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ABSTRACT 

Growing materials data and data-driven informatics drastically promote the discovery and design 

of materials. While there are significant advancements in data-driven models, the quality of data 

resources is less studied despite its huge impact on model performance. In this work, we focus on 

data bias arising from uneven coverage of materials families in existing knowledge. Observing 

different diversities among crystal systems in common materials databases, we propose an 

information entropy-based metric for measuring this bias. To mitigate the bias, we develop an 

entropy-targeted active learning (ET-AL) framework, which guides the acquisition of new data to 

improve the diversity of underrepresented crystal systems. We demonstrate the capability of ET-

AL for bias mitigation and the resulting improvement in downstream machine learning models. 

This approach is broadly applicable to data-driven materials discovery, including autonomous data 

acquisition and dataset trimming to reduce bias, as well as data-driven informatics in other 

scientific domains. 
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INTRODUCTION 

Data-driven autonomous materials design has recently emerged as a new paradigm for materials 

discovery1-3. With large materials data and powerful informatics tools, this paradigm significantly 

accelerates the understanding of physical and chemical mechanisms in materials science4-6, 

accurate prediction of materials structures and properties7-10, as well as the design of materials with 

desired properties11-14. While the informatics tools, such as machine learning (ML) and design 

optimization models, hold a conspicuous position in these works, the data resources are as 

important15,16. The performances that the models can attain highly depend on the quality of data 

they are built upon. Data veracity entails a description of where and how data were collected, but 

less frequently is why (or why not) using certain data clearly articulated.  

Following the Materials Genome Initiative17, multiple materials data resources have 

emerged. The Materials Project18, Open Quantum Materials Database (OQMD)19,20, the Automatic 

Flow for Materials Discovery (AFLOW)21, and the Joint Automated Repository for Various 

Integrated Simulations (JARVIS)22 are prominent examples. These platforms use high-throughput 

first-principles calculations to evaluate various properties for a wide range of materials 

(stoichiometric and defect-free) and make the data publicly available. Besides these centralized 

data resources, a growing portion of materials data is generated in various research projects, 

available from published papers (including their associated repositories) and platforms such as the 

Materials Data Facility23. These distributed data are increasingly utilized owing to data/text mining 

tools. However, it is common that materials data do not have uniform coverage for multiple reasons: 

(1) The candidate materials for database construction are selected among known structures or 

based on known structural prototypes, and lower symmetry structures are less explored than higher 

symmetry ones. (2) Most literature only reports compounds perceived to exhibit “good” properties 

based on the aspect of interest24, while the “unsatisfactory” results can also be valuable25. (3) 
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Property simulation is easier for compounds that are structurally simple, and property 

measurement is simpler for compounds that are readily synthesizable and stable at ambient 

pressures and temperatures. These, among other factors, lead to bias in the materials data platforms. 

Data bias, a ubiquitous issue in data science, has been more recognized in the social science 

domain26,27 but is often overlooked in physical sciences, including materials science. Just as it 

causes social inequity in social policy built upon that data, bias in materials data is harmful to data-

driven materials modeling and design. Belviso et al.28 demonstrated how bias in the chemistry 

space prevents an ML model from accurately predicting electronic bandgaps. Bias in the structure 

space is less explicit but also detrimental. An example is a bias in stability data among crystal 

structures, which we refer to as “structure–stability bias”. Such bias hinders the modeling of phase 

stabilities, thus affecting the accurate prediction of microstructure. As Molkeri et al.29 found, 

microstructure information is important for the modeling of various materials properties, therefore, 

the impact of structure–stability bias is not limited to stability itself but also on other properties. 

Although some attempts have been pursued to characterize bias on trained models post 

facto30 or reduce the impact of data bias on model training31,32, few have addressed bias intrinsic 

to the data for which the models are trained and mitigated bias from the onset. The presence of 

bias in materials data may be inevitable since the distributions of properties are unknown and can 

be uneven in nature. Nonetheless, detecting the bias of datasets could alert users of their potential 

impact. As bias originates from uneven coverage of different materials families, it can be captured 

by examining the diversities of families in the data, which reflects the completeness of coverage. 

Moreover, by adding well-selected new data points, bias in a dataset can be reduced. Towards this 

end, the active learning (AL) method provides a way to sequentially select optimal data points 

guided by sampling strategies considering uncertainty, diversity, or performance33-35. AL-based 
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methods have been applied to accelerate materials discovery targeting high performance36-39 and 

chemical uniqueness40, as well as to assess the selection of design space41. With a specially 

designed sampling strategy, AL can serve as a method for bias reduction. 

