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We study the far-from-equilibrium dynamics of isolated two-dimensional Heisenberg antiferro-
magnets. We consider spin spiral initial conditions which imprint a position-dependent staggered-
magnetization (or Neel order) in the two-dimensional lattice. Remarkably, we find a long-lived
prethermal regime characterized by self-similar behavior of staggered magnetization fluctuations,
although the system has no long-range order at finite energy and the staggered magnetization does
not couple with conserved charges. Exploiting the separation of length scales introduced by the ini-
tial condition, we derive a simplified analytical model that allow us to compute the spatial-temporal
scaling exponents and power-law distribution of the staggered magnetization fluctuations analyt-
ically, and find excellent agreement with numerical simulations using phase space methods. The
scaling exponents are insensitive to details of the initial condition, in particular, no fine-tuning
of energy is required to trigger the self-similar scaling regime. Compared with recent results on
far-from-equilibrium universality on the Heisenberg ferromagnet, we find quantitatively distinct
spatial-temporal scaling exponents, therefore suggesting that the same model with ferromagnetic
and antiferromagnetic initial conditions can host different universal regimes. Our predictions are
relevant to ultra-cold atoms simulators of Heisenberg magnets and driven antiferromagnetic insula-
tors.

I. INTRODUCTION

Many-body systems out of thermodynamic equilib-
rium can exhibit universal phenomena beyond conven-
tional equilibrium paradigms. Prominent examples in-
clude turbulence[1–3], ageing[4], coarsening[5], surface
growth[6], breakdown of transport[7], and percolation[8].
One common theme in the study of equilibrium and out-
of-equilibrium universality is the emergence of self-similar
behavior: microscopically distinct models can be clas-
sified into universality classes sharing the same scaling
exponents. Unlike systems at thermodynamic equilib-
rium, far-from-equilibrium systems break a symmetry as-
sociated to detailed-balance[9–11] and can therefore ex-
hibit richer behaviors than their equilibrium counterparts
with quantitatively distinct scaling exponents. Such
rich behaviors have been observed in driven-dissipative
systems[12–16] where an external drive pushes the sys-
tem to a non-thermal steady state while dissipation main-
tains energy balance, and in quenches of isolated systems
where the system acts as its own bath[17–30]. These uni-
versal non-equilibrium regimes are now routinely probed
in cold atom experiments[31–35].

Conserved charges and order parameters, both of
which are determined by symmetries and dimensional-
ity of the system, play an important role in determining
the nature of the scaling behavior. In some cases, non-
conventional scaling behavior arises from the non-linear
dynamics of conserved charges in phase space. Examples
include turbulent phenomena in fluids and non-thermal
fixed points of bosonic theories where the self-similar scal-
ing is governed by the cascade of conserved charges in
momentum space[2, 26–29], one-dimensional integrable
systems where Kardar-Parisi-Zhang (KPZ) scaling arises
due to the extensive number of conserved charges[36–
39], and thermalizing systems in low dimensions which

display a breakdown of local hydrodynamics [7, 40, 41]
(see Ref.[42] for an example in kinematically constrained
systems). In other cases, non-conventional scaling is in-
duced by the dynamics of the order parameter. Exam-
ples include coarsening dynamics where self-similar scal-
ing arises due to the growth of ordered domains[5, 43, 44],
or ageing dynamics where self-similar scaling arises due
to quasi-long range correlations close to criticality[30, 45–
47]. In general, quantities which are neither conserved
nor couple with an order parameter are expected to relax
in microscopic times and exhibit featureles fluctuations.

Here we study the prethermal dynamics of isolated
Heisenberg antiferromagnets and show that quantities
which are neither conserved nor exhibit ordering at fi-
nite temperature can still exhibit slow relaxation and
universal prethermal dynamics when initialized from cer-
tain excited states. In particular, using spin spiral ex-
cited states with inhomogeneous Neel order (see Fig.1),
we find that large and slowly-relaxing staggered magne-
tization fluctuations persist during a long-lived prether-
mal regime although the system exhibits no symmetry-
breaking phase transition at finite temperature. In this
prethermal regime, the staggered magnetization rapidly
relaxes to zero but staggered magnetization fluctuations
exhibit universal scaling given by:

Ck(t) = 〈M−k(t)Mk(t)〉 = tαf(tβ |k|), (1)

with β ≈ 0.5 and α ≈ 1. In Eq.(1), the universal function
f also exhibits scaling f(x) ∼ 1/|x|ν for a broad range of
momenta, with ν ≈ 2.3. The scaling exponents (α, β, ν)
are universal in the sense that they are insensitive to
details of the Hamiltonian or the initial condition. In
particular, we emphasize that no fine-tuning of energy is
needed. Using a continuous non-linear model describing
long-wavelength spin modes combined with a kinetic the-
ory of interacting quasiparticles at shorter wavelengths,
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we are able to derive analytically the three scaling expo-
nents (α, β, ν). These analytic values are shown to agree
remarkably well with numerical simulations using phase
space methods.

