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We analyze the onset of diffusive hydrodynamics in the one-dimensional hard-rod gas subject
to stochastic backscattering. While this perturbation breaks integrability and leads to a crossover
from ballistic to diffusive transport, it preserves infinitely many conserved quantities corresponding
to even moments of the velocity distribution of the gas. In the limit of small noise, we derive the
exact expressions for the diffusion and structure factor matrices, and show that they generically have
off-diagonal components in the presence of interactions. We find that the particle density structure
factor is non-Gaussian and singular near the origin, with a return probability showing logarithmic
deviations from diffusion.

Introduction — Hydrodynamics describes the ap-
proach from local to global thermal equilibrium in generic
many-body systems [1, 2]. While it is expected that in
the absence of Galilean or Lorentz symmetry, chaotic
systems should display diffusive hydrodynamics at long
enough times, one dimensional systems can show non-
trivial dynamics as a result of proximity to integrability,
leading to ballistic, and under some circumstances even
superdiffusive or subdiffusive transport [3–23]. While re-
cent advancements have provided a cohesive theoretical
understanding of the hydrodynamics of integrable sys-
tems based on stable quasiparticles under the framework
of generalized hydrodynamics (GHD) [24–26], dynam-
ics away from these fine-tuned points still remain elu-
sive. For small perturbations away from integrability it
is believed that generically there will be a crossover from
ballistic transport at short enough time scales to con-
ventional (i.e. diffusive) transport at the longest time
scales [27]. This is a general result that comes from an
agnostic approach to the collision integral based on per-
turbation theory and Fermi’s golden rule [28, 29]. While
the collision integral and resulting dynamics can be stud-
ied analytically in great detail for certain integrability
breaking perturbations, such as atom losses [30, 31] and
smoothly varying noise [32], most often the best approach
to the problem is through a combination of phenomeno-
logical insights and sophisticated numerics [33–36]. The
main difficulty can be traced back [27] to evaluating the
matrix elements of the integrability breaking perturba-
tion in generic generalized equilibrium states, also called
“form-factors”, a daunting task that can only be per-
formed for small-momentum transfer perturbations or on
finite small-scale systems [37–41].

In this work we address the fate of transport in one of
the simplest integrable models in one dimension, the clas-
sical hard-rod gas [42–45], subject to noisy backscattering
perturbations i.e. stochastic perturbations that reverse
the momentum of particles – and thus correspond to large
momentum transfer. While we focus on the classical hard
rod gas for concreteness, we note that the hydrodynamics
of all known integrable systems, quantum or classical, can
be mapped onto generalized hard-rod gases [46], so our
conclusions directly generalize to other models. Stochas-

FIG. 1. Snapshots of the dynamics of hard-rods. Left
panel: integrable limit. Right panel: nonintegrable dynamics
with backscattering at a rate γ > 0. In red, trajectories of
quasiparticles. In the integrable limit, the velocity of quasi-
particles gets renormalized as a result of collisions with other
quasiparticles. Same initial conditions in both panels.

tic backscattering leads to decay of infinitely many con-
served charges, including momentum, but also preserves
infinitely many residual conserved quantities correspond-
ing to even moments of the velocity distribution of the
gas. The resulting model thus displays features of both
integrable and chaotic dynamics. In Fig. 1 we show
snapshots of what the dynamics of the hard-rod gas looks
like at the integrable point, as well as in the presence of
noisy backscattering. The main results of this work are a
derivation of the exact expressions for the diffusion and
structure-factor matrices of this model. In doing so, we
show that the rod density structure factor is highly non-
Gaussian and singular as a result of the infinitely-many
residual conservation laws.

Hard-rod gas with stochastic backscattering —
The one-dimensional hard-rod gas is an integrable model
that can be best understood as a set of classical particles
subject to a hard-core repulsive potential

H0 =

N∑

j=1

p2j
2
+
∑

j<k

U(xj−xk), U(δx) =

{
0, |δx| > a,

∞, |δx| ≤ a,

(1)
where a denotes the rods’ length, and xj and pj denote
positions and momenta (setting mass m = 1). Starting
from a configuration with xj+1 − xj ≥ a, the rods evolve
freely until they encounter another rod, xj+1 − xj = a,
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at which point the two rods exchange velocity instanta-
neously. Because of the simple kinematics of such elastic
collisions, the full distribution of velocities (or momenta)
is conserved by the evolution and the model is thus in-
tegrable. Quasiparticles can be defined by tagging rods
with fixed momenta (see Fig. 1). Quasiparticles are dis-
placed by an amount a after each collision, so that they
move with an effective velocity that depends on the den-
sity of all other rods with different momenta. The large-
scale, coarse-grained dynamics of hard-rods is described
by a Boltzmann-type equation for the phase-space den-

sity ρk(x, t) =
d2N
dxdk given as [42–44]

∂tρ+ ∂x(v
effρ) = 0, veffk [ρ] = k +

a
∫
k′(k − k′)ρk′(x, t)

1− a
∫
k′ ρk′(x, t)

.

