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ABSTRACT

Many learning tasks, including learning potential energy surfaces from ab initio calculations, involve global spatial symmetries
and permutational symmetry between atoms or general particles. Equivariant graph neural networks are a standard approach
to such problems, with one of the most successful methods employing tensor products between various tensors that transform
under the spatial group. However, as the number of different tensors and the complexity of relationships between them increase,
maintaining parsimony and equivariance becomes increasingly challenging. In this paper, we propose using fusion diagrams, a
technique widely employed in simulating SU(2)-symmetric quantum many-body problems, to design new spatial equivariant
components for neural networks. This results in a diagrammatic approach to constructing novel neural network architectures.
When applied to particles within a given local neighborhood, the resulting components, which we term "fusion blocks," serve as
universal approximators of any continuous equivariant function defined on the neighborhood. We incorporate a fusion block
into pre-existing equivariant architectures (Cormorant and MACE), leading to improved performance with fewer parameters on
a range of challenging chemical problems. Furthermore, we apply group-equivariant neural networks to study non-adiabatic
molecular dynamics of stilbene cis-trans isomerization. Our approach, which combines tensor networks with equivariant neural
networks, suggests a potentially fruitful direction for designing more expressive equivariant neural networks.

Introduction

Graph neural networks (GNNs) have recently gained prominence in the field of chemistry, owing to their ability to learn from
the structural properties of molecules and materials. Nevertheless, devising an efficient and accurate GNN architecture for
investigating dynamic properties of chemical systems remains a formidable challenge. GNNs are adept at learning the structure
of chemical systems and predicting their properties, including potential energy, dipole moment, and atomic forces. Recently,
there has been a surge of interest in employing deep learning to forecast chemical properties and expedite first-principles
dynamics simulations'=. Specifically, GNNs have been utilized to estimate the potential energy with distinct atomic coordinates,
where the negative gradient concerning the input coordinates naturally corresponds to the atomic force. Accurate prediction of
potential energy and atomic force® necessitates adherence to spatial symmetries, such as translational and rotational covariance,
since these properties are continuous functions defined on three-dimensional Euclidean space.

Machine learning algorithms employed to predict properties such as potential energy and atomic forces must yield consistent
results, regardless of the molecule’s rotational pose or ordering. To address this challenge, researchers have developed group-
equivariant neural networks that preserve these symmetries™’~!°. In a group-equivariant network, symmetry operations on the
data, including rotations of pictures and molecules, and permutations of the labels of each particle, commute with the network’s
layers, ensuring that the same physical property is predicted irrespective of the input’s orientation. Many state-of-the-art
spatially equivariant neural networks'!!2 leverage the representation theory of the spatial rotation group in the so-called
Fourier space!’. These Fourier space methods employ the Clebsch-Gordan nonlinearities'>!#. In fact, as elucidated in the
supplementary material (SM), Clebsch-Gordan nonlinearities are the sole source of nonlinearity in Fourier space determined by
invariant theory in mathematics'>~!”. The Clebsch-Gordan nonlinearities further constrain the use of linear weights, which can

only act on the multiplicity space corresponding to each irreducible representation'?.
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Independently of work in machine learning, physicists have been using network models, called tensor networks, to represent
complicated quantum many-body systems. Tensor networks are a family of methods for approximating larger tensors by
contracting together a large collection of smaller tensors. Tensor networks have been used to successfully approximate large
quantum states with low entanglement accurately by making use of the density matrix renormalization group (DMRG) in
one dimension'®!° and introducing low-rank tensors to represent the quantum states’’. Applications of tensor networks
include quantum simulation of quantum physics problems?!~>?, quantum computing and quantum supremacy experiments>*2>,
machine learning and data science?® %, and quantum gravity>*3°. A special type of tensor networks concerns with global
on-site SU(2) symmetry, called the spin networks, where multiple sites are fused by a prescribed fusion diagrams?!-3? so that
the global wavefunctions are SU(2) symmetric. The fusion diagrams, as we will show later and further in SM, are natural
and sparse generalization of Clebsch-Gordan products among multiple sites. Fusion diagrams have found great success in
simulate SU(2)-symmetric quantum systems>%32-3* and we will show their potential for constructing universal equivariant
neural networks.

Fusion diagrams facilitate the classification of existing neural network architectures and inspire the development of novel
equivariant blocks. We showcase the computational power of these blocks using classical results from invariant theory, which
establish that under certain conditions, they can achieve universality. For instance, we employ fusion diagrams to construct
a new SO(3)-equivariant block, which we incorporate into two state-of-the-art neural network architectures: Cormorant>
and MACE'?. We demonstrate that integrating the new equivariant layer significantly enhances the performance of both
architectures, with a comparable or substantially fewer number of parameters.

To assess the validity of the fusion block, we carried out extensive experiments on various chemical systems, including
standard benchmark datasets such as QM-93¢ and MD-17°, which aims to predict the quantum properties of molecules and
potential energy surfaces, as well as more challenging systems like the non-adiabatic cis-trans isomerization of stilbene.
Non-adiabatic isomerization of stilbene poses a considerable challenge learning the multiple boarder and reactive potential
energy surfaces (PESs), necessitating accurate interpolation and extrapolation.

In summary, this paper presents a novel method for constructing group-equivariant neural network blocks using fusion
diagrams, a concept borrowed from theoretical physics. Our approach alleviates the combinatorial complexity associated with
preserving symmetry constraints in neural networks, enabling the construction of expressive and universal equivariant layers.
We demonstrate the effectiveness of the fusion block by incorporating our new SO(3)-equivariant layer into two state-of-the-art
molecular neural network architectures, Cormorant and MACE, and evaluating them on a variety of common benchmarks in
companion with more complicated molecular isomerization and adsorption process. Our results indicate that the fusion block
leads to improved performance with comparable or fewer parameters. Overall, our approach contributes to the developing a
new routine that can be used to construct more expressive group equivariant neural networks.

Background

Before delving into the specifics of our approach, it is crucial to lay the groundwork with some foundational concepts. In this
section, we offer an overview of relevant ideas from both machine learning and physics. We begin with a concise review of
molecular dynamics and the significance of symmetry and equivariance in machine learning. Subsequently, we introduce the
concept of tensor products and their role in theoretical physics, including a description of the fusion diagram notation.

Molecular dynamics

Molecular dynamics simulations are essential tools for studying molecular properties at the atomic level within specific
timescales. To simulate atomic motion, we need to calculate the potential energy and atomic forces acting on molecules with
particular geometric configurations in R? space. Generally, potential energy and its gradients can be accurately determined
by electronic structure calculations from first principles or approximated classically as simple analytical potential functions
within specific chemical environments, such as atomic type, bond length, and bond angle. However, the electronic structure
calculations under the ab initio molecular dynamics (AIMD) calculations are expensive.

One popular approach to overcoming this limitation is to use neural networks as interatomic potentials'-?, which are
trained with reference AIMD data. Training neural networks as interatomic potentials involves regressing on potential energy
and atomic forces simultaneously, where predictive forces can be naturally achieved as the negative gradient of energy via
back-propagation. The potential energy is invariant to 3D rigid rotations, while atomic forces are covariant to rotations, as they
are vector values. The equivariant neural networks that we introduce subsequently are a powerful data-driven approach for an
accurate representation of the chemical environment.

