = 0, the recursive first-order

differential equations (9) and (10) must satisfy the initial condition M(k, n, 0) = 0 for

n > 0 and arbitrary k. Thus, formally, we have, from (9) and (10),

M(k, n, t) =
k√
2 ε

∫ t

0

ds e−(t−s)/ε
2

[M(k − 1, n− 1, s) +M(k − 1, n+ 1, s)] for n > 0,

(11)

and

M(k, 0, t) =
k
√

2

ε

∫ t

0

dsM(k − 1, 1, s), (12)

for n = 0, respectively. The correlation functions M(k, n, t) can be computed recursively

from (11), (12) using the boundary condition (8).

Since the particle starts from the origin with θ chosen uniformly between [0, 2π], the

odd position moments are always zero, i.e., M(2k+1, 0, t) = 0. Moreover, equation (11)

implies that the set of correlation functions M(k, n, t) form two independent networks,

sitting on even and odd values of k+n respectively. Hence, the condition (8) along with

the fact that M(2k + 1, 0, t) = 0, implies that M(k, n, t) = 0 for all odd k + n. Thus,

to determine the non-zero position moments M(2k, 0, t), we need to consider the even

k + n network only [see figure 1 for a schematic representation]. It is further clear from

figure 1 that the correlation functions M(k, n, t) vanish for n > k. Consequently, the

correlations on the line n = k simplify to,

M(k, k, t) =
k√
2 ε

∫ t

0

ds e−(t−s)/ε
2

M(k − 1, k − 1, s). (13)

This integral recursion relation can be solved exactly to yield [see Appendix A for

details],

M(k, k, t) =

(
ε√
2

)k
k!

[
1− e−t/ε2

k−1∑
ν=0

(t/ε2)ν

ν!

]
. (14)

For example, the first few diagonal terms are given by,

M(1, 1, t) =
ε√
2

(
1− e−t/ε2

)
, (15)

M(2, 2, t) = ε2 −
(
t+ ε2

)
e−t/ε

2

, (16)

M(3, 3, t) =
3ε3√

2
− 3

2
√

2ε
e−

t
ε2
(
t2 + 2tε2 + 2ε4

)
. (17)
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Figure 1. Illustration of the recursive connection among the correlation functions

M(k, n, t) on the (k, n) lattice. The blue discs indicate the points where the correlation

function is non-zero, while the grey ones indicate the positions where M(k, n, t) = 0.

Next, we calculate the first few moments explicitly starting from 〈y2(t)〉 =

M(2, 0, t). Substituting k = 2 in (12), we get,

M(2, 0, t) =
2
√

2

ε

∫ t

0

dsM(1, 1, s), (18)

which, in turn, can be evaluated using (15), to get,

M(2, 0, t) = 2t− 2ε2(1− e−t/ε2). (19)

We can proceed in a similar manner to calculate the higher order position moments by

substituting k = 2, 4, . . . in (12) and thereafter evaluating the terms appearing on the

right hand side using (11). We evaluate the next two non-zero moments,

M(4, 0, t) = 6t2(2− e−t/ε2)− 36ε2t+ 36ε4(1− e−t/ε2), (20)

and

M(6, 0, t) =
15t4

ε2
e−t/ε

2

+ 120t3 − 180ε2t2(4− e−t/ε2) + 1800ε4t− 1800ε6(1− e−t/ε2).
(21)

Even higher order position moments can be obtained systematically following the same

procedure.

4. Position distribution

In this section, we derive the position distribution of the RTP at long times

perturbatively. Integrating (6) over y gives the Fokker-Planck equation for the marginal
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distribution of θ,

ε2
∂R(θ, t)

∂t
= LθR(θ, t), where R(θ, t) =

∫ ∞
−∞

dy Q(y, θ, t). (22)

The operator Lθ, defined by (5), has one non-degenerate eigenvalue 0 with the

corresponding eigenfunction p0 = 1/(2π). The remaining eigenfunctions pn(θ) =

cos(nθ)/π share a common eigenvalue −1. The eigenfunctions obey the orthonormality

relations,∫ 2π

0

dθ cos(mθ)pn(θ) = δm,n and

∫ 2π

0

dθ cos(θ) cos(mθ)pn(θ) =
1

2
(δn−1,m + δn+1,m).