(2)
This kinetic equation can also be interpreted as an Euler-
scale GHD equation for the hard-rod gas [24, 25, 44].
There are diffusive corrections to this equation, due to
the randomness of the scattering shifts arising from ther-
mal fluctuations of the initial state [44, 47–52]; in what
follows we will ignore those as they are subleading in the
limit of weak integrability breaking [28]. The integra-
bility of the model can be seen from the infinite set of
conservation laws (as N → ∞) corresponding to the var-
ious moments w.r.t. the velocities, with charge densities
qn =

∫
knρ.

We then introduce an integrability-breaking perturba-
tion in the following way: with rate γ, we stochastically
backscatter rods by flipping the sign of their velocity.
This perturbation converts right-moving rods into left-
moving ones, and vice-versa. Clearly, this perturbation
leads to momentum relaxation, and breaks the conserva-
tion of all odd moments q2n+1 of the velocity distribution.
On the other hand, all even charges q2n remain conserved:
in other words, the odd part of the velocity distribution
decays, while the even part remains conserved. Any even
velocity distribution is an equilibrium steady-state under
this perturbation.

Generalized Boltzmann equation — In the pres-
ence of an integrability breaking perturbation, such as
backscattering noise, eq. (2) acquires a right hand side,
captured by a collision integral Ik[ρ]. In what follows we
shall be interested in the linear response regime, so we
write ρk(x, t) → ρ∗k + δρk(x, t), such that the stationary
state, ρ∗, is an even function of momentum and uniform
in space (the latter condition follows from eq. (2) subject
to ∂tρ

∗ = 0), ρ∗k = nf(k), with n the density of parti-
cles and f an even function. In this regime the resulting
linearized Boltzmann equation reads [28]

∂tδρ+A∂xδρ = −Γδρ, (3)

where A and Γ are hydrodynamic matrices that act on ve-
locity space, with Γk,q ≡ −δIk/δρq|ρ=ρ∗ . The matrix A
follows from linearizing (2), and reads [44] A = R−1veffR,

with veffk = veffk [ρ∗], R = 1− θ∗T and θ∗ = (1− an)−1ρ∗

an effective occupation number, and the kernel T acts as
follows on a test velocity function (Tψ)k = −a

∫
dk′ψk′ .

All matrix operations in those expressions act on velocity
space. The operator Γ contains the decay rates of the dif-
ferent conserved modes in the original integrable model.
Residual conserved quantities thus correspond to zero
modes of Γ. In the case of backscattering noise, we have
(Γψ)k = γ(ψk − ψ−k). As expected, this perturbation
breaks the conservation of odd charges, while preserving
the remaining ones. Thus the resulting model is of a new
kind, where the system is neither fully chaotic nor inte-
grable: in the following we will show that transport is
entirely diffusive, despite the existence of infinitely-many
conservation laws. The observable of interest will be the
diffusion constant of conserved modes. Since the sys-
tem under consideration has infinitely-many conserved
charges, the resulting diffusion constant will be an in-
finite dimensional matrix. To derive an expression for
this, one can project Eq. (3) onto decaying and con-
served modes. The matrix A will mix all modes, so the
task is to solve the resulting system of equations. To
leading order in a gradient expansion, one can show that
the diffusion matrix reads [53] (see also [28, 29])

D = P̄A(PΓP )−1AP̄ , (4)

where P projects onto the subspace of nonconserved
modes, and P̄ onto its complementary, i.e. onto the sub-
space of conserved modes.
Non-interacting limit — To gain some intuition on

the problem at hand, we first solve the simple limit of
free rods (i.e. a = 0). Intuitively, in that limit each
rod is simply undergoing a random walk with mean free
path vk/(2γ). In that limit we have Ak,k′ = vkδ(k − k′)
with vk = k, i.e. the velocity of rods in the absence of
interactions. The linearized Boltzmann equation simply
couples the (k,−k) modes
(
∂t + vk∂x + γ −γ

−γ ∂t − vk∂x + γ

)(
δρk
δρ−k

)
=

(
0
0

)
. (5)