Representation theory of SU(2) and SO(3)
Rotationally equivariant nets are arguably one of the most successful types of equivariant neural networks. Let X and Y be the
input and output spaces of a layer L, and let T and T' be linear actions of a group G encoding the symmetry on X resp. Y. The
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layer is said to be equivariant to G if
T;oL=LoT, forallg € G. (1)
If the group action on the output space is the identity transformation, i.e. Tg’ y =y for all elements of G, the above reduces to
L=LoT, VgeG 2)

and we have an invariant layer. Constructing an equivariant neural network requires that both the learned affine function and the
fixed nonlinear function obey equivariance. Kondor et al.'* showed how to construct learned affine functions that are equivariant
to compact groups (such as the group of rotations or the group of permutations) using the theory of linear representations. A
linear representation ! of a compact group G is pair (V, p) such that for each g € G, p(g) is assigned a linear transformation of
V for which Vg, g, € G,p(g1)p(g2) = p(g142). If the representation is finite-dimensional, the range of p is a subset of the
space of complex k x k matrices for some k. An irreducible linear representation (irrep) is a representation where V has no
proper subspaces preserved under p. Using well-known results in representation theory, we can apply a linear transformation
that decomposes the inputs, outputs, and activations of a neural network into components that transform according to the
group’s irreps. Then, one can show that the most general possible equivariant linear transformation can be written as matrix
multiplication against each component'37-3% The construction of linear equivariant layers where inputs and outputs transform
according to linear group representations has been widely studied and used in today’s neural networks”> 10-14,37.38,40-42

For the rest of this work, we will focus on equivariance in the presence of SU(2) and SO(3) symmetries. These groups
have fundamental importance in modern quantum physics and machine learning applications on geometric data. The irreps of
SU(2) can be indexed by a single non-negative integer or half-integer, called the spin label. For any g € SU(2) and spin label j,
we denote the corresponding matrix that arises from evaluating p(g) as W/(g). It is well known in group theory that SO(3)
irreps are isomorphic to the irreps of SU(2) with integer spin labels'7-43:4*_ This relationship allows us to study both SO(3) and
SU(2) at the same time. Depending on the mathematical context, vectors in V; might transform either by W/(g) (contravariant
transformation) or by its complex conjugate (covariant transformation). In what follows we focus only on irreps and omit p;
when we denote irreps. To distinguish these two cases, we denote components of any vector v transforming contravariantly by
raised index v"* with w,, being defined accordingly for the covariant case. With the notion of raised and lowered indices, one
can contract vectors like v"w,,, where the Einstein summation convention will be used consistently in this paper.

With the above basic notions clarified, let us formally define the Clebsch-Gordan product. Take two SU(2) irreps (pj,,V;,)
and (pj,,V;,) of spin j, and jj, respectively. We can then define the tensor product representation (p;, ® p;,,V;j, ®Vj,). As
this is still an SU(2) representation, it can be decomposed into irreps labeled by spins. A Clebsch-Gordan decomposition is a
matrix Cla:/b-Je) which transforms the tensor product W/« (g) @ Wit (g) into We(g) for a prescribed spin j. and any g € SU(2).
Formally,

CUaribie)t (Wja (g) @Wb (g))C(.iaajbij') =We(g) forall g € SU(2). A3)

By definition, the Clebsch-Gordan decomposition is equivariant with respect to the action of SU(2) as well as SO(3). Formally,
it can be understood an element from the space of SU(2) equivariant maps Hom(V;, ®V;,,V;.), where V; ,V;,,V;_ are the
corresponding SO(3) irreps with the angular momenta labels jj, j2, j3. In this case, we can write the Clebsch-Gordan product

as a third-order tensor:
C(jmj]“jc)ml,mzmS c Hom(Vja ®ij7vjc)? (4)

where my,my,m3 are the corresponding magnetic quantum numbers. There are well-established methods to compute Clajp:Je)
both theoretically and algorithmically, e.g.,*>*%4®. Summing in Einstein notation with lower and upper indices, we call it a
Clebsch-Gordan product for input vectors y{/a) ylis):

W(jc)mc — C(la -,jb-,./‘c) me w(ja)mzt l,/(jb)’”b . (5)

a,Mp

We will also leave m as entry indices and write Clebsch-Gordan product among input vectors as inner products:

ll/(]c) o <C(Ja1]bh), ll/(]u) ® w(][7)> (6)

ILinear representations should not be confused with the different use of the word “representation” in representation learning.
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Input: Incoming atomic activations: {‘Pgin), . ~‘P£,in>} and to initialize a FusionBlock module
Output: Outgoing atomic activations: ¥(©")

for QEJ’W) € Z2do
. . .. (in, /1) (in, ) . . . . . .
apply incoming activations 4 R 1/ . with an aggregation function ¢ to enforce permutation equivariance:

v/ = ¢ (FusionBlock (wl(i“’jl) . ll/r(lin’j")))

end for
Concatenate outputs for each fusion diagram along the new channel dimension?, and reshape.

f’Pf( :‘i}l@...@lpn
Multiply by a linear mixing matrix.
\P(;Cmt) — li‘chf“fc

Algorithm 1: Fusion Block

Methods

Here we demonstrate how fusion diagrams can be used to design equivariant components that we call “neural fusion blocks.
We present an explicit construction for transformations under SU(2) and SO(3).In each block, we apply a collection of fusion
diagrams 2 to our input tensors. Each incoming edge of the diagram is associated with an input to the block and each
outgoing edge is associated with an output of the block. We denote the collection of input tensors associated with incoming
edges as {‘I’(lm), ..., %1 and components corresponding to the spin label ji ... j, are denoted as {l//gn’j Do 1;/%11"'/") 1, where
T1,..., T, are the channel dimension indices. We omit batch indices from our treatment for brevity. The fusion block then acts
according to Algorithm 1. More illustrations on the updating rule with diagrammatic examples can be found in Section I in the
SM. Due to the use of fusion diagrams, the resulting algorithm is guaranteed to be equivariant to rotations.It also serves an
rotationally-equivariant universal approximator where we put the proof details in Section II in the SM.

As our focus is on the construction of specific components in an SO(3)-equivariant architecture rather than on proposing
an entirely new architecture, we demonstrate the potential of our formalism by incorporating it into existing neural networks.
Specifically, we choose to augment the Cormorant architecture proposed in*> and the recent state-of-art model*’ with one
additional three-body fusion block that replaces the conventional node-edge two-body interaction, with the aim of capturing
inter-atomic interactions in a more faithful manner. Capturing three-body interactions in a SO(3) equivariant way with edge
features could lead to a large overhead on computational resources. Applying fusion blocks to point clouds also requires
ensuring that the resulting neural network obeys permutation symmetry. Since each fusion diagram has a single output, we
can reinforce the permutation equivariance by passing these outputs through an aggregation function and incorporate them
into existing message-passing-like mechanisms. It is worth mentioning that except employing Clebsch-Gordan products, there
are other efficient architectures like using spherical coordinates of neighboring atoms and leveraging spherical harmonics to
encode angular momentum information into higher dimensional representation of SO(3) and filtering through the spherical
representations’.

ER)

Cormorant with Fusion Diagrams (CoFD)
Cormorant is one of the first equivariant neural networks that utilize the group equivariance and designed to learn molecular
dynamics simulations and ground-state molecular properties. A neuron in Cormorant layer s operates as follows:

F = |Fe (R e ) e (L (Y @ e ) | -Ware (10)
J

one-body part

two-body part

Here j sums over atom i’s local neighborhood, and g;; is a learned rotationally invariant function that takes F;* and F7 as input
in addition to other rotationally invariant features. ®., denotes the channel-wise Clebsch-Gordan products and Y (x;;) the
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spherical harmonics with input the relative displacement vectors between ith and jth atoms (we refer the reader to> for the
precise functional form of g;;). Each of these terms corresponds to the two-body diagram on the left below, while the product
with g;; is in a three-way product, it never has a covariant or contravariant component.

In particular, we observe that this layer has no equivariant interaction between equivariant parts of the activation atom i
and the activation for atom j. Instead, their activations only interact through the rotationally invariant function g. Instead, in
the present paper we employ our fusion diagrams to add an additional term to (10) that fully integrates all of the information
between atom i and atom j. This corresponds to the fusion diagram on the right. The resulting fusion block has three inputs:
the input activation for atom i, the input activation for atom j, and the collection of spherical harmonics evaluated on their
relative displacements, and one output: a new feature for atom i. Consequently, we require a fusion diagram with three ingoing
edges and one outgoing edge. Going from left to right, we input the representation of atom i, the representation of atom j, and
the spherical harmonic representation of the edge connecting the two. We then incorporate this as a new term in (10), giving the
following functional form for our modified Cormorant layer.

F}sfl — [Fzs® (F}sfl ®cg F}S*l) @Z (Z (Y(Xij) ®cg Fjsfl)gij @Efusion)} _W/S\’/?rtex, (11)
i

where Fifumn is the output of the fusion block where inputs came from atom i and atom j within the coming legs chosen to be
ith atom, jth atom, and their connecting edge. In other words, we use fusion diagrams to efficiently combine the atom-level
messaging passing and edge-level message passing.

MACE with Fusion Diagrams (MoFD)

Embedding:

Moder: z Many-Body
Fusion:

Dist. Embedding >’ h

r = Vec. Embedding h

Embedding
¢ i Fusion EE
Two-Body Interaction: Block !
Two-Body
Interaction _——-
Fusion Block

e

Readout

!

