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Abstract

All cognitive agents are composite beings. Specifically, complex living agents consist of cells, which
are themselves competent sub-agents navigating physiological and metabolic spaces. Behavior science,
evolutionary developmental biology, and the field of machine intelligence all seek an answer to the scaling
of biological cognition: what evolutionary dynamics enable individual cells to integrate their activities to
result in the emergence of a novel, higher-level intelligence that has goals and competencies that belong to
it and not to its parts? Here, we report the results of simulations based on the TAME framework, which
proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into
traditional behavioral intelligence by scaling up the goal states at the center of homeostatic processes. We
tested the hypothesis that a minimal evolutionary framework is sufficient for small, low-level setpoints of
metabolic homeostasis in cells to scale up into collectives (tissues) which solve a problem in morphospace:
the organization of a body-wide positional information axis (the classic French Flag problem). We found
that these emergent morphogenetic agents exhibit a number of predicted features, including the use
of stress propagation dynamics to achieve its target morphology as well as the ability to recover from
perturbation (robustness) and long-term stability (even though neither of these was directly selected
for). Moreover, we observed unexpected behavior of sudden remodeling long after the system stabilizes.
We tested this prediction in a biological system – regenerating planaria – and observed a very similar
phenomenon. We propose that this system is a first step toward a quantitative understanding of how
evolution scales minimal goal-directed behavior (homeostatic loops) into higher-level problem-solving
agents in morphogenetic and other spaces.

Running title— From metabolism to form
Keywords— artificial embryogeny, active inference, artificial life, teleonomy, modeling, morphogenesis

1 Introduction

How does the complex anatomical structure of the body form reliably from the activity of individual cells? More
than emergent morphogenesis, many organisms are able to reach the same specific target morphology despite surgical
injury, changes of cell size or number, organ rearrangement, genetic defects, and many other insults [77]. How does
the collective decision-making of cell groups enable regeneration, regulative, development, metamorphosis, and cancer
suppression? Answers to these questions are critical to many fields, including evolutionary developmental biology,
cell biology, and complexity science [40, 85]. Beyond their importance for basic science, massive implications for
transformative biomedicine rest on the ability to control the collective behavior of cells toward specific anatomical
shapes. How can we best control morphogenetic systems composed of several levels of organization from cell to tissue,
to achieve desired outcomes in regenerative medicine and synthetic bioengineering [76]?
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All of these questions raise the problem of understanding how the competencies of cells relate to those of the
emergent tissue-level swarm, and what evolutionary dynamics enable this to occur. No individual cell knows what a
finger is or how many a salamander is supposed to have, and yet when amputated, the collective will actively build
until the precisely right number, size, shape, and position of the fingers is restored [6]. What is the origin of the
dynamics that enable a cellular collective to work toward large-scale anatomical target states which are too complex
and big for individual cells to represent?

Some frameworks, motivated by cybernetics and behavior science, seek a deep symmetry among homeostatic
behavior across scales and material implementations [26,48]. It has been suggested [27] that evolution pivoted some of
the same strategies for navigating problem spaces across metabolic, anatomical, and behavioral domains. For example
(reviewed in [25, 46]), the same mechanisms using ion channels, electrical synapses, and computations via bioelectrical
networks underlie problem-solving in physiological space by bacterial communities [83,107], navigation of morphospace
by a wide range of embryonic and regenerative systems [5,35,49], and classical behavior in the 3D world by organisms
with neurons and brains [28,78].

Traditional behavior science focuses on the cognitive capacities of an ”individual”: memory, perception, learning,
anticipation, decision-making, goal-directed behaviour and make two assumptions. First, the body is usually conceived
as a fixed structure and thus follows the mainstream paradigm that the genome codes for specific bodyplans. Second,
brain structure is thought of as stable - the individuality of its neuronal cells is gone for good. Our primary experience
is that of a centralized, coherent Self. For organisms like caterpillar, which undergo metamorphosis, with drastic
changes of body, brain, and behavior, studies usually focus on their separate phases of life. The transitional states are
usually not studied [44].

However, all intelligences are collective intelligences. We are all made of parts that are themselves biological
agents. Regenerative biology and the development of new organisms like biobots [39] reveal that studies of cognition
in intact bodies present just a narrow slice of a much bigger picture: that of the multi-scale interface between body
and mind. Indeed, cognition is tightly linked to the physical structure of the body, from the anatomical level to the
molecular and bioelectric levels that store its information [44]. And structure and function are both highly plastic.
Cognition continues to function despite important changes to the body/brain and the corresponding modification of
its information at the cellular, molecular, or bioelectric level [45].

In the age of regenerative medicine, and of body and mind extension via brain-machine interfaces or neural implants,
it seems essential to understand how mind and body co-evolve [95], in order to explore the origin of multicellularity and
the scaling of basal cognition of individual cells into larger organisms. Understanding the “software” or algorithms that
allow cells to perform goal-directed decision-making and the transition to larger selves is still poorly understood [44,60].
In order to integrate and advance the fields of developmental/evolutionary biology, synthetic bioengineering, machine
learning, and cognitive science, it is fundamental to begin to develop computational frameworks for asking how
cognitive capacities arise in agents made of parts, and how these emergent subjects of cognition scale up during
evolution.