(23)

Therefore, R(θ, t), for a given initial condition θ(t = 0) = θ0, can be written as,

R(θ, t|θ0) =
1

2π
+ e−t/ε

2
∞∑
n=1

cos(nθ0)pn(θ), (24)

where we have used the initial condition R(θ, 0|θ0) = δ(θ − θ0) and the orthonormality

condition. In fact, setting t = 0 in the above equation yields
∑∞

n=1 cos(nθ0)pn(θ) =

δ(θ − θ0)− (2π)−1, which leads to a simpler expression,

R(θ, t|θ0) =
1

2π
(1− e−t/ε2) + e−t/ε

2

δ(θ − θ0). (25)

The second term on the right hand side comes from trajectories where θ has not

tumbled, while the first term denotes the contributions from trajectories that have

undergone at least one tumble event. Evidently, the θ distribution reaches the

stationary state R(θ, t → ∞) = 1/(2π). Moreover, if the initial orientation θ0 is

chosen from the stationary state itself, then it remains stationary at all times, i.e.,∫ 2π

0
R(θ, t|θ0)dθ0/(2π) = 1/(2π) —which is the case considered here.

Since {pn(θ)} form a complete basis, the joint distribution Q(y, θ, t) can be

expanded as,

Q(y, θ, t) =
∞∑
n=0

Fn(y, t) pn(θ), (26)

where the series coefficients Fn(y, t) =
∫∞
−∞ dθ Q(y, θ, t) cos(nθ). Note that, since the θ

distribution is stationary at all times,
∫∞
−∞ dyFn(y, t) = δn,0/(2π). Our goal is to find

the marginal position distribution

ρ(y, t) =

∫ 2π

0

dθ Q(y, θ, t) = F0(y, t). (27)

Substituting (26) in (6), and integrating over θ, we find that F0(y, t) satisfies,

∂F0(y, t)

∂t
= −
√

2

ε

∂F1

∂y
, (28)
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which involves F1(y, t). To find F1(y, t), we require F2(y, t) and so on. In general,

substituting (26) in (6), multiplying both sides by cos(mθ) and integrating over θ, we

get, (
ε2
∂

∂t
+ 1

)
Fm = − ε√

2

∂

∂y
[Fm−1(y, t) + Fm+1(y, t)] for m > 0. (29)

To extract the long time behavior systematically, we expand Fm(y, t) as an infinite

series in the dimensionless parameter ε/
√
t,

Fm(y, t) =
∞∑
k=0

εkAkm(y, t), (30)

where the factors t−k/2 are absorbed in the series coefficients Akm(y, t). Evidently,

Akm(y, t) = 0 for k < 0. Note that, since (28) and (29) are invariant under the

transformation (y, ε) → (−y,−ε), Fm(y, t) must also be invariant under the same

transformation, which, in turn, implies that,

Akm(−y, t) = (−1)kAkm(y, t). (31)

Substituting this expansion in (28) and (29) and comparing the terms of order εk

on both sides, we get,

∂Ak−20

∂t
= −
√

2
∂Ak−11

∂y
, (32)

and

∂Ak−2m

∂t
= − 1√

2

∂

∂y

(
Ak−1m−1 + Ak−1m+1

)
− Akm for m > 0. (33)

Evidently,

A0
m(y, t) = δm,0A

0
0. (34)

Again, putting k = 1 in (33), and using the above relation we have,

A1
m(y, t) = −δm,1√

2

∂A0
0

∂y
. (35)

Smilarly one can proceed for k = 2, 3, . . . , and it follows from the structure of (33) along

with (34) and (35) that Akm = 0 for k < m, which is illustrated graphically in figure 2.

