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Abstract In this paper we offer to the reader an essential review of the theory of Fluctuation-Dissipation Relations
(FDR), from the first formulations due to Einstein and Onsager, to the recent developments in the framework of
stochastic thermodynamics of non-equilibrium system. We focus on two general approaches, somehow comple-
mentary, where out-of-equilibrium contributions to the FDR are expressed in terms of different quantities, related
either to the stationary distribution or to the transition rates of the system. In particular, we discuss applications of
the FDR in the general field of causation and inference, and in the contexts of non-equilibrium systems, such as
spin models, granular media and active matter.

1 Introduction

The Fluctuation-Dissipation Relation (FDR) is among the few pillars of non-equilibrium statistical mechanics.
The reason of its great relevance is rather transparent: it allows to compute the statistical response of a system
to small external perturbations in terms of correlations of the unperturbed dynamics. In other words, one can
understand how the system reacts to an external disturbance just looking at the statistical features in the absence of
any perturbation: in such a way it is possible to determine perturbed properties (response) in terms of unperturbed
features (correlations).

The FDR has been widely investigated in the context of turbulence (and more generally statistical fluid mechan-
ics): for instance it plays a key role for the closure problem in the Kraichnan’s approach [1]. Moreover, there is a
wide interest of the scientific community active in geophysical systems, in particular, for climate dynamics, where
it is very important to understand the features of the system under perturbations (such as a volcanic eruption, or a
change of CO2 concentration) in terms of the knowledge based on time series. Another very relevant field where
the FDR has been used and investigated is the general theory of stochastic thermodynamics, with particular focus
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on models for colloidal systems, granular media and active matter. Finally, FDRs play a central role in the study of
the non-equilibrium dynamics of slow relaxing systems, such as Ising models or spin glasses.

Since response and dissipation are intimately related (this intuitive fact is made more formal later in this section),
in this paper we use “Fluctuation-Response” and “Fluctuation-Dissipation” in an interchangeable way. Historically,
one of the first examples of Fluctuation-Response relation is given by the formula expressing the fluctuations of
energy in an equilibrium system at temperature 𝑇 with a (constant volume) heat capacity 𝐶𝑣 , that reads

〈𝐸2〉 − 〈𝐸〉2 = 𝑘𝐵𝑇
2𝐶𝑣 . (1)

On the left hand side of the formula one has the fluctuations in an unperturbed system, while on the right hand side
there is a quantity representing a response (the heat capacity), and the factor of proportionality between the two is
the temperature (𝑘𝐵 is the Boltzmann constant). Einstein derived an analogous formula connecting the diffusivity
𝐷 to the mobility 𝜇 for a Brownian particle dispersed in a solvent fluid at thermodynamic equilibrium:

𝐷 = 𝑘𝐵𝑇𝜇, (2)

where again the unperturbed fluctuations (diffusivity) are proportional to response (mobility) through a factor of
proportionality represented by the bath temperature 𝑇 .

The two previous examples are instances of the larger class of so-called “static” equilibrium FDR, as they do not
involve time-dependent quantities. In the first half of the 20th century a series of experimental and theoretical works
made longer and longer the list of such kind of relations, always tying in the same way spontaneous fluctuations,
response and temperature [2, 3]. A noticeable example from this list is the expression given by Nyquist in 1938,
relating the fluctuations of voltage in a conducting wire where no potential differences or currents are externally
applied (the so-called Johnson noise) to the resistance of the conductor and the temperature. The resistance is the
analogous of the mobility and of the heat capacity in the previous equations, i.e. it represents a response. In this
case it is also particularly simple to appreciate the equivalence between response and dissipation.

A first step towards the generalisation to a time-dependent - or dynamic - relation is represented by the regression
hypothesis made by Onsager in 1931 [4, 5], which states that - for small perturbations from equilibrium - the system
returns to equilibrium at the same rate as a fluctuation does at equilibrium. This fact is already contained in the
Einstein relation above. By recalling the general connection between diffusivity and the velocity autocorrelation,
i.e. that

𝐷 =

∫ ∞

0
𝑑𝑡〈𝑣(𝑡)𝑣(0)〉, (3)

we can transform Eq. (2) into
〈𝑣(𝑡)𝑣(0)〉 = 𝑘𝐵𝑇𝑅𝑣𝐹 (𝑡), (4)

with the identification
𝜇 =

∫ ∞

0
𝑑𝑡𝑅𝑣𝐹 (𝑡). (5)

In the r.h.s. of Eq. (5) we define the so-called response function, 𝑅𝑣𝐹 (𝑡), which connects the mean variation of the
particle’s velocity at time 𝑡 with a perturbation of the external force applied at time 0.

In order to discuss in full generality the FDR, we need to give a general definition of response function, which is
the central object of linear response theory. We restrict the discussion to the linear perturbation of stationary states,
i.e. states which are invariant under translations of time, so that time-dependent correlation functions and response
functions only depend on differences of times. Generalisations to non-steady states are mentioned in Section 2.

The response function 𝑅OF (𝑡) of the observable O(𝑡) to a time-dependent perturbation of a parameter or degree
of freedom 𝛿F (𝑡) is implicitly defined in the following relation

ΔO(𝑡) =
∫ 𝑡

−∞
𝑑𝑡 ′𝑅OF (𝑡 − 𝑡 ′)𝛿F (𝑡 ′), (6)

where ΔO(𝑡) = O(𝑡) − 〈O(𝑡)〉0 represents the average deviation, at time 𝑡, of the observable O with respect to its
average value in the unperturbed stationary system. Here 𝑓 (𝑡) denotes an average of the observable 𝑓 at time 𝑡

over many realisations of the same perturbation, while 〈 𝑓 〉0 denotes the average of 𝑓 in the stationary unperturbed
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state, which is not time-dependent. It is clear that, taking an impulsive shape for the external perturbation, i.e.
𝛿F (𝑡) = ΔF 𝛿(𝑡) (with 𝛿(𝑡) the Dirac delta distribution), one has

ΔO(𝑡) |𝑖𝑚𝑝

ΔF = 𝑅OF (𝑡), (7)

which is also an operational definition of the response function. Here we stress that ΔF has the dimensions of a
time-integral of F (𝑡). When (for instance) the perturbation has the shape of a Heaviside unit step function, i.e.
𝛿F (𝑡) = 𝛿F0Θ(𝑡), then

ΔO(𝑡) |𝑠𝑡𝑒𝑝
𝛿F0

=

∫ 𝑡

0
𝑑𝑡 ′𝑅OF (𝑡 ′). (8)

If O(𝑡) is the tracer’s velocity along one axis and F (𝑡) is the external force applied from time 0 to time ∞ to the
tracer (parallel to that axis), the final velocity reached by the tracer is exactly 𝛿F0

∫ ∞
0 𝑑𝑡 ′𝑅𝑣𝐹 (𝑡 ′), which explains

the connection with the identification made in Eq. (5).
The FDR for systems with Hamiltonian H at equilibrium with a thermostat at temperature 𝑇 – historically

attributed to Callen and Welton and immediately after generalised by Kubo [6] – reads:

𝑅OF (𝑡) =
1

𝑘𝐵𝑇
〈O(𝑡) ¤𝐴(0)〉0 = − 1

𝑘𝐵𝑇
〈 ¤O(𝑡)𝐴(0)〉0, (9)

where 𝐴 is the observable (or degree of freedom) which is coupled to F (𝑡) in the Hamiltonian to produce the
perturbation, i.e. H(𝑡) = H0 − F (𝑡)𝐴. It is easy to verify that if O is the tracer’s velocity and F (𝑡) is an external
force applied to its 𝑥 coordinate, Eq. (9) becomes Eq. (4). In conclusion the “dynamical" Einstein relation is
a particular case of equilibrium FDR. From Eq. (9) one may get several possible variants, which are useful in
different physical situations. A large amount of remarkable results concern, for instance, the time-Fourier transform
of Eq. (9), as well as the relation connecting currents/flows and transport coefficients in spatially extended systems
(the so-called Green-Kubo relations, see below) [2, 3].