Going to Fourier space (ω, q), this reveals two eigenval-
ues at low energy: ωq = −i2γ + O(q2) corresponding
to the decaying mode δρ−k ≡ δρk − δρ−k, and ωq =
−iDq2 +O(q4), with D = v2k/(2γ), corresponding to the
diffusive mode δρ+k ≡ δρk+δρ−k. Similar equations have
been discussed, e.g., in the context of the hydrodynamics
of stochastic conformal field theories (CFTs) [54]. Away
from the free particle limit, the diffusive modes no longer
correspond to this particular combination, as the A ma-
trix will connect modes of different velocities k. To solve
the hard-rod problem with backscattering we take a step
back and solve the limit when there are only a discrete
number of velocities, in which case A becomes a finite
dimensional matrix.

Discrete velocity distribution — To analyze the
case of discrete number of particles it suffices to analyze
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the case of only two particle species (a more detailed
analysis may be found on the Supp. Mat. [53]). Con-
sider a background state given by velocities in the set
{±v1,±v2}, and their respective probabilities {p1

2 ,
p2

2 }
with p1 + p2 = 1. We can write down an exact expres-
sion for the discrete version of the hydrodynamic matri-
ces above. These read T = −aJ4, Γ = γΓ1 ⊕ Γ2, with

J4 the 4 × 4 matrix of all ones, and Γi =

(
1 −1
−1 1

)
,

where the subindex i refers to the subspace of velocities
{±vi}. The noise matrix Γi is diagonalized with the ma-

trix Oi =

(
1 1
1 −1

)
revealing a zero mode corresponding

to δρ+i = δρRi + δρLi , with δρ
R/L
i denoting the density of

particles (above the background state) moving with ve-
locity ±vi, respectively. There is also a decaying mode,
corresponding to δρ−i = δρRi − δρLi . Note that contrary
to the non-interacting case, these are not normal modes
of the hydrodynamic equations, since they do not diago-
nalize the velocity matrix A. The diffusion matrix is thus
given as

Di,j =
∑

k

A(+,i),(−,k)Γ
−1
(−,k),(−,k)A(−,k),(+,j), (6)

where the different matrices are written in the basis of
± modes (i.e. the matrix A results from a rotation by
O = O1 ⊕ O2). The resulting diffusion matrix has off-
diagonal components, where some of these elements may
be negative [53]. However, the matrix has strictly posi-
tive eigenvalues given by

Di =
(veffi )2

2γ
, veffi =

vi
1− an

, i = 1, 2. (7)

Thus, the diffusion constant of the long-lived modes of
the model, which are different from the conserved modes
ρ+i since the diffusion matrix is not diagonal (in contrast
to the free particle case discussed above), is solely de-
termined by the effective velocity of the original modes
(in the integrable limit) and by the backscattering rate.
This formula is also consistent with previous findings in
the Rule 54 cellular automaton [55], and is analogous to
the free particle case discussed above when replacing the
velocities by their renormalized counterparts. This re-
sult is fairly intuitive: backscattering acts simply on the
effective quasiparticles of the interacting model, so the
mean-free path is set by the effective velocity instead of
the bare one; we will come back to this intuition below.

We focus now on the structure factor of the density
of particles which is the observable of interest, giving us
access to diffusion constant and a.c. conductivities. This
reads S(x, t) = ⟨δρ(x, t)δρ(0, 0)⟩c, with δρ = δρ+1 + δρ+2
and the label c refers to the connected part of the corre-
lator. With the aid of the eigenvector matrix that diago-
nalizes D given by W with components Wi,i = 1− anpi,
Wi,j ̸=i = −anpi, and the equilibrium charge fluctuation
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0.0
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10.0
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t=8.0

t=10.0

theory
free

FIG. 2. Structure factor(discrete case). The background
state is given by a uniform superposition of states with ve-
locities v1 = 1, v2 = 1/2 (and p1 = p2 = 1/2). The theory
predictions follow Eq. (8) with the respective diffusion con-
stants D1, D2. For comparison we also show the free theory
results, corresponding to the a → 0.

matrix C = ⟨δρδρ⟩ = R−1ρ∗RT in the eigenmode ba-
sis, we can compute the structure factor matrix for the
conserved modes Si,j(x, t) = ⟨δρ+i (x, t)δρ+j (0, 0)⟩c. The
exact expressions for these may be found in the Supp.
Mat. [53]. The rod density structure factor is then given
as S(x, t) =

