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Abstract

This paper proposes a robust disturbance observer framework for maritime autonomous surface vessels considering model and mea-
surement uncertainties. The core contribution lies in a nonlinear disturbance observer, reconstructing the forces on a vessel impacted
by the environment. For this purpose, mappings are found leading to synchronized global exponentially stable error dynamics. With
the stability theory of Lyapunov, it is proven that the error converges exponentially into a ball, even if the disturbances are highly
dynamic. Since measurements are affected by noise and physical models can be erroneous, an unscented Kalman filter (UKF) is used
to generate more reliable state estimations. In addition, a noise estimator is introduced, which approximates the noise strength. De-
pending on the severity of the measurement noise, the observed disturbances are filtered through a cascaded structure consisting of a
weighted moving average (WMA) filter, a UKF, and the proposed disturbance observer. To investigate the capability of this observer
framework, the environmental disturbances are simulated dynamically under consideration of different model and measurement un-
certainties. It can be seen that the observer framework can approximate dynamical forces on a vessel impacted by the environment
despite using a low measurement sampling rate, an erroneous model, and noisy measurements.
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1. Introduction

In the existing literature, several control concepts have been
proposed for path following and collision avoidance for safe
navigation. In this context, a precise perception of the environ-
ment is one of the essential elements of the vessel’s situational
awareness for safe sea operations. For example, sea currents
might drift the vessel away from the desired path, while the
wind can affect the vessel in its heading by creating a torque
on the vessel’s hull. If control algorithms are not considering
these influences [1], safe and comfortable sea operations are
not guaranteed. To accommodate these factors, some previous
works consider the environmental impact. For instance, a dis-
turbance observer-based control for the dynamic positioning of
vessels is proposed in [2]. The proposal assumes a constant
damping matrix and considers weak disturbances, such as in
[3], where a global stable tracking control of under-actuated
ships with input saturation is developed. In [4], a robust syn-
chronization for under-actuated vessels based on a disturbance
observer is introduced, where slowly varying disturbances are
considered. The results showcase that the disturbance estima-
tions adapt inertly to the actual disturbances. In addition, it
is mentioned that the existing schemes require exact velocity
measurements. Since measurement uncertainties are inevitable,
this is an essential issue that has to be addressed. Measure-
ment noise propagates through disturbance observers leading
to inadvertent noisy results. An overview of recent advances
in coordinated control of multiple autonomous surface vessels
is given in [5], where it is mentioned that the central focus
of current investigations is guaranteeing the stability and ro-
bustness of motion control laws in the presence of uncertain-
ties and disturbances. In addition, sliding mode control ap-
proaches based on disturbance observers are proposed [6, 7].
The results of the observer showcased in [7] demonstrate that
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the disturbances inertly adapt with various adaptation speeds
concerning the dedicated system states. In a recent study by
[8], an approach to reject uncertainty and disturbance in com-
plex dynamical networks using truncated predictive control is
discussed. The study guarantees a robust synchronization of
the networks by incorporating input delay and utilizing the Lya-
punov stability theory. However, it is important to note that
the simulations conducted do not account for the potential im-
pact of measurement noise. Besides, a global asymptotic reg-
ulation control for MIMO mechanical systems with unknown
model parameters and disturbances is proposed [9]. As in many
other proposals, a constant damping matrix is assumed, and the
Coriolis matrix is completely neglected. One of the few distur-
bance observers presented in [10] for tracking control considers
model uncertainties. However, measurement uncertainties are
neglected, and similar to the previously listed work, the damp-
ing matrix is oversimplified, making its use in real applications
questionable. A backstepping control approach based on a dis-
turbance observer and a neural network is presented in [11],
where the vessel stability concerning the roll motion is stud-
ied. Here, as well as in [12], only slowly varying disturbances
are considered, while it is assumed that the measurements are
entirely reliable. Despite ignoring model and measurement un-
certainties, a widely used disturbance observer is presented in
[13]. The proposal does not provide insight into the error dy-
namics of why it is difficult to guarantee sufficient adaptation
speed regarding all observed disturbances. For this reason, syn-
chronizing the error dynamics is a convenient way to supply
controllers with consistent estimations. A detailed survey about
the most popular disturbance observers is given in [14]. More
recently, with the advancement of data-driven modeling, ma-
chine learning approaches for observing disturbances are com-
ing up. A disturbance observer constructed by fusion of neural
networks and minimal learning parameterization is proposed in
[15] for robust dynamic positioning control under consideration
of model and servo-system uncertainties, while [16] proposes
adaptive neural network auto-berthing control of marine ships.

ar
X

iv
:2

21
1.

08
36

0v
2 

 [
ee

ss
.S

Y
] 

 2
7 

M
ar

 2
02

4



The latter mentions that external disturbances can not be ap-
proximated by neural networks. In [17], a data-driven adaptive
disturbance observer for model-free trajectory tracking control
of maritime autonomous surface vessels is introduced. Com-
mon to all the data-driven approaches is that the models are
trained with historical data and have a memory stack for online
learning. Once again, most of such works are limited to sce-
narios with very weak disturbances. Since data-driven models
are prone to overfitting and suffer from poor generalization out-
side the training scenarios, they are unfit to handle previously
unseen severe and dynamic disturbances [18]. Furthermore, the
impact and rejection of disturbances and uncertainties are stud-
ied in several other applications, including autonomous aircraft
[19], unmanned driving robotic vehicles [20], and in general
nonholonomic mobile robots [21]. The estimation of environ-
mental disturbances is relevant for trajectory tracking, such as
described in [19], where an intelligent trajectory tracking of an
aircraft in the presence of internal and external disturbances is
discussed using neural network-based model predictive control.
While the impact of model uncertainties is considered in the re-
garded proposals, the influence of measurement uncertainties is
completely ignored.

