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Abstract 

 

The Boltzmann distribution is commonly interpreted as a classical approximation of the quantum-mechanical 

Fermi-Dirac and Bose-Einstein distributions. We arrive at a different conclusion by directly investigating the 

three equilibrium distributions without considering statistical variations. A general differential equation of 

thermal equilibrium is obtained that applies to any particles. Simple integration yields the Boltzmann 

distribution. Furthermore, quantum conditions are established, ruling the occupation numbers of (i) fermions by 

utilizing Pauli’s exclusion principle and (ii) bosons by utilizing Einstein’s rate-equation approach to Planck’s 

law of blackbody radiation. By exploiting the respective quantum condition, integration of the same differential 

equation of thermal equilibrium yields either the Fermi-Dirac or the Bose-Einstein distribution. It suggests that 

the Boltzmann distribution is a general distribution of thermal equilibrium, whereas the Fermi-Dirac and Bose-

Einstein distributions are special cases of the Boltzmann distribution, ruled by specific conditions. This 

suggestion is further underlined by the fact that inserting the respective quantum condition directly into the 

Boltzmann distribution delivers either the Fermi-Dirac or the Bose-Einstein distribution. This finding implies 

that fermions and bosons simultaneously obey both their own specific and the general Boltzmann distribution. 

 

 

1. Introduction 

 

In statistical mechanics, the Boltzmann distribution [1], 

 
( )0 B

0

1

e i

i

E E k T

n

n −
= , (1) 

the Bose-Einstein distribution [2,3], 
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and the Fermi-Dirac distribution [4,5,6], 
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quantify the occupation number ni of an energy level with energy Ei at a given temperature T. The indices i and 0 

denote the energy level of interest and a reference energy level, respectively. The indices BE and FD denote Bose-

Einstein and Fermi-Dirac statistics, respectively. kB is Boltzmann’s constant, hence kBT is the thermal energy. 

All three distributions can be obtained from the canonical ensemble [7,8,9] or the grand canonical ensemble 

[7,8,9]. Their difference can be derived based on the assumption that classical particles are distinguishable, 

whereas fermions and bosons are not, and fermions obey Pauli’s exclusion principle [10], whereas bosons do not. 

In this paper, we carefully examine the principally known relation between absolute, relative, and fractional 

occupation numbers. We derive quantum conditions that apply to Fermi-Dirac statistics, namely Pauli’s exclusion 

principle, or Bose-Einstein statistics, namely that (in our chosen example) only real photons trigger absorption, 

whereas real and vacuum photons trigger emission. We establish the differential equation of thermal equilibrium 

and integrate it with boundary conditions that either remain general, thereby deriving the Boltzmann distribution, 

or additionally make use of either quantum condition, thereby deriving the Fermi-Dirac or Bose-Einstein 
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distribution. We also derive the equations for the ground-state occupation numbers in Fermi-Dirac and Bose-

Einstein distributions. The obtained results suggest that the Fermi-Dirac and Bose-Einstein distributions are 

special cases of the Boltzmann distribution. 

 

 

2. Absolute, relative, and fractional occupation numbers 

 

In the present work, we assume a total number nt of identical systems. Depending on the physical situation under 

consideration, the number of systems may be constant, e.g. systems including fermions (such as electrons), or 

variable, e.g. systems including bosons (such as photons) that can be created or annihilated. Each system 

comprises two discrete, non-degenerate energy levels, namely an excited state, i, with level energy Ei, and the 

ground state, j = 0, with level energy E0. 

Among these nt two-level systems, n0 systems are in the ground state, whereas ni systems are in the excited 

state. Consequently, 

 
t 0in n n= + . (4) 

The numbers ni and n0 are the absolute occupation numbers of the two energy levels. 

We can then determine the relative occupation number ai of an energy level i with respect to the occupation 

number of the ground state, 
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For i = 0, we obtain 
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because we compare the absolute occupation number of the ground state to itself. We can also determine the 

fractions of systems that are in their excited state, 
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or in their ground state, 
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The numbers bi and b0 are the fractional occupation numbers of the two energy levels; their sum is calibrated to 

unity. As Eqs. (7) and (8) underline, the fractional occupation numbers bi and b0 are equal to the absolute 

occupation numbers per system, ni/nt and n0/nt, respectively. It follows that 
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i.e., Eq. (5) contains the same information as Eqs. (7) and (8). 

Obviously, knowledge of the absolute occupation numbers allows one to determine the relative occupation 

number of the excited state via Eq. (5) and the fractional occupation numbers via Eqs. (7) and (8). In contrast, 

knowledge of the relative and fractional occupation numbers does not allow one to determine the absolute 

occupation numbers. For example, fractional occupation numbers of b0 = 80% in the ground state and bi = 20% 

in the excited state, equivalent to a relative occupation number of ai = 25% in the excited state, can mean that out 

of nt = 5 available systems n0 = 4 systems are in the ground state and ni = 1 system is in the excited state or out of 

nt = 3.51012 participating systems n0 = 2.81012 systems are in the ground state and ni = 0.71012 systems are in 

the excited state. In both examples, we obtain b0 = 80%, bi = 20%, and ai = 25%. 

When interpreting the fractional occupation numbers b0 and bi as probabilities, it means that each single system 

has a probability of b0 to be in its ground state and a probability of bi to be in its excited state i, but the total number 

nt of participating systems is possibly unknown. For example, if we fabricate a crystal that contains an unknown 

concentration of rare-earth ions, we can nevertheless calculate the Boltzmann factors in the crystal-field levels of 

the electronic ground-state manifold of the rare-earth ions by use of Eq. (1), provided that we know their level 

energies and the crystal temperature [11]. The rare-earth concentration is not relevant. In this statistical 
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interpretation, it can even be a single participating system with a single occupation, in our example a single rare-

earth ion, i.e., nt = 1, that can be found 80% of time in its ground state and 20% of time in its excited state. 