Since the marginal position distribution F0(y, t) is symmetric in y, it follows from

(31) that Ak0(y, t) = 0 for odd k, and we can write from (30),

F0(y, t) =
∞∑
k=0

ε2kA2k
0 (y, t). (36)
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k

m0
0

1 2 3

1

2

3

4

4

Figure 2. Graphical representation of the non-zero Ak
m(y, t) in the (m, k) lattice

following (32) and (33). The filled blue discs denote the lattice points at which Ak
m(y, t)

is non-zero, while the red crosses denote the points corresponding to Ak
m(y, t) = 0. The

red striped region covers the lattice points with m > k, for which Ak
m(y, t) vanish.

Following (32), the coefficients A2k
0 (y, t) satisfy the differential equation,

∂A2k
0

∂t
= −
√

2
∂A2k+1

1

∂y
, (37)

which, in turn, requires Akm(y, t) with m > 1. It should be mentioned here that the

conditions A0
0(y, t) 6= 0 and A1

0(y, t) = 0 lead to [see figure 2],

Akm(y, t) = 0 for all odd (m+ k). (38)

Now, we proceed with the explicit evaluation of A2k
0 (y, t) systematically. The

equation for the leading order term A0
0(y, t) is obtained by putting k = 0 in (37),

∂A0
0

∂t
= −
√

2
∂A1

1

∂y
, (39)

where A1
1(y, t) has to be obtained in terms of A0

0(y, t) to get a closed form equation. By

substituting k = m in (33), one can, in fact, find the general relation,

Amm(y, t) = − 1√
2

∂Am−1m−1

∂y
=

(
− 1√

2

)m
∂A0

0

∂y
. (40)

Thus, using A1
1(y, t) = − 1√

2

∂A0
0

∂y
in (39), yields a diffusion equation for A0

0(y, t),

∂A0
0

∂t
=
∂2A0

0

∂y2
. (41)
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The normalized marginal position distribution to order ε0 is therefore given by,

A0
0(y, t) =

1√
4πt

exp

(
−y

2

4t

)
. (42)

At the next order, putting k = 1 in (37), we have,

∂A2
0

∂t
= −
√

2
∂A3

1

∂y
. (43)

To get a closed differential equation for A2
0(y, t), we need to express the right hand side

of the above equation in terms of A2
0(y, t) itself, or the already known function A0

0(y, t).

To this end, we put m = 1 and k = 3 in (33),

A3
1 = −∂A

1
1

∂t
− 1√

2

(
∂A2

0

∂y
+
∂A2

2

∂y

)
. (44)

The unknown terms on the right hand side of the above equation, namely, A1
1(y, t)

and A2
2(y, t) can be expressed in terms of A0

0(y, t) using (40). Thus, we have an

inhomogeneous diffusion equation,[
∂

∂t
− ∂2

∂y2

]
A2

0(y, t) = S2(y, t), (45)

where the source term S2(y, t) is given in terms of A0
0(y, t) as,

S2(y, t) = − ∂2

∂y2

(
∂

∂t
− 1

2

∂2

∂y2

)
A0

0(y, t). (46)

Owing to the diffusive nature of A0
0(y, t) and the structure of (45) and (46), we anticipate

the scaling form,

A2
0(y, t) =

1

t
q2

(
y√
4t

)
e−y

2/(4t)

√
4πt

. (47)

Using this scaling form in (45), we get an inhomogeneous Hermite differential equation

for q2(z),

q′′2(z)− 2zq′2(z) + 4q2(z) = s2(z), with s2(z) =
3

2
− 6z2 + 2z4. (48)

The solution of the above differential equation is given by,

q2(z) = c2H2(z) +
z2

4
(3− 2z2), (49)

where Hn(z) is the Hermite polynomial of order n and c2 is an arbitrary constant.