In the scale-free cognition framework [44], we rely on ideas from control and information theory to identify multi-
scale information processing principles. Earlier studies showed that individuals can be outperformed by collectives [106],
and that their overall performance is dependent on several characteristics including their organisational or network
structures [58], the information aggregation and communication system among their individuals, and the diversity
between their members [38]. These studies focused mainly on human networks and the associated wisdom of the
crowd. We focus here on morphogenetic systems.

Indeed, the mechanistic and algorithmic invariance between scales of organization has enabled numerous tools
and approaches from neuroscience to be ported to developmental biology [2,75,76] resulting in novel capabilities in
regeneration, cancer reprogramming, and repair of birth defects. To move this field forward, and to better understand
the role of evolution, it is essential to develop quantitative, generative models that reveal what dynamics are sufficient
for the scaling of competencies and their generalization to new problem spaces. Thus, we sought to create a minimal
in silico system in which we could observe whether, and how, evolutionary dynamics could make the shift from
cell-level metabolic goals to the much larger, body-wide goal of patterning a positional information axis. Here, we
present the details and analysis of a simple artificial embryogeny system in which we provide cell-level physiological
homeostasis and observe the emergence of competence to reach a target morphology (solving the classic French Flag
problem [91]) in an entirely new problem domain: anatomical morphospace. Our data show that evolutionary forces
drive the emergence of several higher-level competencies, including error-minimization to reach an anatomical goal
state and robustness to perturbation. This multi-scale homeostasis is driven by shared (non-local) stress dynamics
and biologically-plausible cell-cell interactions. Our analysis reveals how minimal low-level metabolic requirements can
scale up into morphogenetic competency.
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2 Foundation for the model

Our model is based on the following background assumptions. The first is that individual cells already have the
competency to stay alive via homeostatic pursuit of metabolic resources. This is a minimal requirement for all living
forms (already present in microbes, long before multicellularity), but we assume its presence (i.e., we are not here
modeling the origin of life or the initial formation of the very first reproductive unit).

Second, we model two scales: a developmental phase where cells are alive and interact with each other, and an
evolutionary wrapper which changes the frequency of different behavioral policies of the cells based on the fitness of
the collective (how well the resulting “embryo” matches a very simple criterion: having a single, 3-valued positional
information axis).

Third, our use of the term “goal” is not meant in any kind of meta-cognitive, self-aware complex sense. Goals here
are synonymous with the cybernetic approach [37,87], in which certain systems can expend effort to reduce error from
a specified homeostatic setpoint. Our aim is to show how such goals can scale in size and arise spontaneously in new
problem spaces under evolutionary selection, given very minimal and realistic assumptions about the properties of the
components.

Finally, while we do not explicitly invoke bioelectric signaling mechanisms, our cell interaction model is quite
compatible with that mode of communication (spelled out in detail in [44]). We do provide the cells with gap junctions
(electrochemical synapses [59,63]), through which they can share state signals. We also include a mechanism for stress
signals (initially, intracellular detectors of out-of-homeostasis states) to be propagated outward from stressed cells, as
predicted by the TAME framework [48].

3 Related work: in silico embryogeny

The “software” or set of of built-in behavioral and signaling policies allowing cells to cooperate and compete to
reliably construct complex body pattern is still poorly understood [44, 60]. One relevant approach is amorphous
computing, which refers to systems of many identical simple processors that have limited computational power and
that interact locally. Typically, such systems have more a irregular structure in contrast to the regular structure of
cell networks as they are used in our study [1]. Several authors have investigated pattern formation in developmental
biology using the same task we use in this article, the French flag problem. Herman and Liu solved it through the
simulation of linear iterative arrays of cells [36]. Several other models have been developed to resolve the same
problem, including a reaction-diffusion model, use of computational primitives and genetic programming [64,69,93].
Miller evolved a development program that follows a predefined grammar that connects developmental encodings
to genetic programming. He used a feed-forward Boolean circuit to implement a cell program [64]. Chavoya and
Duthen used a Genetic Algorithm to evolve Cellular Automata that produced different 2D and 3D shapes [13] and
evolved an Artificial Regulatory Network (ARN) for cell pattern generation, resolving the French flag problem [14].
The combination of neural networks and cellular automata which grow under evolutionary control is described in the
work of Elmenreich and Mordvintsev [23, 65]. A key difference in our work is that the artificial neural network (ANN)
inside each cell here models the behavior of a gene-regulatory network and can control gap junctions to deliver the
morphogen and the ability to reduce stress (homeostasis) to the other cells.

Past studies have also been developed to investigate the multi-scale interface of body and mind, notably with
“morphological computation” in Artificial Life and Soft Evolutionary Robotics [8, 15,67,79,80]. These studies model
and exploit the fact that brains, like other developing organs, are not hardwired but are able to ascertain the
structure of the body and adjust their functional programs accordingly. Similarly to scale-free cognition, morphological
computation is about connecting the body and cognition – showing how optimal control policies span different scales,
mechanisms, and problem spaces. However, to our knowledge, no prior model has explicitly investigated how cell-level
metabolic competencies scale up into tissue-level morphological ones.