In the following investigation, it is important to keep the differences between absolute, relative, and fractional 

occupation numbers, as defined above, in mind. 

 

 

3. Differential equation of thermal equilibrium 

 

Derivation of the Boltzmann, Fermi-Dirac, and Bose-Einstein distributions is a profound task in statistical physics. 

The reason is that initially all possible states are considered and then the state of thermal equilibrium is obtained, 

e.g., by maximizing the entropy. Here we present an approach that does not determine the statistical variation 

around a thermal equilibrium but directly derives the equilibrium distribution. It applies to any number nt of 

systems, avoids the complications encountered in other derivations, and sheds new light on the relation between 

the three different distributions. 

The definition of an energetic equilibrium between two energy states 0 and i is that the total energy Et in both 

energy states must be equal, 

 ( ) ( )t t0E E i= . (10) 

The definition of a thermal equilibrium is that, in addition to the requirement of Eq. (10), both energy states must 

be at the same temperature T, 

 ( ) ( )0T T i= . (11) 

These two requirements are not identical. 

Let us first evaluate the second requirement. The total kinetic energy of a gas, a liquid, or a solid body typically 

comprises translational, vibrational, and rotational energies of its particles relative to its internal coordinate frame 

(internal kinetic energy), plus the kinetic energy of its center of mass relative to an external reference coordinate 

frame (external kinetic energy). Temperature is defined in physics as the mean kinetic energy of each of the 

particles of a gas, a liquid, or a solid body relative to its internal coordinate system [12], whereas the external 

kinetic energy of the entire body relative to an external reference coordinate system is irrelevant. A cold body 

(say: a meteorite) may move fast, whereas a hot body (say: a hot plate on a stove) may be at rest, relative to an 

external reference coordinate system (say: the house in which we live). According to the definition of the 

temperature scale in Kelvin, the mean kinetic (translational, vibrational, and rotational) energy of a single particle 

with respect to the internal coordinate system of the body at temperature T equals the thermal energy kBT [12]. 

When two bodies of the same substance, density, pressure, etc., one containing twice as many particles as the 

other, hence having twice the volume of the other, are at the same temperature, then one body contains twice as 

much total internal kinetic energy as the other. Hence, the kinetic energy of a number n of particles in a specific 

energy level i at temperature T amounts to n times the thermal energy, 

 
k BE nk T= , (12) 

no matter what the energy Ei of this specific energy level is. This is the direct consequence of Eq. (11). 

Now we consider the first requirement. The potential energy of a single particle that occupies a level i with 

energy Ei is necessarily Ei, because this is the physical meaning of the energy Ei. As a simple example, consider 

the energy levels En with main quantum number n of the hydrogen atom in Bohr’s model [13], which are potential 

energies due to the attractive Coulomb force between the electron and the proton. Hence, the potential energy of 

these n particles in an arbitrary energy level with energy E is 

 pE nE= . (13) 

Compared to these n particles occupying the level with energy E, the n + dn particles that occupy a level with 

elevated energy E + dE must have the same total energy Et, for a thermal equilibrium to be established. Therefore, 

 ( ) ( ) ( ) ( )t k p k pE E E E E E E dE E E dE= + = + + + . (14) 

This is the direct consequence of Eq. (10). 

Substituting Eqs. (12) and (13) into Eq. (14) yields 

 ( ) ( )( )B Bnk T nE n dn k T n dn E dE+ = + + + + . (15) 
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By arbitrarily setting the potential energy E to zero (we will reintroduce a potential-energy value during the 

subsequent integration), resolving the brackets, and neglecting the second-order infinitesimal term dndE, we 

obtain the differential equation 

 
B

dn dE

n k T
= − . (16) 

This is the differential equation of thermal equilibrium. It relates the relative change dn/n in absolute 

occupation number n to the change dE in potential energy at constant temperature T, i.e., constant mean kinetic 

energy kBT of each particle. From its derivation we understand the underlying physics. In a higher-energy level, 

each particle has a higher potential energy, whereas its kinetic energy remains constant, because the temperature 

remains constant; therefore, its total energy increases when elevated from a lower-energy to a higher-energy level. 

The only possible way of readjusting the total energy Et of Eq. (14) of all particles in the higher energy level is 

then by decreasing the number n + dn of particles that occupy the higher-energy level (or, equivalently, each 

particle’s probability of occupying the higher-energy level). Therefore, dn must be negative, as is the case in Eq. 

(16). 

Since the only assumptions in its derivation are (i) the equivalence of total energy of both energy states and 

(ii) the same temperature of all particles occupying these two energy states to establish a thermal equilibrium, the 

differential equation of thermal equilibrium, Eq. (16), is universally valid and independent of the particles 

involved. Consequently, by simple integration we will derive from it the Boltzmann distribution, the Fermi-Dirac 

distribution, and the Bose-Einstein distribution. 

 

 

4. Boltzmann distribution 

 

In this Section, we will derive the Boltzmann distribution from the differential equation of thermal equilibrium 

and provide an example that illustrates the considerations made in the previous Section. 

 

4.1. Derivation of Boltzmann distribution 

 

Integration of the differential equation of thermal equilibrium, Eq. (16), over the absolute occupation numbers n0 

of the ground state with energy E0 and ni of an excited state i with energy Ei, 
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provides that the mean absolute occupation numbers ni and n0 of the two levels in thermal equilibrium at 

temperature T are related to each other by 
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By simple integration of the differential equation of thermal equilibrium, we have obtained the Boltzmann 

distribution of Eq. (1). In Eq. (18), we can also set i = 0, thereby deriving that 
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as expected from Eq. (6). 