To summarize, none of the proposed approaches demonstrate
robust behavior under several environmental conditions by con-
sidering measurement uncertainties. Moreover, most proposals
disregard that measurements must be treated discretely since
the sampling frequency of measurements is limited. Hence,
this work tries to handle the previously described weaknesses in
a novel observer framework by avoiding model simplifications
but considering model and measurement uncertainties. To this
end, the current work attempts to answer the following ques-
tions:

• Can we reconstruct the unknown disturbances despite
measurement uncertainties?

• Is it possible to reconstruct the disturbances despite using
an unreliable model?

• Is it possible to observe the disturbances in situations
where the sampling rate of the measurements is very low?

• Can a disturbance observer be designed where we can
synchronize the adaptation speed of all observed distur-
bances?

To the best of our knowledge, none of the previous works have
addressed all the research questions mentioned in a single study.

For a better comprehension of the work presented, the relevant
theory, including the original contribution, is presented in Sec-
tion 2. Section 3 presents all the details required to reproduce
the results presented in the article. Results and their discussions
are presented in Section 4 and finally, Section 5 concludes the
current work.

2. Theory

In this section, we present a brief overview of the theory that
is required for a better comprehension of the work presented.
We begin by explaining the model of the vessel used in Section
2.1 followed by introducing the weighted moving average in
Section 2.2, and a description of the unscented Kalman filter in
Section 2.3. The original theoretical contribution of the work is
presented in Sections 2.4 and 2.5.

2.1. Model

Considering the vessel’s coordinates η = [xs, ys, ψ]⊤, where xs

and ys describes the vessel’s position with regard to the global
coordinates [x, y]⊤, and ψ is the vessel’s heading. Furthermore,
the velocities are denoted as ν = [u, v, r]⊤, where u is the surge,
v describes the sway, and r characterizes the rotational speed
regarding yaw. With these relations, the kinematics of a vessel
can be expressed by

η̇ = Rrot(ψ)ν, (1)

where Rrot(ψ) denotes the rotational matrix, given by

Rrot(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (2)

Fig. 1 depicts the relations between the different vessel states.
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Fig. 1: Kinematics of a vessel

The dynamics of a surface vessel adopted from [22] can be ex-
pressed as

Mν̇ + D(ν)ν + C(ν)ν = τ + τd, (3)

where M denotes the mass matrix, D(ν) characterizes the non-
linear damping matrix, C(ν) describes the Coriolis matrix, τ is
the control input, and τd are all the environmental disturbances.
Therefore,

τd = τwind + τwave + τcurrent, (4)

which implies that the disturbances are specified as the sum of
forces induced by wind, waves, and sea currents. Rewriting the
dynamical expression in state space representation leads to

ν̇ = M−1 (−D(ν)ν − C(ν)ν + τ + τd) . (5)

Considering a body-fixed coordinate system [xb, yb]⊤ with cen-
ter [xs, ys]⊤, where xb is directed to surge and yb is directed
to sway. Under the assumption that the rigid body has a ho-
mogeneous mass distribution and is symmetric concerning the
xbyb-plane, the mass matrix is given by

Mideal =

m 0 0
0 m mxg

0 mxg Iz

 , (6)
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where m defines the mass of the rigid body, xg is the center
of gravity regarding the xb-axis, and Iz characterizes the mo-
ment of inertia concerning yaw. Since expression (6) requires
simplifications leading to model uncertainties, we introduce a
generalized, symmetric, positive definite mass matrix

M =

m11 0 0
0 m22 m23
0 m32 m33

 , (7)

such that five instead of three unknown parameters must be
identified. The parameters are assumed to be constant since
the mass matrix is not dependent on the system states ν. Based
on later derivations, the entries of the inverted mass matrix are
denoted as

M−1 =

κ11 0 0
0 κ22 κ23
0 κ32 κ33

 . (8)

Lemma 1. If the matrix M is symmetric and invertible, its in-
verse M−1 is likewise symmetric, since (M−1)⊤ = (M⊤)−1.
Since the entries of the mass matrix are positive, M is positive
definite and thus invertible.

Moreover, it is assumed that the damping matrix is symmetric,
and the Coriolis matrix is skew-symmetric such as in [22], given
by

D(ν) =

d11(ν) 0 0
0 d22(ν) d23(ν)
0 d32(ν) d33(ν)

 , (9)

C(ν) =

 0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0

 . (10)

The entries of the matrices are defined as

d11(ν) = −Xu − X|u|u|u| − Xuuuu2, (11a)

d22(ν) = −Yv − Y|v|v|v| − Y|r|v|r| − Yvvvv2, (11b)
d23(ν) = −Yr − Y|v|r |v| − Y|r|r |r|, (11c)
d32(ν) = −Nv − N|v|v|v| − N|r|v|r|, (11d)

d33(ν) = −Nr − N|v|r |v| − N|r|r |r| − Nrrrr2, (11e)

and

c13(ν) = −m22v − m23r, (12a)
c23(ν) = m11u, (12b)
c31(ν) = −c13(ν), (12c)
c32(ν) = −c23(ν), (12d)

causing highly nonlinear model dynamics, where Xu, X|u|u, Xuuu,
Yv, Y|v|v, Y|r|v, Yvvv, Yr, Y|v|r, Y|r|r, Nv, N|v|v, N|r|v, Nr, N|v|r, N|r|r, and
Nrrr are hydrodynamic parameters.