%

v

Figure 1. Schematic illustration of the implementation of fusion blocks in the MACE architecture. For each atom the fusion
block first fuses all the neighboring atoms for a given radius cut-off by pre-selected fusion diagram templates. Specifically, for
each neighboring atom, we fuse the information from the root, neighbor atom, and their connecting edge. Then the fusion block
applies an aggregation method: in the present work, we simply sum all the neighbors.

Implementation of 3-body fusion blocks

In our modified MACE architecture we use fusion diagrams (Figure 1), a local neighborhood is defined by a cut-off radius r,
the information on the central particle is ‘P,(,m“'), adjacent particle ‘I’Sm’J) ;1€ A (0), and the incident edges CIDELH;.J)) . In particular,
this information is passed to a /-element sequence of linearly independent 3-body fusion interactions given by a sequence of

different internal spin configurations {k1,kz, ...,k }, with the [-element sequence of outgoing activation on the center particle:

w9 .~ ¥ FusionBlock (w&i“’ja)égi“b)w?“*ic)) (12)
’ i€ ¥ (0)
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The final permutation invariant update to the center node information is obtained by concatenating {‘P;(_(;cit*]) Ya=1....1, followed
by a linear mixing layer along the new concatenated axis. Note that in the sparse implementation, the feature dimension for
each incoming activation never gets updated. Each time the internal spin configuration is only specified by a single internal spin
label kq, thus sparsifying the three-body information flow. For each internal spin value k, the 3-body interaction fuses into a
single SO(3)-equivariant tensor (this fusion corresponds to the Fig.1 in the SM), while the final messaging passing aggregates
neighboring edges and nodes information to the center node. In this implementation based on MACE architectures, we found
our fusion block would only marginally increase the number of trainable parameters given the same channel width.

Fusion Block can also be initialized with significantly more trainable parameters than the original Mace does, which we
denote as the dense implementation. The key difference to the sparse implementation is the inclusion of multi-partite internal
spins to create a nested FusionBlock module. More specifically, given a I-sequence of internal spins {ky }«, We can choose
a tuple (ko ,kq, ), a triple (kg ,ka,,kq; ), and beyond instead of specifying a single choice of the internal spin in the sparse
implementation. Hence, a total of /! selections can be made resulting in a significant boost to the model size and number of
trainable parameters. In our explicit implementation, we feed all choices of internal spins at once, resulting in a typical 10X
boost of the trainable parameter size. As a result, we do not need to additionally pass a linear layer to reshape the channel
width. The dense model could often outperform or be on par with the sparse implementation only with half the channel width.
As an overall observation, the choices of internal spins are vital to our numerical performance. In our practice, the internal
spins are chosen to range from j = 0, 1,2, and sometimes with both parties.

Results

We describe three well-rounded benchmarks to test CoFD and MoFD, including QM-9°¢ molecular property prediction, MD-17°
small molecular dynamics, non-adiabatic molecular dynamics of stilbene. Our results are summarized in Figure 2, Table 1 and
Table 2.

QM-9 Molecular properties and MD-17 molecular dynamics datasets

We first implement the fusion diagram on Cormorant architecture®. The standard QM-9 benchmark dataset®® is used to test
the performance of the CoFD model to predict molecular quantum properties of roughly 130,000 molecules in equilibrium,
which contains multiple tasks of scalar value regression including atomization enthalpy, free energy, etc. In contrast, the MD-17
dataset® involves learning the ground-state PES and its gradient, for eight small organic molecules at room temperature from
reference DFT calculations.

We compare the CoFD model and the original Cormorant model. The fusion diagram reduces the number of parameters
in our networks, ensuring that we are not simply improving performance by adding additional parameters: for MD17, the
networks with fusion diagrams have 135393 parameters compared to 154241 in the original Cormorant®>, and our QM9 neural
network has 121872 parameters compared to 299808 in the original®>. We report that the total time of training QM9 (resp.
MD17) use 20 (resp. 12) hours with 256 Epoches, each with a mini-batch size of 64. Hence each epoch costs 281 (resp. 169)
seconds. Code for our modified network can be found at https://github.com/ehthiede/diagram_corm. To be
noted, the fusion block used in the CoFD to predict QM-9 and MD-17 is a sparse implementation. We did not use the dense
implementation in predicting the QM-9 and MD-17 properties due to the large computational expense. However, it would be an
interesting future direction to reduce the recourse overhead in the dense implementation, which would enable more subsequent
experiments.

Stilbene Non-adiabatic molecular dynamics

Non-adiabatic MD (NAMD)* is a powerful approach for predicting photo-induced chemical processes, including photo-
catalytic reactivity*”, photo-induced DNA damage>, and the performance of sun-screening products'. Unlike ground-state
dynamics, NAMD involves evaluating multiple PESs and their gradients simutaneously. However, studying excited-state
dynamics requires higher accuracy electronic structure methods than DFT>2, resulting in significantly higher computational
costs. Thus, there is motivation to test our model’s ability to study multiple PESs that are not generated by DFT.

In this study, we explore the photo-induced cis-trans isomerization process of stilbene, a phenomenon first reported by
Syage>*. Our approach utilizes the Complete Active Space Self-Consistent Field (CASSCF) theory”?, specifically targeting the
conjugated 7 orbital localized on the carbon-carbon double bond and its anti-bonding counterpart. This selection forms our
active space, characterized as two electrons in two orbitals (2e,20), and all calculations are conducted using the 6-31G* basis
set. To accurately capture the quantum effects inherent in photoisomerization, we adopt a quantum-classical approximation
through trajectory surface hopping (TSH), as implemented in the SHARC package®. This method integrates both quantum and
classical dynamics, crucial for studying processes like isomerization. Wigner sampling® is employed to generate a variety of
initial configurations, initiating the molecular trajectories under study.
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Table 1. Mean absolute error of various prediction targets on QM-9 (left) and conformational energies (in units of kcal/mol)
on MD-17 (right), for both the original Cormorant architecture and our modified version that incorporates a fusion block. It
should be noted that the CoFD models have significantly fewer parameters than the original Cormorant. We report the mean
and standard deviation from multiple runs. In comparison, the model with lower predictive error has been bolded.

Cormorant CoFD
a (bohr?) 0.085 (0.001) 0.088 (0.003)
Ag (eV) 0.061 (0.005) 0.062 (0.001) Cormorant  CoFD
€gomo (eV) 0.034 (0.002) 0.0391 (0.0008) Aspirin 0.098 0.0951
eLumo (eV) 0.038 (0.008) 0.0347 (0.0006)
Ethanol 0.027 0.0241
u D) 0.038 (0.009) 0.035 (0.001) Malonaldehvde 0.041 0.0380
C, (cal/mol K) 0.026 (0.000) 0.0272 (0.0002) % ’ :
Naphthalene 0.029 0.0321
G (eV) 0.020 (0.000) 0.0135 (0.0002) Salicvlic Acid 0.066 0.0608
H (eV) 0.021 (0.001) 0.0132 (0.0004) Y ’ ’
5 2 Toluene 0.034 0.0316
R“ (bohr”) 0.961 (0.019) 0.50 (0.02) Uracil 0.023 0.0297
U (eV) 0.021 (0.000) 0.0130 (0.0004) ’ ’
Up (eV) 0.022 (0.003) 0.0133 (0.0003)
ZPVE (meV) 2.027 (0.042) 143 (0.04)
Model Feature Dimension ~ Num. of Param. Train Size ~ Ground State (Energy, Forces)  First Excited State (Energy, Forces) ~ Second Excited State (Energy, Forces)
MACE 64 330320 285 (19.15, 0.70) (9.88, 1.25) (21.80, 1.03)
MoFD-sparse 16 66784 285 (19.74, 0.62) (13.43,1.12) (23.42,1.07)
MACE 128 979088 950 (26.44, 1.30) (29.07, 3.56) (48.77, 3.05)
MoFD-sparse 32 141168 950 (28.84, 1.40) (36.69, 3.55) (55.08,3.11)
MoFD-dense 16 690976 950 (27.59,1.14) (32.64, 3.31) (54.76, 2.65)

Table 2. Comparative analysis of MACE and MoFD models in dense and sparse implementations, evaluated on single and
multiple independent non-adiabatic trajectories of cis-stilbene. The table presents the feature dimension, number of parameters
(Num. of Param.), training set size (Train Size), and results for the ground state, first excited state, and second excited state.
Results include energy values in milli-Hartree (mHartree) and forces in milli-Hartree per Angstrom (mHartree/A). The bold
figures represent the best performance in each category.