Since we have not imposed a specific condition on the absolute occupation numbers n0 and ni, Eq. (17) is the 

most general way of integrating the differential equation of thermal equilibrium, Eq. (16). Therefore, the 

Boltzmann distribution of Eq. (18) or (1) is the most general distribution function that describes a thermal 

equilibrium. Any other distribution function must be a special case of the Boltzmann distribution of Eq. (18) or 

(1), and we will show in the following Sections that this statement specifically accounts for the Fermi-Dirac and 

Bose-Einstein distributions. 

According to Eqs. (7) and (8), the Boltzmann factors bi and b0 of the two energy levels are 
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The Boltzmann distribution of Eq. (18) or (1) quantifies the relative occupation number ai of an excited state 

with respect to the ground state in thermal equilibrium. Via Eqs. (20) and (21) one can then calculate the 

Boltzmann factors, i.e., the fractional occupation numbers bi and b0 of the systems or probabilities bi and b0 of a 

single system being found in its excited or ground state, respectively. For example, a single two-level atom with 

known level energies has the probabilities bi and b0 of being found in its excited or ground state, respectively, at 

a given temperature T. Many atoms have the same probabilities. Therefore, the Boltzmann distribution applies to 

any number of systems. It is not restricted to a large or even infinite number of systems, as is the assumption in 

the canonical ensemble [7,8,9] or the grand canonical ensemble [7,8,9]. (Alternatively, one can interpret ni and n0 

as the absolute occupation numbers and bi and b0 as the fractional occupation numbers of the two energy levels 

of a single system that allows for multiple occupations of its energy levels.) 

However, the total number nt of systems and the absolute occupation numbers ni and n0 of the energy levels 

Ei and E0, respectively, are not specified by the Boltzmann distribution. It is the direct consequence of integrating 

Eq. (17) without imposing any condition on the absolute occupation numbers n0 and ni. Hence, there is a degree 

of freedom in the Boltzmann distribution that must be defined separately to resemble the specific physical situation 

under consideration. This point is important when comparing the Boltzmann distribution to the Fermi-Dirac and 

Bose-Einstein distributions. 

Often the chemical potential  is utilized to specify the total number nt of systems. Alternatively, examples of 

nt = 5 or nt = 3.51012 were discussed in the previous Section. The choice depends on the physical situation under 

consideration; if we know that nt = 3.51012, we do not need the chemical potential . 

 

4.2. Example: isothermal barometric formula of air pressure in the atmosphere 

 

A special version of the differential equation of thermal equilibrium, Eq. (16), is the differential equation that 

leads to the isothermal barometric formula of atmospheric pressure. 

From the ideal gas law, 

 G A B

B

1
=

R N km
P T T nk T

M V M V
= = , (22) 

where P is the atmospheric pressure, RG is the ideal gas constant, M is the molar mass, NA is the Avogadro constant, 

and n, m, and  are the number, mass, and density, respectively, of particles in the volume V of the air element 

under consideration, we obtain the kinetic energy Ek as 

 k

k B k B

k

            
dE dP dn

E PV nk T dE dPV dnk T
E P n

= =  = =  = = . (23) 

At a given temperature T in a given volume V, a relative change in kinetic energy equals a relative change in 

pressure, which equals a relative change in the number of particles. 

The potential energy E of a single particle results from the gravitational force, 

 B B

G G

      E E E E

k M k M
E F h mg h g h dE g dh

R R
= = =  = , (24) 
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where FE and gE are the gravitational force and acceleration at the earth’s surface, respectively, and h is the altitude 

above sea level or any other reference level. The roles of kinetic energy Ek and potential energy Ep become very 

clear in this example. 

Inserting Eqs. (23) and (24) into the general differential equation of thermal equilibrium, Eq. (16), yields the 

specific differential equation of atmospheric pressure [14], 

 
G

E

dP M
g dh

P R T
= − , (25) 

and integration yields the isothermal barometric formula of atmospheric pressure [15], 
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Over a reasonably small altitude range, over which the temperature is reasonably constant, the atmospheric 

pressure follows the Boltzmann distribution. Since the temperature and, thus, the kinetic energy of each air particle 

is approximately the same at the different altitudes, the only way in which the increasing altitude and, thus, 

increasing potential energy of each air particle can be compensated is by a reduction dn of air particles with 

increasing altitude, hence a reduction dP of pressure, see Eq. (25). The essential physics expressed by the 

differential equation of thermal equilibrium, Eq. (16), is beautifully illustrated in this example. The ideal gas law 

of Eq. (22), applied at all altitudes, fulfils the condition of Eq. (11). Had we derived the differential equation (25) 

from fundamental mechanical principles rather than utilizing Eq. (16), we could have further verified that the 

condition of Eq. (10) occurs in the derivation. 

By the way, the isothermal barometric formula works equally well for good and bad weather, i.e., high and 

low atmospheric pressure, because only the relative atmospheric pressure P(hi)/P(h0) at different altitudes is 

calculated by the Boltzmann distribution of Eq. (26). An absolute atmospheric pressure P(hi) or P(h0) is not 

specified in Eq. (26) and must be chosen according to the specific physical situation under consideration, good or 

bad weather. It is the same situation as for the Boltzmann distribution of Eq. (1), where the total occupation 

number nt or the absolute occupation numbers n0 and ni are not specified and must be chosen according to the 

specific physical situation under consideration. If we want to know the absolute atmospheric pressure at an altitude 

of hi = 100 m above the ground, we must measure the absolute atmospheric pressure on the ground, P(h0 = 0 m), 

which can be high in good or low in bad weather, and then calculate P(hi = 100 m) from Eq. (26) in the same 

weather condition. Even in this example, the chemical potential  could, in principle, be introduced but would not 

be particularly helpful. 