∑
i,j Si,j(x, t), and we find the simple ex-

pression

S(x, t) = n(1− an)2⟨g(x, 2Dit)⟩, (8)

where ⟨·⟩ =
∑

i pi· and g(x, σ2) = e
− x2

2σ2√
2πσ2

. This expres-

sion is also consistent with the sum rule
∫
dxS(x, t) =∑

i,j Ci,j . In Fig. 2 we present the results from sim-
ulating numerically the hard-rod gas where rods take
in velocities v1 = 1, v2 = 1/2 with probabilities p1 =
p2 = 1/2. The parameters used in the simulation are:
backscattering rate γ = 0.005, system size 2L = 20, num-
ber of hard-rods N = 400, and hard-rod length a = 0.01.
We use periodic boundary conditions (pbc), and subtract
off initial fluctuations due to finite size effects. For com-
parison we also present the results from the free theory
predictions, corresponding to the limit a → 0, showing
that the dynamics is both chaotic and interacting. The
small discrepancies from the theory predictions are the
result of the dynamics not having fully thermalized on
the timescales of the simulation.
General case— When the spectrum of velocities is

continuous, for instance, given by a Gaussian packet cen-
tered around k = 0, the approach taken for a discrete
spectrum is still helpful. Indeed it is straightforward
to extend the previous analysis to the case of an arbi-
trary discrete spectrum of velocities by induction from
the studied case of two particle species [53]. In particu-
lar, the diffusion constant of each of the hydrodynamic
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modes in the presence of backscattering will be given by
Eq. (7). This result still carries over to the continuum.

The tractability of this problem can be understood in
terms of the simple action of the backscattering pertur-
bation in terms of the normal modes of GHD, that is,
the modes δρ̃ = Rδρ that diagonalize the matrix A. For-
mally, the problem is dramatically simplified by the fact
that [R,Γ] = 0, where R = 1− θ∗T is the matrix that di-
agonalizes A (whose eigenvalues correspond to the effec-
tive velocities). The physical meaning of this constraint
is that effectively, backscattering noise acts simply on the
quasiparticles dressed by interactions. In that basis, the
Boltzmann equation (3) now reads

∂tδρ̃k + veffk δρ̃k = −γ(δρ̃k − δρ̃−k), (9)

where δρ̃k ≡ (Rδρ)k and veffk = veffk [ρ∗]. We note that
this simplification occurs only if the backscattering rate
is velocity independent, since (Tγ)k ̸= (γT )k in general.
Further, the requirement that (Rδρ)−k = δρ̃−k follows
from the equilibrium occupation number being an even
function θ∗k = θ∗−k (as it should in equilibrium), and from
the symmetry of the scattering kernel Tk,−k′ = T−k,k′ .
The generalized Boltzmann equation (9) is a direct gen-
eralization of eq. (3) in the presence of interactions, where
the effective velocities are now dressed by the effects of
interactions. The problem therefore reduces to the non-
interacting one (5): backscattering leads to a 2× 2 prob-
lem in the (k,−k) basis of GHD normal modes. The
residual hydrodynamic modes δρ̃+k ≡ δρ̃k + δρ̃−k satisfy

(∂2t + 2γ∂t − (veffk )2∂2x)δρ̃
+
k = 0, (10)

which exhibits a crossover from ballistic transport at
short times (γt ≪ 1), to diffusive transport with dif-
fusion constant Dk = (veffk )2/2γ at long times (γt ≫ 1).
Diffusion is induced by the decay of the nonconserved
charges (‘−’ modes) with decay rate 2γ.

Anomalous structure factor— Focusing on in the
long time limit of the conserved modes, the resulting
structure factor follows from that in Eq. (8), with npi →
ρ∗k the hard-rod phase space density at equilibrium. Tak-
ing ρ∗k = np(k) with p(k) a Gaussian (thermal) velocity
distribution centered at 0 and with variance σ2, the rod
density structure factor reads

S(x, t) =
n(1− an)3

πσ

√
γ

t
K0

(
1− an

σ

√
γ

t
|x|

)
, (11)

with K0(x) =
∫∞
0

e−|x| cosh tdt the modified Bessel of sec-
ond kind. In Fig. 3 we compare the theory predictions
with the numerical results showing excellent agreement.
We trace back this singular behavior to the presence of
infinitely many conserved charges, each with a different
diffusion constant, conspiring to produce a profile that
is evidently nongaussian. In particular, the structure
factor shows a singularity of logarithmic nature at the
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FIG. 3. Anomalous structure factor. The background
state is given by a a Gaussian (thermal) velocity distribution
centered at 0 and variance σ2. The theory predictions follow
Eq. (11). Inset: scaling of structure factor at x = 0 (return
probability) along with theory predictions (ignoring an offset
for visual purposes), where α = n(1− an)3/2πσ, follows also
from Eq. (11).

