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Acoustic spontaneous emission into bulk dielectrics can be a strong source of decoherence in
quantum devices, especially when a qubit is in the presence of piezoelectric materials. We study
the dynamics of a qubit coupled to an acoustic resonator by a piezoelectric film. By varying the
surface topography of the resonator from rough to polished to shaped, we explore the crossover
from fast decay of an excited qubit to quantum-coherent coupling between the qubit and an isolated
phonon mode. Our experimental approach may be used for precision measurements of crystalline
vibrations, the design of quantum memories, and the study of electro-mechanical contributions to
dielectric loss.

I. Introduction

Circuit quantum electrodynamics (cQED) is a versatile
platform for universal quantum computation [1–3] and
the design of hybrid quantum architectures [4]. Fast,
multi-cavity control is enabled by a transmon qubit’s
large electric dipole moment, which can strongly couple
to several microwave modes simultaneously [5]. In the
emerging domain of quantum acoustics, a superconduct-
ing qubit can efficiently couple to collective vibrations –
phonons – to prepare non-classical states of sound and
coherently exchange quantum excitations [6–12]. Given
that the speed of sound is much slower than that of light,
phonons in crystalline media may form a high-density
quantum random access memory in a compact form fac-
tor with a transmon serving as a non-linear mixing ele-
ment to interface multiple acoustic modes [13]. However,
coupling a qubit to an acoustic medium with many de-
grees of freedom can lead to rapid decay if the modes are
either very lossy or if coupling to a continuum of modes
produces unintended acoustic radiation.

The spontaneous emission rate of a quantum emitter
is determined by the density of states (DOS) in the envi-
ronment. According to Fermi’s Golden Rule, the decay
rate γ of a two-level system from spontaneous emission
reflects the DOS D(ω) at its transition frequency ω and
its coupling rate g to those states, or γ = 2π|g|2D(ω).
A transmon qubit in free space would have a sub-micro
second lifetime because its large size makes it an efficient
radiator to the electro-magnetic continuum. However,
embedding the qubit in a high Q-factor microwave cav-
ity suppresses the continuum DOS by several orders of
magnitude when the qubit is strongly detuned from the
cavity resonance [14]. This leads to an inverse Purcell
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effect [15], where the qubit is protected from radiative
decay such that other non-radiative mechanisms begin
to dominate.

To realize the potential of quantum acoustic platforms,
it is necessary to suppress unintentional acoustic radi-
ation from the qubit for practical integration in quan-
tum computers. In quantum acoustics, qubits are coher-
ently coupled to surface and bulk acoustic waves and to
phononic defect cavities using piezoelectric materials [16–
19]. While strong coupling has enabled single-phonon
control, the lifetimes of qubits in current piezo devices
can be up to two orders of magnitude lower than those
of conventional transmons. Since the qubit footprint is
much larger than the acoustic wavelength, it is reason-
able to assume that a piezoelectric transducer may unin-
tentionally radiate into the acoustic continuum because
of the large number of modes in the substrate at GHz
frequencies [20]. To improve qubit coherences, we must
build upon linear circuit models [21] and develop a micro-
scopic treatment of phonon-qubit coupling to formulate
a complete picture of acoustic radiation.

In this work, we investigate acoustic radiation of a
transmon with piezoelectric transducers on a high over-
tone bulk acoustic wave resonator (HBAR) made of thin
film aluminum nitride on sapphire. By modifying the
surface topography, we systematically vary the acous-
tic density of states (ADOS) and explore three unique
regimes of acoustic radiation. First, we couple the qubit
to a resonator with a roughened backside and observe
that the qubit’s lifetime shortens by two orders of mag-
nitude. Disorder on the scale of the acoustic wavelength
makes the qubit irreversibly emit its energy into a con-
tinuum of phonon modes. Next, by coupling the qubit
to a flat acoustic resonator, we observe a modulation
of its lifetime which is consistent with discrete bands in
the expected ADOS. Finally, by shaping the piezoelectric
transducer, we form acoustic bound states whose spectral
signatures we observe in the qubit’s decay and to which
we can coherently couple. Our results indicate the im-
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FIG. 1. Acoustic spontaneous emission from a trans-
mon. (a) An illustration of the sample geometry. Stacked
above the center of the concentric transmon is a chip with
1 µm of aluminum nitride on 430 µm of sapphire, which has
a roughened backside. The chip entirely covers the qubit. An
external magnetic field H is applied (field lines in blue) to
flux tune the qubit. (Inset) The electric field of the trans-
mon mode excites an acoustic wave in the resonator, via the
piezoelectric effect in AlN. The wave scatters diffusely at the
roughened backside. (b) Measurements of the qubit’s decay γ
as a function of its transition frequency. A blue line indicates
the analytical estimate using Eq. (1) when e33 = 0.52 C/m2

and a dashed gray line the decay rate of a control qubit γctrl.

portance of acoustic spontaneous emission in designing
hybrid quantum systems and develops an experimental
approach for controlling this source of decoherence.

II. Measuring Acoustic Radiation

To study acoustic radiation, we track the dynamics
of a flux-tunable qubit as a function of frequency when
coupled to different acoustic environments. Our experi-
mental platform consists of a flip-chip assembly, in which
one chip contains the qubit and its metallic traces and
the other the HBAR. The qubit has a concentric ca-
pacitor layout that shunts a pair of parallel Josephson
junctions, resulting in a transition frequency at approx-
imately ω0/2π = 5 − 6 GHz. Flux threading the square
loop is used to tune the qubit’s frequency over a broad
range; strong, off-resonant voltage drives are used to
quickly Stark shift the qubit’s frequency in a narrow
range. An adjacent meandering stripline is hanger cou-
pled to a transmission line for dispersive readout. The
HBAR is formed from sapphire with a film of aluminum
nitride bp = 1 µm thick; aluminum spacers are deposited
to form a 1 µm vacuum gap between the qubit and the
piezoelectric film. The assembly is mounted in a super-
conducting package at the base of a dilution refrigerator.

We conduct experiments using three different styles of
HBARs which systematically vary the ADOS. First, we
use a single-side polished sapphire chip with thickness
b = 430µm, whose backside has a roughness of approx-
imately 1 µm-rms (shown in Fig. 1a). Next, we repeat

the same with a b = 100µm double-side polished sapphire
chip. Finally, we make two separate samples, in which
a b = 100µm thick sapphire chip is patterned with an
aluminum nitride cylinder of diameter 250 µm or a dome
formed through a vapor-phase reflow process [22] and
dry-etching of the residual piezoelectric.

A. Radiation into acoustic free space

To understand the impact of acoustic radiation on
qubit coherence, we begin by investigating the coupling of
the qubit to a quasi-continuum of phonon modes. Here,
we employ an HBAR with a roughened backside, with
roughness on the order of the acoustic wavelength. A
qubit is first brought into the excited state with a fast
pulse. Field oscillations within the excited qubit cou-
ple (via the piezoelectric effect) to an acoustic wave that
traverses the bulk and diffusely scatters from roughened
back surface. Hence, this acoustic excitation does not
coherently return to the transducer, leading to sponta-
neous emission analogous to that of a qubit coupled to
acoustic free space. Indeed, measurements reveal a fast
decay time of T1 = 0.21 µs that does not depend on the
qubit’s frequency in a 40 MHz bandwidth (a resonator
with the same nominal thickness would have a 13 MHz
free spectral range). By comparison, a control qubit,
which lacks the top HBAR chip entirely, has a lifetime
T1 = 62 µs. Therefore, acoustic spontaneous emission is
the dominant source of decoherence, occurring at a rate
γ/2π = 750 kHz.

We model the roughened HBAR as an acoustic half-
space to analytically estimate the radiation rate. The
main contribution to the spontaneous emission rate in
our device comes from the emission of longitudinal waves.
The coupling between the qubit and a longitudinal
phonon ~g = −

∫
d3r σzz(r)szz(r) is determined by the

overlap of stress σzz(r) = e33Ez(r) generated by the
qubit’s electric field E in the piezoelectric film, and strain
szz(r) = s0e

ik⊥·r⊥sin(kzz) associated with the phonon.
Here, e33 is the piezoelectric modulus of AlN and s0 is the
zero-point strain amplitude. Applying Fermi’s Golden
Rule, we find [23]:

γfs(ω0) =
2π

~
4e2

33

πvlρω0
sin4

(ω0bp
2vl

)∫
d2r⊥E

2
z (r⊥), (1)

where ρ = 4 · 103 kg/m3 is the density of sapphire and
vl = 11.1 km/sec is the longitudinal wave velocity. In
the derivation, we assumed that the electric field does
not change appreciably across the thickness of the piezo-
electric film. To find Ez(r⊥), we use an HFSS simulation,
which results in

∫
d2r⊥E2

z (r⊥) = 5.2 · 10−10 V2. For a
thin film with bp � λac, the decay rate γfs ∝ (ω0/vl)

3,
analogous to radiation by a dipole in free space. In
our experiment, however, the piezoelectric film thick-
ness bp is close to half the acoustic wavelength (λac/2 =
0.9 µm) at the qubit’s transition frequency, yielding
sin(ω0bp/(2vl)) ≈ 1.
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FIG. 2. Dynamics of the qubit coupled to a flat acoustic resonator. (a) As opposed to the inset of Fig. 1, the
backside of the acoustic resonator is flat. (b) Time-dependence of the excited state population of the qubit Pe(t) at different
qubit frequencies ω0 (Pe(t) is shown with the color). (c) Line-cuts of the plot in panel (b) at three different qubit frequencies.
Data-points in blue, green, and magenta correspond to the frequencies indicated in panel (b) with circles of the respective
colors. The time-dependence of Pe(t) is well-described by a single decaying exponent (solid lines). (d) Measured decay rate
γ(ω0) of the qubit at each frequency. The grey dashed line is the decay rate of the control sample γctrl. The peaks in γ(ω0)
correspond to the resonances between the qubit and the standing acoustic waves.