 

 

5. Fermi-Dirac distribution 

 

In this Section, we will obtain a quantum condition for fermions and exploit it to derive the Fermi-Dirac 

distribution from the differential equation of thermal equilibrium. 

 

5.1. Quantum condition for fermions: Pauli’s exclusion principle 

 

Fermions are half-spin particles that obey Pauli’s exclusion principle [10]. Therefore, each system may have 

maximum one occupation, equivalent to being in its excited state with energy Ei, or it may be empty, equivalent 

to being in its ground state with energy E0. The absolute occupation numbers are then equivalent to the 

probabilities of finding the system in its excited or ground state. Therefore, 

 t,FD ,FD 0,FD 1in n n= + = . (27) 

Fundamentally, Eq. (27) represents Pauli’s exclusion principle, as the number ni,FD of occupations in an energy 

level i can never exceed one. 

 

5.2. Fermi-Dirac distribution 

 

We will now integrate the same differential equation of thermal equilibrium, Eq. (16), as we did in the previous 

Section when obtaining the Boltzmann distribution. However, this time we exploit the additional quantum 

condition of Eq. (27), relating the absolute occupation numbers ni and n0 to each other, thereby creating a result 

that is more specific than the general Boltzmann distribution. The mean absolute occupation number of an 

occupied (“excited”) state i in Fermi-Dirac statistics is then given by 
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By simple integration of the differential equation of thermal equilibrium, we have obtained the Fermi-Dirac 

distribution of Eq. (3). By again exploiting the additional quantum condition of Eq. (27), the mean absolute 

occupation number of an unoccupied (“ground”) state 0 in Fermi-Dirac statistics is obtained as 
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Just for confirmation, with the quantum condition of Eq. (27), the mean absolute occupation number of an 

unoccupied (“ground”) state of Eq. (29) can also directly be derived from the Fermi-Dirac distribution of Eq. (3) 

or (28), 
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Equation (30) implies that ni,FD + n0,FD = 1, i.e., the two populations ni,FD and n0,FD obey the quantum condition of 

Eq. (27). The relative occupation numbers with respect to the unoccupied or ground state are then given by 
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which is the Boltzmann distribution of Eq. (1), and 
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as expected from Eq. (6). The fractional occupation numbers derive as 
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and 
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These results are the Boltzmann factors of Eqs. (20) and (21). 

 

 

6. Bose-Einstein distribution 

 

In this Section, we will obtain a quantum condition for bosons and exploit it to derive the Bose-Einstein 

distribution from the differential equation of thermal equilibrium. 
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6.1. Quantum condition for bosons 

 

Deriving the condition that bosons must fulfil is significantly more involved than that for fermions, at least at our 

current level of understanding. Possibly, a simpler derivation can be found when the knowledge about the relations 

excavated in this paper has deepened. 

We exploit Einstein’s rate-equation approach [16] to Planck’s law of blackbody radiation [17] in a modern 

interpretation, i.e., by use of knowledge that was partly unavailable to Einstein in 1917. Einstein assumed that 

two-level atomic systems with level energies E2 and E1 are present in the walls of the blackbody radiator and that 

photons at frequency  are in resonance with the atomic transition, 

 
2 1h E E = − . (35) 

h is Planck’s constant, hence h is the photon energy. Photons are bosons, hence the mean number  of photons 

per optical mode follows the Bose-Einstein distribution of Eq. (2), 

 
B

,

1

e 1
i BE h k T

n
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−

. (36) 

The total photon energy per optical mode is 

 h . (37) 

For a given spectral mode density ( )M   per unit frequency interval at frequency , the spectral energy density 

( )u   per unit frequency interval at frequency  generated by the mean number  of photons per optical mode 

then amounts to 

 ( ) ( )u M h  = . (38) 

When making the specific assumption that the optical system has the geometry of a simple three-dimensional box 

(or three-dimensional free space), which has a spectral mode density of ( ) 2 38M c = , then inserting Eq. (36) 

into Eq. (38) delivers Planck’s law of blackbody radiation [17], 
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B
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e 1
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h
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−
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In the present derivation, we do not make any assumption about the geometry of the optical system, i.e., it may as 

well be a one-dimensional Fabry-Perot resonator or a photonic-crystal fiber or a three- or two-dimensional 

photonic-crystal device. This approach leaves the mode structure and spectral mode density ( )M   of the optical 

system undefined, thereby allowing us to obtain a general result that holds true for any optical system. 

The existence of a zero-point or vacuum energy, in optics manifested by vacuum photons, was proposed by 

Planck [18], further detailed by Einstein and Stern [19], and confirmed by Heisenberg [20]. Weisskopf suggested 

that spontaneous emission is triggered by this zero-point or vacuum energy [21−23]. Following this proposal, 

equivalently to Eq. (38), we interpret the vacuum spectral energy density ( )vacu   in terms of a mean number vac 

of vacuum photons per optical mode, 

 ( ) ( )vac vacu M h  = . (40) 

Naturally, the interaction probabilities of the spectral and the vacuum spectral energy density with the atoms are 

equal, because both represent electromagnetic radiation. Consequently, the Einstein coefficients A21 and B21 of 

spontaneous and stimulated emission, respectively, are related by 

 ( )21 21 vacA B u = . (41) 

Einstein’s photon-rate equation balances the spontaneous-emission rate Rsp and the stimulated-emission rate 

Rst with the absorption rate Rabs, in spectral resonance and thermodynamic equilibrium with a two-energy-level 

atomic system with population densities N2 and N1 of upper and lower level, respectively, 

 
( ) ( )

sp st abs

21 2 21 2 12 1

    R R R

A N B u N B u N 

+ = 

+ =
, (42) 

where B12 is the Einstein coefficient of absorption. Inserting Eqs. (38)−(41) into Eq. (42) yields 
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21 vac 2 21 2 12 1B N B N B N  + = . (43) 

This is the photon-rate equation for a single optical mode, which is independent of the spectral mode density 

( )M   of the physical system under consideration. Therefore, it applies to any given geometry of the optical 

system and any mode structure introduced by this geometry. 