The normalization condition of the marginal position distribution
∫∞
−∞ dyF0(y, t) = 1 is

satisfied for all values of c2. Therefore, to determine c2 we compare the O(ε2) term of
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the second moment computed from (36), with −2ε2, obtained from (19). From (36) the

O(ε2) term of the second moment is given by,

ε2
∫ ∞
−∞

dy y2A2
0(y, t) = 4ε2

∫ ∞
−∞

dz z2 q2(z)
e−z

2

√
π

= ε2
(

8c2 −
3

2

)
, (50)

where we have used (47) and (49) successively. Comparing the right hand side with

−2ε2, we get c2 = −1/16, which, in turn, leads to,

q2(z) =
1

8
(1 + 4z2 − 4z4). (51)

Similarly, we determine the next higher order subleading corrections A4
0(y, t), A

6
0(y, t)

and so on. They satisfy the inhomogeneous diffusion equation,[
∂

∂t
− ∂2

∂y2

]
A2k

0 (y, t) = S2k(y, t), (52)

where the source term S2k(y, t) depends on the previous order solutions. For example,

S4(y, t) = − ∂2

∂y2

(
∂

∂t
− 1

2

∂2

∂y2

)
A2

0(y, t) +
∂2

∂y2

(
∂

∂t2
− 3

2

∂3

∂y2∂t
+

1

2

∂4

∂y4

)
A0

0(y, t), (53)

S6(y, t) =
∂2

∂y2

(
∂

∂t
− 1

2

∂2

∂y2

)
A4

0(y, t) +
∂2

∂y2

(
∂2

∂t2
− 3

2

∂3

∂y2∂t
+

1

2

∂4

∂y4

)
A2

0(y, t)

− ∂2

∂y2

(
∂3

∂t3
+ 3

∂4

∂y2∂t2
− 5

2

∂5

∂y4∂t
+

5

16

∂6

∂y6

)
A0

0(y, t). (54)

Using the scaling forms,

A2k
0 (y, t) =

1

tk
q2k

(
y√
4t

)
e−y

2/(4t)

√
4πt

, (55)

and

S2k(y, t) =
1

tk+1
s2k

(
y√
4t

)
e−y

2/(4t)

√
4πt

, (56)

in (52) we get an inhomogeneous Hermite differential equation at each order as,

q′′2k(z)− 2zq′2k(z) + 4k q2k(z) = s2k(z). (57)

In general, the physically admissible solution to (57) is given by,

q2k(z) = c2k U2k(z) + (−1)k
k!

(2k)!

∫ z

0

dy e−y
2
[
V2k(z)U2k(y)− U2k(z)V2k(y)

]
s2k(y), (58)

where U2k(z) = H2k(z) is the Hermite polynomial of order 2k and V2k(z) =

z 1F1 (1/2− k, 3/2, z2) is the confluent hypergeometric function. These are the two

independent solution of the homogeneous Hermite differential equation q′′2k(z) −
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2zq′2k(z) + 4k q2k(z) = 0. The arbitrary constant c2k in (58) is determined by comparing

the coefficient of ε2k of M(2k, 0, t) obtained in the previous section with

4k
∫ ∞
−∞

dz z2kq2k(z)
e−z

2

√
π
, (59)

obtained from (36), using (55) and (58). We next explicitly compute the corrections for

k = 2, 3.

For k = 2, we have,

s4(z) =
15

16
+

15z2

2
− 45z4

2
+ 10z6 − z8, (60)

which leads to,

q4(z) =
1

128

(
9 + 24z2 + 72z4 − 96z6 + 16z8

)
. (61)

Using q2(z) and q4(z), for k = 3, we obtain,

s6(z) =
1

256

(
315 + 1260z2 + 6300z4 − 16800z6 + 8400z8 − 1344z10 + 64z12

)
, (62)

which, after determining c6, gives,

q6(z) =
1

3072

(
225 + 540z2 + 900z4 + 2400z6 − 3600z8 + 960z10 − 64z12

)
. (63)

Proceeding similarly, one can systematically calculate the higher order corrections.

Finally, remembering that the isotropy of two-dimensional position distribution, the

radial distribution of the RTP in the diffusive scaling limit can be expressed in the

universal form [43],

Pr(r, t) =
1√

πDRTt
exp

(
− r2

4DRTt

) ∞∑
k=0

(γt)−k q2k

(
r√

4DRTt

)
, (64)

with
∫∞
0

Pr(r, t) dr = 1. Note that, for a passive Brownian paricle q2k(z) = 0 for k > 0.