B. Flat acoustic resonator

The estimate for γfs depends sensitively on the value
of piezoelectric modulus e33, which we have not mea-
sured independently. Upon using in Eq. (1) the value
e33 = 1.4 C/m2 previously reported for polycrystalline
AlN thin films [24, 25], we find γfs = 2π ·5.9 MHz. While
this estimate agrees with the measured rate within an
order of magnitude, it nonetheless overestimates the ex-
perimentally observed rate by a factor of ≈ 7. We can
bring the theory and the data into agreement if we use
e33 = 0.52 C/m2. Although this value is lower than that
for thin AlN films at room temperatures (by a factor of
∼ 2.5), it is close to the e33 extracted from measurements
of the coherent coupling to a discrete phonon mode in
other quantum acoustic devices [8].

The large difference between the lifetimes of a control
qubit (T1 = 62 µs) and a qubit in the roughened HBAR
structure (T1 = 0.20 µs) verifies the impact of acoustic
spontaneous emission on coherence. This disparity could
be even more dramatic in other quantum acoustic de-
signs. From the participation ratio pr = ε0ε

∫
dV E2

z/~ω,
we estimate that the qubit stores 1% of its electrical en-
ergy in the piezoelectric. Alternate designs with stronger
in-film electric-field strengths or piezoelectric coupling
e33 may cause the qubit’s lifetime to drop to nanosec-
ond timescales.

Next, we modify the qubit’s acoustic environment with
a flat acoustic resonator to investigate the effect of a re-
duced continuum ADOS. Specifically, we allow the for-
mation of longitudinal resonances, which creates sharp
bands of ASE on the background of otherwise suppressed
(by two orders of magnitude) emission. As before, the
qubit’s E-field couples to a continuous piezoelectric film
on the bottom face, but now the resonator has a smoothly
polished top face. In this case, the qubit’s decay rate
spectrum becomes frequency dependent with a series of
features, see Fig. 2. A sharp decay peak of γq/2π =
70 kHz repeats with a periodicity of vl/(2b) = 55.5 MHz.
This free spectral range corresponds to round-trip travel
time of the longitudinal wave across the acoustic res-
onator. A weaker decay split-peak in the decay rate
repeats with vsh/(2b) = 31 MHz, corresponding to the
round-trip time of a shear wave (vsh = 6.1 km/sec is the
shear wave velocity). Away from the peaks, the decay
rate γ/2π = 3.4 kHz is close to that of the control qubit,
γctrl/2π = 2.6 kHz.

To analyze the observations, we use the same model for
the piezoelectric interaction of the qubit with phonons
as in Sec. II A. The only modification is that now the
spectrum of kz wavevectors is discrete, kz = nπ/b. The
HBAR chip acts as a thick multimode waveguide; the
wave spectrum in it is characterized by the in-plane
wavevector k⊥ and the standing wave overtone number
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n for each of the wave polarizations. The largest peaks
in Fig. 2c correspond to the longitudinal mode with the
spectrum ω2

n(k⊥) = v2
l (nπ/b)2 + v2

⊥k
2
⊥. The subset of

wavevectors k⊥ of phonons efficiently interacting with
the qubit are limited by diffraction to k⊥ . π/a; here
a is the qubit size, π/a ∼ (100µm)−1. The respective
mode frequencies ωn(k⊥) form narrow intervals of width
ωdiff ∼ v2

⊥π
2/(ωna

2) ∼ 2π ·10 kHz adjacent to the stand-
ing wave frequencies ωn = πnvl/b. The smallness of ωdiff

in comparison to the frequency separation between stand-
ing waves (πvl/b = 55 MHz) stems from the immense
difference between the size of the qubit and the acoustic
wavelength.

Application of Fermi’s Golden Rule to the phonon
emission would lead one to conclude that a substantial
contribution of phonons to the qubit decay rate occurs
only within the said narrow frequency intervals. How-
ever, the applicability condition for Fermi’s Golden Rule
is g � ωdiff , i.e., the phonon-qubit coupling must be
sufficiently weak. Here g is the strength of coupling be-
tween the qubit and a standing wave. Using the value
of the piezo-modulus e33 found in Sec. II A, we esti-
mate g ∼ 1 MHz. The coupling exceeds the diffraction
linewidth ωdiff ∼ 10 kHz by two orders of magnitude.
This renders Fermi’s Golden Rule inapplicable and calls
for a comprehensive solution of the qubit-phonon dynam-
ics problem [23]. We find that the qubit, which is tuned
to a resonance with a standing wave, should undergo
vacuum Rabi oscillations with a frequency ΩR = 2g.
Rabi oscillations with ∼ 1 amplitude would occur for
the qubit frequencies spanning the range |ω0 − ωn| . g.
The phonon continuum ω2

n(k⊥) = v2
l (nπ/b)2 + v2

⊥k
2
⊥

leads to the oscillations decay. We find the decay rate
γR ∼ √ωdiffg ∼ 100 kHz at the resonance ω0 = ωn.
The closeness of the qubit frequency to the phonon mode
threshold makes the character of the decay peculiar: the
population of the qubit excited state drops down to 1/4
rather than 0. Further relaxation occurs via other, slower
mechanisms. The estimated γR agrees by the order of
magnitude with the observed peak decay rate, while the
peak width agrees with estimated value of g reasonably
well. We must emphasize, however, that no Rabi oscilla-
tions were observed in the studied device, see Fig. 2. The
decay is well-described by a single exponent, in contrast
to the theoretical prediction.

In absence of observable Rabi oscillations, it is tempt-
ing to explain the experimental findings using Fermi’s
Golden Rule. The explanation requires two assump-
tions. First, to account for the measured magnitude of
γ, the coupling strength must be g ∼ 100 kHz, an or-
der of magnitude smaller than our theoretical estimate,
g ∼ 1 MHz. Second, an explanation of the spectral
broadening κ ∼ 1 MHz requires one to assume the de-
vice inhomogeneity such as a residual surface roughness
or the crystalline defects in the bulk. Currently, we do
not see a justification for these assumptions.

To conclude this section, we note another interesting
feature in the data of Fig. 2: the splitting of the shear

wave resonances into two peaks corresponding to the two
shear polarizations. The splitting likely originates from
a slight misalignment between the z-axis of the device
(along which the waves are launched) and the c-axis of
sapphire crystal. Were the two axes perfectly aligned,
the two shear waves would have had the same propaga-
tion velocities in the z-direction, and the identical sets
of the standing wave frequencies. The misalignment of
these axes by ∆θ results in a relative difference of the
shear wave velocities and corresponding standing wave
frequencies, ∆ωsplit/ω0 = ∆vsh/vsh ∝ ∆θ. We estimate
[23] that the observed splitting can be explained by a
misalignment angle ∆θ = 0.15◦; this estimate is close
to the alignment error ±0.1◦ in the specifications of the
sample.

C. Topographic deformation

Finally, by changing shape of the acoustic resonator,
we create a series of discrete phonon modes that pro-
duce a distinctly different spectrum of spontaneous emis-
sion. We fabricated two devices with different transducer
shapes depicted schematically in Fig. 3. In the first de-
vice, we pattern a cylinder, etch away the remaining
piezoelectric film, and stack it above the center conduc-
tor of the qubit. The radius of the cylinder r = 125µm is
chosen such that the transducer is slightly smaller than
the qubit’s center conductor; this reduces the sensitivity
of the device performance to the sharply-varying fields
at the edges of the conductors. In the second device,
we pattern a dome-shaped transducer with r = 125 µm
and radius of curvature R = 7.8 mm. The measured
dependence of the qubit’s decay rate on its frequency is
presented for both devices in Fig. 3.

A striking feature of Fig. 3 is the presence of tightly-
packed peaks in the qubit’s decay rate whose spacing
δν ∼ 1 MHz is much smaller than than the fundamental
frequency of the bulk standing wave vl/(2b) = 55.5 MHz.
We attribute these peaks to the resonances between the
qubit and the long-lived acoustic “bound” states. Such
bound states (or leaky modes) are formed in the volume
of the chip above the transducer by the lateral confine-
ment. To verify the origin of the peaks, we solve the
Christoffel wave equation for the two geometries at hand
[23], and compare the resulting spectra of bound state
frequencies with the positions of peaks in γ(ω0). For each
bulk wave overtone n, we find a series of bound states
distinguished by the transverse wave number, with fre-
quency spacing δν � vl/(2b). The smallness of the spac-
ing stems from the respective smallness of the acoustic
wavelength λac � R, b, r. The computed bound state
frequencies are depicted in Fig. 3 by the vertical grey
lines.

We can also estimate the number of resolvable bound
states for each overtone n. Due to the smallness of λac,
their frequencies ω2

n(k⊥) = v2
l (nπ/(b + bp))2 + v2

⊥k
2
⊥ are

accurately estimated by making k⊥ discrete. For exam-
ple, for the cylindrical transducer k⊥ changes in steps of
width ∼ π/r. The bound states are resolvable as long
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FIG. 3. Topographic modification. The qubit’s decay
γ = 1/T1 is measured using fast Stark shifts in two different
experimental geometries. The aluminum nitride thin film is
etched away to reveal either a cylinder (top) or dome (bottom)
transducer approximately the width of the center pad. Here,
several discrete modes are visible as the peaks in the decay
rate; some of these modes are strongly-coupled to the qubit.
Grey vertical lines indicate the calculated mode frequencies.

as the respective ωn(k⊥) are lower than the edge of the
corresponding overtone’s band, vlnπ/b. This yields 19 re-
solved states. A similar calculation for the dome gives 15
resolved states [23]. These numbers are in a reasonable
agreement with observations.