The equilibrium FDR is valid also in the framework of stochastic processes, when they describe the dynamics
of system fluctuating around thermal equilibrium. The main difference with the case considered by Kubo is that a
stochastic process typically describes small systems, far from the thermodynamic limit, but the system size is in fact
irrelevant for the purpose of the validity of the FDR. In the case of large systems (without long-range correlations),
however, the averages are easily taken by means of one or few experiments, while in a stochastic process where
noise is large, one needs to average over many realisations. An illustrative example is the so-called Klein-Kramers
model which describes the dynamics of simple particle systems at thermal equilibrium [7]. In one dimension its
stochastic differential equations read:

𝑑𝑥(𝑡)
𝑑𝑡

= 𝑣(𝑡) (10a)

𝑚
𝑑𝑣(𝑡)
𝑑𝑡

= −𝑑𝑈 (𝑥)
𝑑𝑥

− 𝛾𝑣(𝑡) +
√︁

2𝛾𝑘𝐵𝑇𝜉 (𝑡), (10b)

where 𝜉 (𝑡) is a white Gaussian noise with 〈𝜉 (𝑡)〉 = 0 and 〈𝜉 (𝑡)𝜉 (𝑡 ′)〉 = 𝛿(𝑡 − 𝑡 ′), 𝛾 is the viscous damping,𝑈 (𝑥) is
an external potential. The model can be easily generalised to 𝑁 > 1 interacting particles in any dimensions. In the
absence of the external potential, Eq. (10) coincides with the original Langevin equation proposed a few years after
the theories of Einstein [8] and Smoluchovski [9] to explain diffusion in Brownian motion [10]. Its steady probability
distribution (achieved with the condition 𝛾 > 0 and confining potential) is given by 𝑃(𝑥, 𝑣) ∝ 𝑒−H(𝑥,𝑣)/(𝑘𝐵𝑇 ) with
H(𝑥, 𝑣) = 𝑚𝑣2/2 + 𝑈 (𝑥). Linear response theory, when applied to the Klein-Kramers model in its stationary
state, gives exactly the same result as Eq. (9) [11, 3]. The Klein-Kramers process is Markovian with respect to the
variables (𝑥, 𝑣), a property which is a rough approximation for the dynamics of a tracer which interacts with other
particles in a fluid. Typically it has to be generalised to take into account retarded (hydrodynamic) effects, by the
introduction of linear memory terms, e.g. by writing a Generalized Langevin Equation (GLE) [2]:

𝑚
𝑑𝑣(𝑡)
𝑑𝑡

= −
∫ 𝑡

−∞
𝑑𝑡 ′Γ(𝑡 − 𝑡 ′)𝑣(𝑡 ′) + 𝜂(𝑡), (11)
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where Γ(𝑡) is a memory kernel representing retarded damping, and 𝜂(𝑡) is a stationary stochastic process with zero
average 〈𝜂(𝑡)〉 = 0. The noise time-correlation – to comply with the requirement of thermodynamic equilibrium
(i.e. steady Gibbs distribution and detailed balance) – must satisfy the so–called FDR of the second kind:

Γ(𝑡) = 1
𝑘𝐵𝑇

〈𝜂(𝑡)𝜂(0)〉. (12)

It is clear that Eq. (12) has the same structure of Eq. (9) and this motivates the name of the relation. The Markovian
case (damping with zero memory) is obtained when Γ(𝑡) = 2𝛾𝛿(𝑡) (recalling that

∫ 𝑡

0 𝑑𝑡 ′2𝛾𝛿(𝑡 ′)𝑣(𝑡 ′) = 𝛾𝑣(𝑡)). For
a more detailed discussion of the significance of this condition and its connection to detailed balance, we invite to
read Section 4.1 of [12].

This brief review paper is organised as follows. In Section 2 we introduce two different possible approaches
to the FDR, which are based either on the knowledge of the stationary distribution or on the knowledge of the
dynamical rules of the model. Then, in Section 3, we discuss several applications of the FDR, in particular in the
field of non-equilibrium systems, such as granular media and active matter. Finally, in Section 4, some conclusions
are drawn.

2 Two approaches to non-equilibrium FDR

The first examples of FDR date back to Einstein’s work on Brownian motion (1905), and to Onsager’s regression
hypothesis (1930’s). Since initially the FDR was obtained for Hamiltonian systems in thermodynamic equilibrium,
somehow there is a certain confusion on its real validity. Here we summarise two different generalizations of FDR
which both hold for a broad class of systems, including the non equilibrium cases [3].

2.1 An approach based upon the knowledge of the stationary distribution

Let us consider a system whose stationary probability density 𝑃𝑠𝑡 (x) is non-vanishing everywhere, and wonder
about the time behavior of the mean response of the variable 𝑥𝑛 (𝑡) at time 𝑡 under a small impulsive perturbation
𝛿x(0). We can write

𝛿𝑥𝑛 (𝑡) =
〈
𝑥𝑛 (𝑡)

〉
𝑝
−
〈
𝑥𝑛 (𝑡)

〉
where

〈 〉
𝑝

and
〈 〉

denote the average for the perturbed and the unperturbed systems respectively. For a Markov
system we can write〈

𝑥𝑛 (𝑡)
〉
𝑝
=

∫
𝑥𝑛𝑃𝑝 (y)𝑊 (y → x, 𝑡) 𝑑x𝑑y ,

〈
𝑥𝑛 (𝑡)

〉
=

∫
𝑥𝑛𝑃0 (y)𝑊 (y → x, 𝑡) 𝑑x𝑑y ,

where 𝑊 (y → x, 𝑡) is the probability of a transition from y at time 0 to x at time 𝑡, 𝑃0 (y) = 𝑃𝑠𝑡 (y) and 𝑃𝑝 (y) is
the initial distribution of the perturbed system.

In the case of an impulsive perturbation, the perturbed probability satisfies 𝑃𝑝 (y) = 𝑃𝑠𝑡 (y−𝛿x(0)) which allow
us to derive a compact expression for 𝛿𝑥𝑛 when the perturbation is small:

𝛿𝑥𝑛 (𝑡) = −
∑︁
𝑗

〈
𝑥𝑛 (𝑡)

𝜕 ln 𝑃𝑠𝑡 [x(0)]
𝜕𝑥 𝑗 (0)

𝛿𝑥 𝑗 (0)
〉
, (13)

where the average is performed in the unperturbed system. Let us note that the assumption of small perturbation is
necessary only in the last step of the derivation of Eq. (13) therefore, such a result can be generalized to the case
of non-infinitesimal 𝛿x(0) [13]. As by-product we have that it is possible to avoid the criticism of van Kampen
according to which it is not possible to rely on an expansion for small perturbations, because chaos makes them
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grow exponentially [14]. On the contrary, in the derivation of the above result [15], there are only assumptions
about 𝛿x(𝑡 = 0) and therefore chaos has no relevance.