Therefore, the emergence of the non-trivial polynomials {q2k(z); k > 0} is solely due

to the active nature of the underlying dynamics. Moreover, the form of q2k(z) depends

on the specific active dynamics [43]. These signatures of activity in the diffusive scale

[i.e., involving typical trajectories showing fluctuations O(
√
t)] are easier to observe in

experiments, in comparison to the large deviation form which encodes rare fluctuations

of O(t).

5. Effect of translational diffusion

We have ignored the effect of thermal fluctuations in our calculations so far. In this

section, we investigate the effect of a thermal translational noise ~η = (η1, η2). In that

case, the Langevin equation (1) changes to,

~̇x = ~v(t) +
√

2D~η(t), (65)
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where 〈ηi〉 = 0, 〈ηi(t)ηj(t′)〉 = δijδ(t − t′) and D denotes the translational diffusion

coefficient.

Since ~v(t) and ~η(t) are two independent random noises, the distribution of the

position ~x(t) = (x1(t), x2(t)) can be expressed as a convolution,

PD(~x, t) =

∫
d~x′Pa(~x′, t)Pp(~x− ~x′, t), (66)

where Pa(~x, t) denotes the distribution of the process ~x(t) =
∫ t
0
~v(s) ds and Pp(~x′, t) is

the distribution of the diffusion process ~x′(t) =
∫ t
0
~η(s) ds. In particular, for the marginal

distribution of x1, we have,

PD(x1, t) =

∫
dx′Pa(x

′, t)Pp(x1 − x′, t), (67)

where Pp(x1, t) satisfies the diffusion equation,

∂

∂t
Pp(x1, t) = D

∂2

∂x21
Pp(x1, t). (68)

It follows from the analysis in the previous sections (see (27), (36) and (52) for example),

that,

Pa(x1, t) =
∞∑
n=0

γ−npn(x1, t), (69)

where pn(x, t) satisfies the inhomogeneous diffusion equation,[
∂

∂t
−DRT

∂2

∂x2

]
pn(x, t) = Sn(x, t), (70)

where S0(x, t) = 0 and Sn(x, t) for n > 0 is related to S2n(y, t) [appearing in (52) for

the scaled variable x/
√
DRT].

Using (69) in (67), we find that the marginal position distribution in the presence

of translational noise is given by,

PD(x1, t) =
∞∑
n=0

γ−nP
(n)
D (x1, t), (71)

where,

P
(n)
D (x1, t) =

∫ ∞
−∞

dx′ pn(x′, t)Pp(x1 − x′, t). (72)

To study the time evolution of the probability distribution P
(n)
D (x1, t), we take a

derivative of (72) with respect to time to obtain,

∂P
(n)
D (x1, t)

∂t
=

∫ ∞
−∞

dx′
[∂pn(x′, t)

∂t
Pp(x1 − x′, t) + pn(x′, t)

∂Pp(x1 − x′, t)
∂t

]
. (73)
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Figure 3. Plot of q̃2k(z) for different values of the translational diffusion coefficient

D (with γ = 1 and v0 = 1), showing the shape transition at the origin from a local

minimum for smaller values of κ to a maximum for large κ. The case κ = 0 corresponds

to the case of no translational diffusion. The symbols denote q̃2k(z) extracted from

numerical simulations with t = 10, while the solid lines correspond to (78).

.

Now, we first use (68) and (70) in the above equation to replace the time derivative

in terms of the spatial derivatives. Subsequently, integrating by parts and using

∂x1Pp(x1 − x′) = −∂x′Pp(x1 − x′), we find that P
(n)
D (x1, t) satisfies the inhomogeneous

diffusion equation, [
∂

∂t
− Λ

∂

∂x21

]
P

(n)
D (x1, t) = S̃n(x1, t), (74)

where Λ = (D +DRT) and

S̃n(x1, t) =

∫ ∞
−∞

dx′ Sn(x′, t)Pp(x1 − x′, t). (75)