The decay rate decreases upon detuning the qubit away
from the resonances, reaching a minimum background
value of 6.6 (4) and 2.8 kHz (?) for the cylinder and dome
geometries, respectively. Subtracting the control qubit’s
decay rate γctrl/2π = 2.6 kHz, we find the contribution of
acoustic spontaneous emission is γrad/2π = 3.2 kHz for
the cylinder geometry and . 0.2 kHz for the dome. The
elevated radiation from the cylinder stems from diffrac-
tion of acoustic waves in the bulk on the transducer’s
sharp edge; the dome and its tapered edges, by con-
trast, suppresses coupling to propagating waves in the
bulk. While dielectric losses in the transducer could also
contribute to differences from the control, we note that
dielectric participation in these two samples is similar,
while their γrad differs by at least an order of magnitude.
This verifies that acoustic radiation is more likely than
dielectric loss to limit coherence.

D. Acoustic bound state spectroscopy

The discrete nature of the acoustic bound states is con-
firmed by the presence of multiple vacuum Rabi oscilla-
tions in the time domain. Plotted in Fig. 4a is the time
evolution of the qubit’s excited state population in the
cylindrical geometry. We observe a clear pattern of vac-
uum Rabi oscillations. At ω0/2π = 5.0175 GHz, the os-
cillations occur at a vacuum Rabi rate ΩR/2π = 2.7 MHz.
By identifying ΩR = 2g, we infer g/2π = 1.35 MHz for
the coupling of the qubit-phonon coupling. This value

FIG. 4. Spectroscopy of cylindrical HBAR. (Left) Vac-
uum Rabi oscillations between the transmon qubit and a
phonon. The color reflects the qubit’s excited state proba-
bility as a function of time. The oscillations reveal a cou-
pling rate of g/2π = 1.35 MHz. The respective data for
the dome geometry is presented in [23]. (Right) A mea-
surement of the dispersive shift to the qubit from a driven
acoustic mode at ωph/2π = 5.0175 GHz. Here, the qubit is
detuned by ∆/2π = −10.5 MHz and its transition frequency
(ω0 = ω̃0+Nχ) and linewidth (γq = 2γ2+Nκ) depend on the
number of excitations n in the displaced acoustic mode [26].
The linewidth of the |N = 1〉 peak is ∆γ = 21.8 kHz broader
than that of the |N = 0〉 peak, which bounds the acoustic

lifetime to T ph
1 = 7.3 µs.

agrees reasonably well with our estimate, g/2π = 1 MHz,
for the qubit interacting with the principal transverse
mode in the cylinder (in the estimate we use e33 =
0.52 C/m2 for the piezoelectric coefficient of AlN, as de-
duced in Sec. II A; see [23] for details). We note that
the observed pattern of oscillations is distorted from its
standard chevron shape. The reason for the distortion is
the high value of the coupling strength: g is close to the
frequency spacing between the bound states δν ∼ 1 MHz,
so the qubit hybridizes with multiple acoustic modes si-
multaneously.

Next, we find the acoustic bound state decay rate κ
using the dispersive coupling to the qubit. First, by flux-
tuning the qubit, we park its frequency ω0 sufficiently
close to ωph. To enter the dispersive coupling regime, we
choose the detuning ∆/2π = (ω0−ωph)/2π = −10.5 MHz
that exceeds g/2π = 1.35 MHz. Then, we apply a Gaus-
sian pulse resonant with the bound state which displaces
it into a coherent state – a superposition of Fock states
with different phonon numbers N . Due to the disper-
sive coupling between the qubit and the bound state,
Hdisp = 1

2χσzN , the spectral line in the qubit microwave
response becomes a sum of overlapping Gaussians shifted
by χ with respect to each other, as seen in Fig. 4. The
dispersive shift from a single phonon can be evaluated as
χ = 2g2/∆ yielding χ/2π = −0.4 MHz. The widths of
Lorentzians depend on the qubit dephasing rate γ2, the
acoustic bound state decay rate κ, and on the phonon
number, γ(N) = 2γ2 + κN [26]. The sensitivity of γ(N)



6

to phonon number N allows us to extract κ by compar-
ing the linewidths corresponding to different N . We fit
the shape of the qubit response by a sum of Lorentzians
centered at positions ω̃0 +Nχ with widths γ(N) (ω̃0 dif-
fers from ω0 due to the induced by the pulse AC Stark
shift). The only fitting parameters are γ2, ω̃0, and κ. We
obtain κ/2π = 21.8 kHz for the decay rate of the bound

state, or T ph
1 = 7.3 µs.

Using this value of κ, we estimate a single-phonon co-
operativity C = 4g2/(κγ2) = 8.4× 103. Its value, which
is limited in the present work by dephasing in the qubit
γ2/2π = 39.8 kHz, represents an increase over the previ-
ous HBAR devices [8, 9], and is the result of an increase in
the coupling strength g. Further increase of cooperativ-
ity may be achieved by using a transducer with rounded
edges (to mitigate the diffraction losses), an acoustic cav-
ity with the reduced surface roughness, and a qubit with
reduced dephasing.

III. Conclusions and outlook

The speed of sound is 104 times slower than that of
light; this leads to a high density of acoustic modes in
crystalline media as compared to that of electromagnetic
modes in a resonator of a comparable size. The high
density of acoustic modes is both a resource and a chal-
lenge for their use in quantum information applications.
On the one hand, we may build quantum acoustic de-
vices which are much more compact than existing cQED
ones. On the other hand, the higher density of modes
may easily lead to a fast decay of a qubit due to the
emission of phonons. In this work, we demonstrated the
crossover between the regime of fast qubit decay and that
of large single-phonon cooperativity; we achieved this by
purposefully modifying the device geometry. The rele-
vant length scale for the modifications is determined by
the wavelength λac of a phonon at the qubit frequency.
A rough (on the scale λac) surface of the acoustic cav-
ity results in strong phonon diffraction, which leads to
a structureless acoustic density of states (ADOS) mim-
icking acoustic free space for phonons. Expectedly, we
observe fast decay of the qubit independent of its fre-
quency, as seen Fig. 1. A smooth on the scale λac surface
limits the spontaneous emission to the set of qubit fre-
quencies resonant with the standing waves in the chip,
as seen in Fig. 2. Furthermore, in a full analogy with
plano-convex resonators in laser physics [27] shaping of
the transducer allows one to isolate discrete long-lived

acoustic modes strongly coupled to the qubit. The strong
coupling is exemplified by the observed Rabi oscillations,
as seen in Fig. 4.

Our design of the experiments and data analysis went
beyond the lumped element circuit models of acoustic
modes [21, 28] and focused on the wave nature of the cou-
pling. This approach may be extended in several direc-
tions. Going forward, we may use it to investigate radia-
tion into Rayleigh waves at the surface. Additionally, we
may assess topographic modifications for use in the de-
sign of high-density, multi-mode quantum random access
memories based on bulk acoustic wave resonators [13].
Lastly, the technique developed in this work may be used
for the precision measurements of the bulk phonon prop-
erties and the associated dielectric losses in the qubit
substrates [29].
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[16] U. von Lüpke, Y. Yang, M. Bild, L. Michaud, M. Fadel,

and Y. Chu, Parity measurement in the strong disper-
sive regime of circuit quantum acoustodynamics, Nature
Physics 18, 794 (2022).

[17] E. A. Wollack, A. Y. Cleland, R. G. Gruenke, Z. Wang,
P. Arrangoiz-Arriola, and A. H. Safavi-Naeini, Quantum
state preparation, tomography, and entanglement of me-
chanical oscillators, Nature 604, 463 (2022).

[18] G. Andersson, S. W. Jolin, M. Scigliuzzo, R. Borgani,
M. O. Tholen, J. C. R. Hernandez, V. Shumeiko, D. B.
Haviland, and P. Delsing, Squeezing and multimode
entanglement of surface acoustic wave phonons, PRX
Quantum 3, 010312 (2022).
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S.I. EXPERIMENTAL DETAILS

FIG. S1. A schematic layout of the experimental setup. (a) A ringmon qubit: The qubit consists of an inner circular
electrode, and an outer ring-shaped electrode. The electrodes are connected by a pair of parallel Josephson junctions, which form
a SQUID loop. The loop is threaded by an external flux Φe which controls the qubit frequency ω0. Panels (b, c, d, e) depict the
four considered devices, which differ by the geometry of the acoustic resonator [the dimensions of the setup components in the
z-directions are distorted for clarity]. (b) A sapphire chip of thickness 430 µm has a roughened backside, which leads to the diffuse
scattering of the acoustic wave; the wave is excited by the electric field of the qubit via a piezoelectric effect in the 1 µm thick AlN
film. (c) A qubit is coupled to a double-side polished sapphire chip of thickness 100 µm. (d, e) The dome and cylinder transducers
are patterned on the surface of the resonator by selectively etching the AlN film. (f) A top-down view of the chip layout. From left
to right are a Purcell filter (in purple), readout resonator (in green), and ringmon qubit (in grey). Stacked on top of the qubit is an
HBAR consisting of an extended film of aluminum nitride on sapphire. The qubit is capacitively coupled to the readout resonator
for dispersive readout. Microwave pulses are delivered to the system via a transmission line pin (yellow). (g) A side-cross section of
the chip package. The body is made of aluminum, which superconducts, and the lid is made of copper, a normal metal that allows
an external magnetic field to penetrate into the package. Flux threading the SQUID loop is used to tune the qubit’s transition
frequency. Aluminum spacers are deposited on the HBAR to create a nominal 1 µm vacuum gap. This flip-chip assembly sits
primarily in the superconducting region of the package.

A concentric ring transmon [S1], aka ‘ringmon’, is patterned adjacent to a meandering stripline resonator on a sapphire
chip, as illustrated in Fig. S1. The ringmon consists of two aluminium pads; an inner circular pad is surrounded by a
ring-shaped outer one. The pads are connected via two parallel Josephson junctions, which form a SQUID loop. The
junctions are nominally identical; they are made by a bridge-free double-angle evaporation process with a controlled
oxidation. The Josephson inductance of the SQUID at zero flux is approximately LJ = 7nH.