 In this work, we propose entropy-targeted active learning (ET-AL) as a systematic 

approach to detecting and reducing materials data bias. We focus on the structure–stability bias in 

DFT-generated databases as a use case for demonstrating the approach. With information entropy 

as a diversity metric, we quantify the bias of stability by its diversity among structures. We then 

develop an active learning method with a sampling strategy towards increasing the diversity of 

stability of underrepresented structures, thus reducing the bias. We demonstrate the capability of 

ET-AL through experiments performed on existing datasets. We show that ET-AL provides a 

general method for mitigating bias in materials datasets and is also applicable in guiding the 

construction of materials databases, thus granting materials researchers access to low-bias data for 

machine learning. 

  

RESULTS AND DISCUSSION 

Data Bias Characterization 

For demonstration purposes, we retrieve two materials datasets: (1) structure and formation energy 

per atom of all binary intermetallic compounds among the elements Al, Ti, Cr, Fe, Co, Ni, Cu, and 

W from OQMD (denoted OQMD-8, size 2,953); and (2) all entries with elastic moduli available 

from the JARVIS classical force-field inspired descriptors (CFID) dataset42, cleaned as described 

in the Methods (denoted J-CFID, size 10,898). We show the distribution of formation energy per 

atom Δ𝐸𝐸 of materials in the two datasets with respect to crystal system in Figure 1a–b. We consider 

compounds in the cubic, hexagonal, trigonal, tetragonal, and orthorhombic systems to be higher in 

symmetry than those of monoclinic or triclinic systems, because they possess one or more rotation 
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axes, and their unit cells have three or fewer free interaxial angles and lattice parameters. Among 

the seven crystal systems, the lower symmetry monoclinic and triclinic systems display higher 

distribution density in the more stable (lower Δ𝐸𝐸 ) region. This observation contradicts the 

empirical rules that materials with higher symmetry (which are usually more close-packed and 

have higher coordination numbers) generally have higher stability43,44. Such contradiction is due 

to the imbalanced coverage of different crystal systems in the materials datasets, and we refer to 

this problem as “structure–stability bias”. 

Without assuming any prior knowledge such as the correlation between symmetry and 

stability, are we still able to capture the bias? To that end, we first define the diversity of a dataset 

by recognizing that for values of a continuous variable 𝑌𝑌 , the diversity can be quantified by 

information entropy45 

 ℎ(𝑌𝑌) = E[− log 𝑓𝑓(𝑦𝑦)] = −�𝑓𝑓(𝑦𝑦) log 𝑓𝑓(𝑦𝑦) d𝑦𝑦 (1) 

where 𝑓𝑓(𝑦𝑦)  is the underlying probability density function of 𝑌𝑌 . Note the difference between 

diversity and uncertainty: whereas uncertainty describes the state of random variables with 

incomplete or unknown information, diversity is an attribute of an already known dataset. In 

general, we can group the data into clusters by any appropriate criterion and estimate ℎ(𝑌𝑌) for 

every cluster from the 𝑌𝑌 values in the dataset, thus quantifying the diversity of 𝑌𝑌 in every cluster. 

Based on the observation from Figure 1a–b, the OQMD-8 dataset has coverage of materials with 

diverse Δ𝐸𝐸 values in the high symmetry crystal systems, while the Δ𝐸𝐸 values in the triclinic and 

monoclinic systems are not diverse. The J-CFID dataset, on the other hand, lacks diversity in the 

high-symmetry crystal systems. 
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Figure 1 Structure–stability bias in two datasets. a–b, Kernel density estimation of the distribution of 
formation energy among different crystal systems in the OQMD-8 and J-CFID datasets. Without causing 
ambiguity, only the first few letters are shown for each crystal system for conciseness. c–d, Information 
entropy of formation energy among different crystal systems in OQMD-8 and J-CFID datasets. Colors 
indicate the degrees of symmetry of crystal systems; the sizes of points reflect the number of datapoints in 
each crystal system. Note that the OQMD-8 dataset contains only 5 triclinic materials, which causes 
inaccuracy in the information entropy estimation for the triclinic system. 

 
Next, we measure bias using a fairness criterion46, i.e., the difference in ℎ(𝑌𝑌) between 

different clusters indicate the existence and level of bias. For our application, we will use crystal 

systems as natural clusters, and quantify the structure–stability bias via fairness of ℎ(Δ𝐸𝐸). Figure 

1c–d shows that ℎ(Δ𝐸𝐸)  captures the observed difference in diversities, thus reflecting the 

structure–stability bias. The comparison also shows that J-CFID is overall more diverse than 

OQMD-8, which is because it covers a much larger chemical space. But to measure biases of 

datasets, the difference of ℎ(Δ𝐸𝐸) between different crystal systems within each dataset is the focus. 
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Active Learning for Bias Mitigation 

With fairness in diversity as a measure, the data bias can be reduced systematically by adding data 

to the least diverse crystal system in a manner that increases its diversity in Δ𝐸𝐸. We develop the 

entropy-targeted active learning (ET-AL) algorithm (Figure 2) to attain this automatically. In the 

active learning context, we refer to the materials with properties known and unknown as “labeled” 

and “unlabeled”, respectively. The ET-AL algorithm iteratively picks a target crystal system 

(usually the least diverse one), selects an optimal unlabeled material that may improve ℎ(Δ𝐸𝐸) of 

the system and adds it to the labeled data. The iteration terminates when a pre-specified criterion 

is satisfied, or all materials are labeled. Details of the algorithm and its implementation are 

provided in Methods and Algorithm S1. 