We find that the origin of the prethermal scaling is
associated to the existence of spin modes whose gap-
less nature is protected by the global SU(2) symme-
try. We show this by computing the unequal time spin-
spin correlation function[48], which exhibits linearly-
dispersing gapless modes even though the prethermal
state is far from the staggered ground state. A cen-
tral insight in understanding the prethermal scaling in
two-dimensional systems with SU(2) symmetry was dis-
cussed in recent works by one of us in the context of
Heisenberg ferromagnets[49, 50]. In the ferromagnetic
case, the two-dimensional nature of the system bestows
total magnetization fluctuations a long-range character.
In addition, the combination of conserved magnetization
and the constrained interactions resulting from the SU(2)
symmetry gives rise to a universality class distinct from
previously-studied instances of scaling. Similarly to the
ferromagnetic case, the two-dimensional nature of the an-
tiferromagnetic system can lead to quasi-long-range cor-
relations of the staggered magnetization. However, un-
like the ferromagnet, the staggered magnetization is not
conserved. In spite of its non-conserved nature, we still
find a parametrically long time window (controlled by
non-universal parameters that depend on Hamiltonian
details and the initial conditions) in which the system
exhibits universal prethermal scaling.

As discussed in more detail below, we find that the
Heisenberg antiferromagnet belongs to a different non-
equilibrium universality class than previously-studied
models with similar features. Compared to the Heisen-
berg ferromagnet, we find clearly distinct scaling ex-
ponents in spite of the underlying Hamiltonian being
the same up to an overall sign. We attribute such dif-
ferences to the different dispersion of emergent gapless
modes and the different effective interactions between
such modes, see Sec. III. We also emphasize that the scal-
ing regime discussed in the present work is intrinsically
different from the predictions of model G in the Halperin-
Hohenberg classification[51]: while the latter describes
universal behaviour close to thermodynamic equilibrium,
here we consider a dynamical regime where equilibrium
properties, such as the fluctuation-dissipation relation,
are violated. In comparison with O(n) theories in d = 2,
we note that these also exhibit linearly-dispersing quasi-
particles and long-range order at T = 0[52]. We find
that both O(n) theories and Heisenberg antiferromag-
nets exhibit similar (within numerical uncertainty) non-
equilibrium spatial-temporal scaling exponents β ≈ 0.5
and α ≈ 1 while showing clearly distinct values of the uni-
versal scaling exponent ν. The same conclusion applies
when comparing non-relativistic bosonic theories and an-
tiferromagnets (we note that relativistic O(N) theories
and non-relativistic U(1) theories were shown to exhibit
the same α = dβ and β ≈ 1/2 exponents[53]). We find

CNL
KT

FIG. 1. (a) Schematics of the staggered spin spiral initial
state, see Eq.(3). The wavevector q = (qx, 0) of the initial
conditions imprints a lengthscale ξ(0) = 1/qx in the sys-
tem at time t = 0. (b) We compute the scaling behavior of
ξ(t) ∼ tβ using a continuous non-linear (CNL) theory describ-
ing staggered magnetization fluctuations at small wavevec-
tors k . 1/ξ, and we compute the power law distribution
〈M−kMk〉 ∼ 1/kν using a kinetic theory (KT) of magnons at
wavevectors k & 1/ξ.

that the difference in the exponent ν is related to the soft
nature of the interaction between spin modes. We also
note that the universal scaling in O(n) and U(n) theories
is induced by gapped modes, whereas in antiferromagnets
we observe gapless spin modes irrespective of the energy
of the initial conditions.

Our predictions are relevant in a variety of experi-
mental scenarios, both in condensed matter and cold
atomic platforms. First, in recent years there has been
remarkable advances in our experimental capabilities
to probe the dynamics of isolated spin systems in low
dimensions[54–56]. Current experiments are now able
to prepare simple product states of excited spin spirals
and tune the dimensionality and exchange interactions
to probe the dynamics under different symmetries. Such
experiments are now able to coherently evolve the sys-
tem over unprecedentedly long timescales on the order
of t ∼ 50~/J [55] and, therefore, access the long-lived
prethermal regime discussed in the present work. On
a different front, experiments in solid-state systems are
now able to drive low-dimensional ferromagnetic and an-
tiferromagnetic insulators and probe magnetization fluc-
tuations with energy resolution using local probes[57–61],
such as nitrogen-vacancy centers in diamond. Such ex-
periments are capable of directly measuring the power-
law distribution in Eq.(1) as well as the relaxation dy-
namics of highly excited states.

The outline of the manuscript is as follows: In Sec. II,
we describe the physical model and the intitial condi-
tions. In Sec. III, we present a simple statistical mechan-
ics model used to derive the scaling exponents analyt-
ically. In Sec. IV, we use phase space methods to nu-
merically evaluate the scaling exponents. In Sec. V, we
discuss the connections between our work and previously-
studied instances of scaling in related models, and also
present the conclusions. In the appendices we provide
additional details about asymptotic functions used in
Sec. III (Appendix A) and details about the statistical
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analysis used to analyze the numerical data (Appendix
B).

II. MICROSCOPIC MODEL

We consider the Heisenberg antiferromagnet on a two-
dimensional square lattice with nearest neighbour inter-
actions:

H = J
∑
〈ij〉

Sxi S
x
j + Syi S

y
j + Szi S

z
j . (2)

Here Si = (Sxi , S
y
i , S

z
i ) are spin-S operators, 〈ij〉 denotes

summation over nearest neighbor spins i and j, and J
is a positive constant. For the purposes of our work, in-
cluding additional next-nearest neighbour exchange does
not affect the universal aspects of the dynamics, so long
as the next-nearest-neighbor exchange does not induce
frustration. As such, we restrict our discussion to near-
est neighbour coupling only in order to keep the model
as simple as possible. However, we emphasize that the
SU(2) symmetry is essential to our discussion and break-
ing it will lead to qualitatively distinct results, as we
discuss in more detail below.