The ringmon has a finger-like extension for capacitive coupling to the readout resonator [the readout resonator is
depicted in green in Fig. S1(b, c)]. The length and thickness of the finger are designed to match the dispersive coupling
strength χqb−ro with the readout resonator’s linewidth from coupling to the transmission line, κro. The qubit is protected
from environmental radiation by a Purcell filter [purple in Fig. S1(b, c)] adjacent to the waveguide pin [yellow in Fig. S1(b,
c)] used to address the qubit and readout modes.

Stacked above the qubit is a second chip of c-plane sapphire, with a nominal thickness of 100µm for the devices of
Fig. S1(e,f,g) and 430µm for the device of Fig. S1(d). The bottom surface of the chip has a 1µm thick film of highly-
oriented c-plane aluminum nitride (deposited by OEM Group). Note the residual stress in the film is typically between
100-200 MPa and is typically inhomogeneously distributed across the wafer. The gap between the bottom and the top
sapphire chips of 1µm is formed by aluminum spacers evaporated at the corners of the HBAR chip [see Fig. S1(c)]. The
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two chips are held together by a micro volume of GE varnish, which also acts as the thermalization link and is far away
from the qubit electrodes.

In two of our experimental samples , schematically depicted in Fig. S1(f,g), the piezoelectric film is shaped to form
either a cylindrical disk or a dome transducer. The shaping is done by a two-step process, first by patterning a photoresist
and second by reactive ion etching in a mixture of BCl3/Cl2/Ar, which selectively etches the aluminum nitride over the
underlying sapphire. The dome shape requires an extra vapor-phase reflow step, which lightly melts the resist and forms
a photoresist bubble held together by surface tension. The cylinder is measured to have a height of 1 µm and a diameter
of 250 µm; the remaining piezoelectric film is etched away from the surface. The dome is measured to have a height of
z0 = 1 µm and a radius of 125 µm, which results in a radius of curvature R = r2/2z0 = 7.8 mm

The two-chip assembly is mounted in a package consisting of a long channel and a waveguiding pin, as illustrated in
Fig. S1. The resonator-qubit assembly is hanger-coupled to the common feedline (shown in yellow in Fig. S1(b)), which
is used to both drive the readout, qubit, and HBAR, and to collect photons leaking out of the readout for dispersive
measurements. While the package bulk, including the channel, is made of 6061 aluminum, which superconducts at our
operation temperature, the lid is made of OFHC copper to allow for the magnetic field from a coil magnet exterior to the
package to penetrate into the channel and flux bias the qubit.
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S.II. ELECTRO-MECHANICAL COUPLING

In this section, we derive an expression for the piezoelectric coupling between the qubit and the phonons in the resonator.
An acoustic wave propagating in the resonator leads to a deformation of the AlN film. Due to the piezoelectric effect in

AlN, the deformation gives rise to an electric polarization ~P (r):

~P (r) =←→e ~s(r), (S1)

where ←→e is the piezoelectric tensor in the stress-charge form and ~s is the strain associated with the acoustic wave (we
use the Voigt notations in which ←→e is a 3 × 6 matrix and ~s is a six-component vector [sxx, syy, szz, 2syz, 2sxz, 2sxy]T).

The strain-induced polarization interacts with the electric field ~E produced by the qubit. The interaction is described by

H = −
∫

~E(r) · ~P (r) dV ≡ −
∫
~σ(r) · ~s(r) dV. (S2)

Here the integration is performed over the volume of the piezo-film; in the second equality we introduced ~σ(r) =←→e T ~E(r),
which can be interpreted as the mechanical stress induced in the film by the qubit’s electric field. For the c-axis oriented
AlN (in which the c-axis is aligned with the z-direction), the piezoelectric tensor has five non-vanishing components
[S2, S3]

←→e =




0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0


 . (S3)

Thus, the stress ~σ can be represented as:

~σ(r) =
[
e31Ez(r), e31Ez(r), e33Ez(r), e15Ey(r), e15Ex(r), 0

]T
. (S4)

In all of the devices we consider, the qubit predominantly emits the acoustic waves in the z-direction (as result of the
smallness of the acoustic wavelength in comparison with the size of the qubit’s pads). Consequently, for the purpose of
describing the acoustic radiation, we can leave only the dominant components of the strain tensor szz, sxz, and syz in the
Hamiltonian (S2). Then, using Eq. (S4), we obtain:

H = Hl +Hsh, Hl = −e33

∫
Ez(r)szz(r) dV, Hsh = −2e15

∫ (
Ex(r)sxz(r) + Ey(r)syz(r)

)
dV. (S5)

Here Hl and Hsh describe the interaction of the qubit with longitudinal and shear waves, respectively. We note that Ez
is the largest component of the in-film electric field while e33 is the dominant component of the piezoelectric tensor (see
Sec. S.VIII). This means that the qubit couples the strongest to the longitudinal waves. Thus, we focus on Hl in the
remainder of the section, and use it to find the coupling strength gν of the qubit to a longitudinal phonon mode ν.

To find gν , we expand the strain field entering Hl into the phonon modes of the resonator. A convenient way to do this
is to first relate the strain to the crystalline lattice displacement ~u(r) via the definition sij = 1

2

(
∂ui/∂rj + ∂uj/∂ri

)
. The

displacement field can be expanded into the phonon modes labelled by an index ν as

~u(r) =
∑

ν

√
~

2ρων

(
aν~uν(r) + a†ν~u

?
ν(r)

)
. (S6)

Here aν is the annihilation operator for a phonon in a given mode ν, ων is the frequency of this mode, and ~uν is the
corresponding displacement field. We assume the following normalization condition:

∫
~uν(r) · ~u?ν′(r) dV = δνν′ . The

combination ~uν(r)
√

~/2ρων is the zero-point fluctuation of displacement associated with the mode ν; ρ is the density of
the acoustic medium. Substituting decomposition (S6) into Hl, we obtain

Hl = −e33

∑

ν

√
~

2ρων

(
aν

∫
Ez(r)∂zuν,z(r) dV + a†ν

∫
Ez(r)∂zu

?
ν,z(r) dV

)
, (S7)

where ∂z ≡ ∂
∂z .

Finally, we note that Ez is in fact an operator acting on the qubit degree of freedom. To make this explicit, we promote
Ez → Ezσx. Upon making this replacement in Eq. (S7) and leaving only the resonant terms1 aνσ

+ and a†νσ
−, we arrive

to

Hl = ~
∑

ν

(
gν aνσ

+ + g?ν a
†
ν σ
−), where gν = − e33√

2~ρων

∫
Ez(r)∂zuν,z(r) dV. (S8)

The parameter gν determines the coupling strength between the qubit and the acoustic mode ν.

1 The off-resonant terms a†νσ+ and a†νσ− lead to renormalization of the system parameters; e.g., they produce (a contribution to) the Lamb
shift of the qubit frequency. Focusing on the phonon radiation by a qubit, we dispense with such effects.
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Coupling to the modes in the double-side polished acoustic resonator

Let us now apply Eq. (S8) to find the coupling of the qubit to phonon modes in the flat resonator of thickness b
[see Fig. S1(d)]. Two parallel, polished surfaces of such a resonator result in the formation of the standing waves in it.
The acoustic modes can be labelled by the standing wave overtone number n and the in-plane wave-vector k⊥. The
displacement field for a longitudinal wave with k⊥ � kz ≡ πn/b is given by

~un,k⊥(r) =

√
2

Vcav
cos
(πnz

b

)
eik⊥·r⊥ ẑ, (S9)

where ẑ is the unit vector in the z-direction and Vcav is the total volume of the cavity. We assume that the bottom surface
of resonator is at z = 0; the displacement has an anti-node there, reflecting the free surface boundary condition (i.e.,

the vanishing of the mechanical stress at the surface). The factor of
√

2 stems from the normalization condition. The
frequency of the mode {n,k⊥} is given by

ωn(k⊥) =

√(πnvl
b

)2

+ v2
⊥k

2
⊥. (S10)

Here vl and v⊥ are the two velocities characterizing the dispersion of waves. These velocities are related to the elastic
stiffness tensor cij of the acoustic medium. Specifically, the longitudinal wave velocity is given by v2

l = c33/ρ, whereas
v2
⊥ = [c44 + (c13 + c44)2/(c33 − c44)]/ρ [see Sec. S.VIII for the values of cij for sapphire].
Using Eq. (S9) in Eq. (S8), we find for the qubit-phonon coupling:

Hl = ~
∑

n,k⊥

(
gnk⊥ank⊥σ

+ + g?nk⊥a
†
nk⊥

σ−
)
, gnk⊥ =

2e33Êz(k⊥)√
~ρωn(k⊥)Vcav

sin2
(πnbp

2b

)
, (S11)

where Êz(k⊥) =
∫
d2r⊥e−ik⊥·r⊥Ez(r⊥) is a 2D Fourier transform of the electric field (since the piezoelectric film employed

in the experiments is thin compared to the qubit’s size, ∼ 1µm� 350µm, we dispense with the weak dependence of the
in-film electric field on z). The factor 2 sin2(πnbp/2b) originates from the integration of the strain mode over the thickness
bp of the piezoelectric film. Expressions similar to Eq. (S11) can be obtained straightforwardly for the coupling of the
qubit to the shear phonons.
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S.III. CALCULATION OF ACOUSTIC SPONTANEOUS EMISSION INTO A ROUGH-BACKSIDE
RESONATOR

Here, we consider a qubit coupled to a rough-backside resonator, and find a contribution to its relaxation rate associated
with the emission of acoustic waves. As explained in Sec. IIA of the main text, the emission of waves into a rough-backside
resonator happens with the same rate as it does into an acoustic free space. For the purpose of finding the rate, we focus
on the latter, simpler configuration.