A stringent criterion is applied to ensure the quality of the data: only trajectories maintaining total energy conservation
within 0.2 eV were considered valid and included in the dataset. This threshold ensures the physical relevance of the trajectories
by excluding those that do not adhere to energy conservation principles. The resultant dataset, therefore, comprises multiple
molecular trajectories of stilbene, predominantly initiated in an excited state. These trajectories provide a comprehensive
view of the isomerization process, offering valuable insights into the dynamics of this photochemical reaction. Detailed
computational specifications and a more thorough introduction to the methods employed are available in the SM.

The widely-adopted MD17 dataset®’ comprises adiabatic dynamic trajectories using the PBE functional, though the spin
polarization, basis set, and computational grid information are absent from the literature, near equilibrium, where molecular
movements are trivial. As a result, MD17 is heavily biased towards sampling the reactant region of the PES without considering
the driven non-equilibrium forces.”® However, a meaningful chemical reaction typically involves three parts on the PES:
reactant, product, and transition state. It is important to note that the accuracy of common density functionals is usually a few
kcal/mol when compared to higher levels of theory. For example, the PBE functional used in the MD17 dataset has an average
error of more than 9 kcal/mol (roughly 0.4 eV) when predicting reaction barriers>. In contrast, the trajectories we sampled
visited the reactant, product, and transition state regions of multiple PESs, as illustrated in Figure 2.

To compare the performance of MACE and MoFD with sparse implementation, we selected one reactive trajectory and
employed the MACE model with a feature channel dimension of 64 and high-order equivariant features with / = 0,1,2,3. For
MoFD, we maintain the same feature angular momentum and set the feature channel dimension to 16, resulting in a model with
only 66,784 parameters, an order of magnitude smaller than that of MACE. Given the increased difficulty in predicting atomic
forces, we adjust the training loss on energy and forces with a ratio of 1:1000, as recommended in previous literature!"-1%. As
the loss is disproportionately weighted towards the force, we concentrate on the force regression performance. The models is
trained on 285 samples and tested on a separate hold-out test set of 428 samples. The models were trained in a state-specific
fashion, which means each model regress single state’s PES and forces for comparison purposes. Our findings indicate that
MoFD with sparse implementation has a decent performance in force prediction for the first two states, while MACE fits better
when predicting the energy.
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Figure 2. (a) Illustration of photo-induced cis-trans isomerization of stilbene (b) Initial and end configurations of three
representative trajectories, which are Wigner-sampled.>? (c) the one-dimensional cut of stilbene ground/ excited-state PESs by
rotating the carbon-carbon bond as illustrated in (a), which illustrates the energetic diagram of stilbene isomerization process.

We further assess the generalization ability of our models across different trajectories by incorporating two additional
independent trajectories into the dataset, resulting in a total of 950 training samples and 1,395 hold-out testing samples. We
increase the complexity of MACE by expanding its feature channel width to 128, leading to a total of 979,088 parameters.
Concurrently, we double the feature dimension of MoFD to 32, making it only as large as MACE. Additionally, we implement
MOoFD with a dense feature dimension of 16, with equivariant features [ = 0, 1,2, resulting in a total of 690,976 parameters
(29.4% tewer than the original MACE). In terms of runtime, each epoch requires 52 seconds in the MACE model compared to
31 seconds in the MoFD model, attributed to the utilization of lower-dimensional angular momentum features as inputs. The
MoFD model with the dense implementation surpass MACE in the force prediction tasks, while the MoFD model with the
sparse implementation remains comparable to MACE’s accuracy as indicated in Table 2.Nonetheless, it is crucial to note that
the performance of all models decrease when learning excited states due to the less well-defined topologies of excited-state
PESs*.

Discussion

In this work, we have introduced a new method for constructing equivariant blocks for rotation-equivariant layers based on
fusion diagrams. Previous work has shown that tensor products can be used to construct neurons for rotation-equivariant neural
networks. Moreover, prior research has observed that neural network ansatzes for the quantum system can be unified with spin
network ansatzes. Our work is the first to employ these connections in the opposite direction: by employing diagrammatic
methods used in physics, we construct new components that can be incorporated into equivariant neural networks.

Using classic results from invariant theory, we show that neural networks built from using fusion blocks are capable of
approximating any continuous SU(2)-equivariant functions. To demonstrate the practical utility of fusion blocks, we perturb
existing SO(3) equivariant neural network architectures, such as Cormorant>> and MACE'?, by incorporating a fusion block in
each layer. The modified architectures generally achieves better performance for a smaller number of parameters. Indeed, the
idea of using equivariance and symmetry to prune neural networks has been applied® in the quantum setting. We believe this
indicates that fusion blocks can be a useful addition to group-equivariant neural networks.

To test the performance of the fusion block approach, we apply the revised CoFD and MoFD models not only to the standard
benchmark datasets QM-93¢ and MD-17°, but also novel applications such as non-adiabatic molecular dynamics. We find that
the addition of the fusion blocks improved the performance of the models.

In future work, we hope to use fusion blocks to improve the interpretability of equivariant neural networks. In theoretical
physics, fusion diagrams represent physical processes that correspond to many-body interactions. Furthermore, physicists
often manipulate fusion diagrams through internal permutations through a process known as recoupling. Recouplings relate
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to the physical properties of different fusion diagrams and can show symmetries present in the products that may not be
immediately apparent by inspection. Employing the formalism of recoupling may highlight hidden symmetries in the network
architecture, indicating new ways to save computational effort. Employing the language of fusion diagrams in these settings
could help unify our physical picture of fusion diagrams with computational realities. Finally, fusion diagrams are graphical
representations of ways in which local atoms are being fused. It is of interest to consider the effect of the local subgraph
topology on the corresponding fusion blocks; in particular, whether fusion diagrams serve as a general principle towards
building more expressive graph neural nets with 3D equivariance specific to chemical applications. We leave addressing these
questions as future research opportunities.
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1 Overview of Fusion Diagrams

Clebsch-Gordan products (CG-products) appear naturally in quantum mechanics out of ne-
cessity to describe the interaction of multiple particles under global SU(2) symmetry. For
even moderately complex quantum mechanical systems, equations keeping track of successive
products will become formidably complicated. Consequently, physicists have developed a di-
agrammatic representation of successive Clebsch-Gordan decompositions. We refer to these
diagrams as fusion diagrams. The space of fusion diagrams that fuse n incoming SU(2)-
contravariant features {1))}" (defined in Background in the main text) into a single out-
going SU(2)-contravariant feature P comprised of successive Clebsch-Gordan products is
denoted by Homgy)(Vj, ® -+ ® V;,,Vy) (Fig.1). By choosing a fusion diagram QUi-/) ¢

J1
i J2 3
k
J
Figure 1: A fusion diagram as a stan- Figure 2: Another fusion diagram as
dard basis element in Homgy(g)(V}, ® some element in Homgyg)(V;, ® Vj, ®
Vi, ®Vj,, V). Fusion diagrams of this Vie, V).

type with all possible values k are also
called Wigner 4-jm elements.



Homgy(z)(Vj, @ -+~ ®@ Vj
inner products:

V) the fusion process can be computed by the following form like

n?

P = (QUr3nid) 1) @ ... @ qhUn)y, (1)

To be more specific, in a fusion diagram, e.g., Fig.1 & 2, each edge is associated with a spin
label, which is a non-negative integer or half-integer standing for an SU(2) irrep. While only
integers appears in the case of SO(3) irreps. Each vertex represents a common CG-product
CUaivde) and is therefore connected to exactly three edges . We adopt the following convention
in labeling fusion diagrams, which have n external incoming edges and one external outgoing
edge:

1. Each fusion diagram has a list of external spin labels {ji,j2,...,Jn} = j, and a list of
internal spin labels {k1, ..., k,, } = k. These lists are referred to as external and internal spin
configurations respectively.

2. For each vertex, input vectors are always assumed to be transformed contravariantly, i.e.,
with upper entry indices m so that they are fused together via Eq.(1) and yield a contravari-
ant output which would be used for subsequent updates of CG-products like in Figure 1.

3. The spins associated with each vertex must obey the Clebsch-Gordan rule: denoting the
two incoming edges j, and j, and the outgoing edge j., we require that |j, —js| < je < ja+Je
[3, 25].

4. We label the final outgoing edge with J so that incoming n SU(2)-contravariant features
are fused into one SU(2)-contravariant feature to be processed in the next layer.