We can say that formula (13) summarizes the main results of the linear theory, e.g. in Hamiltonian systems and
stochastic processes: in addition one understands the existence of a link between response and a suitable correlation
function even in non-equilibrium systems [3]. For instance in inviscid hydrodynamics with an ultraviolet cutoff,
in spite of the non trivial dynamics, since the presence of quadratic invariant, and a Liouville theorem, one has a
Gaussian statistics and therefore a FDR holds for each of the variables, i.e. self-response functions to infinitesimal
perturbations coincide with the corresponding self-correlation functions. Let us note that although 𝑃𝑠𝑡 (x) is
Gaussian the dynamics is non linear and it is not easy to compute the correlation functions.

Beyond the many conceptual advantages of eq. (13) there is an obvious practical limit: the difficulty to determine
𝑃𝑠𝑡 (x), which is known only in some specific cases. In the next subsection we will discuss an approach which does
not need the knowledge of 𝑃𝑠𝑡 (x).

Let us open a brief parenthesis on chaotic deterministic dissipative systems: because of the phase space
contraction one has that the invariant measure is singular, typically with a multifractal structure, and therefore, Eq.
(13) cannot be applied. A quite natural temptation is to add a small amount of noise, so that a smoothing of the
invariant probability density allows for the use of the FDR. At a first glance such an approach can appear unfair.
On the contrary the idea of the beneficial role of the noise, which seems to date back to Kolmogorov, has strong
bases: a small noisy term in the evolution equations has the role of selecting the natural measure: one can say that
in the numerical experiments the round-off errors of the computer play a positive role. It is quite natural to expect
that the behaviors of the purely deterministic chaotic system are very close to those obtained by adding a small
amount of noise; such a conjecture is widely confirmed by numerical computations [16].

A similar approach was extended by Seifert and Speck, who established interesting connections of the FDR
with observables in the framework of stochastic thermodynamics, such as entropy production and housekeeping
heat [17, 18, 19] (see also the next Section).

2.2 An approach based upon the knowledge of the dynamical model

When the dynamics of the system under study is defined in terms of transition rates or Langevin equations, but the
stationary probability density function is not known, a complementary approach with respect to the one discussed
in the previous subsection can provide a FDR valid also out of equilibrium. These kinds of FDRs have been derived
in several different contexts, following different mathematical schemes (see discussion below).

The general approach dates back to the 60’s of the 20th century, when Furutsu and Novikov independently
derived, under general conditions, a FDR [20, 21] which expresses the response function of a Gaussian process in
terms of the equilibrium time-correlation between the observed variable and the Gaussian noise itself. Nowadays,
a method based on similar ideas - sometimes termed Malliavin weight sampling [22] - has been extended to
include field theories through the Martin-Siggia-Rose-Jansen-de Dominicis approach [23, 24, 25] and employed in
the context of particle-based glassy systems to numerically calculate effective temperature and susceptibility [26,
27, 28]. This allows one to express the response function in terms of suitable correlation functions of the state
variables. We mention here examples for non-equilibrium Langevin dynamics driven by a time-dependent force
both in overdamped [18, 29, 30, 31, 32] and underdamped regimes [33], or even in the presence of a non-linear
Stokes force [34]. The non-equilibrium terms appearing in the generalized FDR have been interpreted in several
ways: some authors focused on the different roles of entropic and frenetic contributions (for a recent review,
see [35]), outlining their different nature with respect to the symmetry under time-reversal transformation; other
approaches have focused on the connection with entropy production and heat [36, 17, 37].

The class of generalized FDR so far mentioned is expressed in terms of the correlation between the observable
O and a function of both the state variables and their time-derivatives. Without loss of generality, the starting point
for these relations is of the form:

𝑅O𝑥 𝑗
(𝑡, 𝑠) = 〈O(𝑡)M 𝑗 [x(𝑠), ¤x(𝑠)]〉 , (14)

where, as usual, the average in the r.h.s. of Eq. (14) is performed through the unperturbed measure. M 𝑗 is a
function uniquely determined by the dynamics of the system under consideration that depends both on x and ¤x. Its
functional form can be expressed in terms of known observables: for instance, in the case of continuous first order
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dynamics of the kind
¤𝑥 𝑗 = 𝑓 𝑗 (x) +

√︁
2𝐷 𝑗𝜂 𝑗 , (15)

where 𝜂 𝑗 is a white noise with zero average and unit variance, one has

M 𝑗 =
1

2𝐷 𝑗

( ¤𝑥 𝑗 − 𝑓 𝑗 ). (16)

The above result is general, holding in stationary or transient non-equilibrium regimes. In some cases, i.e. when
the quantity M 𝑗 can be measured, Eq. (14) may represent an advantage with respect to Eq. (13) (which depends
upon the knowledge of the steady-state probability).

The explicit dependence on the time-derivative of the state variables, ¤x, in Eq. (14) may still represent a source
of complications. Restricting to the calculation of the response matrix, 𝑅𝑥𝑖 𝑥 𝑗

(𝑡), i.e. such that O = 𝑥𝑖 , from Eq. (14)
one can derive [38] a simpler expression for processes with additive Gaussian noises in the stationary state (the
result can be easily generalized to the case of non-diagonal diffusion, not reported for conciseness):

𝑅𝑥𝑖 𝑥 𝑗
(𝑡) = − 1

2𝐷 𝑗

[
〈𝑥𝑖 (𝑡) 𝑓 𝑗 (0)〉 + 〈 𝑓𝑖 (𝑡)𝑥 𝑗 (0)〉

]
. (17)

Each element of the response matrix is given by the sum of two correlations: i) the temporal correlation between
the observed variable and the force ruling the dynamics of the perturbed variable and ii) the temporal correlation
between the force of the observed variable and the perturbed variable (that for the diagonal elements, 𝑅𝑥𝑖 𝑥𝑖 (𝑡), is the
same correlation of i) with swapped times). The two terms are equal only at equilibrium. On the contrary they differ
when detailed balance does not hold. Note that the generalized FDR (17), differently from the forms (13) or (14),
is not determined by the time-correlation between the observed variable evaluated at 𝑡 and another observable at
𝑠 < 𝑡. Moreover, path-integral FDRs require the explicit knowledge of the microscopic dynamics, at variance with
the approach (13) which only requires a model of the stationary probability in phase space: it must be noticed that
in experimental situations it can be simpler to formulate a model for the steady state probability rather than for
the full dynamics. In both cases, however, one needs to individuate the relevant variables, an often underestimated
aspect [39].

The generalized FDR (17) is particularly fascinating because the diagonal elements of the response matrix (r.h.s
of Eq. (17)) are expressed in terms of the time-symmetric part of the anticipated/retarded equipartition relations
while the non-diagonal elements represent the time-symmetric part of the anticipated/retarded Virial equation [38].
Indeed, because of the causality condition, we have 𝑅𝑥𝑖 𝑥 𝑗

(𝑡 = 0) = 𝛿𝑖 𝑗 , so that the initial time elements of the
response matrix contain the same information as the generalized equipartition and Virial equations holding out of
equilibrium, namely:

𝐷𝑖 = 〈𝑥𝑖 𝑓𝑖〉 , 〈𝑥𝑖 𝑓 𝑗〉 = −〈𝑥 𝑗 𝑓𝑖〉 . (18)

This physical interpretation has been discussed in detail in [38] and exploited in well-known examples, such as
passive and active colloids both in underdamped and overdamped regimes, see also Section 3.4.