4 Methods

4.1 An in silico evolutionary system for the study of transitions from single-
cell homeostasis to anatomical homeostasis of emergent tissue-level axial
patterning

4.1.1 The general scheme of the evolutionary simulation

General system. We developed an evolutionary simulation system composed of cells that forms a tissue on a 2D
grid. The system is an evolutionary, agent-based, spatialized model that uses two main time-scale loops. The outside
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loop is an evolutionary (phylogenetic) long time-scale where genomes are mutated and agents are selected. The inner
loop is a short time-scale ontogenetic loop that constructs each agent from its genome, simulates the development,
and then tests the phenotype for fitness. Each agent is one cell, which has a genome that encodes some very simple
metabolic processes (interacts with the other cells).

We integrated a homeostatic loop that enables it to optimize for the levels of some particular chemical (we are not
trying to model the origin of life itself – we start with cells that can keep themselves alive via basic homeostasis, e.g
that need to keep a level of energy superior to 0). We allow cells to attach to each other using gap junctions, to send
intracellular signals and spread metabolites. These signals, and their properties – such as speed of spread, ability to
propagate gap junctions, gating properties of gap junctions based on signal and cell state, etc. - are all coded by
genomes through evolution. Cells don’t know the origin of a given signal once it’s inside the cell; it has been suggested
that this “wiping property” enables a kind of shared memory that is essential for the scaling of small agents into
larger intelligences [48]. The cells have a minimal memory of the past and have access to their stress and energy levels,
and their states, at time t and t− 1 (see Algorithm 1).

The general approach is related to cellular neural networks [19] and more particularly to the growing neural
cellular automata [65] where each cell has access to the states of its neighbours and contains a neural network to drive
actions (neural networks are simply a convenient formalism for encoding cell behavioral properties, equal in power to
gene-regulatory networks [102]). In our case, the number of cells is fixed and does not grow with time and the tissue
formed by those cells has borders (i.e., it is not a torus).

Cell description. Each cell integrates an artificial neural network (representing the gene-regulatory networks
and pathways operating within cells [101, 102]) that controls the opening and closure of gap junctions in 4 directions:
up, down, left, right. Artificial neural networks are commonly used to model genetic regulatory networks [12]; in
that line of research, the artificial neural network inside each cell can be interpreted as a genetic regulatory network
controlling the metabolic processes. Each cell has one type of molecules that can go through the gap junctions
depending on their openings and that will trigger different kind of genomic expression leading to three different cell
states: blue, white, or red (see Figure 11). These states depend on the level of particular molecules inside the cells
(red if the level of molecules is between 0 and 5, grey between 5 and 10, blue if superior to 10) and we imposed an
energy cost on state change. Each cell also has a stress molecule and an antistress counterpart that can be sent to its
neighbours (see Algorithm 2).

The use of the stress system is completely evolved as the number of molecules to be transferred is chosen by the
embedded neural network. The neural network, which is identical for each cell, has 11 inputs: the internal levels of
molecules, energy at time t, energy at time t− 1, stress at time t, stress at time t− 1, the internal state at time t
and t − 1, the size of the collective the cell is part of (number of cells of the same state connected by opened gap
junctions in the tissue), the error between the size of the collective the cell is part of and how much it should size in
percentage - e.g. the size of one stripe - (|100− [size of sub-collective/(total number of cells in the tissue/3 ∗ 100)]|),
the perception of the cell neighborhood (geometrical frustration or how similar the cell is to its neighbors) and a
bias set at 0.5. The 4 outputs of the ANN are: the number of molecules to send to neighbours, the number of stress
molecules to send to neighbours and to be applied to the cell itself, the amount of stress-reduction molecules to send
to neighbors and to be applied to the cell itself, and the opening of gap junctions in the 4 directions. The level of
stress of one cell is bounded between 0 and 100.

Learning task. The learning task is the French flag problem [104, 105] (see Figure 1B). It was originally de-
veloped by Wolpert [104], to formalize discussions about how spatial gradients might specify patterns of cell fates
in a tissue. In this simulation, the spatial gradient that determines the cell state is the amount of molecules inside
the cells. The two thresholds are 5 and 10 (if the number of molecules is superior to 10, the cell is in the blue state,
between 5 and 10, it is grey, below 5, it is red).

From local to anatomical homeostasis. We tied the single-cell and the anatomical homeostatic loops. Each cell
has only one goal - to survive - and that corresponds to being in the appropriate state in order to receive energy (with
the other members of the collective). On the other hand, the collective/tissue has a morphogenetic goal, which is to
reach the French flag.

At each step, each cell receives a reward in the form of an amount of energy which is proportional to how closely
its corresponding sub-collective (corresponding to one stripe and therefore bigger that the immediate neighborhood of
one cell) is reaching the appropriate anatomical goal. Each cell therefore has a reward uncertainty, because the reward
depends not only on on that cell’s own behavior but also on the behaviour of the (sub)collective; in other words, the
reward is affected by the decisions of distant cells. Therefore, the environment of the cells is of high uncertainty. In a
sense, this scheme can be understood as a problem of multi-agent reinforcement learning under reward uncertainty.