2.2. Weighted Moving Average
Moving averages are used in fields such as statistics, soft com-
puting, economics, operational research, and engineering [23].
The simple moving average (SMA) at time step k with a win-
dow size w is defined by

yS MA,k =
1
w
·

w∑
i=1

yk−w+i, (13)

where yk is the measurement at time step k. Moving averages
are popular tools for time-series smoothing [24]. However, the

disadvantage of the simple moving average (SMA) is its rel-
atively strong delay depending on the window size w. Con-
sidering measurement noise, strong smoothing properties with
little delay are desired. The weighted moving average WMA is
similar to the SMA but with a weighting of the past samples de-
pending on their recency. Hence, the WMA at time step k with
a window size w is expressed by

yWMA,k =
1∑w
i=1 i
·

w∑
i=1

i · yk−w+i. (14)

The WMA is particularly beneficial if the samples are dynamic
since it approximates a smoothed version of the measurements
with little delay. As a result, the WMA is more sensitive to
strong noise while staying in the actual range of the measure-
ments.

2.3. Unscented Kalman Filter

The unscented Kalman filter (UKF), proposed in [25], is proved
to be a very powerful tool for state estimation of nonlinear sys-
tems with measurement noise and model uncertainty. Consid-
ering the time-discrete nonlinear dynamical system

xk+1 = f (xk,wk), (15)
yk = g(xk,nk), (16)

where f and g are non-linear functions, xk describes the model
states, and yk characterizes the measurement model at time step
k. The model and measurement uncertainties are modeled as
Gaussian noise with zero mean. Hence, they are described by

wk ∼ N(0,Qk), (17)
nk ∼ N(0, Rk), (18)

where Qk and Rk specify the covariance matrix of the model
and measurement uncertainties, respectively.
The main idea of the UKF is to use sigma points distributed
symmetrically in the area of the mean and gate them through
the nonlinear functions. Assume the states x ∈ RL have the
estimated mean x̂ and covariance P, the sigma points of the
entire sigma point matrix X ∈ RL×(2L+1) are generated by

X0 = x̂, (19a)

Xi = x̂ +
( √

(L + λ)P
)

i
, i = 1, ..., L, (19b)

Xi = x̂ −
( √

(L + λ)P
)

i−L
, i = L + 1, ..., 2L, (19c)

where λ = α2(L+κ)−L. Note that the bracket’s index i identifies
the i-th column of the related matrix. The tuning parameter
α describes the spread of the sigma points, usually set to α =
10−3, and κ is a secondary tuning parameter, usually set to κ = 0.
The weights of each sigma point for calculating the means and
covariances are defined as

Wm
0 =

λ

L + λ
, (20)

Wc
0 =

λ

L + λ
+ (1 − α2 + β), (21)

Wm
i = Wc

i =
1

2(L + λ)
, i = 1, ..., 2L, (22)

where β is a tuning parameter, which is usually set to β = 2 for
Gaussian distributions.
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Prediction step
Calculate X according to (19a)-(19c). Afterwards compute the
following relations:

x̌ =
2L∑
i=0

Wm
i f (Xi) (23)

y̌ =
2L∑
i=0

Wm
i g(Xi) (24)

Px =

2L∑
i=0

Wc
i ( f (Xi) − x̌) ( f (Xi) − x̌)⊤ (25)

Py =

2L∑
i=0

Wc
i (g(Xi) − y̌) (g(Xi) − y̌)⊤ (26)

Pxy =

2L∑
i=0

Wc
i ( f (Xi) − x̌) (g(Xi) − y̌)⊤ (27)

Correction step

K = Pxy P−1
y (28)

x̂ = x̌ + K(y − y̌) (29)
P = Px − KPy Px (30)

Here, x̌ and y̌ are the predictions of the states and measure-
ments, respectively, calculated by gating the sigma points X
through the nonlinear functions. The covariance matrices Px,
Py, and the cross-covariance matrix Pxy are used for computing
the updated covariance matrix P and the Kalman gain matrix
K. Hence, the Kalman gain matrix characterizes the trustwor-
thiness of the predicted states x̌. If K has small values, the pre-
dictions are well-performing. Otherwise, the measurements y
are weighted stronger to correct the prediction inaccuracy. As
a result, the estimations x̂ result in a smoothed version of the
measurements xm.

2.4. Disturbance Observer Design

In the following, the original theoretical contribution of this ar-
ticle is explained. Two assumptions are made to formulate the
disturbance observer.

Assumptions:

1. It is assumed that the vessel’s velocities ν are measured.
However, the measurements are expected to have uncer-
tainties, described in more detail in Section 2.5.

2. It is assumed that the disturbances change slowly such that
τ̇d ≈ 0 holds for short time intervals. This assumption is
required for the observer design. Later, it is proven that the
disturbances can also be highly dynamic.