Einstein considered [16] that the atomic system is in thermal equilibrium, hence the population densities N2 

and N1 are related by the Boltzmann distribution of Eq. (1), 

 
B

2

1 0

1

e

i

h k T

nN

N n 
= = . (44) 

Inserting Eqs. (44) and (36) into Eq. (43) yields 

 B B12

vac

21

1 e e
h k T h k TB

B

  − − − = −  . (45) 

This equation holds true for all frequencies  and all temperatures T if 

 
12 21B B= . (46) 

As is well known, the Einstein coefficients of absorption and stimulated emission are equal. Inserting Eq. (46) 

into Eq. (45) results in 

 
vac 1 = . (47) 

It means that the Einstein coefficient or rate constant A21 of spontaneous emission in Eq. (41) is induced by a 

vacuum spectral energy density that comprises one vacuum photon per optical mode in Eq. (40), as was already 

pointed out by Einstein and Stern [18] in 1913. Inserting the results of Eqs. (46) and (47) into Eq. (43) yields 

 ( ) ( )2 vac 2 11N N N   + = + = . (48) 

Equation (48) expresses the same essence as Eq. (43), namely that the rates of absorption, on the one hand, and 

spontaneous and stimulated emission, on the other hand, are equal in thermodynamic equilibrium. We find from 

Eq. (48) that the ratio of population densities N2 and N1 of the two-level atomic system is in balance with the 

photon numbers  and vac in a single mode as 

 2

1 vac 1

N

N

 

  
= =

+ +
. (49) 

Since the ratio of population densities N2 and N1 is given by the Boltzmann distribution, we can exploit Eq. (44) 

to relate the photon numbers in a single mode to the absolute occupation numbers ni and n0 of an excited state and 

the ground state, respectively, in the Boltzmann distribution as 

 
,

0, vac 1

i BE

BE

n

n

 

  
= =

+ +
. (50) 

By doing so, we make the conceptual step of introducing a photonic excited and ground state, where the 

occupation number of the excited state is given by the Bose-Einstein distribution of Eq. (2) or (36). It leads to the 

relations 

 
( ) ( )

,

0, vac 1

i BE

BE

n k

n k k



  

=

= + = +
. (51) 

Generally, deriving Eq. (51) from Eq. (50) allows one to introduce an arbitrary proportionality constant k. 

However, since we know from Eq. (46) that vac = 1, we can reason that exactly one vacuum photon per optical 

mode must appear, hence k = 1. The vacuum photon appears in the photonic ground state. Consequently, 

 

,BE

0,BE vac

0,BE ,BE vac ,BE

1   

1

i

i i

n

n

n n n



  



=

= + = + 

= + = +

. (52) 

This is the quantum condition for bosons. It is equivalent to the quantum condition for fermions of Eq. (27). 
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At first glance, the implication of Eq. (52) may look strange. How can the  photons in an optical mode 

simultaneously occupy an excited state with absolute occupation number ni and the ground state with occupation 

number n0? At this point we should recall that photons are virtual particles representing fields that convey 

interactions between real particles, and it is the interactions that matter here, not the virtual particles. Those fields 

or photons that trigger absorption form the excited state of the photonic system, whereas those fields or photons 

that trigger emission form the ground state of the photonic system. The vacuum field or photon triggers only 

emission, hence it appears only in the ground state, whereas real fields or photons trigger both absorption and 

emission, hence they appear in both states. The difference in energy residing in the photonic excited and ground 

state is, thus, equal to the vacuum energy. Consequently, the total number nt,BE of occupations amounts to 

 t,BE 0,BE ,BE ,BE2 1i in n n n= + = + . (53) 

The total number nt,BE of occupations is variable in Bose-Einstein statistics, because photons can be created or 

annihilated. 

Although it is not clear at the present state of investigation how the derived quantum condition of Eq. (52) 

must be interpreted when being applied to other bosons, such as 4He atoms, we will provide evidence in the 

following Sub-section that it is applicable not only to photons but to bosons in general. 

 

6.2. Bose-Einstein distribution 

 

Again, we will integrate the same differential equation of thermal equilibrium, Eq. (16), as we did in the previous 

Sections when obtaining the Boltzmann and Fermi-Dirac distributions. However, this time we exploit the 

additional quantum condition of Eq. (52), relating the absolute occupation numbers ni and n0 to each other, thereby 

making the result more specific than the general Boltzmann distribution and different from the Fermi-Dirac 

distribution. The mean absolute occupation number of an occupied (“excited”) state i in Bose-Einstein statistics 

is then given by 
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e
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− − −

−

= − 

= 
+

= 
−

= 
−

= =
−



. (54) 

By simple integration of the differential equation of thermal equilibrium, we have obtained the Bose-Einstein 

distribution of Eq. (2). By again exploiting the additional quantum condition of Eq. (52), the mean absolute 

occupation number in the ground state is obtained as 

 
( )

( )

0

0
0

0 B

0 B

1

B

0

0

0 0,BE

1
   

1
   

1

1 e

i
i

i

i

n n
E

E
n

E E k T

E E k T

dn
dE

n k T

n
e

n

n n

= −

− −

− −

= − 

−
= 

= =
−


. (55) 

Just for confirmation, with the quantum condition of Eq. (52), the mean absolute occupation number of an 

unoccupied (“ground”) state of Eq. (55) can also directly be derived from the Bose-Einstein distribution of Eq. 