For instance, the fusion diagram in Figure 1 corresponds to

(.k0) my — (4172k) my (ki3 J) my
Q mjlmjzmj?) — MC mklmj2 C mkmjg i (2>

where M is a normalization coefficient equal to /(2k1 + 1)(2k2 + 1).

In the following discussion, we will refer to any fusion diagrams that form a basis in the
invariant Hom set as Wigner n-jm symbol where n counts the total outgoing and incoming edges.
Wigner n-jm elements such as Fig.1 are prototypes for fusion blocks and essential in proving our
theoretical results later. For a fixed set of external spin labels j, varying all possible assignments
of k of (2) exhausts all possible orthogonal basis elements in Homgy) (Vi @ Vo ® --- @V, U)
[25, 16, 4].

There are also more general spin diagrams that we can draw. For instance, with three
incoming external edges and one outgoing edge (Figure 2)

Q(jyk;J) my _ C(j17k27k1)m_

my (Jok1ka)
J1 2mk10 m;

my (43,k3,k2)  my,
i 1 i, C e 3

7 i (3)
J,]ﬁ 4 ,k 3)mgm
C( ) J k4m

My Mjo Mg
k3

can be expressed as a linear combination of Wigner-4jm tensors in (2) with different internal
spin configuration k because they form a basis for all such high-order CG-products. ? Note that
the dimension of the invariant Hom set grows exponentially with the number of outgoing and
incoming edges so it remains an intriguing question to determine which fusion diagrams could
span larger subspaces that help build practically useful universal neural network architectures.
One motivation for using more general fusion diagrams such as Fig.2 is that not only does it
spans multiple Wigner symbols at once, it can encode non-trivial local graphical invariance

'One can also assume that vertices connected with more than three edges are sup-fusion diagrams with
vertices having only three edges. We refer the interested audience to[23, 22, 21] for more details. Note for
general tensor networks without prescribed symmetry, there is no such restriction.

2For readers familiar with matrix product states, we observe that (3) is a matrix product state with boundary
conditions used in tensor networks [23, 22, 21].



such as the Cy group invariance when choosing appropriate j and k.

2 Proof of the Universality Theorem

Equivariant Universal Approximation

Rotationally equivariant neural architectures affording universal approximation on point clouds
are analyzed in [15]. Here we show that the fusion block activation is an universal approximator
subject to SU(2) or SO(3) equivariance but using different methods, borrowing techniques
from classical invariant theory, which studies invariant and equivariant polynomials of classical
groups [18, 20, 8|. Similar universality statements to the ones we present have also been given
in [4]. We pursue a different proof strategy, using iterated Clebsch-Gordan products instead of
constructing all basis elements for the infinite-dimensional space of equivariant functions. To
be specific, it was proved by Gordan, Hilbert, and others in Classical Invariant Theory that
Clebsch-Gordan products are the only essential ingredients to construct any SU(2)-equivariant
function [10, 18, 20]. A formal statement of this significant result is provided in Theorem 2.2
later while we present the following adapted form for our case.

Theorem 2.1. Let V;,W; be two irreps of SU(2) and let ¥y, ..., ¥, € V; be spin-j vectors as
inputs. For simplify, we temporarily denote by (¥,,...,¥s) an iterated CG-product. Given a
multi-degree d = (dy, ...,d,), a CG-product for multi-homogeneous monomial of degree d is
written as

((wl,...,wl),.-- 7(%,...,%)) (4)
d L d L
1 copies n Ccopies

Any SU(2)-equivariant polynomial f : Vj@" — Wy can be written as a linear combination of
these multi-homogeneous monomials.

The above theorem says that any SU(2)-equivariant polynomial can be constructed from
CG-products. Using an equivariant version of the Stone-Weierstrass theorem [5], that any
continuous equivariant function can be approximated by equivariant polynomials. As a result,
they can be approximated by iterated CG-products which are graphically represented as fusion
diagrams in our setting.

We now explore both rotation and permutation equivariant universality of neural networks
using fusion blocks. Graph neural networks (GNNs) in practice perform local aggregation on
the graph; in our case, this corresponds to the case where the fusion blocks may be applied only
to particles in a local atomic neighborhood. For this reason, we prove universality for functions
computed in the vicinity of an atom in the points cloud. This is a standard and reasonable
assumption since the the graph structure of points clouds are defined based on interactions
of atoms within a radial distance for which the induced local subgraph is fully connected. If
receptive field is set to be global, we obtain the universality when taking interactions of any
pair of atoms from the points cloud into account. Let us assume that the learning task is
defined on V;@” with n representing the number of atoms in a local neighborhood or simply the
entire system. Intuitively, as fusion blocks fuse inputs on each atom with the center and then
aggregate (see Fig.1 in the main text), iterated CG-products will be built with permutation
equivariance after updating several layers.

The universality theorem is proved by results from Classical Invariant Theory |9, 18, 20|
and Quantum Angular Momentum Recoupling Theory [14, 25, 16]. Classical Invariant Theory
studies polynomial maps from V to W equivariant under classical group actions, like these of
SO(n), SU(n), SL(n,C). For short, they are called G-equivariant polynomials or covariants.

3



For instance, linear equivariant maps commonly used in designing equivariant neural networks
are simply equivariant polynomials of degree one. Clebsch-Gordan products like C7172kq))1q)32
are equivariant polynomials of degree two. Invariant polynomials are simply special cases of
covariants when the target space W admits the trivial G-representation. Quantum Angular
Momentum Recoupling Theory specializes the case for SU(2) tensor product representations.
Different ways of taking tensor products are referred as different recoupling schemes and pro-
duces different results in computing Clebsch-Gordan coefficients (CGC) which has real signifi-
cance in studying quantum system like the jj — LS recoupling for electron configuration [14].
Spin diagrams used in this paper are graphical interpretation of various recoupling schemes.
They are further generalized in Topological Quantum Computation [11] and Quantum Gravity
[19]. Classical Invariant Theory and Angular Momentum Recoupling Theory provides different
insights on Clebsch-Gordan products. We will introduce gradually how we benefit from these
insights and obtain the universality theorem in the following.

2.1 Equivariant Polynomials and Clebsch-Gordan Product

Equivariant layers are central part in equivariant neural networks. Formally, they are functions
L that commutes with the group action

TyoL=LoT,VgeG.

Most previous researches only focus on linear equivariant layer which is a linear map commut-
ing with the G-action (e.g., a convolution). However, one can in principle design nonlinear
equivariant layer from the very beginning by equivariant polynomials. As a standard nota-
tion from Classical Invariant Theory, we denote by P(V, W)Y the collection of all equivariant
polynomials from V to W and P(V)% the collection of all invariant polynomials on V.

To determine SU(2)-equivariant functions from V' and W, we decompose V, W into irreps
and consider the problem within each irrep. As a well-known result from representation theory,
Schur’s lemma states that linear equivariant maps between isomorphic irreps are simply scalars.
For non-isomorphic irreps, the only possible linear equivariant map is the trivial zero map |[§].
Therefore, in our setting with V' = Vj@”, linear equivariant layers can only be defined as
learnable weights combining n inputs (1, ..., ¢,,) linearly [12]. To update inputs in a nonlinear
manner, we can employ the Clebsch-Gordan decomposition or Clebsch-Gordan product which is
formally defined from the tensor product V;, ® Vj}, of two irreps to a third irrep V; which can
be decomposed from the tensor product:

C‘]jlj2 VeV, =V
The Clebsch-Gordan non-linearity was first used in [13, 1]. Explicitly, for any (¢1,12) € V;, &V,
expanded under basis (spherical harmonics basis/quantum angular momentum basis),

(Clejz (wl’ wQ))M = (CJj1j2 )Mmlmzw?nwgm’

where m; denotes the magnetic number, is a homogeneous polynomial of degree two because we
have the quadratic term ;" 15" of inputs.

On the other hand, one may argue that the CG-product is linear on each input. That
is correct and a CG-product should be formally called a bilinear function. We denote the
collection of SU(2) bilinear functions by Homguy)(Vj,, Vj,; W). Another equivalent notation
Homguy2)(Vj, ® Vj,; W) and its generalization Homgy)(V;, ® --- ® Vj,; W) for multilinear
functions are used more often in the main article. Mathematically, bilinear map on the direct
sum Vj, @V}, corresponds uniquely to a linear map on the tensor product V;, ®V}, and hence we



use the above notation. This is also the reason that even originally defined on tensor products,
we are free to use CG-products on direct sums without any ambiguity. As a reminder, assume
Jj1 = jo = J, the following map

Vie VeV, Vy e 0,0) = 7L, 0).

is non-linear and equivariant from V; to V. It circumvents the restriction of Schur lemma on
linear equivariant maps.