A convenient way to describe the acoustic free space is to consider a flat resonator with thickness b→∞. The modes
in the flat resonator are indexed by {n,k⊥}. The integer n here determines the discrete values of the z-component of the
wavevector, kz(n) = πn/b. To find the rate of the free-space longitudinal wave emission, we apply Fermi’s Golden Rule:

γfs,l(ω0) = 2π
∑

n,k⊥

|gnk⊥ |2δ(ω0 − ωn(k⊥)). (S12)

The discretization step ∆kz = π/b vanishes in the limit b → ∞. Therefore, one can treat kz as a continuous variable,

which allows us to replace
∑
n,k⊥

= Vcav

∫∞
0

dkz
π

∫
d2k⊥
(2π)2 in Eq. (S12). Then, with the help of Eqs. (S10) and (S11), we

find:

γfs,l(ω0) =
2π

~

[
4e2

33

ρω0
sin4

(
ω0bp
2vl

)]
·
∫ ∞

0

dkz
π

∫
d2k⊥
(2π)2

|Êz(k⊥)|2δ
(
ω0 −

√
v2
l k

2
z + v2

⊥k
2
⊥
)

(S13)

=
2π

~

[
4e2

33

πvlρω0
sin4

(
ω0bp
2vl

)]
·
∫

d2k⊥
(2π)2

|Êz(k⊥)|2 ω0√
ω2

0 − v2
⊥k

2
⊥
.

The dependence of |Êz(k⊥)|2 on k⊥ is determined by the geometry of the transmon: |Êz(k⊥)|2 peaks at k⊥ ∼ kpk
⊥ ≡ 2π/a,

with a ≈ 350µm being the transmon’s spatial footprint, and quickly decays at k⊥ & kpk
⊥ . This means that the qubit

predominantly emits phonons with k⊥ ∼ kpk
⊥ � 2π/λac, where λac ∼ 2µm is the acoustic wavelength at the qubit

frequency ω0 ∼ 2π · 6 GHz. The latter condition allows us to neglect k⊥ under the square root in Eq. (S13). Then, we
obtain:

γfs,l(ω0) =
2π

~

[
4e2

33

πvlρω0
sin4

(
ω0bp
2vl

)]
·
∫
d2r⊥E

2
z (r⊥). (S14)

Here we used the Parceval’s identity,
∫
d2k⊥
(2π)2 |Êz(k⊥)|2 ≡

∫
d2r⊥E2

z (r⊥) to express the integral over the wavevectors as a

real-space integral.
To find the rate of the shear waves emission, we start with the coupling Hamiltonian Hsh (see Eq. (S2)) and repeat the

steps leading to Eq. (S14). In full analogy to γl we obtain

γfs,sh,α(ω0) =
2π

~

[
4e2

15

πvshρω0
sin4

(
ω0bp
2vsh

)]
·
∫
d2r⊥E

2
α(r⊥), (S15)

where α = x, y corresponds to the two possible polarizations of the shear waves.
The total rate of the spontaneous emission is given by γfs = γfs,l+γfs,sh,x+γfs,sh,y. The material and device parameters

needed to estimate the three contributions to γ are listed in Table S1. The acoustic wave velocities in Table S1 correspond
to the sapphire crystal; in the estimates, we dispense with the difference in velocities between sapphire and AlN of less than
5%. We have not measured the piezoelectric constants of our AlN film independently, so we use the previously reported
values [S4–S7] in our estimates. To find the electric field in the AlN film, we employ the high frequency simulation
software (HFSS). The results of the HFSS simulation for Ex,y,z(r⊥) are shown in Fig. S2. The simulated single-photon
field distributions yield the numbers presented in the last three columns of Table S1.

Using Eqs. (S14), (S15) and Table S1 we find at the qubit frequency of ω0/2π = 2π · 6.69 GHz:

γfs,l/2π = 5.9 MHz, (S16a)

γfs,sh,x/2π = 7.0 kHz, (S16b)

γfs,sh,y/2π = 6.6 kHz. (S16c)

ρ, kg/m3 vl, km/s vsh, km/s e33, C/m2 e15, C/m2 bp, µm
∫
d2r⊥E

2
x(r⊥), V2

∫
d2r⊥E

2
y(r⊥), V2

∫
d2r⊥E

2
z (r⊥), V2

3980 11.2 6.1 1.40 0.40 1.0 2.33 · 10−10 2.17 · 10−10 5.75 · 10−10

TABLE S1. Here, ρ is the density of sapphire; vl and vsh are the velocities of longitudinal and shear waves propagating in the sapphire
crystal along the c-axis (which is aligned with the z-axis of the device); the velocities are given by vl =

√
c33/ρ and vsh =

√
c44/ρ,

where cij tensor is given in Sec. S.VIII; e33 and e15 are the components of the piezoelectric tensor for the polycrystalline AlN film
(see Sec. S.VIII for the discussion of values being used), bp is the thickness of the AlN film, and Ex,y,z(r⊥) are the components of
the qubit’s electric field in the AlN film.
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FIG. S2. The electric field in the AlN film. The electric field distributions are calculated from the results of an HFSS eigenmode
simulation with a single photon of energy.

Remarkably, the rate of the shear waves emission is smaller than the rate of the longitudinal waves emission by nearly
three orders of magnitude. In part, this smallness originates from the smallness of e15 in comparison with e33, and that of
Ex,y in comparison with Ez, see Table S1. The shear waves emission is further diminished by the sine factor in Eq. (S15).
Indeed, the wavelength of the shear wave at ω0/2π = 6.69 GHz is close to the width of the film bp, which results in

sin4(ω0bp/2vsh) = 1.6 · 10−2 � 1. By contrast, λac,l ≈ 2bp for a longitudinal wave and so sin4(ω0bp/2vl) = 0.8 ∼ 1.
Since γfs,sh � γfs,l, we disregard the emission of the shear waves in Sec. IIA of the main text. Specifically, in Eq. (1) we
approximate γfs ' γfs,l and use Eq. (S14).



8

S.IV. DYNAMICS OF THE QUBIT COUPLED TO A DOUBLE-SIDE POLISHED CHIP

In this section, we describe the dynamics of the qubit coupled to a double-side polished acoustic resonator. An initially
excited qubit may lose its energy by emitting a phonon. Due to the formation of a standing wave in the double-side
polished chip, the emitted phonon may be reabsorbed by the qubit at a later time; in this case vacuum Rabi oscillations
emerge. Another possibility is that the emitted phonon does not return to the qubit; then the qubit relaxes its energy
irreversibly. Below, we establish the conditions that determine which of the two regimes is realized. We use the results of
this section to derive the estimates for g and γR presented in Sec. IIB of the main text.

We start with the Hamiltonian of the qubit coupled to the acoustic modes in the chip:

H/~ =
ω0

2
(σz + 1) +

∑

n,k⊥

ωn(k⊥)a†nk⊥ank⊥ +
∑

n,k⊥

(
gnk⊥ank⊥σ

+ + g?nk⊥a
†
nk⊥

σ−
)
. (S17)

The first and the second terms describe the qubit and the acoustic modes, respectively. The acoustic modes are labeled by
the standing wave overtone number n and the in-plane wavevector k⊥. Throughout the section, we focus on longitudinal
waves, whose coupling to the qubit is the strongest, and leave the wave polarization label implicit. The experimentally
relevant regime corresponds to the interaction of the qubit with the high-overtone mode, n � 1. For k⊥ � 2π/λac (λac

is the acoustic wavelength at the qubit frequency ω0), the frequency of such a mode can be approximated by

ωn(k⊥) ' ωn +
v2
⊥k

2
⊥

2ωn
, (S18)

where ωn = πnvl/b is the standing wave frequency. The third term in Eq. (S17) describes the coupling between the qubit
and the longitudinal phonons. It was derived in Sec. S.II, see Eq. (S11) for the coupling strength gnk⊥ .

To elucidate the qubit dynamics, we assume that the system is initialized in a state |e, 0ph〉, which corresponds to an
excited qubit (e) on the background of the phonon vacuum. In the course of evolution described by the Hamiltonian

(S17), this state mixes with a superposition of states a†nk⊥ |g, 0ph〉 corresponding to the relaxed qubit (g) and an emitted
phonon. The respective wavefunction has the form:

|ψ(t)〉 = Ae(t)|e, 0ph〉+
∑

n,k⊥

Ag,nk⊥(t) a†nk⊥ |g, 0ph〉. (S19)

It satisfies the time-dependent Schrödinger equation i~∂t|ψ(t)〉 = H|ψ(t)〉, which reduces to a system of coupled equations
for amplitudes Ae(t) and Ag,nk⊥(t):

i
dAe(t)

dt
= ω0Ae(t) +

∑

n,k⊥

gnk⊥Ag,nk⊥(t) + iδ(t), (S20a)

i
dAg,nk⊥(t)

dt
= ωn(k⊥)Ag,nk⊥(t) + g?nk⊥Ae(t). (S20b)

We introduced the delta-function in Eq. (S20a) to account for the initial condition Ae(t = 0) = 1. Keeping in mind the
focus on the emission of the acoustic waves, we disregard other possible mechanisms of the qubit relaxation in Eq. (S20).
Furthermore, we assume a high-Q acoustic resonator and thus treat phonons as the conservative subsystem.

In the frequency-domain, Eq. (S20) boils down to a system of algebraic equations:

ωAe(ω) = ω0Ae(ω) +
∑

n,k⊥

gnk⊥Ag,nk⊥(ω) + i, (S21a)

ωAg,nk⊥(ω) = ωn(k⊥)Ag,nk⊥(ω) + g?nk⊥Ae(ω). (S21b)

Solving this system for Ae(ω) and converting the result back into the time-domain, we find:

Ae(t) = i

∫
dω

2π

e−iωt

ω + i0+ − ω0 − Σ(ω)
, where Σ(ω) =

∑

nk⊥

|gnk⊥ |2
ω + i0+ − ωn(k⊥)

. (S22)

An infinitesimally small positive number 0+ in the denominators ensures causality. The “self-energy” Σ(ω) describes the
qubit-phonon interaction; it contains all of the information on the phonon subsystem relevant for the dynamics of Ae(t).