(2) or (54), 
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−
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. (56) 

Equation (56) implies that n0,BE = ni,BE + 1, i.e., the two populations n0,BE and ni,BE obey the quantum condition of 

Eq. (52). The relative occupation numbers with respect to the unoccupied state are then given by 
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, (57) 

which is the Boltzmann distribution of Eq. (1), and 

 
( )0 0 B

0,BE e 1
E E k T

a
− −

= = , (58) 

as expected from Eq. (6). The fractional occupation numbers derive as 
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 (59) 

and 
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. (60) 

These results are the Boltzmann factors of Eqs. (20) and (21). 

 

 

7. Relation between Boltzmann, Fermi-Dirac, and Bose-Einstein distribution 

 

Figure 1 displays all occupation numbers in thermal equilibrium derived above in Boltzmann statistics (left-hand 

column), Fermi-Dirac statistics (middle column), and Bose-Einstein statistics (right-hand column). Displayed are 

the absolute occupation numbers ni and n0 (upper row), the relative occupation numbers ai and a0 (middle row), 

and the fractional occupation numbers bi and b0 (lower row). Negative values on the abscissa represent energy 

levels with Ei < E0. In laser physics, population inversion, ni > n0, is sometimes interpreted as a negative 

temperature T in Boltzmann statistics. However, Eq. (14) does not hold true in this case, i.e., this situation is not 

in thermal equilibrium; hence, the Boltzmann distribution does not apply to this situation [24]. 

These results lead us to two fundamentally important conclusions concerning the distributions in thermal 

equilibrium. Firstly, the absolute occupation numbers ni and n0 (upper row) of Eqs. (28) and (29) in Fermi-Dirac 

statistics are different from those of Eqs. (54) and (55) in Bose-Einstein statistics. The reason is that the quantum-

mechanical conditions of Eq. (27) in Fermi-Dirac statistics and Eq. (52) in Bose-Einstein statistics differ from 

each other. However, a comparison with absolute occupation numbers in Boltzmann statistics is impossible at this 

point, because the absolute occupation numbers are not specified in Boltzmann statistics (it can be bad or good 

weather; it can be nt = 5 or nt = 3.51012 atoms in our above-mentioned examples) and must be chosen according 

to the specific physical situation under consideration. 

Secondly⎯this is the more important news⎯, the relative occupation numbers ai and a0 (middle row) of Eqs. 

(31) and (32) in Fermi-Dirac statistics and of Eqs. (57) and (58) in Bose-Einstein statistics are both identical to 

the Boltzmann distribution of Eqs. (18) and (19), respectively. Equivalently, the fractional occupation numbers bi 

and b0 (lower row) of Eqs. (33) and (34) in Fermi-Dirac statistics and of Eqs. (59) and (60) in Bose-Einstein 

statistics are both identical to the Boltzmann factors of Eqs. (20) and (21), respectively. 

In Fermi-Dirac and Bose-Einstein statistics, the relative and fractional occupation numbers in thermal 

equilibrium are given by the Boltzmann distribution and the Boltzmann factors, respectively. What does this 

identity mean physically? Apparently, the Fermi-Dirac and Bose-Einstein distributions can both be considered 

special cases of the Boltzmann distribution. This result is already expected from the fact that, when integrating 

the differential equation of thermal equilibrium, Eq. (16), we have not specified the relation between ni and n0 in 

Boltzmann statistics, see Eq. (17), thereby deriving the general distribution function in thermal equilibrium, 

whereas we have specified their relation by the quantum condition of Eq. (27) or (52), see Eqs. (28) and (29) or 

(54) and (55), respectively, thereby deriving a more specific distribution function in thermal equilibrium. Each 

specific distribution function is a special case of the general distribution function. 

To further justify this statement, we exploit the degree of freedom that is inherent to the Boltzmann 

distribution, namely that the total number nt of systems is not specified and must be correctly chosen to describe 

the specific physical situation under consideration. Instead of introducing the quantum condition already when 

integrating the differential equation of thermal equilibrium, as we have done above, here we impose it on its 

general result, the Boltzmann distribution. 

In the first situation, we choose the undefined number nt in the Boltzmann distribution according to the 

condition of Eq. (27). Inserting Eq. (27) into the Boltzmann distribution of Eq. (18) yields 
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Boltzmann statistics Fermi-Dirac statistics Bose-Einstein statistics 

 
absolute occupation numbers 

undefined 

  

   

   
 

Fig. 1.  Occupation numbers in thermal equilibrium in Boltzmann statistics (left-hand column), 

Fermi-Dirac statistics (middle column), and Bose-Einstein statistics (right-hand column). Upper 

row: Absolute occupation number ni of the excited state from Eqs. (28) and (54) and n0 of the ground 

state from Eqs. (29) and (55) in Fermi-Dirac and Bose-Einstein statistics, respectively. In Fermi-

Dirac statistics, the red curve of ni is the Fermi-Dirac distribution. In Bose-Einstein statistics, the 

red curve of ni is the Bose-Einstein distribution. In the literature, usually only ni is shown. Absolute 

occupation numbers are not specified by the Boltzmann distribution, because the Boltzmann 

distribution applies to any absolute occupation numbers. Middle row: Relative occupation number 

ai = ni/n0 of the excited state of Eqs. (18), (31), and (57) and a0 = n0/n0 = 1 of the ground state of 

Eqs. (19), (32), and (58) in Boltzmann, Fermi-Dirac, and Bose-Einstein statistics, respectively. In 

all three cases, this is the Boltzmann distribution. Lower row: Fractional occupation numbers bi = 

ni / (n0 + ni) of the excited state of Eqs. (20), (33), and (59) and b0 = n0 / (n0 + ni) of the ground state 

of Eqs. (21), (34), and (60) in Boltzmann, Fermi-Dirac, and Bose-Einstein statistics, respectively. 