To discuss more nontrivial examples, we now present two ways to generalize CG-products
to high order as the central notions used for the proof:

1. Iterated C'G-series is a canonical high order CG-product by contracting common CG-
products sequentially, e.g.,

Ckas ijle : V}l S ‘/}2 D Vjs = Vi@ V}'s — Vi

(1/)17 1/)27 w3) = (ijljz (1/)17 1/)2), w?’) = Ckaa (ijle (wl’ wQ)’ ¢3)

An nth iterated CG-product is an equivariant polynomial of degree n+ 1. It is also called
a multi-linear function with n inputs living in Homgp,oc)(Vj, ® --- @ V},; W).

2. Given any iterated CG-product @, suppose (Ji, ..., jx) are all distinct spin labels of @ but
each of which appears d; times (like C” ;; from above). Inputting the same vector for all
repeated spin labels defines a multi-homogeneous polynomial of degree d = (dy, ..., dy).
For instance

C7 e (CFhyjy (1, 90a), 1)

is a multi-homogeneous polynomial of degree (2,1). One variable polynomial can be de-
composed into homogeneous polynomials, as a generalization, multi-homogeneous poly-
nomials are building blocks for multivariate polynomials [20]. At a result, one cannot
always expect a polynomial to be linear on each of its variable.

The above examples shows some hints that CG-products can be assembled together to construct
any complicated SU(2)-equivariant polynomial. This is true due to Gordan Theorem |9, 18, 17|:

Theorem 2.2 (Gordan Theorem). Given a complex SL(2, C) representation V = EBV]-@mj
(m; denotes possible multiplicity of V;), any equivariant polynomial f on V' can be written as
a linear combination of iterated CG-products ((...((¥1,©¥2)k,, ¥3)kys --s Un )k, .- Note that each
mput may occur more than once in the iteration.

We use the simplified notation for Iterated CG-products in the above theorem. That is
the most standard of notation used in classical invariant theory where CG-product is called
transvectant. Transvectants are expressed by polynomials and differential operators by Gordan,
Hilbert and others [10, 18|, while the matrix/tensor notation of CG-products was adapted by
later researchers like Wigner and Racah to study quantum physics and representation theory
[14, 25]. We follow the tensor notation from physics and representation theory in this paper.

Gordan theorem was originally formulated to find all generators of SL(2, C)-equivariant
polynomials, which can be further restricted to SU(2)-equivariant polynomials by definition.
It was then proved by Hilbert in his celebrated Basis Theorem that one just needs finitely
many generators to generate the infinite dimensional collection of equivariant polynomials (see
[18, 8] for more details). Even though it is extremely difficult to write down these generators
explicitly. For small spin labels (j ~ 10), a few explicit generators of SL(2,C) irreps are
summarized in [18, 17]. The so-called First Fundamental Theorem says that generators of
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fundamental representation of GL(n), SO(n) and Sp(n) are, loosely speaking, inner products
[8] (inner products are fundamental cases of CG-products). For this reason, we do not bother
ourselves to compute generators but simply use Gordan theorem which is enough to claim that
CG-products are the only essential ingredient to construct any SU(2)-equivariant polynomial.

2.2 Spin Diagram and Spin Recoupling

Except the above two algebraic expressions of CG-products: tensor notation and transvectant,
we present more details about spin diagrams/fusion diagrams as the main topic of this paper.
In the context of physics, iterated CG-products are special cases of tensor networks with SU(2)-
symmetry [23, 22, 21]. While general tensor networks are obtained by contracting arbitrary
tensors which may not be SU(2)-equivariant . Graphically, we draw

Ji J2 Ji J2 3

J J

as a common CG-product (LHS) and a third order iterated CG-products (RHS) with k being an
internal spin. Outputs of fusion diagrams are generally spin-J vectors. To construct invariant
polynomials with scalar output however, one can set J = 0 or consider spin diagrams like

J1

ks

J2 J3
To build even complicated fusion diagrams, we just need to keep in mind that each vertex in
the diagram is connected with three and only three legs which represents a simple CG-product
(see 23, 22, 21] for more examples). Based on the graphical expression, Gordan theorem 2.2
says that no matter how complicated a fusion diagram would be, it can be written as a linear
combination of fusion diagrams of iterated CG-products.

As we mentioned above, multi-homogeneous polynomials are building blocks for multivariate
polynomials. Because of repeated inputs, a general multi-homogeneous polynomial of degree
d = (dy, ..., dy) has dl%ik! possible different forms even written as a iterated CG-product like

C7on (CF L (b1, 01) o), O (CF s (a, 1), 001),  C7  (CF L, (W1, 2),001)).

The notion of spin recoupling accompanied spin diagrams from angular momentum recoupling
theory can help to resolve this problem: like an extension of Gordan theorem, it says that for
instance, the second and third iterated CG-products from above can be written as a linear
combination of the first one with internal spins varying. This result is desirable because it
facilitates the proof of universality theorem later. To be precise, recoupling can be summarized

3Tt is more common to use the word "symmetry" to indicate that a physics system is symmetric under certain
transformation while the word "equivariance" is more formal in group theory



as two symmetric properties when computing Clebsch-Gordan coefficients [14, 25, 11]:

1. The R-mowe:

(OJ_ ) )M

J192

_ j1+j2—J J M
mimg (_]‘)]1 2 (O _j2j1) mom1

which says if we exchange the coupling order from Vj;, ® V}, to V;, ® V},, Clebsch-Gordan

Jio
coefficients will differ by a phase factor (—1)71+%2=7_ Tt is symmetric in some cases (like

inner products), but alternating in other cases. Graphically, we draw
J1 J2 J2 J1
— (_1)j1+j2*J

J J

2. The so-called F-move accounts for higher order cases: consider the following third order
iterated CG-products:

(wl’ wQ’ ¢3) ( ]1]2 (wl’ ¢2) w?’) = C k]s ( ]1]2 (wl’ ¢2) 1/)3)’
(1/]1;1/}271/13) (wla j273 (1/}271/13)) ]1l ('(pl» j273 (1/12;1/]3))7

where the first operator couples ji, jo firstly and then takes j3 while the second couples
Ja, j3 firstly and then takes j;. These two coupling schemes can be transformed by Winger
65-symbols:

(CJ 1l032]3 )m1m2m3M = Z(2k + 1)(_1)]2+]3+k+l {{; iz l} (C kj3 Ck]uz )mlmzmaM-
k

It can be though as a generalized associative rule when coupling more than two spins.
Graphically, we draw

J1 J2 U3 Ji J2 J3

Ji J2
k zl: {J J3 } l
J J

Back to the above question on multi-homogeneous polynomials, we see that

N CONURS AR S s (o TN CARURTNS)

k

Converting the third iterated CG-product to the first from above is more tricky, we illustrate
by the following manipulation of fusion diagrams with R-move and F-move (summations are



omitted):

o Je N o J2 N JiJ1 2 Ju 1 J2
F-move R-move F-move
kl > kQ > kg > k_4
J J J J

There is no need to compute 6j-symbols. Our aim is just verifying theoretically that any com-
plicated multi-homogeneous polynomial written by iterated CG-products can be standardized
as above. A precise standardization scheme is given in the next subsection (Definition 2.3).

2.3 Equivariant Universality with Fusion Blocks

We now prove the universality of fusion blocks. Let us first make a formal definition:

Definition 2.3. Let V;, W; be two irreps of SU(2) and let 91, ..., 1, be spin-j vectors as inputs.
Given a multi-degree d = (dy, ..., d,), we take fusion diagrams coupling each v; by d; times.
Then we map the processed n vectors into a iterated CG-product. The whole fusion diagram
is called a standardized Clebsch-Gordan product for multi-homogeneous polynomial of degree d
and denoted by Cf(v1, ...,%,) with k being a collection of internal spins.

Remark. The above definition appoints a way to construct multi-homogeneous polynomials. It
has two steps: (a) fusing/coupling each input repeatedly. Then (b) fusing the processed vectors
together (without repetition). As a result of spin recoupling theory, any complicated multi-
homogeneous polynomial can be written as a linear combination of these standardized forms
with 6j-symbols. In the following context, when we talk about multi-homogeneous polynomials,
we always refer the ones described in Definition 2.3. For further use, we would also employ the
notation (dy, ...,d,) = d: (dy,...,d,) is called a composition of d as dy + --- + d,, = d.