For a large spin number S and zero temperature, the
Heisenberg antiferromagent exhibits a broken-symmetry
ground state with a non-zero staggered magnetization (or
Neel order). In this broken-symmetry state, the stag-

gered magnetization Ma =
∑
i(−1)r

x
i +r

y
i Sai has finite

expectation value, with ri = (rxi , r
y
i ) the lattice coor-

dinate of spin i (expressed in units of lattice constant,
thus, rx,yi are integer numbers). Unlike the ferromag-
netic case (J < 0), the antiferromagnetic ground state
is not classical and has zero point motion due to quan-
tum fluctuations, i.e., 〈Ma〉T=0 < NS. Interestingly, the
broken-symmetry ground state is believed to be present
even in the S = 1/2 limit[62, 63]. For this reason, we
expect that the universal aspects of dynamics discussed
here will be independent of the spin number S, although
part of our analysis relies on the classical limit S � 1.

We consider an antiferromagnetic spin spiral product
state as initial condition:

〈S±i 〉 = S(−1)r
x
i +r

y
i sin θe±iq·ri ,

〈Szi 〉 = S(−1)r
x
i +r

y
i cos θ,

(3)

where S±i = Sxi ± Syi . The initial condition (3) im-
prints a lengthscale ξ = 1/|q| in which spins have Neel
order (although there is no order globally) while restrict-
ing dynamics in the zero magnetization sector Stot =
0. Dynamics of spin systems under this type of ini-
tial conditions are now routinely accessed in cold atomic
platforms[54, 55, 64, 65].

III. ANALYTICAL DERIVATION OF THE
NON-EQUILIBRIUM SCALING EXPONENTS

In this section, we proceed to construct a simpli-
fied non-equilibrium statistical mechanics model that
captures the universal aspects of prethermalization in
Heisenberg antiferromagnets, namely, the asymptotic
form of the function f(x) ∼ 1/xν and the numerical
values of (α, β) in Eq.(1). The essence of the approach
follows closely that used in Refs.[50, 66] and relies on
exploiting the lengthscale separation of spin modes in-
troduced by the initial condition, i.e., 1 � ξ � L. The
value of ξ, which is time-dependent, defines a correlation
length for staggered magnetization fluctuations. There
are two types of excitations that need to be incorporated
into our description. First, the initial excited state will
trigger spatial fluctuations of Neel order which govern the
dynamics of the staggered magnetization at wavevectors
|k| . 1/ξ. Secondly, large-wavevector |k| & 1/ξ excita-
tions will mediate the transfer of energy and magnetiza-
tion towards UV degrees of freedom. Whereas the former
is described with a classical continuum theory, the latter
is described using kinetic theory for magnons within the
wave turbulence formalism.

Following Ref.[50, 66] we proceed in two steps. For
wavevectors |k| & 1/ξ, we study the dynamics of mag-
netization fluctuations by assuming that the staggered
magnetization is uniform in space: large wavevector
magnons |k| & 1/ξ effectively see a uniform magneti-
zation background within the collision timescale. As
such, in Sec. III A we pin the antiferromagnetic order
parameter and derive the effective kinetic theory for
magnons. Using the wave turbulence formalism, we de-
rive the power law exponent ν in Sec. III B. In Sec. III C,
we study dynamics of the order parameter within a con-
tinuum theory and determine the relevant non-linearities
that govern the resulting spatial-temporal scaling of mag-
netization fluctuations for wavevectors |k| . 1/ξ. From
a simple scaling analysis that employs the equations of
motion and spin conservation laws we derive the scaling
exponents (α, β) that govern the growth of ξ ∼ tβ .

A. Dynamics of short-wavelengths

In the presence of a uniform staggered magnetization,
it is convenient to write the spin operators in terms of
bosonic operators. Following Ref.[67], we employ here
the Dyson-Maleev transformation. Because of the an-
tiferromagnetic nature of the ground state, we use two
flavors of bosons to describe spins in the A and B sub-
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lattices (see Fig.1):

Szi = S − a†iai, (4a)

S+
i =

√
2S

(
ai −

1

2S
a†iaiai

)
, (4b)

S−i =
√

2Sa†i , (4c)

Szj = −S + b†i bi, (4d)

S+
j =

√
2S

(
bi −

1

2S
b†i bibi

)
, (4e)

S−j =
√

2Sb†i . (4f)

Here S±i denotes S±i = Sxi ±iS
y
i , ai and bj are bosonic an-

nihilation operators, and we use i (j) to label sites in the
A (B) sublattice. We note that the Dyson-Maleev trans-
formation produces the correct spin commutation rela-
tions but violates the property (S−i )† = S+

i . In this case,
the spin Hamiltonian becomes non-Hermitian. In con-
trast, the Holstein-Primakoff transformation—another
commonly used transormation for spin systems[68]—
retains Hermiticity but generates an infinite series of
interaction vertices. In spite of the non-hermiticity
property, the Dyson-Maleev transformation has proven
to be more convenient for studying spin-wave interac-
tion in ferromagnets and antiferromagnets: it reproduces
all the perturbative results obtained with the Holstein-
Primakoff transformation in a much faster and compact
way[67, 69, 70].