Let us also comment on the interesting case of discrete variables, relevant for instance for the Ising model or
spin glasses, which requires some care. In particular, for spins 𝜎𝑖 = ±1, with 𝑖 = 1, . . . , 𝑁 , evolving according to a
Master Equation with unperturbed transition rates form the configuration 𝜎 to the configuration 𝜎′, 𝑤(𝜎 → 𝜎′),
in contact with a reservoir at temperature 𝑇 , the response of an observable O(𝜎) at a magnetic field F switched
on at time 𝑠 on site 𝑗 takes the following form [40]

𝑅OF (𝑡, 𝑠) =
1

2𝑇

{
𝜕

𝜕𝑠
〈O(𝑡)𝜎𝑗 (𝑠)〉 −

〈
O(𝑡)𝐵 𝑗 (𝑠)

〉}
, (19)

where the quantity 𝐵 𝑗 [𝜎] is defined by

𝐵 𝑗 [𝜎(𝑠)] =
∑︁
𝜎′

[𝜎′
𝑗 − 𝜎𝑗 (𝑠)]𝑤 [𝜎(𝑠) → 𝜎′] . (20)

The equilibrium FDT (9) is obtained exploiting the property
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O(𝑡)

∑︁
𝜎′

[𝜎′
𝑗 − 𝜎𝑗 (𝑠)]𝑤 [𝜎(𝑠) → 𝜎′]

〉
𝑒𝑞

= − 𝜕

𝜕𝑠
〈O(𝑡)𝜎𝑗 (𝑠)〉𝑒𝑞 , (21)

valid when the average is taken at equilibrium [40, 41].

3 Applications

In this Section we discuss recent applications of the generalised formulae discussed above to different problems.
We start with two more theoretical cases, namely the broad class of spin and disordered systems and the search for
causality measurements, and we conclude with applications to paradigmatic macroscopic physical systems, that
are granular and active systems, where the dynamics of each particle is intrinsically out of equilibrium.

3.1 The interesting case of causation through response

Among the many practical applications of the generalized FDR (13), its use in the field of causal inference has
a particular conceptual interest. It is well known that, in order to understand the cause-effect relations holding
between different elements of a system, measuring the degree of correlation of the variables may be, in general,
of little help: two elements can be highly correlated even in the absence of a causal link, as summarized by the
notorious adage “correlation does not imply causation”. The right way to characterize causal relations is indeed
to probe the system under study, i.e. to perturb it in some way and to observe the effects of this external action,
comparing them to the usual behavior of the system in the absence of perturbation [42, 43]; this is, for instance, the
fundamental idea at the basis of Pearls’ formalism of counterfactual inference [44]. When dealing with physical
systems, as discussed in the Introduction, the effect of an external perturbation is quantified by response functions,
which are therefore natural indicators of causal relations [43, 45]. In this respect, a surprising consequence of
Eq. (13) is that these observables can be estimated by measuring proper correlation functions in an unperturbed
dynamics: in other words, the generalized FDR allows to infer causal relations without operating any external
action on the system, i.e. without actually probing it.

To show the above point, let us consider the example of a linear stochastic dynamics for the three-dimensional
vector (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ) in discrete time, ruled by the following Markov process:

𝑥𝑡+1 =𝑎𝑥𝑡 + 𝜀𝑦𝑡 + 𝑏𝜂
(𝑥)
𝑡 (22a)

𝑦𝑡+1 =𝑎𝑥𝑡 + 𝑎𝑦𝑡 + 𝑏𝜂
(𝑦)
𝑡 (22b)

𝑧𝑡+1 =𝑎𝑥𝑡 + 𝑎𝑧𝑡 + 𝑏𝜂
(𝑧)
𝑡 (22c)

where 𝑎, 𝑏 and 𝜀 are suitable constants and 𝜂
(𝑥)
𝑡 , 𝜂 (𝑦)

𝑡 , 𝜂 (𝑧)
𝑡 are independent, delta-correlated Gaussian variables

with zero mean and unitary variance. In this model the dynamics of 𝑦𝑡 and 𝑧𝑡 is influenced by 𝑥𝑡 , which feels in
turn the effect of 𝑦𝑡 because of the feedback term 𝜀𝑦𝑡 in the r.h.s. of Eq. (22a). A sketch of the interaction scheme
is shown in the inset (a) of Fig. 1.

The main plot in Fig. 1 shows the time dependence of the response function between 𝑦𝑡 and 𝑧𝑡 . As it is clear
from the structure of the dynamics, after one time step there is no causal influence (an external perturbation of 𝑦𝑡
does not reflect on 𝑧𝑡+1). At subsequent times the dynamics of 𝑧𝑡 is altered by the perturbation, and the value of the
response function crucially depends on the feedback parameter 𝜀, as expected. Due to the linearity of the model,
Eq. (13) can be simplified into [3]:

𝑅𝑡 = 𝐶𝑡𝐶
−1
0 (23)

where𝐶𝑡 represents the correlation matrix at time 𝑡, i.e.𝐶𝑖 𝑗
𝑡 = 〈𝑥𝑖 (𝑡)𝑥 𝑗 (0)〉 (with 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧), and𝐶−1

0 is
the inverse of 𝐶0. The linearity of Eqs. (22) implies that 𝑃𝑠𝑡 is a multi-variate Gaussian and this immediately leads
to Eq. (23). Exploiting this version of the generalized FDR, as shown in Fig. 1, one can estimate 𝑅𝑧𝑦 (𝑡) from a
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Fig. 1 Relation between causation and response. Main plot: response matrix element 𝑅𝑧𝑦 (𝑡) of model (22), as a function of time, for
several values of the feedback parameter 𝜀; numerical simulations in which the system is actually perturbed (points) are compared to
the predictions of the generalized FDR (13) (lines). Inset (a): scheme of the interactions occurring in model (22). Inset (b): correlations
(red squares) and responses (blue circles) integrated over time, as functions of 𝜀; both quantities are rescaled with their values at
𝜀 = 0.04 for graphical convenience. Parameters: 𝑎 = 0.5, 𝑏 = 1. Perturbation for the computation of response: 𝛿𝑦0 = 0.01. 𝑀 = 106

trajectories have been considered for the averages.

suitable combination of correlation functions: the agreement with the actual responses, computed from numerical
simulations, is excellent.

It is worth noticing that the mere knowledge of 𝐶 (𝑡) is not at all informative about the causal links among the
elements of the system. For the considered model this fact can be qualitatively appreciated by looking at inset
(b) of Fig. 1, where we compare the behavior of 𝑅̃𝑧𝑦 =

∫ ∞
0 𝑅𝑧𝑦 (𝑡) 𝑑𝑡 and 𝐶̃𝑧𝑦 =

∫ ∞
0 𝐶𝑧𝑦 (𝑡) 𝑑𝑡 as functions of 𝜀:

while the former quantity, in the considered 𝜀 � 1 regime, is almost proportional to 𝜀, the latter does not crucially
depend on the feedback parameter and it is different from zero also for 𝜀 = 0. This difference is clearly due, in the
considered example, to the common dependence of 𝑦𝑡 and 𝑧𝑡 on the variable 𝑥𝑡 , inducing a “spurious” correlation
between the two (meaning that such a correlation does not unveil any causal link between the two processes).