The self-energy Σ(ω) can be found under a set of simplifying assumptions. First, we shall assume that the qubit
frequency ω0 is close to a resonance with the standing wave frequency ωn = πnvl/b specified by an overtone number n.
For sufficiently weak interaction, this allows us to dispense with the terms whose overtone numbers n′ 6= n in the definition
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of Σ(ω) (the applicability of this condition is discussed at the end of the section). Using this simplification together with
expression (S11) for gnk⊥ , and also changing the summation over k⊥ to integration, we find for Σ(ω):

Σ(ω) =
4e2

33

~ρωnb
sin4

(πnbp
2b

)∫ d2k⊥
(2π)2

|Êz(k⊥)|2
ω + i0− ωn(k⊥)

. (S23)

To evaluate the integral over the in-plane wavevectors, we need to specify the Fourier-transform of the electric field Êz(k⊥).
This is a formidable task for a generic field distribution (e.g., the one depicted in Fig. S2). To proceed analytically, we
shall consider a simplified geometry of the system. Specifically, we will assume that only one circular pad of the transmon
(of radius a) is piezoelectrically coupled to the chip. We will also treat the electric field Ez as being spatially uniform
across the pad’s area. We expect that such a simplified model gives rise to all of the essential features in the qubit
dynamics. The particular quantitative predictions can be used as the order-of-magnitude estimates for comparison with
the experimental data. Under the above assumptions, the Fourier-transform of the electric field is given by

Êz(k⊥) = Ezπa
2 ·
[2J1(k⊥a)

k⊥a

]
, (S24)

where J1(z) is the Bessel function. Note that the dependence of Êz(k⊥) on k⊥ (and, accordingly, that of the coupling
strength gnk⊥) is oscillating; it demonstrates a conventional Fraunhofer diffraction pattern. Substituting expression (S24)
into Eq. (S23), and computing the integral over k⊥ we find:

Σ(ω) =
g2

ω − ωn
×





[
1− 2I1

(
π
√

ωn−ω
ωdiff

)
K1

(
π
√

ωn−ω
ωdiff

)]
, ω < ωn,

[
1 + πJ1

(
π
√

ω−ωn

ωdiff

)
Y1

(
π
√

ω−ωn

ωdiff

)
− iπJ2

1

(
π
√

ω−ωn

ωdiff

)]
, ω > ωn.

(S25)

Here I1(z) and K1(z) are the modified Bessel functions of the first and second kind, respectively, and Y1(z) is the Neumann
function. Parameter

ωdiff = v2
⊥π

2/(2ωna
2) (S26)

has a meaning of the frequency separation (up to a number ∼ 1) between the phonon modes corresponding to the zeroth
and the first diffraction maxima [cf. Eq. (S24)]. Finally, in Eq. (S25) we introduced

g =
2e33√

~ρωnVmode
sin2

(πnbp
2b

)
Ezπa

2. (S27)

This parameter has the meaning of the coupling strength between the qubit and the standing wave confined in the volume
Vmode = bπa2 above the transmon pad. As we will see momentarily, the qualitative character of the qubit dynamics—
including the emergence of vacuum Rabi oscillations—depends on the relation between g and the diffraction frequency
scale ωdiff .

From the dependence of Σ(ω) on ω − ωn we see that the coupling of the qubit to the acoustic medium decreases
with the increase of ω0 above the threshold ω0 = ωn. A sufficiently strong detuning ω0 − ωn brings the system into
a perturbative regime of the qubit-phonon interaction. Assuming that the perturbation theory is valid (the precise
condition will be specified shortly), it is sufficient to account for a shift of the pole in Eq. (S22), ω0 → ω′q − iγ(ω0)/2,
where ω′0 ≈ ω0 + Re Σ(ω0) and γ(ω0) ≈ −2 Im Σ(ω0). Then, we find:

Ae(t) ≈ e−iω
′
0te−γ(ω0)t/2, where γ(ω0) = 2πg2 ·

J2
1

(
π
√

ω0−ωn

ωdiff

)

ω0 − ωn
. (S28)

Equation (S28) describes an exponential decay of the qubit excited state population |Ae(t)|2, with a decay constant
γ(ω0). Expectedly, this prediction agrees with the result of the Fermi’s Golden Rule application to the problem of qubit
coupled to the phonon continuum. For ω0 − ωn � ωdiff , we can approximate the decay rate by

γ(ω0) = γ(ω0) sin2
(
π

√
ω0 − ωn
ωdiff

− π

4

)
, with the envelope function γ(ω0) =

4

π

g2

ωdiff

[
(ωq − ωn)/ωdiff

]3/2 . (S29)

The oscillatory factor in γ(ω0) results from the diffraction of phonons on the sharply varying electric field profile of the

qubit; the spacing between two subsequent diffraction maxima in γ(ω0) is ∆ω0 ∼ ωdiff

√
1 + (ω0 − ωn)/ωdiff . Note that

the envelope function decreases above the threshold frequency ωn, γ(ω0) ∝ (ω0 − ωn)−3/2; this reflects the mentioned
weakening of the qubit-phonon coupling with the increase of ω0 − ωn.
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We now establish the applicability conditions for the perturbative treatment. By inspecting the denominator of Eq. (S22)
for Ae(t), we determine that Eq. (S28) is valid as long as the spacing between the consequent diffraction maxima exceeds
the typical decay decrement in the vicinity of ω0,

γ(ω0)� ωdiff

√
1 + (ω0 − ωn)/ωdiff . (S30)

If when decreasing ω0 condition (S30) remains satisfied down to ω0 − ωn ∼ ωdiff , then the qubit undergoes a featureless
relaxation regardless of its frequency; in particular, no Rabi vacuum oscillations emerge. This weak-coupling regime is
realized for g � ωdiff , as can be verified using Eqs. (S29) and (S30).

The time-dependence of Ae(t) is more intricate if the coupling g exceeds the diffraction linewidth ωdiff ; then, the
condition (S30) breaks down for qubit frequency in vicinity of the threshold, 0 < ω0 − ωn . g. We expect well-developed
vacuum Rabi oscillations to occur in this range of ω0. To demonstrate the occurrence of Rabi oscillations, we derive an
approximate expression for the probability |Ae(t)|2. For simplicity, we first concentrate on the early-time dynamics of the
qubit. At t � 1/γR, the second and third terms in the square brackets of Eq. (S25) have a negligible influence on the
evolution of Ae(t) and can be disregarded (the estimate for γR will follow shortly). After dispensing with these terms, it
is straightforward to find poles of the integrand in Eq. (S22); it is these poles that determine the evolution of Ae(t). By
setting ω − ω0 − Σ(ω, ν) = 0, we find two solutions for ω,

ω± =
ω0 + ωn

2
±
√
g2 +

(ω0 − ωn)2

4
, (S31)

where ω+ > ωn and ω− < ωn. Integral over ω in Eq. (S22) can be computed by summing up the residues at ω = ω±. We
obtain

Ae(t) ≈
ω+ − ωn
ω+ − ω−

e−iω+t − ω− − ωn
ω+ − ω−

e−iω−t. (S32)

From this equation, we find for the excited state population:

|Ae(t)|2 ≈ 1− 4g2

Ω2
R

sin2
[ΩRt

2

]
, ΩR =

√
4g2 + (ω0 − ωn)2 . (S33)

This expression highlights the oscillations of the population with time; these are the vacuum Rabi oscillations. At
resonance with the standing wave, ω0 = ωn, the oscillations occur with a unit amplitude and frequency ΩR = 2g. (It is
the latter relation that identifies the parameter g as the coupling strength between the qubit and the standing wave.)

At sufficiently large t, the previously neglected terms in Σ(ω) start to become important for the qubit dynamics [i.e.,
the second and third terms in the square brackets of Eq. (S25)]. The main effect of these terms is the decay of the Rabi
oscillations. To see the decay, note that—unlike ω−—the frequency ω+ is submerged into the continuum of phonon modes
ωn(k⊥), i.e., ω+ > ωn. The self-energy has an imaginary part in this frequency domain; the effect of the imaginary part
amounts to the shift of the pole ω+ off the real axis2, ω+ → ω′+ − i Im Σ(ω+). The shift leads to the decay of the first
term in Eq. (S32), with a decay constant γR = Im Σ(ω+). Let us consider a qubit in resonance with the standing wave,
ωn = ω0. In this case, ω+ = ωn + g which—upon substitution into Eq. (S25)—results in

γR ∼
√
ωdiff g; (S34)

a respective t ∼ 1/γR determines a time over which the Rabi oscillations cease. We note that the Rabi oscillations are

well-resolved for g � ωdiff : a large number of oscillations, ∼
√
g/ωdiff � 1, occurs within the decay time 1/γR.

Curiously, the excited state population of the qubit does not fall to zero in our model (within the described above
simplifying assumptions). Indeed, a second term in Eq. (S32) remains non-vanishing even at t � 1/γR; at resonance,
we find |Ae(t)|2 = 1/4 . This peculiar behavior is a consequence of the closeness of the qubit frequency to the threshold
of the phonon mode continuum ωn. The further relaxation happens either due to the qubit coupling to the off-resonant
phonon modes with lower overtone numbers n′ ≤ n−1, or due to other mechanisms unrelated to the emission of phonons.

To conclude, we present estimates of parameters ωdiff , g, and γR for our experimental device. To estimate ωdiff we use
a ' 300µm, ωn/2π = 6 GHz, and v⊥ = 9.2 km/s [to obtain the latter number, we use an equation for v⊥ presented after
Eq. (S10) and the material parameters presented in Sec. S.VIII]. Substituting these numbers in Eq. (S26), we obtain

ωdiff/2π ' 20 kHz. (S35)

2 We expect such a treatment to correctly capture the dynamics on the qualitative level. Note, however, that at resonance, ω0 = ωn, Im Σ(ω+)
is of the same order of magnitude as the spacing between two subsequent diffraction maxima ∼ √ωdiff g. Because of this, a quantitatively
correct description of the qubit dynamics would require a more accurate analysis of Eq. (S22); this is beyond the scope of the present
discussion.