Inserting Eqs.(4a)-(4f) into Eq. (2) and separating
terms order by order, we find H = −NJS2 +H0 +Hint,
with

H0 = JS
∑
〈ij〉

(
a†iai + b†jbj + aibj + b†ja

†
i

)
, (5a)

Hint = −J
2

∑
〈ij〉

(
a†iaiaibj + a†i b

†
jb
†
jbj + 2a†iaib

†
jbj

)
. (5b)

Note that interactions are O(1/S) at small boson den-

sities and vanish in the classical limit S → ∞. Going
into Fourier space and defining ak = 1√

N

∑
i e
−ik·riai,

bk = 1√
N

∑
i e
−ik·rj bj , the quadratic component of the

Hamiltonian is given by

H0 = JzS
∑
k

(a†kak + b†kbk + γka
†
kb
†
−k + γkakb−k). (6)

Here γk denotes the phase factor γk = 1
z

∑
` e
ik·`,

where ` denotes the nearest neighbor lattice vectors
` = {(±1, 0), (0,±1)}, and z is the coordination number
of each spin (z = 4 in a two-dimensional square lattice).
The quartic component of the Hamiltonian is given by

Hint = − Jz
2N

∑
k1k2k3k4

δ(ki − kf)
(
γk4

a†k1
a−k2

ak3
bk4

+γk1a
†
k1
b†k2

b†−k3
bk4 + 2γk3−k2a

†
k1
b†k2

bk3ak4

)
,

with ki = k1 + k2 and kf = k3 + k4.
We now proceed to diagonalize H0 using the Bogoli-

ubov transformation

ak = ukαk − vkβ†−k, (7a)

b†−k = −vkαk + ukβ
†
−k, (7b)

where αk and βk are bosonic annihilation operators
(bosonic commutation requires u2k − v2k = 1). Replac-
ing Eq.(7) into Eq.(6) leads to

H0 =
∑
k

εk(α†kαk + β†kβk), εk = zJS
√

1− γk, (8)

and the factors uk and vk are given by

uk =

√
1 + εk

2εk
, vk =

√
1− εk

2εk
. (9)

Using the Bogoliubov transformation on the quartic com-
ponents of H results in

Hint = − Jz
2N

∑
k1k2k3k4

δ(ki − kf)uk1
uk2

uk3
uk4

(Φ
(1)
k1k2k3k4

α†k1
α†k2

αk3
αk4

+ 2Φ
(2)
k1k2k3k4

α†k1
β−k2

αk3
αk4

+ 2Φ
(3)
k1k2k3k4

α†k1
α†k2

αk3
β†−k4

+ 4Φ
(4)
k1k2k3k4

α†k1
β−k2

αk3
β†−k4

+ 2Φ
(5)
k1k2k3k4

β−k1
β−k2

αk3
β†−k4

+ 2Φ
(6)
k1k2k3k4

α†k1
β−k2

β†−k3
β†−k4

+ Φ
(7)
k1k2k3k4

α†k1
α†k2

β†−k3
β†−k4

+ Φ
(8)
k1k2k3k4

β−k1
β−k2

αk3
αk4

+ Φ
(9)
k1k2k3k4

β−k1
β−k2

β†−k3
β†−k4

). (10)

where the phase factors Φ
(n)
k1k2k3k4

are explicitly written
in Appendix A.

We now analyze Eqs.(6) and (10) in the long wave-

length limit in order to determine the power laws char-
acterizing the quasiparticle dispersion and their interac-
tions. From Eq.(6) one finds the well-known dispersion
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of small-momenta magnons given by εk ∝ |k|. A second
useful relation that results from the linearized analysis is
the ratio between the amplitude of the staggered magne-
tization and the total magnetization. This relation can
be obtained directly from the Bogoliubov eigenvectors
(uk, vk) in Eq.(9). Focusing on the staggered and total
magnetization produced by the αk mode, we find that
the staggered magnetization scales as mk ≈ ak − bk ≈
(uk + vk)αk, whereas the total magnetization scales as
sk = (ak + bk) ≈ (uk − vk)αk. Using the small wavevec-
tor expansion of Eq.(9), uk±vk ≈ 1√

2εk

(
1± 1 + εk∓εk

2

)
,

and εk ∝ |k| leads to sk ≈ |k|mk � mk, thus the total
magnetization fluctuations are O(|k|) smaller that the
staggered magnetization fluctuations and vanish in the
|k| → 0 limit, as expected for an antiferromagnet.

We now proceed to analyze the scaling of Hint in
Eq.(10) in the small wavevector limit. A detailed analysis
of magnon relaxation in different energy ranges was done
in Ref. [67]. Of primary interest in this work are on-shell
processes describing particle-conserving collision between
magnons with wavevectors |k| & 1/ξ. Off-resonant pro-
cesses and processes which do not preserve particle num-
ber, both of which we will neglect, were shown to give
subleading effects in the relaxation dynamics at small
wavevectors[67]. Thus, the relevant terms in Eq.(10) are
those containing the phase factors Φ(1), Φ(4), and Φ(9),
with Φ(1) = Φ(9). For small wavevectors, the product
uk1

uk2
uk3

uk4
scales as uk1

uk2
uk3

uk4
∼ 1√

εk1
εk2

εk3
εk4
∼

1/k2. In addition, the asymptotic form of Φ(1,9) is given

by Φ
(1,9)
k1k2k3k4

= 2εk3εk4(k̂3 · k̂4 − 1) and the asymptotic

form of Φ(4) is given by Φ
(4)
k1k2k3k4

= 2εk3
εk4

(k̂3 · k̂4 + 1),

see Appendix A, and they all scale as Φ
(n)
k1k2k3k4

∼ k2 in
the long wavelength limit. As such, the matrix element
for the two-body interaction (k1,k2)→ (k3,k4) scales as
V (λk1, λk2, λk3, λk4) = λ0V (k1,k2,k3,k4).