To design the dynamical observer, we define the following rela-
tions

τ̂d = ζ + µ(ν), (31)

ζ̇ = h(ν, τ̂d), (32)

where the estimation of the disturbances τ̂d is defined as the
sum of an observer variable ζ and an unknown mapping µ(ν).
Hence, the error of the observer is defined as

z = τd − ζ − µ(ν). (33)

The dynamics of the observer variable are defined as an un-
known mapping h(ν, τ̂d). Therefore, the goal is to find the map-
pings µ(ν) and h(ν, τ̂d), such that the estimation τ̂d has a glob-
ally, asymptotically stable equilibrium at z = 0, and converges
to the manifold

M =
{
(ν, ζ) ∈ R3 × R3 : τd − ζ − µ(ν) = 0

}
. (34)

The error dynamics are obtained by the time derivative of (33),
yielding

ż = τ̇d︸︷︷︸
≈0

−ζ̇ −
∂µ

∂ν
ν̇, (35)

which leads to

ż = −h(ν, τ̂d) −
∂µ

∂ν
M−1 ((−D(ν) − C(ν)) + τ + τd) . (36)

Remark 1. Since the error dynamics are described by (36),
µ(ν) must be continuously differentiable with respect to ν.

To find suitable error dynamics, we define h(ν, τ̂d) as

h(ν, τ̂d) = −
∂µ

∂ν
M−1 ((−D(ν) − C(ν)) + τ + τ̂d) , (37)

such that the error dynamics are given by

ż = −
∂µ

∂ν
M−1(τd − τ̂d) = −

∂µ

∂ν
M−1 z. (38)

Generally, the observer dynamics ζ̇ = h(ν, τ̂d) are formulated
as

ζ̇ = −
∂µ(ν)
∂ν
ν̇(τd = ζ + µ(ν)), (39)

where the partial derivative ∂µ(ν)
∂ν is given by

∂µ(ν)
∂ν

=


∂µ1
∂u

∂µ1
∂v

∂µ1
∂r

∂µ2
∂u

∂µ2
∂v

∂µ2
∂r

∂µ3
∂u

∂µ3
∂v

∂µ3
∂r

 . (40)

The expression ν̇(τd = ζ + µ(ν)) describes ν̇ as a function of
τd defined in (5) while the equality symbol inside the brackets
denotes a substitution. Considering the error dynamics, and the
system dynamics, it is reasonable to define

µ(ν) =


µ1(u)

µ2(v, r)

µ3(v, r)

 , (41)

such that

∂µ(ν)
∂ν

=


∂µ1
∂u 0 0

0 ∂µ2
∂v

∂µ2
∂r

0 ∂µ3
∂v

∂µ3
∂r

 . (42)

With these definitions, the error dynamics yield

ż = −


∂µ1
∂u κ11 0 0

0 ∂µ2
∂v κ22 +

∂µ2
∂r κ32

∂µ2
∂v κ23 +

∂µ2
∂r κ33

0 ∂µ3
∂v κ22 +

∂µ3
∂r κ32

∂µ3
∂v κ23 +

∂µ3
∂r κ33


z1
z2
z3

. (43)

Regarding z1, it is evident that the error dynamics are exponen-
tially stable for every µ1(u), which satisfies

∂µ1

∂u
κ11 > 0. (44)

4



To guarantee stable error dynamics concerning z2 and z3, we
define the following conditions1.

C1:
∂µ2

∂v
κ23 +

∂µ2

∂r
κ33

!
= 0 (45)

C2:
∂µ2

∂v
κ22 +

∂µ2

∂r
κ32

!
> 0 (46)

C3:
∂µ3

∂v
κ22 +

∂µ3

∂r
κ32

!
= 0 (47)

C4:
∂µ3

∂v
κ23 +

∂µ3

∂r
κ33

!
> 0 (48)

Here, C1 and C2 guarantee stable error dynamics with regard
to z2, while C3 and C4 ensure stable error dynamics concerning
z3. Since C1 and C3 are stronger conditions, we initially define

µ2(v, r) = Γ2

(
1
κ22

v −
κ23

κ22κ33
r
)
, (49)

µ3(v, r) = Γ3

(
1
κ33

r −
κ32

κ22κ33
v
)
, (50)

where Γ2 and Γ3 are adaptive gains. With these relations, C1
and C3 hold. Consequential, C2 and C4 lead to

Γ2

(
1 −

κ23κ32

κ22κ33

)
!
> 0, (51)

Γ3

(
1 −

κ23κ32

κ22κ33

)
!
> 0. (52)

Remark 2. Since all entries of the mass matrix are positive,
κ23κ32
κ22κ33

is always positive.

Concerning (51) and (52), we must consider three cases.

Case 1: κ23κ32 < κ22κ33
In practice, the entries of the secondary diagonal of the mass
matrix are usually much smaller than the diagonal. Hence, the
absolute values of κ23 and κ32 are also much smaller than κ22
and κ33. In this case C2 and C4 are satisfied if Γ2 > 0 and
Γ3 > 0.

Case 2: κ23κ32 > κ22κ33
This case is usually not true. However, if this unrealistic
scenario holds, C2 and C4 are satisfied if Γ2 < 0 and Γ3 < 0.

Case 3: κ23κ32 = κ22κ33
In this case, the observer will not adapt. However, this case is
usually neglectable since this case is also unrealistic.