11

Next, we use Eq. (S27) to find g. To this end, we first estimate the electric field using the last entry of Table S1,
Ez ' 4.5 · 10−2 V/m. As for the piezoelectric constant, we use the value e33 = 0.52 C/m2, which we inferred in the main
text from the phonon emission into a rough-backside chip [see Sec. IIA]. Additionally, we use b = 100 µm for the chip
thickness, bp = 1 µm for the thickness of the AlN layer, n ' 110 for the overtone number, and ρ = 3980 kg/m3 for the
density of sapphire. This leads to

g/2π ' 3 MHz. (S36)

Note that the coupling strength is small compared to the free spectral range νfsr = vl/2b = 55 MHz. This justifies
our approximation, in which we left a single resonant overtone n in the expression for Σ(ω) [see the discussion before
Eq. (S23)]. Finally, we find for the decay rate of the Rabi oscillations with the help of Eq. (S34):

γR/2π ' 240 kHz. (S37)

Expressions (S35)–(S37) need to be viewed as the order of magnitude estimates; thus, we conclude ωdiff ∼ 10 kHz,
g/2π ∼ 1 MHz, and γR/2π ∼ 100 kHz.
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FIG. S3. Velocity surfaces. A solution of Christoffel’s equation in bulk sapphire along the Z-X crystal plane results in three
velocities that depend on the direction of propagation (0◦ corresponds to the propagation along the c-axis). In blue is the longitudinal
velocity solution and in red and green are the two shear wave solutions in units of km/sec.

S.V. SPLITTING OF THE SHEAR WAVE RESONANCES

The shear wave emission peaks in Fig. 2 of the main text are split by ∆ωsplit ≈ 2π · 4 MHz. In this section, we show
that the splitting may originate from the misalignment between the device’s z-axis and the c-axis of the sapphire crystal
by ∆θ ≈ 0.15◦, close to the axes alignment error in the specifications of the sample.

The waves are launched by the qubit in the z-direction which is perpendicular to the sapphire chip. If this direction
coincided with the c-axis of the sapphire crystal, then the two shear waves would have the same velocities, and correspond-
ing sets of the standing wave frequencies would be identical. The axes misalignment leads to a difference in velocities
∆vsh and thus the splitting of the standing wave frequencies. For the two shear waves close to the qubit frequency ω0 the
splitting is given by

∆ωsplit = ω0
∆vsh

vsh
. (S38)

To find ∆vsh, we start with the Christoffel wave equation for the displacement field ~u (the summation over the repeated
indexes is assumed):

ρ
∂2ui
∂t2

− cij,kl
∂2

∂rj∂rk
ul = 0 → ρω2ui − cij,klkjkkul = 0. (S39)

Here ρ is the density of sapphire and cij,kl is the elastic stiffness tensor (see Sec. S.VIII for the valeues of cij,kl). According
to Eq. (S39), we need to determine the eigenvalues of the matrix Mij = cij,klnjnk/ρ to find v2 for the three polarizations
of the wave propagating in the direction ~n. The result of the numeric diagonalization of Mij for arbitrary ~n is shown in
Fig. S3. We do indeed see that the velocities of the two shear waves differ when ~n is not aligned with the c-axis.

Let us now estimate the velocity splitting analytically. Were the sapphire c-axis perfectly aligned with the z-axis of the
device, the matrix M would be diagonal for ~n||ẑ, M0 = diag{v2

sh, v
2
sh, v

2
l }, where vsh =

√
c44/ρ and vl =

√
c33/ρ are the

shear and longitudinal wave velocities, respectively (we use the standard notations c44 ≡ c13,13 and c33 ≡ c33,33). The
misalignment of axes by ∆θ � 1 acts as a perturbation ∆M to the matrix M0. To the first order in ∆θ, the perturbation
is given by

∆M = ∆θ
[2c14

ρ



−cosϕ sinϕ 0

sinϕ cosϕ 0

0 0 0


− c13 + c44

ρ




0 0 cosϕ

0 0 sinϕ

cosϕ sinϕ 0



]
, (S40)

where ϕ is the angle between the x-axis and the projection of the sapphire c-axis onto the xy-plane, c14 ≡ c11,23, and
c13 ≡ c11,33. To find the splitting ∆vsh, we apply the first-order degenerate perturbation theory to M0 + ∆M . It yields
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∆vsh = ∆θ vsh · 2|c14|/c44 which, with the help of Eq. (S38), translates into

∆ωsplit = ω0 ∆θ
2|c14|
c44

' 2π · 30 MHz ·∆θ[◦]. (S41)

We used the values of the stiffness tensor components presented in Sec. S.VIII and ω0/2π = 5.0 GHz for the qubit frequency.
We see that the observed splitting, ∆ωsplit ≈ 2π · 4 MHz, is consistent with the axes misalignment by ∆θ ≈ 0.15◦.
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S.VI. ACOUSTIC BOUND STATES

In this section, we find the frequency spectrum of the acoustic bound states arising in a resonator with an appropriately
deformed surface. In our experiments, the role of the surface deformation is played by the shaped AlN transducer, see
Fig. S1(e, f) (we shall dispense with the mismatch of the acoustic impedances of ∼ 20% between the transducer and the
acoustic resonator). First, we consider a transducer whose profile is smooth on the scale of the acoustic wavelength, see
Sec. S.VI A. Then, we find the bound states in the case of cylindrical transducer, see Sec. S.VI B. Throughout the section,
we focus on the bound states associated with the longitudinal waves to which the qubit couples the strongest.

A. Transducer with a smooth profile

To describe the acoustic bound states associated with the longitudinal waves, we consider the Christoffel equation
(Eq. (S39)) for the z-component of the displacement field ~u:

∂2
t uz = v2

⊥∇2
⊥uz + v2

l ∂
2
zuz. (S42)

Here we neglected ux and uy components of the displacement, which is justified for a smooth (on a scale of the acoustic
wavelength λac) transducer. Velocities are given by v2

⊥ = [c44 +(c13 +c44)2/(c33−c44)]/ρ and v2
l = c33/ρ. We can describe

the shape of the transducer by specifying the dependence of the overall thickness of the chip on spatial coordinate, or
b ≡ b(r⊥). Provided the thickness varies adiabatically slowly, |∂b/∂r⊥| � 1, it is possible to approximately separate
variables in Eq. (S42) in the spirit of the Born-Oppenheimer approximation. To this end, we first solve Eq. (S42) for the
wave motion in the z-direction at a given r⊥. This results in a set of standing waves uz ∝ cosπnz/b(r⊥) indexed by the
overtone number n with frequencies ωz(r⊥) = πnvl/b(r⊥). The slowness of the thickness variation guarantees that the
overtone number n is conserved. We can then use the ansatz uz(r⊥, z) = ψn(r⊥) cosπnz/b(r⊥) in Eq. (S42), which leads
to the following Helmholtz equation for ψn(r⊥):

ω2ψn(r⊥) = −v2
⊥∇2
⊥ψn(r⊥) + ω2

z(r⊥)ψn(r⊥). (S43)

It is convenient to measure ω with respect to the standing wave frequency ωn = πnvl/b of the HBAR in the region away
from the transducer, where the device is nominally flat. To this end, we express ω2 = ω2

n + ε, which leads to:

− v2
⊥∇2
⊥ψ(r⊥) + (ω2

z(r⊥)− ω2
n)ψ(r⊥) = εψ(r⊥) (S44)

This equation is similar in form to the time-independent Schrödinger equation. In this analogy, the topographic deforma-
tion can be thought of as a local potential V (r⊥) = (πnvl)

2
[

1
b2(r⊥) − 1

b2

]
. Since b(r⊥) ≥ b, the potential is confining and

thus gives rise to the bound states.
To describe the structure of the bound states, we take b(r⊥) = b + z(r⊥) and assume z(r⊥) � b. Using the latter

condition, we can expand 1
b(r⊥)2 − 1

b2 ' − 2
b3 z(r⊥), which further simplifies the wave equation to

−v2
⊥∇2
⊥ψn(r⊥)− 2ω2

n

z(r⊥)

b
ψn(r⊥) = εψn(r⊥). (S45)

So far, we have not made any assumptions about the shape of the transducer. Let us now apply Eq. (S45) to find the
spectrum of the bound state frequencies for the dome-shaped transducer. The respective thickness profile is parabolic,
z(r⊥) = z0(1− (r⊥/r)2), where z0 is the height of the dome and r is the radius of its base. In terms of the dome’s radius
of curvature R = r2/2z0, the wave equation has the form:

− v2
⊥∇2
⊥ψn(r⊥) +

ω2
n

bRr
2
⊥ψn(r⊥) = (ε+ 2ω2

n

z0

b
)ψn(r⊥) (S46)

It is similar to the Schrödinger equation for a harmonic oscillator. Using the solution of the harmonic oscillator problem,
we find a set of transverse modes (indexed by the transverse wave number m) for each overtone number n with frequencies:

ω2
n,m = ω2

n(1− 2z0/b) +
2ωnv⊥√
Rb

(m+ 1) = k2
nv

2
l + k2

mv
2
⊥ (S47)

where k2
n = (πn/b)2(1− 2z0/b) and k2

m = 2ωnv⊥/
√
Rb)(m+ 1). Under the conditions λac �

√
Rb and z0 � b—which we

assume to be well-satisfied—we can approximate ωn,m by

ωn,m = ωn(1− z0/b) +
v⊥√
Rb

(m+ 1). (S48)
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This shows that the spectrum of the bound state frequencies is equidistant, with the spacing v⊥/
√
Rb. We note, however,

that the qubit couples to the modes with even m only (the qubit’s electric field has an approximate radial symmetry, so
it does not couple to the modes with odd m which are odd under the inversion). We thus find for the spacing between
the consequent modes to which the qubit couples:

∆ω = ωn,m+2 − ωn,m =
2v⊥√
Rb

. (S49)

Using the parameters v⊥ = 9.2 km/s ,R = 7.8 mm, and b = 100µm corresponding to our device, we find ∆ω = 2π·3.3 MHz,
close to the observed value ∆ω = 2π · (3.3− 3.6) MHz.