As a side remark, we note that if SU(2) symmetry is
broken, for example by adding anisotropic exchange, then
the scaling with momentum of the interactions changes

altogether. In particular, the phase factors Φ
(n)
k1k2k3k4

become wavevector-independent and this would change
the dynamical scaling laws characterizing the prether-
mal regime. In contrast, adding next-nearest neighbour
exchange terms which preserve SU(2) symmetry will not
alter the scaling behavior described in this work.

B. Scaling of the envelope function f

We now calculate the power law scaling of the func-
tion f(x) ∼ 1/xν using wave turbulence theory. Wave
turbulence [2, 3] provides a framework for computing
the scaling of two-point correlation functions in far-from-
equilibrium regimes when the system exhibits a weak
coupling limit. In our case, the weak coupling limit is
controlled by the parameter 1/S, see Eq.(5). The start-
ing point in wave turbulence theory is to assume incoher-

ent dynamics of the bosonic degrees of freedom αk and
βk, i.e., 〈αk〉 = 〈βk〉 = 0, which is equivalent to assum-
ing that transverse magnetization fluctuations (relative
to the direction of the Neel order) are incoherent. This
approximation is only valid when |k| & 1/ξ; in the regime
|k| . 1/ξ, instead, the Neel order will change its orien-
tation, thus leading to finite expectation values for 〈αk〉
and 〈βk〉 (this regime will be analyzed in the next sec-
tion). Under this approximation, each flavor of magnons

is characterized by its occupation number 〈α†kαk〉 = nα,k
and 〈β†kβk〉 = nβ,k. The standard procedure in wave tur-
bulence consists of: (i) deriving a kinetic equation from
Eqs.(6) and (10) describing the time evolution of nk, (ii)
proposing a solution of the form nk ∝ |k|−ν , and (iii)
finding ν that gives rise to a steady-state solution (here
we assume that nk,α = nk,β = nk).

Following the discussion in the previous section, we
employ an effective theory describing magnon excita-
tions that only includes on-shell terms which preserve
both particle number and energy. The exponent ν can
only depend on the power γ of the quasiparticle dis-
persion εk ∝ |k|γ , the power δ of the interaction,
V (λk1, λk2, λk3, λk4) = λδV (k1,k2,k3,k4), and the sys-
tem’s dimension d. Based on the results of the previous
section, we have γ = 2 and δ = 0. As shown in Refs.[2, 3],
there are two non-thermal solutions with scaling expo-
nents

νN = d+
2δ − γ

3
, νE = d+

2δ

3
. (11)

The solution with scaling exponent νN is associated to a
flux of quasiparticles cascading towards small momenta
(inverse cascade), whereas the solution with scaling ex-
ponent νE = 2 is associated to a flux of energy cas-
cading towards large momenta (direct cascade). The
wavevector range where particle number is concentrated,
kN = 1

N

∫
dk

(2π)2 |k|nk, is where the quasiparticle cascade

occurs, whereas the wavevector range where energy is
concentrated, kE = 1

E

∫
dk

(2π)2 |k|nkεk, is where the en-

ergy cascade occurs. Because kN < kE , the inverse cas-
cade characterizes scaling in the small wavevector regime
whereas the energy cascade characterizes scaling at larger
wavevectors. Using the values d, δ, γ specific to our sys-
tem, we find νN = 4/3 and νE = 2.

Finally, we note that the scaling exponents νN and νE
characterize the distribution of the occupation numbers
nα,k and nβ,k of the bosonic degrees of freedom rather
than the spin degrees of freedom. Thus, the last step in
our calculation is to transform back from bosonic opera-
tors into spin operators. We note that the spin operators
are related to (αk, βk) through a Bogoliubov transforma-
tion, see Eq.(7). As such, the scaling with momentum of
the spin-spin correlation function 〈Ma

−kM
a
k〉 is given by

〈Ma
−kM

a
k〉 ∼ nk/k ∼ 1/kνN,E+1, thus ν = νN,E + 1.

We comment on the validity of the exponents νN and
νE . In a strict sense, we need to question the valid-
ity of using a kinetic theory involving only on-resonant
and particle conserving terms while neglecting all other
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processes. The validity of these approximations will be
confirmed numerically in the next section. However,
we emphasize that Ref. [67] made a strong case to jus-
tify neglecting such processes for the smallest momenta
magnons, which is the wavevector range described by
the exponent νN . Instead, for larger-momenta magnons,
which is the wavevector range described by the expo-
nent νE , off-resonant processes and processes which do
not preserve particle number become incrementally more
relevant and the kinetic approximation begins to break
down. Indeed, in our numerics below we find that the
scaling exponent of f(x) ∼ 1/xν matches remarkably
well with ν = νN + 1 but we do not observe a second
wavevector range with exponent ν = νE + 1, which is
consistent with the picture presented in Ref.[67].

C. Spatio-temporal scaling exponents

In this section, we focus on the dynamics of magneti-
zation fluctuations with wavevectors |k| . 1/ξ. We use
the microscopic equations of motion in the continuum
limit and analyze the role of leading order non-linearities
to phenomenologically predict the exponents α and β
governing the growth of ξ(t). We define two spin fields
a = 〈Si∈A〉 and b = 〈Sj∈B〉 that characterize the av-
erage orientation of the spin S in sublattice A and B,
respectively. We also define the staggered magnetization
m = a − b and the total magnetization s = a + b. As-
suming that the fields a and b vary smoothly in space,
we can expand the microscopic equations of motion for
spins, ∂tSi =

∑
j Si × Sj to leading order in gradients:

∂ta = a× (zb +∇2b), (12)