origin independently of the rods’ length, following from
K0(ax) =

x→0
−γEuler−log(ax/2)+O(x2 log x), a > 0, with

γEuler Euler’s constant. This implies that the return prob-
ability (structure factor near the origin) is anomalous,
with a logarithmic correction to the expected diffusive
behavior

S(x ≈ 0, t) ∼ log t√
t
, (12)

which we also observe in numerical simulations (Fig. 3).
The effective diffusion constant of hard-rods in this limit
is found as D = 1

2t

∫
dxx2S(x, t) which yields D =

nσ2/2γ, independently of the rods’ length.
Conclusion — In this work we have explored the

effects of backscattering noise in the hard-rod gas. We
find that the density of rods spreads diffusively as a lin-
ear combination of Gaussians of different widths, corre-
sponding to the different diffusion constants of the nor-
mal modes of the hydrodynamic theory. For a ther-
mal velocity distribution, this leads to a singular struc-
ture factor with a logarithmic correction to the return
probability. Our results generalize to other similar inte-
grable models, such as the Lieb-Liniger model, so long as
[R,Γ] = 0, with the important caveat that the backscat-
tering operator acts on the system’s quasiparticles, not
on the physical particles. Understanding better the re-
lationship between these two backscattering sources and
the relevance of backscattering in experimental setups of
strongly interacting, confined Bose gases is left as future
work. Another future extension of our work would be
to study diffusive corrections to backscattering that arise
from the integrable dynamics itself (i.e. incorporating
Navier-Stokes corrections [44, 47–52] to the GHD equa-
tion (3)). In this case, the expectation is that such diffu-
sive and higher order corrections will be subleading when
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compared to the contributions coming from backscatter-
ing, since the latter contribute 1/γ in the limit of small
noise, γ → 0. A more interesting setup would be to study
backscattering in the presence of an harmonic trap, which
has been shown to break integrability [45, 56]. The har-
monic trap introduces a new timescale after which the
system thermalizes. This timescale is anomalously large
and it would be interesting to see whether backscatter-
ing can speed this up by breaking all odd charges in the
reachable timescales seen in this work.
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[7] M. Ljubotina, M. Žnidarič, and T. Prosen, Nature Com-
munications 8, 16117 (2017).

[8] V. B. Bulchandani, R. Vasseur, C. Karrasch, and J. E.
Moore, Phys. Rev. B 97, 045407 (2018).

[9] S. Gopalakrishnan and R. Vasseur, Phys. Rev. Lett. 122,
127202 (2019).

[10] M. Schemmer, I. Bouchoule, B. Doyon, and J. Dubail,
Phys. Rev. Lett. 122, 090601 (2019).

[11] V. B. Bulchandani, C. Karrasch, and J. E. Moore, Pro-
ceedings of the National Academy of Sciences 117, 12713
(2020).

[12] J. D. Nardis, B. Doyon, M. Medenjak, and M. Pan-
fil, Journal of Statistical Mechanics: Theory and Exper-
iment 2022, 014002 (2022).

[13] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen,
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I. DIFFUSIVE HYDRODYNAMICS FROM BACKSCATTERING

Here we rederive the formula for the diffusion constant of conserved modes within GHD used in the main text, Eq.
(4), and which follows from Ref.1 (see also2). Our starting point is the linearized Boltzmann equation Eq. (3),

∂tδρ+A∂xδρ = −Γδρ, (1)

where the operators A and Γ act on velocity space as convolution, e.g. Aδρk(x, t) =
∫
dk′Akk′δρk′(x, t). The densities

of conserved charges in the hard-rod gas obey

qn(x, t) =

∫
dkknρk(x, t). (2)

Similar relations would still hold for other integrable models; in particular, an identical relation holds in the Lieb-
Liniger model – see e.g. Ref.3. We can recast the Boltzmann equation 1 in terms of these charges as follows,

∂tδqn +
∑

m

Anm∂xδqm = −
∑

m

Γnmδqm, (3)

where, analogously to the phase-space density, we assumed the above dynamics occurs above a state of fixed, homoge-
neous charge q∗n =

∫
dkknρ∗k. Now the hydrodynamic matrices are expressed in the charge basis and have components

e.g. Anm =
∫
dkdk′knAk,k′k′m. We now use the method of hydrodynamic projections to project Eq. (3) onto decaying

charges, via the operator P , and conserved charges, via its complement, which we denote as P̄ = 1− P . This results
in the following two equations