The bound states are well-defined as long as ωn,m lies below the threshold frequency ωn. The latter marks the beginning
of the continuous spectrum of waves (with an overtone number n) propagating in the flat part of the resonator. This
leads to a bound for number m:

m+ 1 < 2π
z0

b

vl
v⊥

√
Rb
λac

. (S50)

From this condition, we conclude that 15 bound states should be resolvable in the qubit spontaneous emission spectrum,
close to the observed value.

B. Cylindrical transducer

Next, we describe the acoustic bound states in the resonator with a cylindrical transducer. Due to the sharpness the
transducer’s edge, the adiabatic approximation used in the previous section is no longer applicable. The quasi-discrete
modes localized in the volume above the transducer are nonetheless long-lived. This is a consequence of the immense
difference between the acoustic wavelength and the dimensions of the device: the diffraction losses are small as long as
r �

√
λacb, where r is the radius of the transducer and b is the thickness of the resonator.

Under the condition3 r �
√
λacb, the bound states are almost entirely localized in the volume of the resonator above

the transducer. This means that we can effectively impose the zero displacement boundary condition at r⊥ = r to find
the bound state frequencies, i.e., uz(r⊥ = r) = 0. Focusing on the waves with an overtone number n and keeping in
mind the radial symmetry of the device, we look for the solution of the Christoffel equation of the form u(r⊥, z) =
R(r⊥)Φ(ϕ) cosπnz/(b+ z0), where Φ(ϕ) = eimϕ and R(r⊥ = r) = 0. Substituting u(r⊥, z) into Eq. (S42), we find for
R(r⊥):

− ρ2k2
⊥R(r⊥) =

(
r2
⊥∂

2
r⊥ + r⊥∂r⊥ −m2

)
R(r⊥), (S51)

where k2
⊥ = (ε + 2ω2

nz0/b)/v
2
⊥. The solution of Eq. (S51), which is regular at r⊥ = 0, is the Bessel function, Rm(r⊥) =

Jm(k⊥r⊥). By imposing R(r⊥ = r) = 0, we obtain the quantization condition for the transverse wavevector: km,l⊥ =
µm,l/r, where µm,l is the l-th root of the Bessel function Jm(x). The frequency of the mode {n,m, l} is given by:

ωn,m,l =

√
ω2
n(1− 2z0/b) + [km,l⊥ ]2v2

⊥ ≈ ωn(1− z0/b) +
µ2
m,lv

2
⊥

2ωnr2
. (S52)

In contrast to the dome transducer, the modes in the cylinder are unequally spaced; the spacing increases with the radial
number l.

The bound states remain well-defined as long as ωn,m,l < ωn. This leads to the following condition for l and m:

µ2
m,l <

8π2v2
l

v2
⊥

z0r
2

bλ2
ac

. (S53)

We note that the qubit couples only to the modes with m = 0. Then, using Eq. (S53) and taking r = 125µm, we find
that ≈ 19 bound states should be resolvable in the spontaneous emission spectrum for each overtone number n.

In Fig. 3 of the main text, we show the calculated frequency spectrum of the bound states by the vertical grey lines
overlaid on the data. We take v⊥ = 9.2 km/s, vl = 11.2 km/s, and λac = 2.2µm corresponding to the qubit frequency
ω0 = 2π · 5.0 GHz. (Note that even a small uncertainty in vl of about ∼ 1% may result in an overall shift of the bound
state frequency spectrum by ∼ vl/(2b) ∼ 50 MHz near ω0; in order to compare the theory and the data, we add a constant
frequency offset which guarantees that the leftmost vertical line is aligned with the highest peak in the decay rate.)
Resonator thickness b = 100 µm, radius r = 125µm, and z0 = 1µm are the same of the dome and the cylinder (the radius

3 We focus on a practically relevant case z0 ∼ λac; for z0 . λac the condition reads r �
√
λacb · (λac/z0).
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of curvature of the dome is R = r2/2z0 = 7.8 mm). We see that the cylinder has many more modes accessible at low k⊥
at a given overtone number n, with uneven spacing. By comparison, the modes in the dome are evenly spaced; the set of
the bound state frequencies is less dense than that for a cylinder.

Finally, we find the coupling strength gn,0,1 of the qubit to the principal mode in the cylinder. The normalized
displacement field corresponding to the mode is given by

uz(r⊥, z) =

√
2

(b+ z0)πr2
cos
( πnz

b+ z0

)J0(µ0,1r⊥/r)
J1(µ1,0)

. (S54)

With the help of Eq. (S5), we find for the coupling strength:

gn,0,1 =
2e33√

~ρωn,0,1b πr2
sin2

(ωn,0,1z0

2vl

)∫
d2r⊥Ez(r⊥)

[J0(µ0,1r⊥/r)
J1(µ1,0)

]2
(S55)

(we neglect z0 � b in the normalization). Using the result of the HFSS simulation of the electric field (see Fig. S2) and
taking e33 = 0.5 C/m2 (see the discussion in Sec. IIA of the main text), we find gn,0,1 ≈ 2π · 1 MHz for a coupling to the
mode near the qubit frequency ω0 = 2π · 5.0 GHz.
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S.VII. DYNAMICS OF THE QUBIT COUPLED TO ACOUSTIC MODES IN THE DOME

Here, we present experimental results for the time-evolution of the qubit coupled to acoustic modes in the dome, see
Figs. S4 and S5. When the qubit frequency is close to a resonance with the frequency of an acoustic bound state, the
qubit’s excited state population undergoes vacuum Rabi oscillations, see Fig. S5.

FIG. S4. Dynamics of a qubit coupled to the dome-shaped resonator, as a function of the qubit frequency. The
vertical stripes correspond to a quick decay of an initially excited qubit; they occur at resonances between the qubit and the lossy
modes localized in the dome (i.e., the acoustic bound states).

FIG. S5. Close up of the early-time dynamics. The excited state population of the qubit undergoes the vacuum Rabi
oscillations at resonances with the acoustic bound states. For the shown resonances, the Rabi frequency is ΩR ≈ 2π · 0.6 MHz.
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S.VIII. MATERIAL PARAMETERS

A. Aluminum Nitride

There are several relevant material parameters for the calculations described in our work. The piezoelectric strain
tensor for aluminum nitride is

←→
d =




0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0


 . (S56)

Here d31 = −2.8 pm/V, d33 = 5.6 pm/V (these values were found for the bulk AlN in Ref. [S6]), and d15 = 3.6 pm/V [S7].
The elastic stiffness matrix for AlN is

←→c E =




c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66



, (S57)

where c11 = 376 GPa, c12 = 129 GPa, c13 = 98 GPa, c33 = 353 GPa, c44 = 113 GPa, and c66 = 1
2 (c11 − c12) = 124 GPa

[S8]. The density of AlN is ρ = 3255 kg/m3. It can be convenient to combine the piezoelectric tensor
←→
d and the stiffness

tensor to get the piezoelectric stress tensor ←→e =
←→
d · ←→c :

←→e =




0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0


 , (S58)

where e31 = d31(c11 + c12) + d33c13 = −0.86 C/m
2
, e33 = 2d31c13 + d33c33 = 1.43 C/m

2
, and e15 = d15c44 = 0.41 C/m

2
.

We note that the values of the piezoelectric constants for thin films depend on the growth method and conditions, and
vary across different experiments [S4, S6, S9]. For instance, Ref. [S4] reports e31 = −1.0 C/m2. The values of eij listed
above can only be viewed as the estimates with the accuracy of ∼ 10%. In Table S1, we round e33 and e15 to the first
decimal place.

The piezoelectric effect stiffens the elasticity tensor, such that

←→c D =←→c E +←→e T ·
(
ε0
←→ε
)−1 · ←→e . (S59)

Here ε0 is the vacuum permittivity and ←→ε is the dielectric permittivity tensor. The latter is given by

←→ε =



ε11 0 0

0 ε11 0

0 0 ε33


 . (S60)

For AlN, the values are ε11 = 8.2 and ε33 = 9.7.
Combining these, we get the effective stiffness tensor for AlN is

←→c D =




379.1 132.1 89.7 0 0 0

132.1 379.1 89.7 0 0 0

89.7 89.7 374.9 0 0 0

0 0 0 115.3 0 0

0 0 0 0 115.3 0

0 0 0 0 0 123.5



. (S61)

The longitudinal and shear wave velocities for the propagation in the z-directions are v
(AlN)
l =

√
cD33/ρ = 10.7 km/s and

v
(AlN)
sh =

√
cD44/ρ = 5.9 km/s, respectively.
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B. Sapphire

The elastic stiffness tensor for sapphire is [S10]

←→c =




c11 c12 c13 c14 0 0

c12 c11 c13 −c14 0 0

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 0

0 0 0 0 c44 c14

0 0 0 0 c14 c66



, (S62)

where c11 = 496.8 GPa, c12 = 163.6 GPa, c13 = 110.9 GPa, c14 = −23.5 GPa, c33 = 498.1 GPa, c44 = 147.4 GPa, and
c66 = 1

2 (c11 − c12) = 166.6 GPa. Its density is ρ = 3980 kg/m3. The longitudinal and shear wave velocities for the wave

propagating in the z-direction are vl =
√
c33/ρ = 11.2 km/s and vsh =

√
c44/ρ = 6.1 km/s, respectively. Note that these

velocities are close (within 5%) to the respective velocities for AlN. We neglect the difference between the velocities in
the two media in all of our estimates.
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