∂tb = b× (za +∇2a), (13)

where time is expressed in units of 1/J , and we approx-
imated the sum over neighbouring spins with the lapla-
cian,

∑
` ax+` ≈ zbx + ∇2bx and

∑
` ax+` ≈ zax +

∇2ax. In terms of m and s, we find

∂ts =
1

2
s×∇2s− 1

2
m×∇2m, (14a)

∂tm =
z

2
m× s− 1

2
s×∇2m +

1

2
m×∇2s. (14b)

To find the values of (α, β) in Eq.(1), following Ref.[50]
we look at Eq.(14b) and balance the time derivative of
m with the leading nonlinearity, which is given by the
first term on the right-hand-side:

∂tm
a
k ≈

z

2
εabc

∑
p

mb
p−ks

c
p, (15)

with εabc the Levi-Civita symbol. The second approxi-
mation that we use is that sak ∼ |k|ma

k, which is justi-
fied from the linearized analysis of spin waves discussed
above which showed that the total magnetization is O(k)
smaller than the staggered magnetization. The final ap-
proximation that we use is to assume that all modes with

wavevector |k| . 1/ξ are macroscopic and democratically
occupied for all spin orientations. As such, if we identify
ξ ∼ tβ in Eq.(1) and take f ∼ O(1) at small wavevec-
tors, then ma

k scales as ma
k ∼ ξα/2β and sak scales as

sak ∼ ξα/2β−1. Using this scaling form in the left-hand-

side of Eq.(15), we find ∂tm
a
k ∼ ξ(α−2)/2β , where we used

ξ̇ = ξ1−1/β . The right-hand side of Eq.(15), instead,
yields

∑
km

b
p−ks

c
p ∼ ξα/β−d−1, where we approximated∑

k = A
∫

ddk
(2π)d

∝ ξ−d and A is the total area of the

system. Equating both sides of Eq.(15) such that they
both yield the same temporal scaling for ξ(t) results in

2(d+ 1)β = α+ 2. (16)

The second relation between α and β comes from the
conservation of spin length, 1

4

∫
dx(m + s)2 + (m −

s)2 = constant. Using the scaling ma
k ∼ ξα/2β and

neglecting the contribution of the total magnetization
|s| �m, we find the second condition

α = dβ. (17)

Combining Eq.(16) with (17) in d = 2 yields

α = 1, β = 1/2. (18)

We note that a similar analysis in the ferromagnetic case
resulted in quantitatively different exponents α = 2/3
and β = 1/3[50], indicating that the Heisenberg fer-
romagnet and antiferromagnet belong to different non-
equilibrium universality classes. In particular, the same
analysis leading to Eq.(16) resulted in the condition
2(d+ 2)β = α+ 2.

IV. NUMERICAL SIMULATIONS THROUGH
PHASE SPACE METHODS

We compute the real time dynamics of quantum spins
using the Truncated Wigner Approximation (TWA)[71–
74]. This method incorporates quantum fluctuations by
adding quantum noise in the initial conditions and evolv-
ing the classical trajectories using the classical equations
of motion for spins ∂tSi = J

∑
j Si × Sj . To sample the

initial conditions in Eq.(3), we use a Gaussian approxi-
mation for the Wigner function given by

W (S⊥i , S
z
i ) =

2

πS
e
−(S⊥i )2

S δ(Szi − S), (19)

which reproduces the correct first and second moment
of the Wigner distribution[71]. In Eq.(19), we assumed
without loss of generality that the initial spin is pointing
in the +z direction.

Figure 2 shows the time evolution of the equal-time
spin-spin correlation function for the staggered magneti-
zation Ck(t) =

∑
a=x,y,z 〈Ma

k(t)Ma
−k(t)〉 for a system of

linear size L = 500, and initial conditions with wavevec-
tor qx = 0.5, qy = 0, and θ = π/2. At t = 0, only a single
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mode with wavevector k = (qx, 0) is macroscopically oc-
cupied. Within a timescale on the order of the inverse
energy (per spin), the macroscopic state is depleted and a
power law distribution of the two-point correlation func-
tion develops. In this prethermal regime, we find that
the values

α = 1.0± 0.1, β = 0.48± 0.05, (20)

best fit the numerical data in a sufficiently long time
window, see details in Appendix B. These values agree
with the analytical predictions of the previous section
using scaling arguments.

We now proceed to analyze the power law scaling of the
function f in Eq.(1), see dashed lines in Fig.2(b). Inter-
estingly, we observe only one power law characterizing
the tails of the magnetization fluctuation distribution,
contrary to the predictions of wave turbulence found in
Sec. III B which suggested the existence of two exponents
νN and νE . In fitting the power law exponent of the
distribution we find that

ν = 2.4± 0.1, (21)

which agrees with the exponent ν = νN + 1 = 7/3 ≈
2.33 associated to the inverse particle cascade. This
result is in agreement with the conclusions of Ref.[67]
which argues that off-resonant processes and particle-
non-conserving can be neglected at small momenta, thus
the effective theory (6)-(10) considering only particle con-
serving processes is a good approximation. For larger
wavevectors (or energies), however, it is likely that off-
resonant processes play a more prominent role and, there-
fore, the energy cascade exponent νE is not present.

We tested the robustness of our results using ini-
tial conditions with different values of θ, ranging from
π
6 < θ < π

2 and different values of the wavevectors qx,
and we consistently see the same scaling exponents within
numerical uncertainty. Similarly to the Heisenberg ferro-
magnet, this suggests that the far-from-equilibrium dy-
namics of the isotropic Heisenberg antiferromagnet is
governed by a single non-thermal fixed point with the
exponents in (20) and (21). In contrast, U(1) theories
were shown to exhibit multiple non-thermal fixed points,
each of which can be activated by different initial condi-
tions.