For future considerations, we regard the first case. To satisfy
(44) and to synchronize the error dynamics, we define

µ1(u) = Γ1
1
κ11

u
(
1 −

κ23κ32

κ22κ33

)
. (53)

The previous case study also holds for (53) and the correspond-
ing error dynamics of z1. Therefore, Γ1 > 0 must hold for prac-
tical applications. Summarized, the mapping µ(ν) is expressed
by

µ(ν) =


µ1(u)

µ2(v, r)

µ3(v, r)

 =

Γ1

1
κ11

u
(
1 − κ23κ32

κ22κ33

)
Γ2

(
1
κ22

v − κ23
κ22κ33

r
)

Γ3

(
1
κ33

r − κ32
κ22κ33

v
)
 (54)

1An exclamation mark (!) above an equality (=) or inequality (>) sign means
that the expression has to be valid to fulfill a hypothesis.

The adaptive gains Γ1, Γ2, and Γ3 define the adaptation speed.
These are design parameters and have to be chosen wisely. If
Γ1 = Γ2 = Γ3, the estimations of the observed disturbances
adapt with the same speed due to the defined error dynamics.
Hence, this observer formulation provides a comfortable ap-
proach for synchronizing the adaptation speed. With these rela-
tions, the error dynamics of the observer are given by

ż = −


Γ1σ 0 0

0 Γ2σ 0

0 0 Γ3σ


z1
z2
z3

 , (55)

where σ = 1 − κ23κ32
κ22κ33

leading to globally exponentially stable

error dynamics. Denoting T = ∂µ(ν)
∂ν , yields

T =


Γ1

1
κ11
σ 0 0

0 Γ2
1
κ22

−Γ2
κ23
κ22κ33

0 −Γ3
κ32
κ22κ33

Γ3
1
κ33

 . (56)

Thus, the final expression of the disturbance observer is ob-
tained by

τ̂d = ζ + Tν, (57)

where the observer update is given by

ζ̇ = −Tν̇(τd = ζ + Tν). (58)

Considering the Lyapunov function candidate

V =
1
2

z⊤ z, (59)

it can be shown that even if τ̇d , 0, the error of the disturbance
observer converges exponentially into a ball with radius
rb =

θ
√

2λmin(Γ)σ−1
.

Proof. Defining the adaptive gain matrix Γ = diag(Γ1,Γ2,Γ3),
the derivative of the Lyapunov function yields

V̇ = −z⊤Γσz + z⊤τ̇d. (60)

Since

0 ≤ (z − τ̇d)⊤(z − τ̇d)
= z⊤ z − z⊤τ̇d − τ̇

⊤
d z + τ̇⊤d τ̇d (61)

= z⊤ z − 2z⊤τ̇d + τ̇
⊤
d τ̇d,

(60) leads to inequality

V̇ ≤ −λmin(Γ)σz⊤ z +
1
2

z⊤ z +
1
2
τ̇⊤d τ̇d (62)

≤ −(2λmin(Γ)σ − 1)V +
1
2
θ2, (63)

where λmin(Γ) characterizes the smallest eigenvalue of Γ which
is likewise the smallest adaptive gain min(Γ1,Γ2,Γ3), and θ de-
notes the maximum possible norm ||τ̇d,max||. To guarantee stable
behavior of (63), the expression

λmin(Γ)σ >
1
2

(64)

has to be satisfied. The solution of (63) is given by

0 ≤ V(t) ≤
θ2

(4λmin(Γ)σ − 2)

(
1 − e−(2λmin(Γ)σ−1)t

)
. (65)

Hence, V is bounded by θ2

(4λmin(Γ)σ−2) and thus the estimation er-
ror of the disturbance observer converges into a ball with radius
rb =

θ
√

2λmin(Γ)σ−1
.
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Remark 3. The stability analysis by using the Lyapunov ap-
proach shows likewise to the previous formulations that the er-
ror converges exponentially to zero if θ = 0, which implies that
the disturbances are constant.

2.5. Observer Framework
Measurements arrive as a temporal sequence and thus have to
be treated as discrete values. Hence, the discrete measurements
at time step k of the system states are defined as

νm,k = νk + nk, (66)

which expresses the measurement function (16) with Gaussian
noise (18). The discretized observer is obtained by

τ̂d,k = ζk + Tν̂k, (67)

where ν̂k describe the filtered measurements, and the observer
update is given by

ζk+1 = ζk + ∆t
(
−Tνk+1(τd,k = ζk + Tν̂k)

)
. (68)

Furthermore, the discrete model of (5) yields

νk+1 = νk + ∆t
(
M−1 (

τk + τd,k − D(νk)νk − C(νk)νk
))
+ wk, (69)

where ∆t is the time step between each measurement, and
wk describes the model uncertainty defined in expression
(17). However, considering realistic hydrodynamics of vessels,
adding Gaussian noise additive to the model dynamics leads to
an impulsive unrealistic behavior. Therefore, we assume that
the identified hydrodynamic parameters and mass parameters
of Table 2 are erroneous. For this purpose, the actual model dy-
namics are simulated with randomly generated parameters ac-
cording to

p = p̂(1 + ρw), (70)

where p describes the real parameters, p̂ are the identified pa-
rameters described in Section 3, ρ is a scaling parameter defin-
ing the uncertainty, and w is a randomly generated Gaussian
distributed number. As a result, the model uncertainties affect
the model in each model matrix. The robustness of the distur-
bance observer concerning measurement noise depends on the
current states. If the velocities are very low, high noise has a
much stronger effect on the observed states. To identify the
relative strength of the noise, we introduce an online noise esti-
mator. It is expressed by