∂tP̄ δ~q + P̄A∂xδ~q = 0, (4a)

∂tPδ~q + PA∂xδ~q = −PΓPδ~q. (4b)

where the charge vector ~q has as components all the charges of the original integrable model. Note that we have
implicitly assumed that dissipation will only act within the subspace of decaying charge (while in general, and in
particular, for backscattering, decaying and conserved modes will be mixed by the integrable dynamics). Applying
the inverse of the dissipation operator on (4b) and solving recursively yields

Pδ~q = −(PΓP )−1(∂tPδ~q + PA∂xδ~q)

= −∂x(PΓP )−1PAP̄δ~q +O({∂2
x, ∂t∂x, ∂

2
t }).

(5)

Ignoring higher order gradient terms and plugging this into (4a) leads to

∂tP̄ δ~q + P̄A∂xP̄ δ~q = D∂2
xP̄ δ~q, (6)

where

D = P̄A(PΓP )−1AP̄ . (7)

We will show below that for the case of backscattering noise, there are no ballistic contributions as the matrix A will
only couple decaying charges with conserved ones.
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II. BACKSCATTERING IN THE HARD-ROD GAS

While the hydrodynamics of the hard-rod gas was originally solved assuming a (continuous) distribution of rods’
velocities, we shall assume that a well-defined and analogous description exists in the presence of a discrete set of
different velocities. This will facilitate computing the diffusion constant of the different particle species exactly, and
in the limit of infinite number of such particle species, allow us to compute the structure factor of density in the
continuum limit.

A. One particle species (two velocities)

Earlier works4–6 had shown that the hydrodynamics of the hard-rod gas at the Euler scale obeys GHD equation

∂tρ+ ∂x(veffρ) = 0, (8)

where

veff
k [ρ] = k +

a
∫
k′(k − k′)ρk′(x, t)

1− a
∫
k′ ρk′(x, t)

, (9)

with a the hard-rod’s length. Within linear response we may take ρ = ρ∗ + δρ, with ρ∗ some stationary state that
is spatially homogeneous. For what follows we take this state to be given by ρ∗ = n 1

2 (δ(v − v0) + δ(v + v0)), with
n = N/(2L) the density of hard-rods in the system. In this stationary state the effective velocity is given by

veff
v0 [ρ∗] =

v0

1− an ≡ v
eff,∗. (10)

Note that this effective velocity is precisely that of the Rule 54 cellular automaton when setting v0 = ±1, a = −17.
Carrying this analogy further, we posit the GHD equation to be of the form:

∂tδ~ρ+A∂xδ~ρ = 0, (11)

with ~ρ = (ρ+, ρ−), with ρ± = ρR± ρL, where ρR/L is the density of particles moving at speed v0 = ±1. In the linear

response setup we’re interested in we have ρ+ = n+ δρ, ρ− = δρ−, and where the operator A is given as6

A = (1− θ∗T )−1veff,∗(1− θ∗T ), (12)

where θ is the Fermi factor and we have implicitly assumed all quantities here are evaluated at the stationary state.
The Fermi factor in vector form is given as

~θ∗ = (1− an)−1~ρ∗, ~ρ∗ = (n, 0). (13)

The counterpart in matrix form corresponds to the diagonal matrix constructed out of this vector. Likewise, we may
view the dressed velocity as being a diagonal matrix with entries given by (10). The kernel acts as follows on a test
function

Tψ(v) = −a
∫
dwψ(w). (14)

In the R/L basis the kernel should read8

T = −a
(

1 1
1 1

)
. (15)

In the presence of backscattering noise, the GHD equation takes the form

∂tδ~ρ+A∂xδ~ρ = −Γδ~ρ, (16)
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with, the decay matrix

Γ = γ

(
1 −1
−1 1

)
, (17)

with p the proba for a right/left mover to veer direction. Note that Γ has one zero mode and one decaying mode,
which is found upon rotating Γ to the ± basis as

Γ→ OΓO−1, (18)

with

O =

(
1 1
1 −1

)
. (19)

The decaying mode corresponds to the ρ− mode and has eigenvalue Γ−,− = 2γ. To get the diffusion constant of
positive movers we also rotate the A matrices onto the +/− basis to find

A+,− = 1, A−,+ =
1

(1− an)2
. (20)

The diffusion constant is given as

D+,+ = A+,−Γ−1
−,−A−,+ =

1

2γ(1− an)2
≡ (veff)2

2γ
. (21)

Note that these are results are identical to those obtained in Rule 54 upon setting a = −19.