Goal-directed systems have the ability to focus on relevant information and ignore distracting information. To do
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Figure 1: Description of the general scheme of the evolutionary system. A. Description of the French flag
problem. The concentration of morphogen triggers a particular gene expression leading to 3 different states:
blue, white or red. B. Description of the virtual environment. At left, the tissue is randomly initialized. At
right, the tissue has reached the French flag. C. Each cell is connected to its neighbours and can exchange
molecules via gap junctions. The behavior of each cell is controlled by its neural network. D. Directionalities
of the gap junctions as controlled by the neural network embedded in the cells E. Two homeostatic loops
have been implemented: a homeostatic single-cell loop, in which each cell has to maintain a positive level
of energy to stay alive; and an anatomical homeostatic loop, in which all cells receive energy depending on
how closely the collective (or the tissue) approaches the anatomical goal. F. Spread of the stress molecule
to neighbouring cells as controlled by the ANN inside each cell. Alternatively, each cell can send to all its
neighbours an anxiolytics molecule.
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Algorithm 1 Pseudo-code of agent.step()

1: procedure Agent.step((self, Input) . Memory at t-1
2: self.energy(t-1) = self.energy
3: self.state(t-1) = self.state
4: self.stress(t-1) = self.stress
5: output = self.communication()
6: self.reward = Reward(self.position)
7: self.energy += self.reward - 0.8
8: UpdateStress()
9: if self.energy ¡= 0 then

10: self.death()

Algorithm 2 Pseudo-code of agent.communication()

1: procedure Agent.communication((self, OutputANNMol, OutputANNStress)
2: for i in directions do:
3: for neighbour in neighbours do
4: if self.GJ[directions[i]]*neighbour.GJ[i] > 0 then: . If the corresponding GJs are opened
5: SendMoleculeNeighbour(i, OutputANNMol)
6: neighbour.molecules += OutputANNMol*self.GJ[i]*neighbour.GJ[i]
7: self.molecules -=OutputANNMol*self.GJ[i]*neighbour.GJ[i]
8: neighbour.UpdateState()

9: for neighbour in neighbours do
10: if self.GJStress > 0 then
11: neighbour.stress+=OutputANNStress*((self.GJStress * neighbour.GJStress))
12: neighbour.stress-=OutputANNCalm*((self.GJStress * neighbour.GJStress))

13: if self.GJStress > 0 then
14: self.stress+=OutputANNStress
15: self.stress-OutputANNAnxiolytics

16: self.UpdateState() . The level of molecules determines the state

so, they rely on selective attention and/or interference suppression. Selective attention would rely on top-down biasing
mechanisms as proposed by Desimone and Duncan [22]. In our case, the top-down biasing mechanism is represented
by the reward in energy that ties the two homeostatic levels. We also imposed an energy cost for communication and
state changes (respectively of 0.8 and 0.25 per step).

Stress system. Stress can be defined as three related concepts — the external and internal stimuli that cause stress,
the emergency physiological and behavioral responses activated in response to those stimuli, and the pathological
consequences of over-stimulation of the emergency responses [43, 86]. In our case, we added one more feature: a
communication system that enables the diffusion of a stress molecule through the tissue to allow other cells to feel
stress that was not caused by their own internal state. When the ANN makes the decision to send stress, each cell
will diffuse a molecule to its neighbours that will increase equally the stress level of the stressed cell itself and its
neighbours. In the same manner, the ANN can also cause the cell to send a stress-reduction molecule (functionally
equivalent to an anxiolytic intervention) to the neighbouring cells that will decrease the cell stress levels (see Figure
1E). Evolution can choose whether or not to use this communication system.

Evolutionary algorithm. We use ES-Hyperneat [84] to simulate the evolutionary cycle. The fitness function
is the percentage of good states the tissue has:

fitness = (number of good states/number of cells) ∗ 100 (1)

The whole system has been coded in Python programming language, using the agent-based modeling framework
Mesa [57] and the MultiNEAT package. It is freely available on https://github.com/LPioL/scalefreecognition.
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Parameters. All experiments in this article used the same parameters and have been repeated over 20 runs.
For each evolution, we used 250 generations, a population size of 350 individuals, a division and variance thresholds of
0.03. The energy cost for state change is 0.25 and at each step, cells lose 0.8 in energy. The minimum and maximum
number of species are respectively 5 and 15. The number of generations without improvement (stagnation) allowed for
a species is 10. The depth for the neural net is 4 hidden layers and 3 for the quadtree.

The available CPPN activation functions for the French flag task domain were sigmoid, Gaussian, linear, sine, and
step. The band-pruning threshold for all ES-HyperNEAT experiments was set to 0.3. The bias value for the CPPN
queries is −1. The cells starts with an energy levels initialized at 70. The energy cost of communication is set à 0.8.
We also applied an energy cost to the state change for all cells set at −0.25.

4.1.2 Information-theoretic analysis

Information theory [56] is a very useful tool to understand the information dynamics in complex systems. We used
two information-theoretic measures to analyze the information dynamics of the results: active information storage [53]
and transfer entropy [89].