In all three cases, these are the Boltzmann factors. 
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By defining the total number of systems as nt = n0 + ni = 1, we have turned the Boltzmann distribution of Eq. (1) 

into the Fermi-Dirac distribution of Eq. (3). Equivalently, 
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The calculations are the same as in Eqs. (28) and (29), i.e., it makes no difference whether we impose the quantum 

condition directly on the integral boundaries or subsequently on the Boltzmann distribution. Now not only the 

relative and fractional occupation numbers but also the absolute occupation numbers in the Boltzmann and Fermi-

Dirac distributions are identical, i.e., the two distributions have become entirely identical. By choosing the 

appropriate condition for the absolute occupation numbers of systems, namely Pauli’s exclusion principle, we 

have turned the Boltzmann distribution into the Fermi-Dirac distribution. In other words, fermionic systems 

simultaneously fulfil the general Boltzmann distribution and the specific Fermi-Dirac distribution. 

In the second situation, we choose the undefined number nt in Boltzmann statistics according to the condition 

of Eq. (52). Inserting Eq. (52) into the Boltzmann distribution of Eq. (18) yields 
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By defining the total number of systems as nt = n0 + ni = 2ni + 1, we have turned the Boltzmann distribution of 

Eq. (1) into the Bose-Einstein distribution of Eq. (2). Equivalently, 
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The calculations are the same as in Eqs. (54) and (55), i.e., it makes no difference whether we impose the quantum 

condition directly on the integral boundaries or subsequently on the Boltzmann distribution. Now not only the 

relative and fractional occupation numbers but also the absolute occupation numbers in the Boltzmann and Bose-

Einstein distributions are identical, i.e., the two distributions have become entirely identical. By choosing the 

appropriate condition for the absolute occupation numbers of systems, namely the number of bosons (here: 

photons) that feed the (here: atomic) excited and ground state (here: in a blackbody radiator), we have turned the 

Boltzmann distribution into the Bose-Einstein distribution. In other words, bosonic systems simultaneously fulfil 

the general Boltzmann distribution and the specific Bose-Einstein distribution. 

In both situations, we started from the Boltzmann distribution and appropriately specified the total number nt 

of systems by Eq. (27) or (52), which turned the Boltzmann distribution into either the Fermi-Dirac distribution 

of half-integer-spin quantum systems or the Bose-Einstein distribution of integer-spin quantum systems. 

Equations (27) and (52) do not represent quantum-mechanical corrections to Boltzmann statistics but define the 

physical situation to which we apply the general Boltzmann distribution. 

 

 

8. Discussion 

 

Firstly, a clarification concerning the graphs in Fig. 1 deems appropriate. The identical two-level systems we 

introduced in Section 2 can have only one excited-state energy Ei. In real physical situations we often encounter 

systems with several or many different excited-state energies Ei, such that several or many points in these graphs 

are realized simultaneously. (i) An example which we usually describe by the Boltzmann distribution, without 

specifying the involved number of systems, is an atom⎯in fact, often many atoms⎯with a partially filled shell, 

in which we investigate a single excitation. However, the atom usually has several or many excited states, and the 

Boltzmann distribution is simultaneously applied to all these excited states. (ii) An example of a situation 

involving fermions is a semiconductor, in which electrons occupy many different energy states, but only one 

electron can occupy each energy state. (iii) An example of a situation involving bosons is a Fabry-Perot resonator 

with an infinite number of resonance frequencies and corresponding longitudinal modes [25], which are all 

occupied by photons with respective photon energies in thermal equilibrium, i.e., in the absence of an external 

light source. All these situations can be described by assuming one or more systems for each occurring excited-

state energy Ei. As is well known, the fractional occupation numbers are derived by normalization of the sum of 

all probabilities to unity, 
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These are the Boltzmann factors of multi-level systems. These factors apply to the state of thermal equilibrium in 

Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. 

Since the days when Fermi-Dirac and Bose-Einstein statistics were established, Boltzmann statistics has been 

interpreted as a “classical limit” to these two quantum-mechanical statistics. The right-hand sides of Eqs. (1), (2)

, and (3) are often compared to each other in the way displayed in Fig. 2. We find this and similar comparisons in 

journal papers (see among others [26,27]), textbooks (see among others [28,29]), and numerous lecture slides and 

readers of university courses worldwide.⎯For good reason, Kittel and Kroemer did not include the Boltzmann 

distribution in their figure [30] but merely pointed out a classical limit where the Fermi-Dirac and the Bose-

Einstein distribution converge.⎯In the comparison of Fig. 2, the quantum-mechanical Bose-Einstein and Fermi-

Dirac distributions seemingly diverge from the “classical” limit of the Boltzmann distribution when the energy 

gap of Ei − E0 in the two-level systems becomes increasingly smaller than the thermal energy kBT. This comparison 

is invalid, because the Fermi-Dirac distribution of Eq. (3) and the Bose-Einstein distribution of Eq. (2) quantify 

absolute occupation numbers ni (the red curves in the upper row in Fig. 1), whereas the Boltzmann distribution of 