B. Two particle species

The previous analysis can be generalized straightforwardly to the case of particles having four possible velocities
(two of opposite sign) with backscattering. The corresponding hydrodynamic matrices now read

T = −a




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , (22)

Γ = γ




1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1


 , (23)

O =




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 . (24)

where the rotation matrix is defined so as to rotate to the ± basis within each speed sector. We stick to the convention
that the top left block in the O matrix defines a subspace of e.g. velocity ±v1 and the bottom right block defines a
different subspace of velocity ±v2. The Fermi factor (in matrix form) reads in the R/L basis

θ =
1

1− an
n

4
14×4, (25)

where we’ve chosen the background state to be that where all velocities are equally likely to simplify the analysis (we
will extend to arbitrary distribution and number of particle species below). With this we can find the A matrix in
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the ± basis using (12). For reference we write it down

A =
1

1− an

(+,1) (-,1) (+,2) (-,2)





0 (1− an
2 )v1 0 −an2 v2 (+,1)

1− an2
1−an v1 0 an

2(1−an)v1 0 (-,1)

0 −an2 v1 0 (1− an
2 )v2 (+,2)

an
2(1−an)v2 0

1− an2
1−an v2 0 (-,2)

(26)

with (±, i) corresponding to the sector with ±vi velocity. The diffusion matrix written in this basis reads

D(+,i),(+,j) =
∑

k

A(+,i),(−,k)Γ
−1
(−,k),(−,k)A(−,k),(+,j), (27)

with Γ(−,i),(−,i) = 2γ. The diffusion matrix has off-diagonal entries now owing to the interaction between the two
different particle species. The matrix components read

D(+,i),(+,j) =
1

2γ

1

4(1− an)3
×





(2− an)2v2
1 − (anv2)2, i = j = 1,

(2− an)2v2
2 − (anv1)2, i = j = 2,

an(2− an)(v2
i − v2

j ), i 6= j.

(28)

The diagonal components of this matrix may be negative for some choice of parameters. This is fine so long as D ≥ 0.
This can be checked by diagonalizing D and checking that its eigenvalues are nonnegative. We’ve confirmed this and
found the eigenvalues to be {(veff

1 )2, (veff
2 )2} × 1/2γ. The corresponding eigenmodes read {(−φ, 1), (1, −φ)} with

φ ≡ −1 + 2
an . This crucially implies ρ+ ≡ ρ(+,1) + ρ(+,2) is not a diffusive mode. Instead, these correspond to

δ~̃ρ = W−1δ~ρ, (29)

with δ~ρ =
(
δρ(+,1) δρ(+,2)

)
, and

W =

(
−φ 1
1 −φ

)
. (30)

the matrix of eigenvectors of D. We are interested in the quantity S(x, t) = 〈δρ(x, t)δρ(0, 0)〉c, with δρ = δρ(+,1) +

δρ(+,2) corresponding to the density of particles. First we compute the C matrix which reads6

C = (1− θ∗T )−1ρ∗(1− Tθ∗)−1. (31)

At variance with the A matrix, the C matrix, written in the +,− basis is not simply given by a rotation of C by O,
and instead this picks up a factor of 2 (as can be checked by explicitly computing C and A). Explicitly

C =

(+,1) (-,1) (+,2) (-,2)





1
4n(2− 2an+ (an)2) 0 1

4an
2(−2 + an) 0 (+,1)

0 n
2 0 0 (-,1)

1
4an

2(−2 + an) 0 1
4n(2− 2an+ (an)2) 0 (+,2)

0 0 0 n
2 (-,2)

(32)

Crucially, the (+, 1) and (+, 2) charges are correlated, while (−, 1) and (−, 2) are not. This means in particular we must
take care of cross terms when expanding δρ = δρ(+,1) + δρ(+,2) in the structure factor. We compute next each term
appearing in S(x, t), S(x, t) = S1,1(x, t)+S1,2(x, t)+S2,1(x, t)+S2,2(x, t), with Si,j(x, t) = 〈δρ(+,i)(x, t)δρ(+,j)(0, 0)〉c.
We shall be interested in the C matrix projected onto the {(+, 1), (+, 2)} subspace. Call it C(+). In the eigenmode
basis this reads

C̃(+) = (W−1)C(+)(W−1)T =
n

2

(an)2

4
12×2 =

n

4

1

1 + φ
12×2. (33)
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Note that the exact expression of C̃ depends on the choice of normalization factors of the eigenvectors forming matrix
W but this is the one that yields the simplest expression for C̃. Then,