Active information storage. The amount of information in the past of one agent that is relevant to predict
its future state is defined as the information storage. In this article, we focus on the active information storage (AIS)
component, which is the stored information that is currently in use for computing the next state of the agent [53].
Formally, the AIS of an agent Q is defined as the local (or unaveraged) mutual information between its semi-infinite

past q
(k)
n as k →∞ and its next state qn+1 at time step n+ 1:

aQ(n+ 1) = lim
k→∞

log2
p(q

(k)
n , qn+1)

p(q
(k)
n )p(qn+1)

(2)

aQ(n, k) represents an approximation of history length k. The average over time (or equivalently weighted by the

distribution of (q
(k)
n , qn+1)): AQ(k) = 〈aQ(n, k)〉. With AIS, an agent can store information regardless of whether it is

causally connected with itself [53].
In this article, we compute the local active information storage over the states of the cells.

Transfer entropy. Transfer entropy is the information provided by the agent source about the destination’s next
state that was not contained in the past of the destination agent. In this article, we use the local transfer entropy
introduced by Lizier [53]. The local transfer entropy from a source agent Z to a destination agent Q is the local
mutual information between the previous state of the source zn and the next state of the destination agent qn+1,
conditioned on the semi-infinite past of the destination q

(k)
n (as k →∞):

tZ→Q(n+ 1) = lim
k→∞

log2
p(qn+1|q(k)n , zn)

p(qn+1|q(k)n )
(3)

Transfer entropy TQ(n, k) is the (time or distribution) average: TQ(k) = 〈tQ(n, k)〉 and tQ(n, k) represents an
approximation of history length k. While mutual information measures correlation only, the transfer entropy measures
a directed and dynamic flow of information in the network of agents.

For the analysis of our information dynamics, we computed different kind of transfer entropy: the transfer entropy
from stress (by discretizing it by chunks of 10) to the states of the neighbours (blue, white, red). We computed the
local transfer entropy pairwise with all the neighbours of one cell and averaged it. In the same manner, we computed
the transfer entropy from the energy state to the state of the cells and conversely the transfer entropy from the state
the cells to the energy state.

We also defined the transfer entropy from one stripe to another as the sum of all transfer entropy of one cell of
one stripe to all cells of the other stripes computed pairwise on the time series of the internal states. Formally, we
define the averaged transfer entropy over a range of source-destination pairs in the spatial locations of different stripes
S1 and S2:

tS1→S2 =
∑

Zi∈S1

∑
Qj∈S2

tZi→Qi (4)

The transfer entropy defined for specific subsets of tissue processes is useful in considering distributed communica-
tions across agents with specific roles.
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4.2 Method for the planaria experiment on repatterning

4.2.1 Colony maintenance

Dugesia japonica were maintained in Poland Spring water at 20°C, fed calf liver paste once a week and cleaned twice
a week, as described in [71]. Animals were starved for one week prior to usage in amputation and pharmacological
treatment experiments and were not fed for the duration of all experiments.

4.2.2 Animal manipulation

Cutting of planaria was performed on a cooling plate using scalpel fragments. For generating headless animals, pre-tail
fragments were cut by placing a cut at the pharynx opening and another cut narrowly above the tail tip. For tracking
tail regeneration, animals were cut halfway between the head and tail. For tracking regeneration along the A/P axis,
animals were either decapitated narrowly by cutting just below the auricles, cut halfway between the base of the
head and the top of the pharynx, or cut directly at the top of the pharynx. To track regeneration of internal tissue a
puncture wound was induced using square glass capillaries of a 0.7 mm2 inner diameter (VitroCom, Mountain Lakes,
NJ) directly posterior to the pharynx opening. A fine paintbrush was used to remove the cut tissue from the middle
of the animal.

4.2.3 Pharmacological Treatments

Headless worms were produced through transient pharmacological treatment of freshly cut pre-tail fragments in 18
µM U0126 dissolved in DMSO (Sigma). No more than 40 fragments were treated per 10 cm petri dish. Fragments
were incubated in U0126 for 3 days at 20°C before washing out the drug solution. At 14 days post amputation, the
fragments were scored for regenerative phenotype.

4.2.4 Scoring of Repatterned Phenotypes

Headless animals were maintained in individual wells of 12-well plates and their phenotypes were scored weekly for the
duration of the experiment. Any significant changes in morphology, such as head regeneration, fissioning, or ectopic
tissue development were noted. Time of repatterning was determines once one eye was visible in the forming head
structure. Worms were labelled as “Polarity Flip” when a headless worm fissioned and a head regenerated at the
posterior wound site. Worms were labelled as “Dorsal/Ventral repatterning” when an outgrowth of tissue occurred in
the D/V plane of the headless worm. Worms were labelled as “Lateral growth” when significant changes in morphology
occurred with growth on the lateral area of the animal, resulting in stable morphology which did not produce a head.

5 Computational results

We analyzed a number of experiments performed with this system, tracking key physiological parameters over time in
each experiment (see Figures), including gap junctional communication, stress levels, and cell types as a function of
position. We focused on the most biological evolved tissue: the one where stress is used as an instructive signal and
increases and decreases in function of the homeostasis of the tissue.