Thus, the translational diffusion modifies the effective diffusion coefficient, as well as

the source functions {S̃n(x1, t)}. Therefore, skipping details, (71) becomes,

PD(x1, t) =
1√

4πΛt
exp

(
− x21

4Λt

) ∞∑
k=0

(γt)−k q̃2k

(
x1√
4Λt

)
, (76)

where q̃0(z) = 1, and q̃2k(z) for k > 0 quantify the corrections to the leading order

Gaussian distribution. The polynomials q̃2k(z) can be obtained by comparing the

coefficients of (γt)−k in the above equation and (67). In general, the correction

polynomials q̃2k(z) can be written in terms of the corresponding correction polynomials

q2k(z) [see (64)] as,

q̃2k(z) =

∫ ∞
−∞

dw
exp (−w2/κ)√

πκ
q2k

(
z − w√
1 + κ

)
, (77)
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where κ = D/DRT denotes the ratio of the translational diffusion and the effective

diffusion coefficient of the RTP in the absence of the translational diffusion. Equation

(77) is a very general relation, that relates the correction polynomials in the presence

of translational diffusion to the ones in absence of translational diffusion for any active

particle model. The integral in (77) can be evaluated exactly for any polynomial function

q2k(z). For example the first few terms are given by,

q̃2(z) =
1

8(1 + κ)2
(
1 + 4κ+ 4(1− 2κ)z2 − 4z4

)
, (78)

q̃4(z) =
1

128(1 + κ)4
[
9 + 48κ+ 144κ2 + 24z2(1 + 12κ− 24κ2)

+24z4(3− 24κ+ 8κ2)− 32z6(3− 4κ) + 16z8
]
, (79)

q̃6(z) =
1

3072(1 + κ)6
(
5 + 36κ+ 120κ2 + 320κ3 + 540z2(1 + 10κ+ 80κ2 − 160κ3)

+900z4(1 + 24κ− 144κ2 + 64κ3) + 480z6(5− 90κ+ 120κ2 − 16κ3)

−720z8(5− 20κ+ 8κ2) + 192z10(5− 6κ)− 64z12
)
. (80)

Figure 3 shows the leading order correction polynomial q̃2(z) in the absence and presence

of translational diffusion. It is interesting to note that in the presence of translational

diffusion q̃2(z) undergoes a shape transition — z = 0 is a local minimum of q̃2(z) for

κ < 1/2, whereas it becomes a maximum for κ > 1/2. We recall that, in the absence of

translational diffusion (κ = 0) q2(z) always exhibits a minimum at z = 0. The higher

order corrections q̃4(z), q̃6(z), etc. also undergo similar shape transitions at the origin,

albeit at progressively higher values of κ.

6. Conclusion

We use the perturbative procedure developed in [43] to calculate the long-time position

distribution of a run-and-tumble particle in two dimensions with propulsion speed

v0, tumbling rate γ, and translational diffusion coefficient D. For simplicity, we

consider the initial orientation to be isotropic, for which the position distribution

also remains isotropic at all times. To understand the long-time behavior of this

isotropic position distribution, starting from the Fokker-Planck equation, we show that

the long-time marginal position distribution admits a series solution in powers of the

dimensionless parameter (γt)−1. We find that the leading order contribution to the

position distribution satisfies a diffusion equation with an effective diffusion constant

Λ = D +DRT, where DRT = v20/(2γ) is the effective diiffusion coefficient in the absence

of translational diffusion (D = 0). The subleading corrections satisfy an inhomogeneous

diffusion equation where the inhomogeneous term, at each order, depends on the

previous order solutions. In particular, the distribution of the scaled radial distance

R = r/
√

4Λt can be expressed as, pD(R, t) = π−1/2e−R
2∑∞

k=0 (γt)−k q̃2k (R), where

q̃2k(R) is a polynomial of order 4k that depends on the dimensionless parameter

κ = D/DRT. It turns out that q̃2k(R) can be expressed in terms of q2k(R), the corrections



Long time behavior of run-and-tumble particles in two dimensions 16

in the absence of translational diffusion (κ = 0), which satisfies inhomogeneous Hermite

differential equations at each order. We illustrate the procedure by explicitly calculating

the first few corrections q2k(R) and q̃2k(R). As a part of this procedure, we develop a

recursive formalism for computing the correlation functions 〈yk cos(nθ)〉 exactly in the

absence of translational diffusion. In particular, we obtain a closed-form expression

for 〈yk cos(kθ)〉. While the leading order universal Gaussian behavior of the position

distribution is expected from the central limit theorem, our work brings out the universal

nature of the subleading corrections to the Gaussian, as proposed in our previous

work [43].