n̂k = E


∣∣∣∣∣∣∣∣∣∣ √E

[
((νWMA,k−w:k−νm,k−w:k)−E[νWMA,k−w:k−νm,k−w:k])2]∣∣∣∣∣∣∣∣∣∣

||E[νm,k−w:k]||


k−4w:k

, (71)

where E[·] describes the expected value, and w is the considered
window size. The foundation of the estimator builds the differ-
ence between the actual measurements and their smoothed ver-
sion provided by its WMA. Hence, the nominator is expressed
by the l2-norm of the standard deviation concerning the differ-
ence between the measurements and their WMA-filtered ver-
sion. At the same time, the denominator characterizes the l2-
norm of the measurement’s mean. As a result, the estimator
represents the noise influence depending on the current states.
The outer expectation bracket has the purpose of smoothing
the estimations. Otherwise, they can be noisy, as depicted in
the results. The entire framework consists of multiple compo-
nents and has a cascading structure. First, the measurements are
propagated through the noise estimator defined in (71). If the
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Disturbance
Observer

Controller
𝜂𝑑,𝑘 𝜏𝑘 𝜈𝑚,𝑘

Ƹ𝜏𝑑,𝑘

𝜏𝑑,𝑘

UKFƸ𝜈𝑘

Disturbance
Observer

WMA
Noise 

Estimator

𝑠1

𝑠2

Ƹ𝜏𝑑,𝑘

Ƹ𝜈𝑘

Ƹ𝜏𝑑,𝑘

if ො𝑛𝑘 > 𝛶2

if ො𝑛𝑘 > 𝛶1

𝜏𝑘

Fig. 2: Observer framework

detected measurement noise is neglectable small, the observer
framework provides estimations of the disturbances without fil-
tering. Otherwise, the noise estimator triggers a cascaded filter-
ing mechanism depicted in Fig. 2.

Here, γ1 and γ2 are the thresholds for triggering the switches s1
and s2. If n̂ > γ1, the disturbance observer receives the WMA
filtered states. In any switch setting of s1, the UKF estimates the
actual states by receiving the measurements νm,k and the esti-
mated disturbances τ̂d,k. If n̂ > γ2, a second observer generates
smoother versions of τ̂d,k by receiving the filtered states from
the UKF. Note, that reducing the adaptive gains Γi results in a
smoothed estimation of the disturbances. For that reason, the
adaptive gains for the second observer should be chosen small.
The grey unit in Fig. 2 can be duplicated and added to the cas-
caded structure if the measurement noise is exaggerated.

For traceability, in the following, pseudocode is presented. The
code should give clear instructions to reconstruct the entire
framework. Initialization parameters of the observer framework
are depicted in Table 1. Tuning parameters such as Γ1, Γ2, Γ3, α,
β, and κ, used for this study, are just a recommendation. Here,
Γi, j describes the adaptive gains at the j-th observer depending
on the number of cascading units. In the provided algorithm,
two grey units are cascaded, where the state estimations of the
first and second UKF are denoted as ν̂a,k+1 and ν̂b,k+1. Note that
the adaptive gains should be adjusted if the sensor measure-
ments have a low sampling frequency since higher sampling
rates allow greater adaptive gains. Otherwise, the observations
can turn unstable, described in more detail in the following sec-
tion.

3. Method and setup

This study is conducted with the specifications of the mil-
liAmpere ferry. MilliAmpere is Norway’s first driverless ferry
and part of the Autoferry project of the Norwegian University
of Science and Technology [26].

3.1. Ferry specification
The hydrodynamic parameters and the entries of the mass ma-
trix are identified in [27] by using datasets consisting of veloc-
ity measurements νm of the vessel, rotational velocity measure-
ments of the propellers, and azimuth angle measurements of the
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Algorithm 1 Pseudocode

1: while observation = True do
2: Calculate νWMA,k according to (14)
3: Calculate n̂k according to (71)
4: if n̂k ≤ γ1 then
5: T(Γi) = T(Γi,1)
6: τ̂d,k = ζk + Tνm,k

7: ζk+1 = ζk + ∆t
(
−Tνk+1(τd,k = ζk + Tνm,k)

)
8: else if n̂k > γ1 then
9: T(Γi) = T(Γi,1)

10: τ̂d,k = ζk + TνWMA,k

11: ζk+1 = ζk + ∆t
(
−Tνk+1(τd,k = ζk + TνWMA,k)

)
12: else if n̂k > γ2 then
13: Calculate Xi,k according to (19a)-(19c)
14: Calculate ν̂a,k+1 according to (23)-(30)
15: T(Γi) = T(Γi,2)
16: τ̂d,k = ζk + Tν̂a,k+1

17: ζk+1 = ζk + ∆t
(
−Tνk+1(τd,k = ζk + Tν̂a,k+1)

)
18: else if n̂k > γ3 then
19: Calculate Xi,k according to (19a)-(19c)
20: Calculate ν̂b,k+1 according to (23)-(30)
21: T(Γi) = T(Γi,3)
22: τ̂d,k = ζk + Tν̂b,k+1

23: ζk+1 = ζk + ∆t
(
−Tνk+1(τd,k = ζk + Tν̂b,k+1)

)
24: end if
25: end while

thrusters. For this purpose, techniques such as optimal control,
regularization, and cross-validation are used. The identified pa-
rameters are shown in Table 2.