S1,1(x, t) = φ2S̃1,1(x, t)− φS̃1,2(x, t)− φS̃2,1(x, t) + S̃2,2(x, t)

� φ2C̃
(+)
1,1 g(x, 2D1t) + C̃

(+)
2,2 g(x, 2D2t)

=
n

4(1 + φ)

(
φ2g(x, 2D1t) + g(x, 2D2t)

)
,

(34)

where Di = (veff
i )2/2γ, and � denotes the limit t � 1/γ, and g(x, σ2) = e

− x2

2σ2√
2πσ2

. As a sanity check we confirm∫
dxS1,1(x, t) = C1,1. We can compute the rest of the terms contributing to S(x, t) and we find

S1,2(x, t) � − nφ

4(1 + φ)
(g(x, 2D1t) + g(x, 2D2t)),

S2,1(x, t) � − nφ

4(1 + φ)
(g(x, 2D1t) + g(x, 2D2t)),

S2,2(x, t) � n

4(1 + φ)
(g(x, 2D1t) + φ2g(x, 2D2t)).

(35)

These results also fulfill the sum rule
∫
dxSi,j(x, t) = Ci,j . Equipped with these results we get the structure factor of

the density

S(x, t) � n

2

(
1− φ2

1 + φ2

)2

(g(x, 2D1t) + g(x, 2D2t))

=
n

2
(1− an)2(g(x, 2D1t) + g(x, 2D2t)).

(36)

So, indeed, we find that the structure factor of the density is given by an equal superposition of the two gaussians.

C. m-particle species (arbitrary distribution)

For arbitrary number of particles species and arbitrary even velocity distributions, so that {vi → pi/2,−vi → pi/2},
with pi ∈ [0, 1], the corresponding A matrix components read (found by inspection from analyzing smaller instances)

A(+,i),(−,j) =

{
−1+anpi
−1+an vi, i = j
an

−1+anpivj , i 6= j.
(37)

A(−,i),(+,j) =

{
1−an(1−pi)
(−1+an)2 vi, i = j
an

(−1+an)2 pivi, i 6= j.
(38)

Which results in the diffusion matrix

D(+,i),(+,i) =
1

2γ(1− an)3

(
(1− an+ (an)2pi)v

2
i − (an)2pi〈v2〉

)
, (39)

D(+,i),(+,j 6=i) =
anpi

2γ(1− an)3

(
v2
i + (1 + an)v2

j − an〈v2〉
)
, (40)

with 〈v2〉 =
∑
k pkv

2
k. Note that in the absence of interactions, the diffusion matrix is purely diagonal. The next step

is to determine the eigenmode matrix that diagonalizes D. This has the rather simple form

Wi,j =

{
1− anpi, i = j

−anpi, i 6= j.
(41)
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The charge-charge matrix for arbitrary distribution has components

C(+,i),(+,j) =

{
npi(1− anpi + (an)2pi), i = j,

−(2− an)an2pipj , i 6= j,

C(−,i),(−,j) = npiδi,j ,

C(+,i),(−,j) = 0 = C(−,i),(+,j).

(42)

Note that the sum rule in this case takes a very simple form

∑

i,j

C(+,i),(+,j) = n(1− an)2. (43)

Written in the basis of eigenmodes in the + subspace the charge-charge matrix reads

C̃(+) = n(an)2diag(p1, p2, · · · , pm). (44)

The structure factor matrix has components

Si,j(x, t) = n(an)2 ×
{(
pi − 1

an

)2
pig(x,Dit) +

∑
k 6=i p

2
i pkg(x, 2Dkt), i = j

pipj

((
pi − 1

an

)
g(x, 2Dit) +

(
pj − 1

an

)
g(x, 2Djt) +

∑
k 6=i,j pkg(x, 2Dkt)

)
, i 6= j.

(45)

After some lengthy algebra we find the structure factor of density S(x, t) =
∑
i,j Si,j(x, t)

S(x, t) = n(1− an)2〈g(x, 2Dt)〉, (46)

where

〈g(x, 2Dt)〉 ≡
∑

i

pig(x, 2Dit). (47)

This is the expression quoted in the main text. This expression fulfills the sum rule,
∑
x S(x, t) =

∑
i,j C

(+)
i,j =

n(1− an)2. In the continuum limit we simply replace pi → p(v) and the sum by an integral. I.e. the structure factor
is given as

S(x, t) = (1− an)2

∫
dvρ∗(v)g(x, 2D(v)t), D(v) ≡ (veff)2

2γ
, (48)

with ρ∗(v) = p(v)n the background particle density.
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