Using the generalized FDR is not the only way to get some insight into the causal structure of a physical system
without perturbing its dynamics. A widely employed method is due to Granger [46] and relies on the computation
of the forecasting uncertainty for a given variable of a system, using linear regression models; if it is possible to
improve the prediction’s precision by including in the model a second, different variable of the system, one may
assume a cause-effect relation between the two. A different approach (which has been shown to be equivalent to
Granger’s method in the case of linear dynamics [42, 47]) is based on the analysis of information transfer between
the variables, a process quantified by the so-called transfer entropy and by other related observables [48, 49, 50, 51].
Despite the useful information provided by these approaches, response functions appear to be more accurate in
characterizing causal relations, at least from a physical point of view; indeed they quantify the (average) consequence
of an actual intervention on the system, at variance with Granger’s method and transfer entropy analysis, which face
the problem from the point of view of predictability and uncertainty [52, 53, 45, 54]. In this respect, generalized
FDRs as Eq. (13) are, to the best of our knowledge, the only way to deduce the causal structure of a system, in a
proper physical sense, by only observing its spontaneous evolution.
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3.2 Spin and disordered systems

Here we focus on some applications of the FDR in the contexts of spin models and disordered systems. As already
underlined, the main aim of an FDR is to give a tool to calculate a response without applying the perturbation.
The direct calculation of a linear response function, for instance in numerical simulations (but the same can be
true for experiments), is a very time-demanding task: indeed, the signal fluctuations generally increase when the
applied field is small, a condition required for the linear regime to hold. Therefore, the application of FDRs in
numerical computations is an effective shortcut to get information on the response function from the measure of
the correlations in the unperturbed state. This shortcut has been frequently used to develop field-free algorithms in
the context of spin systems [55, 56, 57, 40, 58], and glasses [59] or active matter [60]. Let us note that, at variance
with previous attempts, specifically designed for a numerical implementations [56, 57, 59], the FDR reported in
Eq. (19) involves the quantity 𝐵 defined in (20), which is an observable quantity because only depends on the state
of the system at a given time and therefore can be in principle measured in real experiments.

3.2.1 Non-linear FDRs

The FDRs in the form (19) can be also derived at nonlinear orders in the perturbation, involving multi-point
correlation functions. Non-linear response functions play a central role in the context of glassy systems [61,
62, 63, 64], where usually two-point correlators remain always short-ranged due to the presence of disorder. In
particular, in a spinglass the linear susceptibility does not diverge at the critical temperature, whereas non-linear
susceptibilities show a divergence when the low temperature phase is approached, signaling a growing amorphous
order in the system. Therefore, the relation between nonlinear responses and multi-point correlation functions can
be an important tool in the context, as initially proposed in [65]. A general derivation of nonlinear FDRs valid for
arbitrary order was presented in [66, 41]. We report here the form of the second-order response for spin variables
perturbed by two fields F1 and F2 at sites 𝑗1 and 𝑗2 at times 𝑡1 and 𝑡2 [41]

𝑅
(2)
OF (𝑡, 𝑡1, 𝑡2) ≡

𝛿〈O(𝑡)〉F
𝛿F1 (𝑡1)𝛿F2 (𝑡2)

����
ℎ=0

=
1

4𝑇2

{
𝜕

𝜕𝑡1

𝜕

𝜕𝑡2
〈O(𝑡)𝜎𝑗1 (𝑡1)𝜎𝑗2 (𝑡2)〉 −

𝜕

𝜕𝑡1
〈O(𝑡)𝜎𝑗1 (𝑡1)𝐵 𝑗2 (𝑡2)〉

− 𝜕

𝜕𝑡2
〈O(𝑡)𝐵 𝑗1 (𝑡1)𝜎𝑗2 (𝑡2)〉 + 〈O(𝑡)𝐵 𝑗1 (𝑡1)𝐵 𝑗2 (𝑡2)〉

}
. (24)

Let us note that at equilibrium, exploiting the property (21), Eq. (24) simplifies to

𝑅
(2)
OF (𝑡, 𝑡1, 𝑡2) =

1
2𝑇2

{ 𝜕

𝜕𝑡1

𝜕

𝜕𝑡2
〈O(𝑡)𝜎𝑗1 (𝑡1)𝜎𝑗2 (𝑡2)〉 −

𝜕

𝜕𝑡2
〈O(𝑡)𝐵 𝑗1 (𝑡1)𝜎𝑗2 (𝑡2)〉

}
, (25)

with 𝑡 > 𝑡1 > 𝑡2. Therefore, the presence of the model-dependent quantity 𝐵 is not canceled, making the higher
order FDRs somehow less general than the linear one. As suggested in [67] and [68] this observation can provide
information on the dynamical rules governing the system from the study of the equilibrium nonlinear responses.

Other interesting applications of nonlinear FDRs are related to the study of the thermal response of the system
(namely, a perturbation applied to the noise intensity) as discussed in [69], or in the wide field of nonlinear optics
and quantum spectroscopy [70, 71].

3.2.2 Effective temperature

One of the main theoretical applications of the FDRs is the possibility to introduce an effective temperature, from
the ratio between response and correlation. Review articles on this interesting subjects are [72, 27, 12, 73, 74].
Here we illustrate such a concept for a spin system, where the linear susceptibility, using the FDR (19), can be
written as
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𝜒(𝑡, 𝑡𝑤 ) ≡
∫ 𝑡

𝑡𝑤

𝑑𝑠𝑅𝜎F (𝑡, 𝑠) =
𝛽

2

∫ 𝑡

𝑡𝑤

𝑑𝑠

[
𝜕

𝜕𝑠
𝐶 (𝑡, 𝑠) − 〈𝜎𝑖 (𝑡)𝐵𝑖 (𝑠)〉

]
, (26)

where 𝐶 (𝑡, 𝑠) = 〈𝜎𝑖 (𝑡)𝜎𝑖 (𝑠)〉 and 𝑡𝑤 is a reference waiting time. Observing that the quantity

𝜓(𝑡, 𝑡𝑤 ) =
∫ 𝑡

𝑡𝑤

𝑑𝑠
𝜕

𝜕𝑠
𝐶 (𝑡, 𝑠) = 1 − 𝐶 (𝑡, 𝑡𝑤 ), (27)

for fixed 𝑡𝑤 , is a monotonously increasing function of time, one can reparametrize 𝑡 in terms of 𝜓 and write
𝜒(𝜓, 𝑡𝑤 ).

In equilibrium, there is no dependence on the waiting time 𝑡𝑤 and one obtains a linear parametric representation

𝜒(𝜓) = 𝛽𝜓, (28)

yielding

𝛽 =
𝑑𝜒(𝜓)
𝑑𝜓

. (29)

Out of equilibrium, a nonlinear dependence can arise and an effective temperature can be introduced generalizing
Eq. (29)

𝛽𝑒 𝑓 𝑓 (𝜓, 𝑡𝑤 ) =
𝜕𝜒(𝜓, 𝑡𝑤 )

𝜕𝜓
, (30)

with 𝛽𝑒 𝑓 𝑓 = 1/𝑇𝑒 𝑓 𝑓 . Then one can define a Fluctuation-Dissipation ratio with respect to the temperature 𝑇 of the
dynamics (after the quench)

𝑋 (𝜓, 𝑡𝑤 ) =
𝑇

𝑇𝑒 𝑓 𝑓 (𝜓, 𝑡𝑤 )
. (31)

which represents a measure of the deviation from equilibrium. In the limit of large waiting time, the functional
dependence of 𝑋 on the correlation function can show different behaviors, shedding light on the relevance of
different characteristic time-scales in the system. A detailed discussion of this quantity in the context of aging and
glassy systems can be found in [55]. More recent applications of the FDR to equilibrium and non-equilibrium
properties of spin glasses have been reported in [75].