Whereas the groundstate of the Heisenberg antifer-
romagnet exhibits gapless low-energy excitations, it is
unclear whether the highly excited initial condition in
Eq.(3) leads to a dynamically-generated gap, such as
those observed in O(n) and U(n) theories, or whether
the spin modes in the self-similar region remain gap-
less. In a recent work[50], it was shown that the global
SU(2) symmetry of the Heisenberg ferromagnet precludes
the opening of a dynamical gap during evolution, lead-
ing to a long-lived prethermal regime governed by gap-
less modes with dispersion ωk ∼ |k|2. We numeri-
cally checked the nature of the excitations at the lowest
wavevectors using the unequal-time correlation function

(c)

(a)

(b)

time

FIG. 2. (a) Evolution of the spin-spin correlation function for
the staggered magnetization, Ck(t) =

∑
a〈M

a
kM

a
−k〉. Shown

with dotted lines is the correlation function for the initial
state, with dashed-dotted lines is the correlation function
prior to the self-similar regime, and with solid lines is the
correlation function in the self-similar scaling regime. Lighter
shade of color indicate increasing times. (b) Re-scaled spin-
spin correlation function using Eq.(1), with α = 1 and β =

0.5. The dashed line indicates the power law scaling ∼ x−7/3.
(c) Unequal time spin-spin correlation function exhibiting a
linearly-dispersing gapless modes at small momenta. Simula-
tion parameters: L = 500, qx = 0.5, θ = π

2
, S = 10.

Fxx(k, ω) =
∫
dteiωt〈 12{M

x
−k(t0+t)Mx

k (t0)}〉 for the stag-
gered magnetization ({A,B} = AB +BA), see Fig.2(c).
Interestingly, we observe that the self-similar regime is
governed by gapless modes at all times, even when the
intermediate-time prethermal state is far from the ground
state with uniform Neel order. The dispersion of the gap-
less mode is consistent with ωk ∼ k, different from the
ωk ∼ k2 dispersion observed in the Heisenberg ferromag-
net.

V. DISCUSSION AND SUMMARY

The scaling regime discussed in the present work is
intrinsically different from previously-studied instances
of scaling in several important ways. Compared
to the universal prethermal dynamics of Heisenberg
ferromagnets[50], we find clearly distinct exponents orig-
inating from the existence of gapless modes with lin-
ear dispersion rather than modes with quadratic disper-
sion. In addition, unlike the ferromagnetic case, anti-
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ferromagnetic fluctuations are not coupled to any con-
served charge. As such, the long-lived prethermal regime
discussed here is cut off by some parametrically long
timescale controlled by processes that give rise to stag-
gered magnetization decay, see particle non-conserving
terms in Eq. (10).

Heisenberg antiferromagnets and O(n) theories share
many similarities at thermodynamic equilibrium and
low temperatures, in particular, both exhibit linearly-
dispersing quasiparticles and a symmetry-breaking phase
transition at T = 0 (T > 0) in dimension d = 2 (d > 2).
We also find that they share some similarities in far-
from-equilibrium regimes. For example, several works
found the same scaling exponents α = dβ and β ≈ 1/2 in
O(n) theories regardless of the value of n[48, 53]. How-
ever, in O(n) theories quenched to (or across) a critical
point [21, 24, 30] self-similarity occurs only if parameters
and initial conditions are fine-tuned so as to guarantee
a vanishing late-time effective gap, unlike the antiferro-
magnetic case where we observe scaling without any fine-
tuning of the initial conditions. In addition, we observe
quantitative differences in the universal scaling function
f between both theories, reinforcing the idea that both
models do not belong to the same non-equilibrium uni-
versality class.

Compared to non-thermal fixed points in bosonic U(1)
theories, we note that models with U(1) symmetry in
two dimensions can exhibit topological defects (vortices)
which can qualitatively alter the far-from-equilibrium
behavior and give rise to different self-similar scaling
regimes[75, 76]. Even in the absence of vortices, the ef-
fective theory for the antiferromagnet (see Sec. III) dif-
fers from the U(1) bosonic theory both at the level of
quasiparticle dispersion and their effective interactions,
suggesting that both cannot belong to the same uni-
versality class. In certain cases, an effective gap has
been observed to be dynamically generated by fluctua-
tions [48, 53]. This effective gap has been shown to lead
to a modified non-relativistic effective theory at low mo-
menta and share the same scaling exponents α = dβ and
β ≈ 1/2 characterizing O(n) theories and Heisenberg an-
tiferromagnets. However, at the level of the universal
scaling function f in Eq.(1) we find a clearly distinct ex-
ponent ν which sets the dynamics of antiferromagnets
and U(1) theories apart.