 

Figure 2 Schematic of the ET-AL algorithm for data bias mitigation. a, Overall procedure of ET-AL: 
a target crystal system is selected, then an unlabeled material is selected and labeled. The steps repeat until 
the stopping criteria are satisfied. b, The procedure of sample acquisition: a Gaussian Process (GP) model 
is trained with the labeled data and makes predictions for the unlabeled data. The predictive mean and 
variance of ℎ resulting from adding each material are inferred therefrom. Based on these, the optimal 
material is selected according to the sampling strategy and added to the labeled data. 
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Experimentation and Demonstration 

As a demonstration of the ET-AL method, we conduct experiments on the J-CFID dataset. The 

overall procedure is illustrated in Figure 3a: we split the dataset into a test set, a labeled set with 

artificial bias, and an unlabeled set. We use ET-AL to augment the labeled set into a low-bias 

training set (marked ETAL) and create another training set (marked RAND) of the same size by 

randomly sampling from the unlabeled set. In addition to demonstrating that ET-AL effectively 

reduces the structure–stability bias, we show the impact such bias has by comparing supervised 

ML models for bulk modulus 𝐵𝐵 and shear modulus 𝐺𝐺 derived from the two training sets. 

 

Figure 3 Experiments on the J-CFID dataset. a, Split of the dataset: 𝑁𝑁T entries are left out as the test set. 
From the remaining data, some entries are taken away to create an artificial bias and put into the unlabeled 
set together with randomly selected entries, in total 𝑁𝑁U. The 𝑁𝑁L entries remaining form a labeled set with 
significant bias. Two training sets are constructed by adding the same number of samples (𝑁𝑁+) from the 
unlabeled set to the labeled set, guided by ET-AL and randomly, respectively. b, Change of information 
entropy in every crystal system during ET-AL iterations. The initial information entropies are shown before 
iteration 0. 

 
 In the experiment, we set 𝑁𝑁L = 1,000, 𝑁𝑁U = 4,898, and 𝑁𝑁T = 5,000. The artificial bias is 

introduced by removing all tetragonal and trigonal materials with Δ𝐸𝐸 > 0 and all orthorhombic 

materials with Δ𝐸𝐸 < 0. With materials represented by graph embeddings (presented in Methods), 

ET-AL is applied to the dataset and runs for 985 iterations before termination. As Figure 3b shows, 

the introduced bias is captured by the diversity metric (the three manipulated crystal systems have 
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relatively low initial ℎ), and mitigated by ET-AL. Moreover, through ET-AL, the dataset reaches 

a state where diversities of crystal systems are closer to each other as compared to the initial state, 

which is favored by the fairness criterion (also shown in Figure S1). A similar demonstration 

performed on the OQMD-8 dataset is presented in Figure S2 and Figure S3. 

 Next, we investigate the effects of ET-AL on dataset distribution. We employ t-distributed 

stochastic neighbor embedding (t-SNE)47 for dimension reduction of the graph embedding 

representations of J-CFID data into a 2-dimensional space. The low-dimensional embeddings 

acquired by t-SNE reflect the distribution of data in the structure space. In Figure 4a, we use these 

embeddings to show the coverage of the labeled dataset (see also Figure S4) and the ET-AL-

selected and randomly selected data (b–c). ET-AL guides sampling in the underrepresented regions 

(lighter shades in Figure 4a), as opposed to a nearly uniform coverage by random sampling in 

Figure 4c. 

 

Figure 4 Visualization of dataset distributions. a, Kernel density estimation (KDE) plot of tSNE 
embeddings of the labeled dataset. The shade shows the density of points, regions with lighter colors are 
less covered. b–c, t-SNE plots of graph embeddings of the materials selected by ET-AL and random 
sampling, respectively, with colors indicating crystal systems. Compared to random sampling, materials 
selected by ET-AL better cover the region where labeled samples are sparse, as well as the crystal systems 
where artificial bias is introduced. 
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 To assess the impact of bias on property prediction, we train multiple supervised learning 

models on the two training sets, both of size 1,954, for predicting 𝐵𝐵 and 𝐺𝐺 from a set of physical 

descriptors (detailed in Methods). Each model is trained 30 times with different random states 

(controlling the initialization, feature permutation, etc., but not affecting training data), and the 

coefficient of determination (𝑅𝑅2) on the test set is recorded. Models include random forest (RF), 

gradient boosting (GB), neural network (NN), and support vector regression (SVR), among which 

RF and GB attain relatively better performances on the task. A potential reason for such 

performance difference is that the descriptors form heterogeneous tabular data, for which tree 

ensemble models have an advantage48. We summarize the performances of these ML models in 

Figure 5, from which we find that models derived from the ETAL dataset with reduced bias display 

systematically superior accuracies over those from the RAND dataset.  