The concept of effective temperature has been also applied to systems in the stationary state, such as driven
granular media or active particles (see for instance [76, 77]). In this case, the problem is to understand the meaning
and the role played by the effective temperature. In some situations, usually when the system is gently driven and
the entropy production flux is small, the relevant features of the system behavior can be successfully interpreted
in terms of this parameter, leading to an equilibrium-like description. In other cases, the effective temperature can
represent an evocative or appealing concept, but does not significantly help in the understanding of the underlying
physical mechanisms, see next Section.

3.3 Granular materials

Granular materials appear in our everyday life and in several industrial applications, posing deep questions to
statistical physics and technology [78, 79, 80, 81]. A granular medium is an ensemble of macroscopic “grains”,
which interact (among each other and with the surroundings) through non-conservative forces. Several orders of
magnitude separate the average energy of internal thermal fluctuations at room temperature - 𝑘𝐵𝑇 ∼ 5 · 10−21𝐽 -
and the macroscopic energy of a grain (e.g. that related to the position and motion of center of mass): for instance
𝑚𝑔𝑟 ∼ 10−5𝐽 for a steel sphere with 𝑟 = 2𝑚𝑚, 𝑔 being the gravity acceleration. Granular media can display
“phase” behaviors: when diluted and under strong shaking a granular “gas” is realised, but when allowed volume
and/or the intensity of shaking are reduced, the granular system behaves as a dense “liquid” or a slowly deforming
"solid" [82]. The slow-dense phase, close to the so-called jamming transition, is difficult to be analysed: we refer
the reader to different theoretical approaches [83, 84, 85, 86, 87, 88, 89, 90, 91, 92]. We briefly summarise the
more clear situation established for granular gases and liquids.
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A granular gas is realized when the packing fraction is small, typically of the order of 1% or less, such
that one can assume instantaneous inelastic binary collisions with restitution coefficient 𝛼 ≤ 1 (the value 1 is
for elastic collisions). In experiments, usually done under gravity, it is necessary to shake the container with
accelerations much larger than gravity in order to keep the packing fraction small everywhere [93, 94, 80, 81].
The three main categories of gas regimes are: 1) cooling granular gases, non-steady states which are initially
prepared as at equilibrium, and leaving the total energy dissipate under repeated inelastic collisions [95, 96, 97];
2) boundary driven gases, where at least one wall injects energy into the gas (e.g. vibration in experiments,
thermostats in theory), reaching a non-homogeneous steady state [98, 99, 100]; 3) bulk driven granular gases,
where each particle is in repeated contact with some source of energy, for instance bouncing above a vibrating
rough plate [101, 102, 103, 104, 105], reaching a homogeneous steady state.

In granular gases it is customary to define a kinetic “granular temperature” [106, 107, 108, 109]

𝑘𝐵𝑇𝑔 =
𝑚〈|v|2〉

𝑑
, (32)

with v the velocity of each particle, 𝑑 the dimensionality of space and 𝑘𝐵 is usually replaced with 1. Such a
temperature is not expected to have a wide thermodynamic meaning, and also in statistical mechanics it has not
a role equivalent to that played for molecular gases, for instance deviations from a Maxwellian are inevitable in
the presence of inelastic collisions, a kurtosis excess (or second Sonine coefficient) is observed - larger or smaller
- in many regimes [97, 110]. In all gas and liquid regimes, moreover, there is no equipartition of energy among
different degrees of freedom (e.g. in a mixture or under non-isotropic external forces), unless they have identical
properties [111, 112, 113, 114, 115, 116, 117, 118].

Linear response relations have been frequently studied for granular gases and liquids, particularly in steady
states [119, 120, 121, 122, 123, 124, 125, 126, 127, 39], while a few studies also considered cooling regimes [128,
120, 125]. In dilute homogeneously driven granular gases, the equilibrium FDR is empirically observed, provided
that the canonical temperature is replaced with the tracer granular temperature 𝑇0 which - in general - can be
different from 𝑇𝑔 [119, 121, 122, 126, 127]. For instance, a granular tracer under the action of a weak perturbing
force in a dilute driven granular system satisfies the dynamical Einstein relation, Eq. (4) with 𝑇 = 𝑇0. Such a
result is surprising as, on the basis of the FDR discussed above, Eq. (13) and of the non-Gaussian distribution of
velocities, one would expect a correction to it. Nevertheless, in many different dilute cases, such corrections are
not observed or - in certain solvable models - can even be proven to vanish [127]. A possible explanation to such a
general result comes through the molecular chaos which is likely to be valid in dilute cases and which implies that
a particle 1 meets particle 2 only once: any collision rule, if restricted to a single particle (that is, disregarding the
fate of particle 2) is equivalent to an elastic collision with effective masses [12]. For a massive intruder (mass much
larger than the other particles), the validity of the Einstein relation is recovered in the context of the derivation of
an effective Langevin equation model [129]

The liquid (non dilute) case is perhaps more interesting. The first experiment focusing on a Brownian-like
description of a large intruder in a granular liquid is discussed in Ref. [130]. Most recent studies, both theoreti-
cal [124, 126, 127, 131, 132] and experimental [39], have shown that when the granular is a liquid and not a gas,
deviations from the equilibrium Fluctuation-Dissipation relation are observed. In granular liquids, as a matter of
fact, granular temperature is much less useful than in gases, and cannot be replaced by some other temperature for
the purpose of an effective description.

An interesting example, in theory and in experiments is provided, again, by a massive intruder 𝑀 � 𝑚 [131, 132].
For the purpose of describing, in numerical simulations, the autocorrelation of the velocity 𝑉 of the tracer and its
linear response, the following model provides a fair description for packing fractions smaller than 40%:

𝑀 ¤𝑉 (𝑡) = −Γ[𝑉 (𝑡) −𝑈 (𝑡)] +
√︁

2Γ𝑇𝑡𝑟E𝑣 (𝑡) (33a)

𝑀 ′ ¤𝑈 (𝑡) = −Γ′𝑈 (𝑡) − Γ𝑉 (𝑡) +
√︁

2Γ′𝑇𝑏E𝑈 (𝑡), (33b)

where 𝑈 (𝑡) is an auxiliary variable representing the memory effect due to the average velocity field of the
particles surrounding the tracer, Γ and 𝑇𝑡𝑟 are the effective drag coefficient and tracer temperature (both can be
derived by kinetic theory in the dilute limit), Γ′ and 𝑀 ′ are parameters to be determined, for instance from the
measured autocorrelation function, and 𝑇𝑏 is the value of 𝑇𝑔 in the elastic limit (for instance the external bath
temperature [102]). Equations (33) can be mapped into a generalised Langevin equation, Eq. (11), with exponential
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Fig. 2 Response function of the tracer’s velocity 𝑉 under a perturbing force 𝐹 , 𝑅𝑣𝐹 (𝑡) and auto-correlation function 𝐶 (𝑡) =