As an immediate result from Gordan theorem 2.2 and spin recoupling theory, we have:

Theorem 2.4. Any SU(2)-equivariant polynomial f : Vj@” — W can be written as a linear
combination of standardized Clebsch-Gordan products C(vy, ..., ,).

Note that in the above theorem, equivariant polynomials are defined on the direct sum
of a single SU(2) irrep V;. Even we can consider more general cases as in Theorem 2.2, the
special case always happens in a real learning task, e.g., n would represent the number of
concerned atoms moving in the space and each of which is assigned a spin-j vector standing for
its dynamical/chemical states. To introduce permutation equivariance when relabeling these
atoms, we make the following a simple observation:

Lemma 2.5. Let f : Vj@” — Wy be an S,_1-invariant on its last n — 1 variables. Then the
function F defined by

F(¢17¢27 7’¢n) = (f(1/117¢27 "'7wn)a f(¢2,¢1? "'awn)> "'7f(wna¢1-",'¢n—l))~ (5>

s S, -equivariant from VfB" to Wja?”. Moreover, any S,-equivariant function is written in this
form.

Proof. For first statement, let o € S,,, then by definition

F(U ' (d)h ¢27 Myzjn)) = (f(wo_l(lﬁwo‘_l@)a ) QZ}U_l(n))v 3 f(wa_l(n)7wa_l(l)-'wwa'_l(n—l))) (6)



Since f is invariant on its last n — 1 variables,

J o100y, Yo12)5 s Yo1(n)) = F(Wa=10y, V1, ooy Vo1 () =15 Vo1 (k) 415 s Un) (7)

for k = 1,...,n. Note that this identity should be revised when o=!(k) = 1 or n, but we omit
these trivial details. On the other hand,

o- (F(wlaw% 7¢n)) =0 (f(%ﬂﬁz» "'awn>>f(¢27¢17 "'777Z)n)7 ey f(wnvwln'adjn—l)) (8>

and permuted vectors can be written as Eq.(7), which establishes the S,,-equivariance.

Now let F' = (fi, ..., fn) be an arbitrary S,-equivariant function. To prove the second part,
we simply need to check the actions of transpositions o = (i, j) € S,. For instance, acting on
F by 0 = (1,2), we have

F(O- ’ (wluw% 71/}TL)) = (fl(dj%djla "‘7wn)7 f2(¢27¢17 "‘7wn)7 B3] fn(¢2»¢1> ;djn))
= (fQ(wla 1/}2’ sy ¢n)a fl(wla 1/}2’ sy ¢n)a sy fn(wb 77b2) sy wn»

= (0 F)(¥1, %2, ..., 1n). (9)
This indicates that
Sildo, Y1, s thn) = fo(¥1, 42, . ¥n), VO €V (10)
Applying (1,3), we have
Ji(r,¥2, 03, o n) = f3(Us, o, Y1, . ¥0), VO €V (11)

Continuing by induction, we can conclude that

F(Qplvdj% >wn) = (f(wlvw% "'777Z)n)7 f(¢2>¢1, "'awn)7 "'7f(wnaw1-“7wn—1))~ (12>

To verify that f is S,_j-invariant, we check Eq.(9) again which shows that f;(¢1,....,1¢,) =
(Wi, 11, ..., 1by) is invariant when exchanging ¢, and v, for ¢ > 3. Similar results hold for other
transpositions and can be assembled to prove the invariance of f. Ol

Remark. In the language from [24]), we are talking about first-order S,-equivariant function
defined from Vj@” to Wje?" where S,, permutes input vectors. There are high order cases in which
S, would permute tensor with more than one indices. However, higher order equivariance is
generally not applicable here as V;, W; are SU(2) irreps and do not carry a manifest S,, action.

We now prove the main theorem:

Theorem 2.6. A neural network equipped with fusion blocks can be used to build any SU(2)
XSy equivariant polynomial from V}@” to Wje?".

Proof. With Algorithm 1 presented in the main text, we label atoms by 1,...,n with atomic
activations (1, ...,¢,) € Vj@". Updating with fusion blocks, we are able to create SU(2)
xS, equivariant polynomials F' : Vj@" — Wj@” due to the employment of CG-products and
aggregating at each layer. Any such function F' can be expanded as Eq.(5) by Lemma 2.5 in
which each component f(1;, 1, ..., 1,) is recorded with the ith atom being chosen as the center.

Since f : Vj@” — W, is both S,,_;-invariant on its last n—1 variables and SU(2)-equivariant,
by Theorem 2.4,

f(¢1,--~7¢n) = Zcﬁcﬁ(¢1,-~-7¢n)a (13)
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where ¢ denotes the expansion coefficients. Furthermore, f (i1, ...,1,) equals its symmetriza-
tion on the last n — 1 variables:

f(wlv"'vd)n) = ; Z f(wlthf_l(Z)a-'~>¢U—1(n))

— 1)!
(TL 1) g€Sn_1

1
- 71' Z Cﬁcﬁ(%,%—l(g), ...,wa,l(n))

(n —1)! dk,0ESn_1

=3 TR, e ), (14)
k

where we denote by 6i(1/)1,1/)2, <oy ¥y) the symmetrization of CZ(1)1, 9, ...,1,). To prove the
universality, we just need to show that updating with fusion blocks produces symmetrized
CG-products of the above kind, which can be done with the following procedure

1. For a given multi-degree d = (dy,...,d,), we first process v; by self-coupling (iterated
CG-products) without aggregation as in Definition 2.3. We denote these pre-processed
vectors by C’;Z (¢) for 1 <i,j <n.

2. We instantiate with the first atom being taken the center for reference. As an elementary
example, assume d = (dy,dy) with d; = 0 for ¢ > 3, then we apply the common CG-
product, which corresponds to the simplest fusion diagram, on the central atom and each
of its neighbor:

> Rt (Gl (1), C (). (15)

i>2

Note that the summation appears now as we aggregate all center-neighbor interaction/coupling.
It is exactly the symmetrization of standardized CG-products.

3. Assume d; = 0 for ¢ > 4, we update the central atom one more time:

ST (3 (W (G (), G (00), Gl (7)) 1o

§>2 i>2

General multi-homogeneous polynomials with required equivariance are constructed sequen-
tially and we complete the proof. O

There is still one more subtle point need being clarify in the previous proof. It should be
helpful to illustrate with the following example.

Example. Suppose j = 0, that is, atomic activations zi, ..., x, are simply scalars and hence
the SU(2)-equivariance holds trivially. We are left with the permutation equivariance. We still
exemplify when the first atom is chosen as a center. Updating scalars with fusion blocks, we
build polynomials as

My(xq,...,x,) = Z xflllef---xf:_l, (17)

where \ denotes a composition (dy, ..., d,,) of the multi-degree d (see the previous Remark). As
i1, ..., 1,1 can be arbitrary numbers greater than one, there are cases when 7, = iy for r # s.
On the other hand, there are monomial symmetric polynomials on the last n — 1 variables:

MmA(T1, ey Ty) 1= Z o> o (18)

ip=11) fg=1(n—1)’
gESH_1
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which has no repetition on indices by definition. We note that

My—(dy,d5) = Ma=(d1,do)s  Mr=(dy,do,ds) = MA=(dy,d2) T MA=(dy,da,d3)>" """ " (19)

It is well-known that monomial symmetric polynomials m, can be used to build any
permutation-invariant polynomial [8]. Even with repeated indices, Eq,19 shows that our poly-
nomials M) produced by fusion blocks also fulfill the task. This argument holds generally to
the case when j # 0.

As a final step, we apply the so-called Fquivariant Stone- Weierstrass Theorem which says
that any continuous equivariant function can be approximated by equivariant polynomials [5]
we conclude that:

Corollary 2.7. The Cormorant architecture updated with fusion blocks permutation-equivariant
and universal to approzimate any continuous SO(83)-equivariant map.

3 Architecture, hyper-parameter, and computational de-
tails

Here, we provide additional details on the architecture used, hyperparameter choices, and
computational details for our experiments.