 

Figure 5 Comparison of supervised ML models trained on two J-CFID-derived datasets. The boxplots 
show testing 𝑅𝑅2 of each model type and target property across 30 replicates, a, for bulk modulus and b, for 
shear modulus. Models trained on the ETAL dataset display higher testing 𝑅𝑅2 than those trained on the RAND 
dataset. 

 
In Figure 6, we mark the “most improved samples”, i.e., testing samples for which the ML 

models’ prediction accuracies using the ETAL training set show greater advantages compared to 

using the RAND training set. As observed, most of these samples are in the underrepresented regions 
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of the labeled set (low-density regions in Figure 4a). ET-AL’s focus in these regions during sample 

selection (triangles in Figure 6 overlap with sampling points in Figure 4b) leads to the better 

accuracy of ML models trained on the ETAL dataset. These observations agree with the findings 

of Li et al.49: ML models trained on a biased dataset lack generalizability to underrepresented test 

samples. ET-AL provides a solution to the problem by reducing structure–stability bias, which 

improves the coverage of the dataset in the structure space, and thus facilitates downstream tasks 

such as ML modeling of mechanical properties 𝐵𝐵 and 𝐺𝐺. 

 

Figure 6 Locations of the most improved samples. Blue dots show the tSNE mapping of the test samples’ 
graph embeddings. The triangles mark the samples where ML models trained on the ETAL dataset show the 
most advantages in accuracy over those trained on the RAND set, for a, bulk modulus and b, shear modulus. 
20 samples are shown for each model–property combination. 

 
Potential Applications 

The data bias metric and ET-AL method proposed in this work have a wide range of applications 

in materials discovery and beyond. First, researchers may examine and potentially reduce the bias 

in their datasets before developing data-driven models thereon or publishing the data. Second, ET-

AL allows steering autonomous data acquisition in an unbiased way. This includes high-
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throughput computation, as well as experiments such as self-driving laboratories50. Though we 

presented the structure–stability bias as an example, the method applies to other forms of bias as 

well. 

 An application of particular significance is dealing with bias in materials data resources. 

Since new materials are continually added to the databases, ET-AL can fit in the pipeline to select 

the materials to add. In practice, however, some databases are so large that an observable effect of 

bias mitigation requires adding many new data points, and there are other considerations besides 

bias in database construction. In remediation, the information entropy-based bias metric can also 

guide trimming rather than expanding a database, i.e., selecting a less biased subset. The level of 

bias can be tuned according to the need of usage. 

Though originally proposed for materials data, ET-AL is generally applicable to other 

fields where large data are generated and curated for future reuse51. Protein database52 for 

biomedical studies, and geometry datasets53 for design and manufacturing studies are among a few 

examples. Bias in these data may lead to inaccuracies in parameter calibration, predictive modeling, 

or design optimization, and ET-AL enables detection and mitigation of the bias. 

 

CONCLUSION  

We highlighted the previously overlooked bias in materials data resources, which has an impact 

on a broad range of data-driven materials modeling and design studies. We proposed a generic 

metric for data bias based on diversity measured by information entropy, which successfully 

captures the structure–stability bias in datasets retrieved from widely used materials data platforms 

OQMD and JARVIS. We then formulated and implemented an entropy-target active learning (ET-

AL) framework to automatically reduce bias in datasets by acquiring new samples. Through 

ablation studies, we demonstrated that ET-AL can effectively reduce the structure–stability bias, 
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thus improving data coverage in the structure space and increasing the accuracy of data-driven 

modeling of materials properties. 

We also note that as a generic framework, ET-AL’s capability is not limited to materials 

databases. As the data-driven research paradigm has been adopted by various domains, and data 

bias is ubiquitous in almost every data system, we anticipate that the ET-AL method is applicable 

to a variety of scientific and engineering domains, to facilitate the curation of high-quality data 

and data-driven studies. 

 

METHODS 

Dataset Preparation 

Data collection and cleaning. The OQMD-8 dataset is retrieved from OQMD using its API 

implemented in the “qmpy-rester” package. The J-CFID dataset is downloaded from 

figshare.com42. Out of the >50,000 entries, the ones reporting positive 𝐵𝐵 and 𝐺𝐺 values are kept. 

Entries containing elements H, Tc, halogens (VIIA), noble gases (VIIIA), lanthanum family, and 

those with atomic numbers ≥84 are excluded. Figure S5 and Figure S6 show some statistics of the 

J-CFID dataset. 