〈𝑉 (𝑡)𝑉 (0) 〉/〈𝑉 (0)𝑉 (0) 〉 as a function of time, measured in molecular dynamics simulations of a system composed of a massive
intruder interacting with a driven granular fluid [131]. In the main plot an elastic case with restitution coefficient 𝛼 = 1 (where the
two functions superimpose as in equilibrium FDR) and an inelastic case 𝛼 < 1 (where equilibrium FDR is violated) are shown. In the
inset the ratio between the two curves is shown for the two cases (black is elastic, blue is inelastic).

memory kernel. In the dilute limit (parameters such that 𝑈 is negligible) the massive tracer evolves according to
a simple Langevin equation. In the elastic limit (𝑇𝑡𝑟 = 𝑇𝑏 = 𝑇𝑔), on the other side, the coupling with 𝑈 is still
important, but the equilibrium Fluctuation-Dissipation relation is recovered. The numerical simulations have shown
that the auxiliary field 𝑈 (𝑡) is a local average of the velocities of the particles surrounding the intruder. When
the density increases numerical simulations suggest 𝑇𝑡𝑟 → 𝑇𝑔, likely due to a reduction of effective inelasticity in
recolliding particles. The appearance of𝑇𝑏 is also interesting: the “temperature” associated to the local velocity field
𝑈 is equal to the bath temperature and this seems a consequence of the conservation of momentum in collisions,
implying that the average velocity of a group of particles is not changed by collisions among themselves and is only
affected by the external bath and a (small) number of collisions with outside particles. Summarizing, model (33)
suggests that in a granular liquid - at some level of approximation - two temperatures are relevant, one related
to the single particle scale and another one related to a many-particle, or collective, scale. Such a conclusion is
consistent with a series of recent results about spatial velocity correlations, typically measured as structure factors
of the velocity field [133, 134, 135, 136, 137, 101, 104, 138, 105, 139, 140].

3.4 Application to biological systems and active particles

The results of the FDR have been also applied to several biological systems, for instance in an evolution experiment
in bacteria [141] or in the prediction of heart rate response [142]. Another recent application has been proposed
in the context of brain activity. Indeed, one can wonder whether, at some scale, the evoked activity in the brain
to an external stimulus can be somehow predicted from the observation of the spontaneous, rest activity. In order
to quantitatively address this issue, one needs an effective model to describe the brain dynamics at the considered
scale. In the work [143], the authors considered the stochastic version of the Wilson-Cowan model [144], describing
at a coarse-grained level the dynamics of populations of exitatory and inhibitory neurons. In the linearized version,
this model consists in two coupled linear Langevin equations for the two populations. The prediction of the FDR
for this model was compared to experimental Magnetoencephalography (MEG) data for rest and evoked activity in
healthy subjects. Whereas the behavior of the temporal autocorrelation function of the total rest activity (exitatory
plus inhibitory neurons) showed a double exponential decay characterized by two typical times, the decay of the
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response function was described by a single exponential decay, in qualitative agreement with the prediction of the
FDR. These results suggest that some information of the brain response to external stimuli can be obtained from
the observation of its spontaneous activity.

A different field which is in large part contained in biology and biophysics, is that of self-propelled particles,
where non-equilibrium stochastic dynamics has been employed as a main modelling tool [145, 146]. These
systems, known as “active”, are usually out of equilibrium and store energy from the environment, for instance
taking advantage of chemical reactions or mechanical agents (such as bacterial cilia and flagella), to produce
directed motion [147]. The intrinsic non-equilibrium nature of the class of models proposed to describe active
systems makes them the ideal platforms to test any version of the generalized FDR [148, 149]. Since their steady-
state properties are quite rich, involving unexpected spatial correlations in density, velocity and polarization fields,
the use of Eq. (13) can be challenging. For this reason, this method has been applied only in the limit of small
activity [150] when the steady probability distribution is known perturbatively or using effective equilibrium-like
approaches. This allows one to derive a near-equilibrium expression for the susceptibility [151] and approximated
predictions for the transport coefficients of active particles, such as their mobility [152]. In addition, the Malliavin
weight sampling has been recently generalized to the more common models used to describe the active particle
dynamics [60]. This technique was particularly useful to explore numerically far from equilibrium regimes,
calculating i) the mobility of an interacting active system at low density [152] ii) the response function due to a
shear flow [153] and, finally, iii) the active effective temperature [154, 155, 156, 157].

In this section, going beyond the approximated approaches explained so far, we apply the technique reported in
Sec. 2.2 to obtain exact expressions for the generalized FDR valid in active matter systems [158, 38]. Specifically,
we focus on particle systems in the framework of dry active matter without momentum conservation. In this context
the evolution of an active particle of mass 𝑚 is described by a set of stochastic equations for its position, x, and its
velocity, v, given by [159, 160]:

¤x = v (34a)

𝑚 ¤v = −𝛾v − ∇𝑈 + f𝑎 +
√︁

2𝑇𝛾 𝜼 , (34b)

while, in the more common overdamped version, such that 𝑚/𝛾 � 1, reads:

𝛾 ¤x = F + f𝑎 +
√︁

2𝑇𝛾 𝜼 . (35)

In both the dynamics, f𝑎 is a non-gradient force, called "active force" for simplicity, that models at a coarse-grained
level the system-dependent mechanism responsible for the active dynamics so that its complex physical or biological
origin is not explicitly considered. This term is chosen as a time-dependent force that provides a certain degree of
persistence to the particle trajectory in agreement with the experimental observations of active colloids, bacteria,
and other biological microswimmers. The most popular models to account for this persistence in the framework of
continuous stochastic processes are the Active Brownian Particles (ABP) [161, 162, 163, 164, 165, 166, 167] and
the Active Ornstein-Uhlenbeck particles (AOUP) [168, 169, 170, 171, 172, 173]. In both cases, the active force is
expressed as:

f𝑎 = 𝛾𝑣0n , (36)

where 𝑣0 is the swim velocity induced by the active force and n is a vector representing the particle orientation
that evolves stochastically. In the ABP model, n is a unit vector that evolves as

¤n =
√︁

2𝐷𝑟n × 𝝃 , (37)

while in the AOUP model, n follows an Ornstein-Uhlenbeck process with unitary variance:

𝜏 ¤n = −n +
√

2𝜏𝝃 . (38)

In both equations, 𝝃 is a vector of 𝛿-correlated white noises with zero average. The coefficient 𝐷𝑟 is the rotational
diffusion coefficient while 𝜏 is simply named persistence time since it coincides with the autocorrelation time of the
active force. The models reproduce consistent results by choosing (𝑑 − 1)𝐷𝑟 = 1/𝜏 where 𝑑 > 1 is the dimension
of the system [164].
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In general, the active force pushes the system out of equilibrium, producing entropy with a rate that grows with
𝜏 [174, 175, 176, 177, 178]. Applying Eq. (17) to the dynamics (34), the elements of the response matrix after
perturbing the 𝑥 component of the velocity, read [38]:

R𝑣,𝑣 (𝑡) =
𝑚

𝑇
〈𝑣(𝑡)𝑣(0)〉 + 𝑚

2𝑇𝛾
(〈𝑣(𝑡)∇𝑥𝑈 (0)〉 + 〈∇𝑥𝑈 (𝑡)𝑣(0)〉 − 〈𝑣(𝑡)f𝑎 (0)〉 − 〈f𝑎 (𝑡)𝑣(0)〉) (39a)