In summary, we studied the universal far-from-
equilibrium dynamics of two-dimensional Heisenberg an-
tiferromagnets. We showed that, if initialized in a state
with inhomogeneous Neel order, magnetization fluctua-
tions will exhibit a long-lived prethermal regime with uni-
versal behavior. This shows that quantities which are nei-
ther conserved nor exhibit long range order can still ex-
hibit self-similiar behavior in a parametrically long time
window. The scaling exponents are shown to be remark-
ably robust to details of the initial conditions—in partic-
ular, no fine-tuning of the energy is necessary. Our work
also highlights the important role played by dimension-
ality and symmetry in giving rise to gapless spin modes

with long range character. Combined with a recent work
by one of us on Heisenberg ferromagnets[50], we have
now fully characterized the non-thermal fixed points of
the Heisenberg model both for ferromagnetic and anti-
ferromagnetic exchange. The scaling regime discussed
in this work is readily accessible in ongoing experiments
in cold atomic gases which can probe these regimes in
fully-tunable spin systems[55, 77, 78], including tunable
symmetries and spatial dimension.
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Appendix A: Interaction coefficients within the
Dyson-Maleev formalism

Here we reproduce the phase factor coefficients of
the interactions in the Heisenberg Hamiltonian [Eq.(10)]
within the Dyson-Maleev transformation [4a] using the
notation in Ref.[67]. In particular, the phase factors Φ(n)

appearing in the interactions of the effective Hamiltonian
(10) are given by

Φ
(1,9)
k1k2k3k4

= (γk1−k4xk1xk4 + γk1−k3xk1xk3

+γk2−k4
xk2

xk4
+ γk2−k3

xk2
xk3
− γk1

xk2
xk3

xk4

−γk2
xk1

xk3
xk4
− γk2

xk2
− γk1

xk1
), (A1a)

Φ
(2,4)
k1k2k3k4

= (−γk2−k4
xk4
− γk2−k3

xk3

−γk1−k4
xk1

xk2
xk4
− γk1−k3

xk1
xk2

xk3
+ γk1

xk3
xk4

+γk2
xk1

xk2
xk3

xk4
+ γk2

+ γk1
xk1

xk2
), (A1b)

Φ
(3)
k1k2k3k4

= Φ
(5)
k1k2k3k4

= (−γk2−k4
xk2
− γk1−k4

xk1

−γk2−k4xk1xk3xk4 − γk2−k3xk2xk3xk4 + γk1xk2xk3

+γk2
xk1

xk3
+ γk2

xk2
xk4

+ γk1
xk1

xk4
), (A1c)

Φ
(4)
k1k2k3k4

= (γk2−k4
+ γk1−k4

xk1
xk2

+ γk1−k4
xk3

xk4

+γk1−k3xk1xk2xk3xk4 − γk1xk3 − γk2xk1xk2xk3)

−γk2
xk4
− γk1

xk1
xk2

xk4
, (A1d)

Φ
(7,8)
k1k2k3k4

= (γk2−k4
xk2

xk3
+ γk2−k3

xk2
xk4

+γk2−k3xk1xk3 + γk2−k3xk1xk3 + γk2−k4xk1xk4

−γk1
xk1

xk3
xk4
− γk2

xk2
xk3

xk4
− γk1

xk2
− γk2

xk1
).

(A1e)
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In these expressions, the parameter γk is given by γk =
1
z

∑
` e
ik·` defined in the main text, where ` is the nearest

neighbour lattice vectors in two-dimensions. The param-
eter xk is the ratio xk = uk/vk =

√
(1− εk)/(1 + εk),

with εk =
√

1− γ2k.
Of primary interest are the expressions in Eq.(A1)

in the long wavelength limit |k| → 0, particularly for
the factors Φ(1) = Φ(9), and Φ(4) which contribute to
particle-conserving scattering processes in the kinetic
theory. We first note the following identities which hold
in the asymptotic limit |k| → 0:

εk ≈
1

2
|k|, (A2a)

γk ≈ 1− 1

2
ε2k (A2b)

xk ≈ 1− εk. (A2c)

Replacing these asymptotic expressions into Eq.(A1) and
taking k1 +k2 = k3 +k4 due to momentum conservation
leads to

Φ
(1,9)
k1k2k3k4

=
1

2
k3 · k4 − 2εk3εk4 , (A3a)

Φ
(4)
k1k2k3k4

=
1

2
k3 · k4 + 2εk3

εk4
, (A3b)

to leading order in momentum k. These relations can
also be written as:

1

2
Φ

(1,9)
k1k2k3k4

=εk3
εk4

(k̂3 · k̂4 − 1), (A4a)

1

2
Φ

(4)
k1k2k3k4

=εk3
εk4

(k̂3 · k̂4 + 1).

Importantly, these phase factors accounting for particle-
conserving processes scale as Φ ∼ k2, which is used in
the derivation of ν in Eq.(21) of the main text.

Appendix B: Statistical analysis of numerical data

We obtain the scaling exponents α and β that best
fit the numerical data by minimizing the error function

E(α, β) that quantifies the collapse of the data points
through the scaling in Eq.(1). First, we take discrete val-
ues of |k| = ki compatible with the inverse lattice spacing
and evaluate the distribution C(k, tm) at different time
steps tm within the self-similar regime (tm+1 − tm ∼ τ
is roughly the inverse energy of the system). Second,
we define the re-scaled variables yi,m = tαmC(ki, tm) and
xi,m = tβmki. By interpolating these variable, we are able
to obtain an explicit function ym(x), where x is assumed
to be a continuum variable. Third, we compute the error
function as

E(α, β) =
∑
m,m′

∫
dx|ym(x)− ym′(x)|. (B1)

The contour plot of E(α, β) for the self-similar regime
studied in Fig.2 is shown in Figure A1. We find that
the best fitting with minimum error is centered around
the point (α, β) ≈ (1, 0.5), which is consistent with our
theoretical prediction. The error bars are obtained from
the sensitivity of the parameter (α, β) for different initial
conditions.

FIG. A1. Error function in Eq.(B1) plotted as a function of
the fitting parameters α and β. Darker color indicates higher
error values. The minimum of E occurs at around β ≈ 0.5
and alpha α ≈ 1.
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