Graph embedding representation. We use the crystal graph convolutional neural network 

(CGCNN) model54, which maps a graph encoding of crystal structure to a numerical vector before 

predicting its properties. The numerical vector provides a representation of materials’ structures 

regulated by the target property. We feed the crystallographic information framework (CIF) files 

of all entries in the dataset to a pretrained CGCNN model and extract a 32-dimensional vector 

representation for each material’s structure. Unless specified otherwise, we use the model 

pretrained on formation energy per atom. The graph embeddings of materials are used as inputs 

for model training and evaluation of unlabeled materials in ET-AL. 
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Besides graph embeddings, many other representations that can be derived from materials’ 

crystal structures without knowing their properties are also compatible with ET-AL, examples 

include fragment descriptors55 and tensor representations56. 

Information Entropy 

Information entropy of continuous-valued Δ𝐸𝐸 is estimated from a discrete set of Δ𝐸𝐸 values using 

the “differential_entropy” function from the scipy.stats package57. The software automatically 

selects a numerical method for entropy estimation58 based on data size; details of the numerical 

estimation methods are described in Supplementary Materials. 

Active Learning 

Target system selection. In every iteration, all crystal systems with unlabeled sample(s) available 

are candidates. Systems that are sampled but not improved five consecutive times are excluded. 

Of the remaining candidates, the crystal system with the lowest ℎ(Δ𝐸𝐸) is selected as the target. 

Gaussian process modeling.  Gaussian Process (GP) modeling59 builds upon the assumption that 

the responses 𝒚𝒚 = {𝑦𝑦1, … ,𝑦𝑦𝑚𝑚}  are jointly Gaussian distributed given the predictors 𝑿𝑿 =

{𝒙𝒙1, … ,𝒙𝒙𝑚𝑚}: 

 𝒚𝒚|𝑿𝑿 ∼ 𝒩𝒩(𝝁𝝁,𝑲𝑲 + 𝜎𝜎2𝑰𝑰) (2) 

where the covariance matrix 𝑲𝑲 is inferred from the similarity between predictors using a kernel 

function, and the 𝜎𝜎2𝑰𝑰 term accounts for noise. Once trained, inputting an unseen predictor 𝒙𝒙�, the 

model outputs not a single value but a predicted Gaussian distribution of the response 𝑦𝑦�. Hence, 

GP is an uncertainty-aware machine learning model. We train GP models using the 

“ExactGPModel” module of the GPyTorch package60, with the graph embedding representation 

as predictors and Δ𝐸𝐸 as response. 
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Monte Carlo inference. For each unlabeled material, the GP model provides a predicted 

distribution of Δ𝐸𝐸, from which we use the Monte Carlo method61 to infer the resulting change in 

ℎ(Δ𝐸𝐸) by adding the material, as illustrated in Figure 7. We thereby obtain the predictive mean 

and variance of ℎ for every unlabeled material, which are later used in the evaluation of the 

sampling criterion. 

 

Figure 7 Schematic of the Monte Carlo Inference for mean and variance of ℎ. For simplicity, formation 
energy or any property of interest is denoted as 𝑦𝑦 in the figure. For each unlabeled material, we obtain a 
predicted distribution of 𝑦𝑦 via the GP model, and randomly draw 𝑛𝑛 samples therefrom. By trying to add 
every sample into the 𝑦𝑦  values of labeled dataset, we get 𝑛𝑛  resulting ℎ  values (𝑛𝑛 = 1,000 is used in 
experiments), from which we can obtain the predictive mean and variance of the resulting ℎ if that material 
is selected. 

 
Sampling strategy. The selection of unlabeled materials is guided by the expected improvement 

(EI) sampling criterion62. For every unlabeled material 𝒙𝒙, the expected improvement in ℎ 

 
EI(𝒙𝒙) = E[max{0,Δ(𝒙𝒙)}] = �̂�𝑠(𝒙𝒙)𝜙𝜙�

Δ(𝒙𝒙)
�̂�𝑠(𝒙𝒙)�+ Δ(𝒙𝒙)Φ�

Δ(𝒙𝒙)
�̂�𝑠(𝒙𝒙)� (3) 

is evaluated, where Δ(𝒙𝒙) = ℎ(𝒙𝒙) − ℎcur is the difference between the predicted mean ℎ and the 

current ℎ; �̂�𝑠(𝒙𝒙) is the predicted standard deviation of ℎ; 𝜙𝜙(⋅) and Φ(⋅) are the probability density 

function (pdf) and cumulative distribution function (cdf) of standard Gaussian distribution, 

respectively. The unlabeled material with the largest EI is selected, i.e., 𝒙𝒙∗ = arg max
𝒙𝒙

EI(𝒙𝒙). 
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More generally, the selection operates in batches, i.e., one or multiple unlabeled material(s) 

with large EI are selected in every iteration. A batch size of 1 is used in the implementation of this 

work, as the time for running an ET-AL iteration is negligible compared to the acquisition of a 

new datapoint (e.g., first-principles calculation, experimental measurement). On the other hand, 

data acquisition can be parallelized. In that case, ET-AL can be easily configured to use a larger 

batch size, thus further improving computational efficiency. 