R𝑥,𝑣 (𝑡) =
𝑚

2𝑇
〈𝑥(𝑡)𝑣(0)〉 + 𝑚

2𝑇𝛾
〈𝑥(𝑡)∇𝑥𝑈 (0)〉 − 𝑚

2𝑇𝛾
〈𝑥(𝑡)f𝑎 (0)〉 − 𝑚2

2𝑇𝛾
〈𝑣(𝑡)𝑣(0)〉 , (39b)

where we have suppressed the spatial indices for simplicity. Equation (39a) is determined by the generalized
retarded kinetic energy and the time-symmetric retarded power injected by the gradient force and the active force.
In Eq. (39b), we can identify the retarded mechanical pressure (second term), the so-called retarded swim/active
pressure (third term) and, finally, the retarded/anticipated kinetic energy (fourth term). Applying Eq. (17) to the
dynamics (35), the response after perturbing the coordinate 𝑥 of the particle position reads [38]:

R𝑥,𝑥 (𝑡) =
1

2𝑇
(〈𝑥(𝑡)∇𝑥𝑈 (0)〉 + 〈∇𝑥𝑈 (𝑡)𝑥(0)〉) − 1

2𝑇
(〈𝑥(𝑡)f𝑎 (0)〉 + 〈f𝑎 (𝑡)𝑥(0)〉) . (40)

In the overdamped case, the response is determined by the sum of the time-symmetric part of the retarded/anticipated
mechanical and swim pressures. In overdamped systems with 𝑇 = 0, the above formulation of the FDR cannot be
directly applied, because the dynamics is not of the Langevin form. In this athermal case, another version of the
generalized FDR can be derived using a modified path-integral method developed in [158] in the case of AOUP
(FDR for athermal ABP are still unknown), obtaining:

𝐷𝑎𝛾R𝑥,𝑥 (𝑡) =
1
2
[〈𝑥(𝑡)∇𝑥𝑈 (0)〉 + 〈∇𝑥𝑈 (𝑡)𝑥(0)〉]

+ 𝜏2

2

∑︁
𝛼

[〈𝑣𝛼 (𝑡)∇𝛼∇𝑥𝑈 (𝑡)𝑣𝑥 (0)〉 + 〈𝑣𝑥 (𝑡)∇𝑥∇𝛼𝑈 (0)𝑣𝛼 (0)〉] , (41)

where we have introduced the particle velocity 𝑣𝛼 = ¤𝛼, with 𝛼 = 𝑥, 𝑦. According to our notation, repeated indices
are summed, 𝑈 (𝑠) = 𝑈 (x(𝑠)). The first line of Eq. (41) coincides with the equilibrium FDR holding for passive
particles where the detailed balance holds. The second line contains two additional terms, involving the particle
velocity and the second derivative of the potential, that disappears in the equilibrium limit 𝜏 → 0. At variance
with the equilibrium scenario, in athermal active systems, the generalized FDR is not only determined by a time
correlation involving the position but is affected by the correlations between the other variables, such as the velocity.

To validate the generalized FDR in the case of active particles, we consider both AOUP and ABP dynamics
confining the particle through a non-linear force due to an external potential. To go beyond the harmonic case that
can be solved analytically [158], we chose a quartic potential, 𝑈 (x) = 𝑘 |x|4/4, where the constant 𝑘 determines
the strength of 𝑈. In Fig. 3, we show the diagonal elements of the response matrix numerically obtained by their
definitions (i.e. perturbing the dynamics) and the FDR numerically calculated from the unperturbed system. In
particular, in panel (a), we show the results in the underdamped case, reporting the profile of 𝑅𝑣𝑣 (𝑡) and the
FDR calculated from Eq. (39a), while, in panel (b), the analogue study is reported for the overdamped dynamics,
comparing 𝑅𝑥,𝑥 (𝑡) and the FDR, Eq. (40). In both cases, the FDRs exactly match with the direct study of the
response confirming the exactness of our theoretical results. Finally, in the inset of panel (b), we compare Eq. (40)
in the limit of small temperature, 𝑇 , and the athermal relation, Eq. (41). We reveal that the former converges onto
the latter for 𝑇 → 0.

4 Conclusions

We have reviewed two significant approaches to the problem of linear response in general systems, when the
constraint of thermodynamic equilibrium for the unperturbed state is removed. We have also sketched some of the
interesting recent applications of such approaches. We cannot avoid to stress, again, the evident fact that - given
the system, the observable of interest and the applied perturbation - the linear response function is unique and



The many faces of fluctuation-dissipation relations out of equilibrium 15

Fig. 3 Comparison between response and FDR for a two-dimensional particle confined in a quartic potential, 𝑈 (x) = 𝑘 |x |4. Panel
(a): 𝑅𝑣𝑣 (𝑡) (colored points) calculated perturbing the velocity of the underdamped dynamics, Eq. (34). Panel (b): 𝑅𝑥𝑥 (𝑡) (colored
points) calculated perturbing the position of the overdamped dynamics, Eq. (35). The responses are shown for passive, ABP and AOUP
as explained in the legend which is shared by both panels. Solid color lines plot the FDR, obtained using Eq. (39a) and (40), for panels
(a) and (b), respectively. The inset of panel (b) shows a comparison between Eq. (40) (calculated at 𝑇 = 10−2) and Eq. (41) (holding
for 𝑇 = 0). The other parameters of the simulations are 𝑘 = 3, 𝛾 = 1, 𝑇 = 10−1, 𝑣0 = 1, and 𝜏 = 1.

therefore the two approaches lead to the same result, and in fact an analytical connection can be demonstrated [179].
The difference between the two schemes relies on the required information: in one case, formula (13), one needs
some knowledge about the probability distribution at initial time (e.g. the steady-state one) for the relevant degrees
of freedom; in the other case, formulas (14), (17) and (19), one needs knowledge about the system’s dynamical
model (e.g. noise distributions, forces involved, transition rates, etc.). It is not always evident when one approach
is more useful than the other. In lucky cases, where both the dynamical model and its probability distribution are
known, the two formulas can express different information and one can be more useful than the other (for instance
correlations with state variables can be more transparent than correlations with noises or time-derivative of state
variables).

In experimental situations, where the underlying model is not known, an empirical approach to retrieve the
main features of the probability distribution of the relevant degrees of freedom can be simpler than retrieving
infomation about forces and noises in the system, suggesting the first approach as the more useful. If a dynamical
model is known for the relevant degrees of freedom, while the generated probability distribution is unknown,
then the second approach should be more direct. However it is clear that, even when a dynamical model is fully
available, the first approach may have some advantage: for instance, in a system with many particles and a massive
tracer whose response is investigated, the knowledge of the dynamics of all the particles can be too detailed and
result, when inserted in the second approach, in quite a complicate formula, or even not very informative and/or
transparent ones; an empirical study of the probability distribution of the relevant degrees of freedom (e.g. those of
the tracer and some coarse-grained observable for the surrounding fluid) can provide, sometimes, an approximate
but more informative route through the first approach (see for instance the example discussed in Section 3.3).

We also recall that an FDR does not give an explicit prediction for the response, but only an expression of it in
terms of unperturbed correlations. Once an FDR is known, the problem of obtaining (empirically or analytically)
the required correlations remains. An FDR however can have already a theoretical meaning, even without the
explicit knowledge of the time-dependence of the involved unperturbed correlations, i.e. it is already significant
to know which correlations are involved, as well illustrated by the application described in subsection 3.1 for the
problem of causation and also in the closure problem in the Kraichnan’s approach to turbulence [1].
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