5.1 The tissue minimizes error for reaching the target morphology

We first tested the ability of the cellular collective to solve the French flag problem, that is to organize the two-
dimensional tissue into a 1-dimensional axis of positional information with respect to cell type identity. Each cell
received energy according to is location on the tissue, and its energy reward was proportional to how well the other
cells of one stripe of the French flag were resolving the French flag pattern (in other words, evolution gives partial
credit for imperfect primary axial patterning, selecting for embryos with optimal morphogenesis). The cell colors in all
figures represent cell fate, as in the original definition of the problem in which an embryo must spontaneously pattern
itself into 3 ordered regions of cell fate [104]. All cells started in the blue state (homogeneous tissue corresponding to
an un-patterned nascent blastoderm) and had to dynamically cooperate with, and send the appropriate signals to
their neighbours, to solve the problem. The fitness function was computed for 100 steps, defining the time course of
development in this virtual embryo.

We observed that the ANN inside each cell evolved, and that this system was able to solve the problem (see Figure
2). A typical tissue behavior had the following features. First, the regions corresponding to future grey and red stripes
began to be stressed and then it was mainly the red stripe that was stressed. All gap junctions were open, the upper
and right gap junctions were fully open and the low and left gap junctions were half open. The gap junction states
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weighted the flow of molecules so that the stream from right to left and right to left were equal as was also the case
for the streams in the vertical axis. The diffusion of molecules from left to right occurred because the cells of the blue
stripes acted as a reservoir of molecules and the cells decided to send more or fewer molecules to their neighbours
depending on the dynamics.

In the representative example we show here, the stress increased at 55 steps and it then decreased as the French
flag morphogenetic problem was resolved. At 90 steps, the tissue reached 95.1% of the French flag target morphology,
and there were 4 remaining blue cells in the red stripe, (an almost perfect solution). The same result was seen over 20
repeat runs, solving the problem with axial quality rate of 94.4%± 0.84 over 20 runs.

Thus, the tissue learned to minimize error between its current state and the target morphology during its lifetime
in order to stay alive; by doing so, the tissue - starting from a homogeneous state - resolved the French flag problem.
We conclude that this minimal system shows how cell behaviors (that can be tuned by evolution or learning) enable
the collective to harness individual metabolic homeostatic loops (the pursuit of energy) toward a global patterning
goal.

5.2 The tissue is robust to perturbation

The cells had learned error-minimization in order to reach the anatomical goal, but did they follow a hardwired plan
that could only enable a feed-forward emergent pattern, or had they in fact acquired an ability for homeostasis that
would allow the tissue to reach the target morphology in case of perturbations beyond the ab initio morphogenesis?

To determine the degree of plasticity of this process, in this next set of simulations, we perturbed the tissue by
artificially changing at 110 steps the states of the last two columns of the red stripe to grey cells. The cells had never
been evolved on more than 100 steps. However, after the perturbation at 110 steps, the tissue corrected the red stripe
in 10 steps and a few blue cells appeared in the grey stripe (see Figure 3). The stress increased and decreased in
parallel to the perturbation and its resolution, as it did to resolve of the French flag problem. This capacity is similar
to that observed in biological systems, many of which are able to regain normal morphology despite a wide range of
perturbations [77]. The system tried to get rid of the blue cells left in the grey stripe. At 200 steps, the tissue reached
95.1% of the French flag. The dynamics of the gap junctions stayed the same as during the French flag resolution as
seen in Figure 2 without perturbation.

Thus, we conclude that even though we did not specifically reward for anything other than one self-organizing
property, in fact what the cells were able to do was repair to that setpoint from multiple starting configurations.

5.3 The tissue maintains allostasis in adulthood

We discovered that the tissue can resolve the French flag problem and is robust to perturbation, but does the tissue
reach long-term survival and maintenance of an adult phase ? To answer this question, we performed simulations
running for 1000 steps. We observed that the tissue maintained its morphology during the whole lifetime. In addition,
at 1000 steps, the morphology was even better than in the developmental phase, with the tissue reaching 96.3% of
the French flag target morphology on this simulation (see Figure 4 A.). The tissue was observed to spontaneously
become stressed several times during its lifetime; these stress increases were not the consequence of any external
perturbation, and were due to the intrinsic dynamics of the tissue. The first stress increase, as described above,
happened prior to 90 steps in order to reach enough of the target morphology to stay alive; then we observed (in the
representative individual showed in Figure 4B), 4 different stress increases at 285, 322, 395, and 896 steps. At these
steps, the intrinsic dynamics of the tissue created deviations from the target morphology that increased the level of
stress, after which the tissue corrected the new anatomical trajectory in order to reach homeostasis, at which point
stress decreased. Once the tissue reached a morphology compatible with life, stress was reduced to 0. On average for
this task, the collective reached 87.7%± 13 of the target morphology over 20 runs.

Interestingly, the cells had never been evolved over a period of time greater than 100 steps – there was no selection
pressure for long-term stability or survival. However, they were able to maintain the tissue more than 10 times longer
than their initial developmental period (the only aspect on which they were evolved). We were also surprised to
find they also learned allostasis (following the definition of McEwen and Wingfield [61]: allostasis is the process of
maintaining stability (homeostasis) through change in both environmental stimuli and physiological mechanisms). In
this simulation, the tissue changed regularly as it tried to get rid of remaining, inappropriately-located blue cells;
sometimes this remodeling process took the collective a sufficient distance from the French flag target morphology to
activate homeostatic mechanisms which then drove it back to normal, allowing long-term maintenance and survival of
the tissue.