3.2. Scenario description
The observer framework was tested in several scenarios corre-
sponding to different severity levels of the environmental dis-
turbances. To evaluate the capability of the framework under
highly dynamic conditions, the forces induced by wind, waves,
and sea currents are simulated by

τwind =


F̄wind cos(γwind − ψ) (1 + sin(t))

−F̄wind sin(γwind − ψ) (1 + sin(t))

F̄wind sin(2(γwind − ψ)) (1 + sin(t)) L
4

 , (72a)

τwave =


F̄wave cos(γwave − ψ) (1 + sin(t))

−F̄wave sin(γwave − ψ) (1 + sin(t))

0

 , (72b)

τcurrent =


F̄current cos(γcurrent − ψ)

(
1 − e−

t
Ts )

)
−F̄current sin(γcurrent − ψ)

(
1 − e−

t
Ts )

)
0

 . (72c)

Note that the impact angles γi of wind, waves, and currents are
related to the x-axis of the global coordinate system, while F̄i

are the dedicated mean forces. Moreover, L is the length of
the vessel and Ts expresses a time constant. Since the waves
are affected by wind, they have approximately the same direc-
tion. Furthermore, it is expected that the torque induced by the
environment is mainly influenced by the wind. Hence, it is as-
sumed that the wind force in the sway direction describes the

torque dependent on cos(γwind − ψ) impacting half of the ves-
sel’s length. This inference follows from geometrical relations
and the assumption that the vessel’s hull is approximately sym-
metrical from the center to the stern side and from the center to
the nose side. Note that the identity

cos(γwind − ψ) sin(γwind − ψ) =
1
2

sin(2(γwind − ψ)) (73)

is valid. In addition, an oscillating force is superposed to the
wind’s mean force in order to simulate a pulsating wind behav-
ior. While the waves are simulated as an oscillating force, it
is assumed that the sea currents do not exhibit highly dynamic
behavior. Therefore, they are simulated as an exponentially de-
caying force.

The entire environmental influence described by (72a)-(72c) re-
sults in highly dynamic disturbances affecting the vessel. In
addition, the scenario is made more challenging by adding
strongly increasing measurement noise. To visualize the en-
vironmental impact, the control input τ is set to zero. The sim-
ulation lasts for 100 s, and the measurement noise is increased
stepwise. This has the purpose of showcasing the capability of
the framework under different conditions. Hence, the covari-
ance matrix of the measurement noise is defined as

R =



0, if 0 s ≤ t < 20 s,
R1, if 20 s ≤ t < 40 s,
R2, if 40 s ≤ t < 60 s,
R3, if 60 s ≤ t < 80 s,
R4, if 80 s ≤ t ≤ 100 s,

(74)

The simulation parameters are depicted in Table 3. Under
consideration of measurement uncertainties, it turned out that
the observer mainly issues with scenarios where the measured
states have small values since they are more sensitive to noise.
If the environmental disturbances are severe, leading to a higher
force impacting the vessel, measurement noise has a minor in-
fluence on the system states since the forces have greater abso-
lute values and are thus easier to handle by the observer. Con-
sidering (57), this statement is reasonable since the value of the
observer variable ζ will dominate the influence of the measure-
ment noise within ν if the disturbances are severe. Various sim-
ulations verified this assumption.

In addition, simulations have shown that the adaptive gains Γi

should be adjusted to the measurement time step ∆t. A higher
sampling frequency, i.e., a lower time step, offers the possibility
to increase the adaptive gains very high. However, reducing the
sampling frequency results in a reciprocal effect. If the adaptive
gains are improperly adjusted to the sampling frequency, the
observer turns unstable. Despite that, a time step of ∆t = 0.1 s
still enables Γi = 18, which is absolutely sufficient for a fast
adaptation. While higher adaptive gains lead to faster adapta-
tion, decreasing the adaptive gains is beneficial for generating
smoothed estimations. Both of these advantages are used in the
framework showcased in Fig. 2. The parameterization of the
observer framework is given in Table 1. To adapt fast enough
to the real values, the first observer has higher adaptive gains.
The subsequent cascaded observers have lower gains since their
main function is to smooth noisy signals. Hence, the parame-
terization of switch s3 is chosen such that the noise rejection
dominates the adaptation speed and shall demonstrate an emer-
gency trigger. Tuning parameters γi of the switches were chosen
according to the best generalizability concerning multiple sim-
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ulated scenarios, including several severity levels of the distur-
bances and measurement noise. Furthermore, the window size
w should be adapted to the sampling frequency. Simulations
showed that a proper calibration is done by choosing w = 1

∆t .

To compare the influence of various Γi and model uncertainties,
a second simulation is showcased according to

τd =

||τcurrent||

||τcurrent||

||τcurrent||

 . (75)

Furthermore, the second simulation is conducted with a very
low measurement sampling rate of ∆t = 0.1 s to showcase the
observer’s capability of dealing with low sampling frequencies.
To compare the behavior of the observer framework under un-
certain model circumstances, model uncertainties are simulated
according to (70) with various ρ given in Table 3. Note that
ρ = 0.1 corresponds to a model parameter uncertainty of 10%.

4. Results and discussions

In Fig. 3, the real system states, the measured states, the WMA
filtered measurements, and the filtered measurements from the
UKFs are visualized. While the WMA filtering seems to pro-
vide sufficient smoothing for weak measurement noise, smooth
state estimations under consideration of intense measurement
noise can only be reasonably generated by the following cas-
caded UKFs.