Cormorant over fusion diagram neural network was modified from the publically available
cormorant package available at https://github.com/risilab/cormorant/, with the sole dif-
ference being the addition of the fusion block to the Atomlevel class in the network. To
compensate for the additional cost of the network we changed the number of layers in the
Cormorant _ CG class to 2 and set the number of channes to 8 or the QM9 experiments and 16
for the MD17 experiments. (The number of channels was chosen primarily to ensure the model
fit in the memory of the GPUs used.) The training was performed on a single NVIDIA V100
GPUs at single precision, at 256 Epochs each with a mini-batch size of 64. All other training
hyperparameters were chosen to be identical to the ones used in [1]. This resulted in a total
training time of 12 hours for the MD17 calculations and 20 hours for the QM9 calculations.

MACE over fusion diagram neural network was modified from the publically available
MACE package available at https://github.com/ACEsuit/mace. While the MACE neural
network was directly cloned for comparison. In non-adiabatic dynamics of stilbene simulations,
we set the feature channel width of MoFD-sparse to 16 with [ = 0,1, 2, 3 without parity in the
small-sample training, and we set the channel width to 32 in the training with more samples.
For MACE, we set the feature channel width to 64 with [ = 0,1,2,3 without parity in the
small-sample training, and we set the channel width to 128 in the training with more samples.
For MoFD-dense, we set the feature channel width to 16 with [ = 0, 1,2, 3 without parity. In
the training process of both MACE and MoFD, we set the maximal number of epochs to 500
with stopping patience of 30 epochs without improvement. The energy-to-force loss balance
was enforced to 1:1000. The order of spherical harmonics is set to 3, while the size of the
receptive field is set to 5 angstroms.

3.1 Electronic structure method

The fundamental electronic structure calculations in this study are performed using the Com-
plete Active Space Self-Consistent Field (CASSCF) theory. CASSCF represents an advanced
post-Hartree-Fock wavefunction-based method, which is particularly effective for systems with
strong electron correlation effects. This method is distinguished by its approach to classifying
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molecular orbitals into three distinct categories: inactive orbitals, active orbitals, and virtual
orbitals.

Inactive orbitals are orbitals that are doubly occupied in all configurations and are thus
excluded from the correlation treatment. The active orbitals form the ’active space’ for the
CASSCF calculations, which are a set of orbitals that can be occupied by a predefined num-
ber of electrons. The electrons in these orbitals are allowed to be distributed in all possible
ways, leading to the generation of many electron configurations, thus capturing missing elec-
tron correlation effects in the Hartree-Fock calculation. Virtual orbitals are unoccupied in the
reference state and lie above the active orbitals in energy. CASSCF iteratively optimizes both
the molecular orbitals and the configuration interaction coefficients to achieve self-consistency.

CASSCEF is particularly useful for studying excited states, transition states, and systems
where traditional methods like Density Functional Theory (DFT) might fail due to strong
electron correlation effects.

3.2 Dynamics details

15
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Figure 3: Illustration of conservation of energy over the dynamic simulation.

We used SHARC-MD package to run non-adiabatic dynamic simulations, the software is avail-
able at https://github.com/sharc-md/sharc. The compilation used SHARC-MD 2.1.2 with
Intel One Compilers 2022 and Inter Math Kernel Library 2022. For SA-CASSCF calcula-
tions, OpenMolcas was used, which is available at https://gitlab.com/Molcas/OpenMolcas.
The compilation used OpenMolcas 22.06 with Intel One Compilers 2022 and Inter Math Ker-
nel Library 2022. Initial conformations are generated by Wigner-Sampling of the optimized
ground-state structure with the same level of electronic structure method. For each conforma-
tion, a single-point calculation is performed to acquire the energy of states without spin-orbit
calculations. To select initial excited-states, the MCH representation of the Hamiltonian is
used to simulate delta-pulse excitation based on excitation energies and oscillators strengths
with an excitation window of 0.0 to 10.0 eV. The threshold of total energy was set to 0.2 eV to
account for inevitable active space rotation during the dynamic simulations. We initiated each
trajectory with 0.5 fs as a single timestep and 500 fs as total length.
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Table 1: Mean absolute error of various prediction targets on QM-9 (left) and conformational
energies (in units of kcal/mol).

Target Unit Cormorant Ours(CoFD)

N a? 0.085  (0.001) 0.088 (0.003)
Ae eV 0061  (0.005) 0.062 (0.001)
ciovo €V 0.034  (0.002)  0.0391 (0.0008)
cono eV 0.038  (0.008) 00347 (0.0006)
“ D 0.038 (0.009) 0.035 (0.001)
c, _al 0,026  (0.000) 00272  (0.0006)
G eV 0.020 (0.000) 0.0135 (0.0002)
H eV 0021  (0.001)  0.0132  (0.0004)
R? a? 0.961 (0.019) 0.50 (0.02)
U eV 0021  (0.000)  0.0130  (0.0004)
Us eV 0022  (0.003)  0.0133  (0.0003)
ZPVE meV 2027  (0.042) 1.43 (0.04)

Table 2: QMO results on the Dimenet split. Benchmarks taken from [6].
Target Unit SchNet MGCN DeepMoleNet DimeNet DimeNett™ Ours(CoFD)

M D 0.0330 0.0560 0.0253  0.0286 0.0297 0.028
a a3 0.235  0.0300 0.0681  0.0469 0.0435 0.0682
oo meV 410 4211 23.9 27.8 24.6 37.8
ecuvo  meV 340 574 22.7 19.7 19.5 26.6
Ae meV 630  64.2 33.2 34.8 32.6 53.0
(R?) a2 0073  0.110 0.680  0.331 0.331 0.4128
ZPVE meV 170 112 1.90 1.29 1.21 1.304
U meV 140 129 7.70 8.02 6.32 10.4
U meV 190 144 7.80 7.89 6.28 10.8
H meV 140 146 7.80 8.11 6.53 10.6
G meV 140 162 8.60 8.98 7.56 11.1
e el 00330 0.0380 0.0290  0.0249 0.0230 0.0242

4 Additional Numerical Results

Here, we give additional numerical results, complementing the ones given in the main text.
First, give a more comprehensive treatment of our results on QM9. Whereas in the main text
we gave results for QM9 on only a single target, in 1 we give the mean and standard deviation
of our results over multiple replicates. Specifically, we give the mean and standard deviation
over 3 replicates for Ae, egomo, eLumo, Cv, G, R2, U and over 4 replicates for all other targets.
To compare our work against other architectures we then trained this same model against the
split of QM-9 given in the [7]; results are given in Table 2. We find that our model performs
reasonably well, although it does not achieve state-of-the-art performance. However, we note
that our ability to perform hyperparameter tuning was limited due to the expense of running
the model and our comparative compute budget. We hope that subsequent hyperparameter
tuning would improve the accuracy of our models.

In addition, we trained a variant of a model with the fusion block against the MD17 split
introduced in |7]. This required making architectural changes compared with the original
cormorant architecture: as implemented, the cormorant code evaluates radial functions on the
displacements between an atom and itself. However, the original radial functions used are not
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Table 3: Mean absolute testing error for the energies and forces for cormorant with a fusion
block and various comparative models in the literature. Results taken from |[2]

Molecule Target  Unit  SchNet DimeNet NequlP (1=3) Ours
Aspirin Energy meV 16.0 8.8 5.7 11.1
Force meV/A® 585  21.6 8.0 23.72
Ethanol Energy meV 3.5 2.8 2.2 2.6
Force meV/A® 169  10.0 3.1 9.4
Malonaldehyde Energy meV 5.6 4.5 3.3 4.7
Force meV/A® 286  16.6 5.6 20.4
Naphthalene  Energy meV 6.9 5.3 4.9 8.1
Force meV/A® 252 93 1.7 21.4
Salicylic Acid Energy meV 8.7 5.8 4.6 4.2
Force meV/A® 369  16.2 3.9 8.9
Toluene Energy meV 5.2 4.4 4.0 6.0
Force meV/A® 247 94 2.0 16.6
Uracil Energy meV 6.1 5.0 4.5 3.7
Force meV/A® 243  13.1 3.3 6.9

differentiable at 0. Consequently, we instead used the radial functions
R(z) = Zea/a (20)

where a is a collection of learned parameters, initially evenly spaced on the interval (0,3]. As
before, each network was made of two neural network layers, this time with 64 channels for
each layer. The network was trained on a linear combination of the mean square error in
the energy and the force, with the total force error averaged over atoms and multiplied by a
constant factor. The constant factor was chosen from 1, 10, and 100 by taking the value with
the minimal validation error. Training proceeded on an NVIDIA A100 GPU for 2024 epochs,
with a batch size of 64. We give the results in table 3.
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