Thus, we conclude that long-term stable survival does not need to be specifically selected for, as intrinsic dynamics
and emergent anatomical regenerative capacity are enough to maintain order through an adult phase. Homeostasis is
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Figure 2: Dynamics of the resolution of the French flag problem. A. Time-lapses of the dynamics of resolution
of the French flag problem by the tissue. The dynamics of the tissue is represented by 5 taken at 0, 30,
60, 90-100 steps of the dynamics of the tissue. The first column represent these steps, the second column
represents the states of the cells in the tissue (blue, grey, red) and the third column represents the use of
the stress system on a red scale: the darker the red, the more the system is stressed. The last four columns
represent the opening in the gap junctions in 4 directions: down, left, up and right. The darker the green,
the less the gap junctions of each cells in the different directions are opened. The cells resolve the French flag
problem almost entirely at the 90 steps. The stress system is used all through the resolution of the French
flag problem. B. Amount of stress inside the tissue during the resolution of the French flag problem. The
stress increases around 55 steps and decreases when the target morphology is reached.

an active process which is mirrored in this case by the level of stress that increases and decreases with the distance
between the tissue and the target morphology.
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Figure 3: Dynamics of the resolution of the French flag problem after an induced perturbation. A. Time-
lapses of the dynamics of resolution of the French flag problem by the tissue. The dynamics of the tissue is
represented by 5 taken at 90, 110, 120, 150 and 200 steps of the dynamics of the tissue. The first column
represent these steps, the second column represents the states of the cells in the tissue (blue, grey, red)
and the third column represents the use of the stress system on a red scale: the darker the red, the more
the system is stressed. The last four columns represent the opening in the gap junctions in 4 directions:
down, left, up and right. The darker the green, the less the gap junctions are opened. The cells resolve the
French flag problem almost entirely at 200 steps after the artificial perturbation of the tissue at 110 steps. B.
Amount of stress inside the tissue during the resolution of the French flag problem. The stress system is used
all through the resolution of the French flag problem and it increases and decreases with the resolution of the
perturbation.
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Figure 4: Long-term survival of the tissue and stress. The simulation was run for 1000 steps. A. State of
the tissue at 1000 steps. The first column represents these steps, the second column represents the states of
the cells in the tissue (blue, grey, red) at 1000 steps, and the third column represents the use of the stress
system on a red scale: the darker the red, the more the system is stressed. The last four columns represent
the opening in the gap junctions in 4 directions: down, left, up and right. The darker the green, the less the
gap junctions are opened. At 1000 steps, the tissue reached 96.3% of the French flag target morphology B.
Amount of stress inside the tissue during its lifetime. The stress increased and decreased when the tissue
encountered deviations from the target morphology due to its intrinsic dynamics.

5.4 Stress: different use-cases

The morphogenetic process exhibits interesting stress dynamics, consistent with the proposals [48] that homeostatic
loops are driven by stress as a reflection of delta from setpoint, and that complex setpoints such as tissue-level
morphogenetic patterns could arise from cells sharing stress information to optimize plasticity and coordinate in
more complex problem spaces. Thus, we next studied the functional role of stress in the emergent morphogenesis we
observed.

5.4.1 Evolution exploits stress as an instructive signal to reach the target morphology

We first sought to determine whether stress was instructive or merely a byproduct of the various dynamics. To answer
this question, we simulated a loss-of-function of the stress system in the tissue (e.g., as the action of an anxiolytic
drug), which forcibly reduced the level of stress to 0 during the whole lifetime of the embryo (see Figure5).

The dynamics of the gap junctions were similar in this anxiolytic experiment as they were when stress was used
(see Figure 2). However, we observed that at 90 steps, the tissue reached only 82.8% of the target morphology. And at
99 steps, the collective of cells corresponding to the location of the red stripe of the French flag dies. The collective
achieved 67.3%± 2.8 of the target morphology over 20 runs.

These experiments reveal that anatomical homeostasis is not reached nor maintained during the lifetime of the
cells without stress. In contrast, when the stress is available to the cells, at 90 steps, the tissue reaches 95, 1% of the
French flag target morphology and it maintains the morphology after this step.
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Figure 5: Dynamics of the resolution of the French flag problem with artifical injection of anxiolytics in the
tissue. A. Time-lapses of the dynamics of resolution of the French flag problem by the tissue. The dynamics
of the tissue is represented by 5 taken at 0, 45, 75, 90 and 99 steps of the dynamics of the tissue. The first
column represents these steps, the second column represents the states of the cells in the tissue (blue, grey,
red), the third column represents the use of the stress system on a red scale: the darker the red, the more the
system is stressed. The last four columns represent the opening in the gap junctions in 4 directions: down,
left, up and right. The darker the green, the less the gap junctions are opened. The cells behave completely
differently without stress, at 90 steps, the tissue had not reached the French flag configuration and at 99
steps, the cells located on the red stripe died. B. is artificially held steady at 0 with simulated anxiolytics (a
loss-of-function experiment for the stress system).