Stopping criteria. In our experiments on the J-CFID dataset, the active learning process is 

terminated when the target crystal system has the highest ℎ(Δ𝐸𝐸) of all systems. In that case, 

improving its ℎ  will worsen the fairness of diversity. However, when evaluation (e.g., first-

principles calculation) of new materials is feasible, the existence of materials improving ℎ of the 

least diverse system is almost guaranteed. In such application scenarios, stopping criteria may be 

specified according to resources and budget, or may not be needed. 

Supervised Machine Learning 

Materials featurization. Compositional and structural descriptors are retrieved for every crystal 

structure using an automatic workflow developed by Georgescu et al.63, built upon the pymatgen64 

and Matminer65 toolkits. Descriptors that contain NaN values or have zero variance among the 

dataset are removed, resulting in 117 descriptors for every material, which are then used as inputs 

for supervised ML models. 

Machine learning. The supervised ML models are trained and tested using implementations in 

the scikit-learn package66. The hyperparameters are selected using a 5-fold cross-validated (CV) 

grid search; unless otherwise specified, they are the same as the default settings of the package. 

For SVM, the radial basis function (RBF) kernel is used. For neural networks, model architecture 

and hyperparameters are tuned: 1 hidden layer with 128 neurons, 𝐿𝐿2 regularization strength 𝛼𝛼 =
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0.1, rectified linear unit (ReLU) activation for hidden layers, and Adam optimizer. For random 

forests (RF), the number of trees is set to 300, and the maximum depth of individual trees is set to 

30 for predicting 𝐺𝐺 and 100 for predicting 𝐵𝐵. For gradient boosting (GB), the maximum depth of 

individual trees is 5. Detailed hyperparameters of the RF and GB models are listed in Table S1. 
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Supplementary Items 

Algorithm S1 Pseudocode of the ET-AL algorithm. 

Entropy-targeted active learning. 
Input: Labeled dataset 𝒟𝒟 = {𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖} , unlabeled dataset𝒰𝒰 = �𝒙𝒙𝑗𝑗′� ; 𝒟𝒟 = ⋃ 𝒟𝒟𝑐𝑐𝑐𝑐 , 𝒰𝒰 = ⋃ 𝒰𝒰𝑐𝑐𝑐𝑐  ( 𝑐𝑐 ∈
crystal systems); Monte Carlo sample size 𝑛𝑛; stopping criteria 
 
while stopping criteria are not satisfied do 

Calculate information entropies 𝐻𝐻(𝒟𝒟𝑐𝑐) = ℎ(𝑦𝑦 ∈ 𝒟𝒟𝑐𝑐), select 𝑐𝑐∗ = arg min
𝑐𝑐
𝐻𝐻(𝒟𝒟𝑐𝑐) 

Fit a GP to 𝒟𝒟𝑐𝑐∗: 𝑌𝑌 ∼ 𝐺𝐺𝐺𝐺(𝑿𝑿) 
for 𝒙𝒙𝑗𝑗′ ∈ 𝒰𝒰𝑐𝑐∗ do 

Draw 𝑛𝑛 samples �𝑦𝑦𝑗𝑗
(𝑘𝑘)�

𝑘𝑘=1

𝑛𝑛
 from 𝐺𝐺𝐺𝐺�𝒙𝒙𝑗𝑗′� 

Calculate ℎ𝑗𝑗
(𝑘𝑘) = 𝐻𝐻 �𝒟𝒟 ∪ �𝑦𝑦𝑗𝑗

(𝑘𝑘)�� for 𝑘𝑘 = 1 to 𝑛𝑛 

Calculate the mean and variance of �ℎ𝑗𝑗
(𝑘𝑘)�

𝑘𝑘=1

𝑛𝑛
, EI�𝒙𝒙𝑗𝑗′� according to Equation (3) 

end for 
Select sample 𝒙𝒙∗ = arg max

𝒙𝒙′∈𝒰𝒰𝑐𝑐∗
EI(𝒙𝒙′) 