An obvious question is if a similar perturbative technique can be used to study some

other important physical observables, like first-passage time [41] and convex-hull [49, 50],

of two-dimensional RTPs. It would also be interesting to see whether the predicted

universal properties still hold if the underlying orientation dynamics is nonequilibrium,

for example, chiral active motion. Another relevant question is whether the universal

structure survives if the time between the consecutive tumble events are taken from

more generalized waiting-time distributions, but still having a characteristic time-scale.
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Appendix A. Solution of the recursion relation for the correlation function

M(k, k, t)

In this appendix, we provide the derivation of the correlation function M(k, k, t) given

in (14) in the main text. Equation (13) is of the form,

f(k, t) =
k√
2/b

∫ t

0

ds e−b(t−s) f(k − 1, s), (A.1)

where f(k, t) = M(k, k, t) and b = 1/ε2. To solve the above integral recursion relation,

we take a Laplace transform with respect to t on both sides of (A.1) to get,

f̃(k, λ) =

∫ ∞
0

dt e−λt f(k, t) =
k√
2/b

∫ ∞
0

dt e−λt
∫ t

0

dse−b(t−s) f(k − 1, s),

=
k√
2/b

1

λ+ b
f̃(k − 1, λ). (A.2)

The above equation is a simple algebraic recursion relation with the initial condition

f̃(0, λ) = 1/λ [since f(0, t) = M(0, 0, t) = 1], and can be solved to get,

f̃(k, λ) =
k!

(2/b)k/2 λ (λ+ b)k
. (A.3)
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The generating function can be inverted exactly to yield,

f(k, t) =
k!

(2b)k/2

(
1− e−bt

k−1∑
n=0

bn

n!

)
. (A.4)

Subtituting b = 1/ε2, we get (14), quoted in the main text.

Appendix B. Extraction of q2k(z) from the exact solution

The Fokker-Planck equation (4) has been exactly solved in [26] to obtain the marginal

position distribution as,

P (x1, t) =
γ e−γt

2v0

[
L0

(
γ

v0

√
v20t

2 − x21
)

+ I0

(
γ

v0

√
v20t

2 − x21
)]

+
e−γt

π
√
v20t

2 − x21
, (B.1)

where L0(u) and I0(u) denote the modified Struve function and modified Bessel function

of the first kind, respectively. The last term, which decays exponentially in time,

characterizes the ballistic spread and can be ignored in the long-time diffusive regime.

In this regime, substituting v0 =
√

2γDRT, we get the distribution of the scaled variable

z = x1/
√

4DRTt as,

P (z, t) =

√
γt

2
e−γt

[
L0

(
γt

√
1− 2z2

γt

)
+ I0

(
γt

√
1− 2z2

γt

)]
. (B.2)

For large γt, the arguments of L0 and I0 are large and

L0(u) = I0(u) =
eu

π
√

2u

∫ u

0

dτ√
τ
e−τ

(
1− τ

2u

)−1/2
as u→∞

=
eu

π
√

2u

∞∑
n=0

u−n

n!

[
(2n− 1)!!

2n

]2
, (B.3)

where we have used the expansion of (1 − z)−1/2 = (2n − 1)!! zn/(2nn!) and taken the

upper limit of integration to ∞. The first few terms are given by,

L0(u) = I0(u) =
eu√
2π

[
1

u1/2
+

1

8u3/2
+

9

128u5/2
+

75

1024u7/2
+O

(
1

u9/2

])
. (B.4)

Using (B.4) in (B.2), the corrections q2k(z) can be obtained and match exactly with the

ones obtained in Sec. 4.
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