Fig. 4 depicts the estimated disturbances from the observer
framework. The first twenty seconds are simulated without
measurement noise. Hence, the observer is adapting in real-
time highly accurate. However, one can see at 20 s < t < 22 s
how even weak measurement noise propagates through the ob-
server. The WMA smoothing of the observed disturbances is a
bit delayed since the noise estimator needs a short time to adapt.

In Fig. 5, the noise estimations and the triggered switches are
visualized. Here, s1 and s2 are according to the representation
in Fig. 2, while the third switch s3 is an additional cascading
unit depicted in grey. If the measurement noise is getting too
intense, an additional smoothing unit is connected. Usually,
measurements showcased at t > 60 s are considered as unreal-
istically uncertain. However, the framework allows a smoothed
estimation even if the disturbances are highly dynamic. If the
disturbances are less dynamic, the smoothed estimations will
adapt in real-time to the actual values.

Fig. 6 compares the various adaptation gains Γi conducted with
the simulation described by (75). One can see that an increase
of Γi leads to faster adaptations, while lower Γi smoothens the
estimations. Furthermore, the synchronization of the observer is
evident. The observer framework benefits from synchronizing
the observed disturbances since each cascaded unit ensures an
equal adaptation speed and smoothing property.

In Fig. 7, the estimations of the observed disturbances are show-
cased if the model parameters are wrongly identified. If the
model parameters have an uncertainty below 10%, the estima-
tions are still relatively accurate. In this case study, the observer
starts getting inaccurate if the model uncertainties exceed 10%,
and the estimations are useless if the identified model parame-
ters are intensively erroneous (30%).

Since the model is described in dependency of the system states,
and these system states are considered to be measured, the

model and measurements are correlated. Hence, the influence
of both model and measurement uncertainties leads to a super-
position. As a result, the framework can deal with them in paral-
lel until the model uncertainties exceed a specific limit depicted
in Fig. 7. These scenarios are separated to avoid confusion and
clearly state the individual capabilities.

5. Conclusion and future work

The proposed disturbance observer framework proved its ca-
pability for approximating the environmental impact of wind,
waves, and sea currents despite using an unreliable model and
highly noisy measurements. The main takeaway from the cur-
rent work can be itemized as follows:

• The cascaded structure of the observer framework allows
adaptive smoothing of noisy measurements. As a result,
the observed disturbances have approximately no noisy
characteristics.

• Model simplifications are avoided, and the observer frame-
work showed that the disturbances can be approximated
relatively accurately despite model uncertainties. How-
ever, the observation capabilities are limited if the model
parameters are highly erroneously identified.

• Under consideration of a discrete, temporal sequence of
measurements, the framework can observe the actual dis-
turbances despite low sampling rates.

• The formulation of the observer’s error dynamics allows
the user a convenient approach for synchronizing the adap-
tive gains. As a result, the framework can adapt its esti-
mations with a synchronized adaptation speed and equal
smoothing properties.

Future work will utilize the proposed disturbance observer
framework for robust control of autonomous surface vessels and
concentrate on improving their situational awareness, e.g., via
online parameter identification, to overcome the issue of false
estimations by using erroneous model parameters and guaran-
teeing trustworthy model dynamics.
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Appendix

Table 1: Parameters of the observer framework

Parameter Value

Initializations

ν̂0 E[ν0]
P0 0.1 · eye(L, L)
ζ0, j zeros(L, 1)

Observer parameters

Γi,1 15
Γi,2 3
Γi,3 0.2

UKF parameters

α 10−3

β 2
κ 0

Noise estimator parameters

w 100
γ1 0.001
γ2 0.005
γ3 0.01

Table 2: Identified parameters of the milliAmpere ferry

Par Value Unit Par Value Unit

m11 2389.657 kg m22 2533.911 kg
m23 62.386 kg·m m32 28.141 kg·m
m33 5068.910 kg·m2 Xu -27.632 kg·s−1

X|u|u -110.064 kg·m−1 Xuuu -13.965 kg·s·m−1

Yv -52.947 kg·s−1 Y|v|v -116.486 kg·m−1

Yvvv -24.313 kg·s·m−1 Y|r|v -1540.383 kg
Yr 24.732 kg·m·s−1 Y|v|r 572.141 kg
Y|r|r -115.457 kg·m Nv 3.5241 kg·m·s−1

N|v|v -0.832 kg N|r|v 336.827 kg·m
Nr -122.860 kg·m2·s−1 N|r|r -874.428 kg·m2

Nrrr 0.000 kg·m2·s N|v|r -121.957 kg·m
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Table 3: Simulation parameters

Par Value Unit

Initializations

η [0, 0, 30]⊤ [m,m,deg]
ν [0, 0, 0]⊤ [ m

s , m
s , deg

s ]

Simulation parameters

∆t 0.01 s
F̄wind 50 N
F̄wave 20 N
F̄current 100 N
γwind 135 deg
γwave 155 deg
γcurrent 270 deg
L 5 m
Ts 15 s

Uncertainty parameters

R1 2 · 10−3I3×3
R2 5 · 10−3I3×3
R3 10−2I3×3
R4 10−1I3×3
ρ1 0.01
ρ2 0.05
ρ3 0.1
ρ4 0.3
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