Acquire 𝑦𝑦∗, remove 𝒙𝒙∗ from 𝒰𝒰𝑐𝑐∗, add 𝒙𝒙∗,𝑦𝑦∗ to 𝒟𝒟𝑐𝑐∗ 
end while 
 
Returns: Updated dataset 𝒟𝒟 
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Figure S1 t-SNE plot of graph embeddings of the labeled dataset. The histograms show distribution 
densities in different regions. 
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Figure S2 Change of information entropy in every crystal system during ET-AL iteration on the OQMD-8 
dataset. Artificial bias is introduced by leaving out all orthorhombic compounds with Δ𝐸𝐸 > 0, together 
with randomly selected compounds, in total 1,000, as the unlabeled dataset. ℎ(Δ𝐸𝐸) for monoclinic is not 
improved in later iterations because new materials are selected only in the unlabeled dataset, which is 
limited by the diversity of OQMD-8 data. 
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Figure S3 Kernel density estimation of the distribution of Δ𝐸𝐸  among different crystal systems in the 
OQMD-8 derived datasets: (top) before and (bottom) after ET-AL. 
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Figure S4 Kernel density estimation of the distribution of Δ𝐸𝐸 among different crystal systems in the J-
CFID-derived (from top to bottom) labeled, RAND, and ETAL datasets. 
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(a) The population of the J-CFID dataset by categories. M: metal or intermetallic. Columns 2–5 are 
compounds with metallic element(s) and a single type of anion: B/C: B/C/Si anion; N: N/P/As 
anion; O: O anion; S: S/Se/Te anion. PA: polyanionic, i.e., compounds with more than one type of 
anions above. NM: nonmetal, i.e., compounds without metallic elements. 

 

 

(b) The population of the J-CFID dataset by the number of component elements. 

Figure S5 Statistics of the J-CFID dataset by number and types of component elements. 
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Figure S6 Percentage of compounds containing each element in the J-CFID dataset. 
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Table S1. Tuned hyperparameters of random forest and gradient boosting models for predicting 𝐵𝐵 and 𝐺𝐺. 
“^” denotes that the effect of a hyperparameter is found to be insignificant, hence, the default setting is used. 

Hyperparameters 
Random Forest Gradient Boosting 

𝐵𝐵 𝐺𝐺 𝐵𝐵 𝐺𝐺 

bootstrap True True True True 

max_depth 100 30 5 5 

max_features n_features n_features n_features n_features 

min_samples_leaf 1  ̂ 1  ̂ 1  ̂ 1  ̂

min_samples_split 2  ̂ 2  ̂ 2  ̂ 2  ̂

n_estimators 300 300 100 100 
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Supplementary Text 
1. Bias metric 

Metric selection 

One definition of data bias is “unjustifiable concentration on a particular part”1. In the context of this work, 

the “parts” can be regions in a space broadly defined by composition, (micro)structure, property, processing, 

or energy-based descriptions. As an example, the structure–stability bias arises from concentration (uneven 

coverage) in materials with certain structures (crystal systems) and stability (Δ𝐸𝐸). Such uneven coverage 

can be captured by the different diversities of stability among different crystal systems. The information 

entropy 

ℎ(𝑌𝑌) = −�𝑓𝑓(𝑦𝑦) log 𝑓𝑓(𝑦𝑦)d𝑦𝑦 

has been widely adopted as a metric for diversity2. Its numerical nature and simplicity in the calculation are 

desirable as a target in active learning. Also widely adopted as a numerical diversity measure is the 

determinantal point processes (DPP)3. However, DPP is evaluated pairwise, thus lacking scalability to large 

materials databases. 

 

Another seemingly applicable metric is the conditional information entropy 

ℎ(𝑌𝑌|𝐶𝐶𝐶𝐶) = −�𝑓𝑓(𝑐𝑐𝑠𝑠,𝑦𝑦) log𝑓𝑓(𝑦𝑦|𝑐𝑐𝑠𝑠)d𝑐𝑐𝑠𝑠d𝑦𝑦 

where 𝐶𝐶𝐶𝐶  denotes the crystal system. However, this metric has several problems. First, 𝑓𝑓(𝑐𝑐𝑠𝑠,𝑦𝑦) =

𝑓𝑓(𝑦𝑦|𝑐𝑐𝑠𝑠) ⋅ 𝑓𝑓(𝑐𝑐𝑠𝑠) , where 𝑓𝑓(𝑐𝑐𝑠𝑠) , the probability distribution of 𝐶𝐶𝐶𝐶 , is related to the fractions of crystal 

systems. The “true” fractions in nature are unknown; besides, in the examination of bias, we focus on the 

coverage evenness rather than the populations of crystal systems. Second, ℎ(𝑌𝑌|𝐶𝐶𝐶𝐶) ≤ ℎ(𝑌𝑌), and equality 

is reached (i.e., active learning is concluded) if and only if 𝑌𝑌 and 𝐶𝐶𝐶𝐶 are independent. Intuitively, with 𝑌𝑌 

denoting Δ𝐸𝐸, this means symmetry does not provide information for stability. This is not true according to 

theories discussed in the introduction of structure–stability bias. Third, ℎ(𝑌𝑌|𝐶𝐶𝐶𝐶) as a single scalar value 

does not give a sense of the bias level, whereas the difference in ℎ(𝑌𝑌) of crystal systems indicates how 

biased a dataset is. 
 