Eq. (1) quantifies relative occupation numbers ni / n0 (the red curve in the middle row in Fig. 1). This comparison 

is equally invalid as comparing in Fig. 1 the upper and medium rows to each other in either Fermi-Dirac statistics 

(middle column) or Bose-Einstein statistics (right-hand column), only to find out that absolute and relative 

occupation numbers have different meanings. Only additional information about nt = n0 + ni allows one to 

determine the absolute occupation numbers in the Boltzmann distribution and compare them correctly with the 

absolute occupation numbers in the Fermi-Dirac and Bose-Einstein distributions. This is exactly what we did in 

Eqs. (61) and (63), and we found that the absolute occupation numbers in the Boltzmann distribution become 

identical to those in either the Fermi-Dirac or the Bose-Einstein distribution when we choose the appropriate 

additional information. 

 

 
 

Fig. 2.  Frequently performed but physically invalid comparison between the relative occupation 

number ni/n0 of Eq. (1) in the Boltzmann distribution (red curve in Fig. 1, left-hand column, middle 

row) with the absolute occupation numbers ni of Eqs. (3) and (2) in the Fermi-Dirac distribution 

(red curve in Fig. 1, middle column, upper row) and the Bose-Einstein distribution (red curve in 

Fig. 1, right-hand column, upper row), respectively. One cannot specify the ordinate axis caption 

“Occupation number” in more detail, because relative and absolute occupation numbers are 

displayed in the same figure. 

 

Key to this derivation is the realization that the systems that follow Fermi-Dirac and Bose-Einstein statistics 

do not only have an excited state but also a ground state. The absolute occupation number of this ground state, 

hence also the relative and fractional occupation numbers have been quantified in this paper. When the 

appropriate, independently derived condition that quantifies the absolute occupation numbers is applied to the 

Boltzmann distribution, it becomes identical to either the Fermi-Dirac or the Bose-Einstein distribution, hence the 

latter two appear to be special cases of the former and our two-level systems can simultaneously fulfil the general 

Boltzmann distribution and either the Fermi-Dirac or the Bose-Einstein distribution. 

It was proposed already by Bose that classical particles are distinguishable and obey Boltzmann statistics, 

whereas quantum particles are indistinguishable; they obey either Fermi-Dirac or Bose-Einstein statistics. This 

difference has even been utilized as an ingredient to derive (examples of) these statistics. Combination of this 

proposal with the findings of this paper leads to the probably absurd situation where fermions and bosons would 

simultaneously be classical and quantum particles that are simultaneously distinguishable and indistinguishable. 

Attempts have been made to derive all three (and other) distributions from a single differential equation [31] or to 

describe fermions and bosons as classical particles and establish a generalized distribution function that includes 
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all three distributions [32]. Vice versa, the argument that classical particles must be distinguishable has been 

questioned [33]. 

The results presented in this paper do not provide the final answers to all our questions and ideas revolving 

around classical and quantum-mechanical statistics and will, thus, not settle the discussion. Indeed, these findings 

raise new questions. For example, can a simpler derivation of the specific condition contained in Eqs. (52) and 

(53) be established? How must we interpret this quantum condition, when it is not applied to fields or virtual 

bosons, such as photons, but to “real” bosons, such as 4He atoms? Does the above-demonstrated relation between 

the distribution functions in thermal equilibrium also hold true for all those situations which are not in thermal 

equilibrium? What kind of statistics are we dealing with when Boltzmann statistics does not follow the specific 

condition of either Eq. (27) or Eqs. (52) and (53), but another condition, e.g. nt = 5 or nt = 3.51012? Can any of 

these potential statistics be called “classical”, or does “classical” statistics possibly exist only in the limit of the 

energy gap in the two-level system becoming significantly larger than the thermal energy and/or in the limit of an 

infinite number of systems? Are “classical” particles distinguishable, whereas “quantum” particles are not? Does 

the distinction between “classical” and “quantum” particles make sense at all? Is this intriguing property 

potentially a place holder for another physical parameter? Besides Fermi-Dirac and Bose-Einstein statistics, is 

there possibly a third way or even more ways, with their respective specific conditions, in which quantum statistics 

can behave? Probably, there will be more questions arising from these findings, hence these findings will likely 

serve only as a starting point for a renewed discussion. 

 

 

9. Conclusion 

 

We have derived the Boltzmann, Fermi-Dirac, and Bose-Einstein distributions by establishing the differential 

equation of thermal equilibrium and integrating it with either general or specific boundary conditions. The results 

suggest that the Fermi-Dirac and Bose-Einstein distributions are special cases of the Boltzmann distribution. The 

general Boltzmann distribution turns into the specific Fermi-Dirac or Bose-Einstein distribution when the total 

number of participating systems is chosen to obey either Pauli’s exclusion principle or, in the presented bosonic 

example, the numbers of photons that feed the atomic excited and ground states in a blackbody radiator, 

respectively. These quantum conditions, which have been physically justified in an independent manner, provide 

complete identity between two different distributions. It appears that the Boltzmann distribution does not represent 

a “classical limit” to the Fermi-Dirac and Bose-Einstein distributions, but the required quantum-mechanical 

information is contained in these specific conditions and becomes inherent to the Boltzmann distribution by 

entering the specific condition either a priori during integration of the differential equation of thermal equilibrium 

or subsequently into the Boltzmann distribution. This finding implies that Boltzmann statistics covers quantum-

statistical phenomena. 
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