Information entropy estimation 

For a continuous random variable 𝑦𝑦, evaluation of its information entropy requires the probability density 

function (pdf) 𝑓𝑓(𝑦𝑦). However, given a discrete set of values {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛 , the underlying pdf is not obtainable. 

We use the numerical estimations implemented in scipy.stats, with the “auto” setting. Specifically, for 11 <
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𝑛𝑛 ≤ 1000, the result is given by the 𝐻𝐻𝑒𝑒(𝑚𝑚,𝑛𝑛) estimator presented by Ebrahimi et al.4; while for 𝑛𝑛 > 1000, 

the Vasicek estimator5 

ℎ(𝑌𝑌) ≅
1
𝑛𝑛
� log�

𝑛𝑛
2𝑚𝑚

(𝑦𝑦𝑖𝑖+𝑚𝑚 − 𝑦𝑦𝑖𝑖−𝑚𝑚)�
𝑛𝑛

𝑖𝑖=1

 

is used, where 𝑚𝑚, the window size, is defined by �√𝑛𝑛 + 0.5� in both cases. 

 
2. Data preparation 

Graph embedding 

The crystal graph convolutional neural network (CGCNN)6 predicts materials properties from the graph 

representation of the crystal structures. The input includes node feature vector(s) that encode atomic 

properties, and edge feature vector(s) that encode connections between atoms, both can be obtained from 

crystallographic information framework (CIF) files without knowing other properties. 

 

We retrieve a CGCNN model pretrained to predict the formation energy per atom (Δ𝐸𝐸) on the Materials 

Project dataset7. We feed the CIF files of materials in the J-CFID to the pretrained model and obtain the 

activations of the last but one layer of neurons. These 32-dimensional vectors (graph embeddings) are used 

as representations of J-CFID materials structures. Note that graph embeddings do not have direct physical 

meanings, but they are generally obtainable for any given crystal structure. 
 
Physical descriptors 

In supervised machine learning (ML) of mechanical properties, we use physically meaningful descriptors 

of materials as input. The descriptors include ones defined in the Magpie ML framework8, the Ewald energy 

per atom, and volume per site. The Magpie descriptors set include the minimum, maximum, range, mean, 

average deviation, and mode of features such as Mendeleev number, atomic weight, and covalent radius of 

elements/atoms in a compound. A complete list can be found in the data files open-sourced along with the 

code. 

 

The Ewald energy per atom is obtained using the “analysis.ewald” module of the pymatgen package9; the 

other descriptors are obtained using the “featurizers” module of the Matminer package10. 
 
J-CFID data splitting 

In preparation of the data for experiments, we first split the J-CFID dataset of size 10,898 to a test set of 

4,898 datapoints and an “experiment” set of 6,000 datapoints. Due to the large size and randomness in 
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dataset splitting, the test set has a similar level of bias as the original J-CFID dataset. From the experiment 

set, we take (1) all tetragonal and trigonal materials with Δ𝐸𝐸 > 0 and (2) all orthorhombic materials with 

Δ𝐸𝐸 < 0, then randomly draw datapoints from the remaining data, to form an unlabeled set of size 5,000. 

The other 1,000 datapoints make the labeled set. 

 

3. Algorithm Analysis 

The execution of ET-AL consists of three main parts: (1) Gaussian Process (GP) model fitting on the labeled 

data, (2) selection of an unlabeled datapoint, and (3) label acquisition. The time part (3) takes depends on 

the experimental/computational technique used, and it is usually the most time-consuming component, 

compared to which the time of (1) and (2) are negligible. Quantities affecting the computational time of 

parts (1) and (2) include the size of the labeled dataset 𝑁𝑁L, size of the unlabeled dataset 𝑁𝑁U, and the number 

of Monte Carlo samples 𝑛𝑛MC. 

 

For part (1), GP fitting, the time complexity is 𝒪𝒪�𝑁𝑁L3�. The scalable GP models11 provide a solution for 

better scalability on large datasets. In particular, the sparse variational (SV) GP model12 reduces the time 

complexity to 𝒪𝒪(𝑚𝑚3) (where 𝑚𝑚 ≪ 𝑁𝑁L is the number of inducing points whose distribution is representative 

of the training data), with a slight loss of accuracy. 

 

In part (2), for every unlabeled data, the GP model makes one prediction, costing computational time 𝒪𝒪(𝑁𝑁U); 

then 𝑛𝑛MC Monte Carlo samples are drawn, and for each sample the information entropy and acquisition 

function are calculated, costing computational time 𝒪𝒪(𝑁𝑁U ⋅ 𝑛𝑛MC). The total time complexity of part (2) is 

𝒪𝒪�𝑁𝑁U(𝑘𝑘 + 𝑛𝑛MC)�, where 𝑘𝑘 is constant. 
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