Thus, we conclude that the ability to use the stress mechanism is functionally exploited by cells to implement
morphogenesis and survival of development.

5.4.2 Stress is instructive but only at particular levels

Having seen the importance of stress mechanisms among cells, we next wanted to know if the stress system featured a
window of optimality: is too much stress bad for this process, as it is for real biological systems? Thus, we artificially
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Figure 6: Dynamics of the resolution of the French flag problem after an artificial increase of stress. A.
Time-lapses of the dynamics of resolution of the French flag problem by the tissue. The dynamics of the
tissue is represented by 5 timesteps taken at 110, 120, 130, 140 and 220 steps of the dynamics of the tissue.
The first column represent these steps, the second column the states of the cells in the tissue (blue, grey, red).
The second column represent the use of the stress system on a red scale. The last four columns represent
the opening in the gap junctions in 4 directions: low, left, up and right. The darker the green, the less the
gap junctions of each cells in the different directions are opened. At 140 steps, it appears a wall of blue cells
in the grey stripe, it seems the stress is informative but only at particular concentrations B. Amount of
stress inside the tissue during its lifetime. The stress is artificially increased drastically at 110 steps. Then, it
decreases linearly until it reaches 0.

induced a very high stress (compared to what is needed and used during the French flag resolution) at the locations of
the grey stripe at 110 steps of the simulation (see Figure 6). With this excess stress, we simulated an environmental
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Figure 7: Representation of the target morphology used learned during evolution e.g. the French flag (left)
and the new target morphology the tissue has to reach at 60 steps (right).

stressor that is not adaptively informative about the current situation of the tissue as it had already reached a version
of the French flag compatible with survival (e.g. the cells receive enough energy). Stress decreased immediately
without to change the states of the cells. At steps 140, a line of blue cells appeared in the grey stripe. It seems
that stress was only instructive at specific concentrations inside the cells, and then, blue cells appeared in the grey
stripe. Stress transformed the cells close to the borders of the stripes into reservoirs of molecules, and by accumulating
molecules, they became blue. It seems the cells evolved by making stress instructive only at specific levels as it had no
effect during those last 30 steps and it kept decreasing.

We conclude that evolution used stress as a communication system using a particular encoding, here the level of
stress is instructive and have effects on the cell behavior only at specific concentrations.

5.4.3 Evolution exploits the stress system but anxiolytics do not always impact anatomical
homeostasis

Evolution finds more than one way to solve a problem. Here, we analyzed the counterexamples – the individuals
that can solve the problem without the use of stress. We found that in 10 evolutions that achieved a fitness score
superior to 90% on average over 20 runs for reaching the French flag, we obtained 93%± 2.6 of reaching of the target
morphology and 91.5%± 8. when anxiolytics are added. However, 70% of the evolved tissues use the stress system
but it is not systematically functional. This high standard deviation for the anxiolytics experiment is explained by
the fact that for the larger part of the evolved individuals, stress is not fundamental to reach the target morphology,
for one evolved tissue its absence results in a dying embryo during development, while for others it has no negative
impact. Quantitatively, 1/10 of the evolved tissues used stress as an instructive signal and die under anxiolytics (e.g.
the one we presented the results on the different experiments above). This ratio is low but in terms of biological
evolution, it would be enough to spread in entire the population over time if it increases the overall fitness of the
organism during evolution. The other virtual embryos can develop the French flag without the need of stress even if
they used it as a result of artificial evolution. 3/10 of the virtual embryos had better score on average on the French
flag with anxiolytics, meaning that stress is a noisy signal for them.

Why does biological evolution use stress - does the use of the stress system in our simulation increases the adaptive
responses of the organisms in more complex scenarios ? In order to answer this question, we tested the 10 virtual
evolved tissue achieving a fitness score superior to 90% on average over 20 runs for reaching the French flag on an
experiment where the target morphology changes during the development phase (at 60 steps, see Figure 7) and cells
that die are immediately regenerated by grey cells. We obtained an mean score of 74% ± 17.4 on the new target
morphology for the 10 virtual embryos. For the one using the stress system as functional, we obtained a mean score of
89.2%± 4.5 and for the 9 others that don’t use stress as instructive the mean is 73%± 18.6. We applied a one sample
t-test to compare these two means and found the difference statistically significant (with p-value = 0.0312). It may be
possible that stress enables adaptive responses in potentially harmful environments.

In summary, we found that the stress system is not always needed to resolve the French flag problem during
development. Anatomical homeostasis without stress is possible on the French flag problem but exploiting spatial
propagation of stress information seems to increase adaptive fitness by improving performance in scenarios where the
normal process of morphogenesis can be impacted by external perturbations. As has been suggested [48], stress is an
ideal parameter for evolution to exploit as a representation of the error in homeostatic contexts, and the drive to
reduce stress could then implement “grow and remodel until complete” in regenerative settings [48].
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5.5 Information-theoretic analysis of the dynamics of the anatomical homeosta-
sis

To truly understand how cellular collective behavior solves morphogenetic problems, and to derive efficient interventions
for biomedical contexts, it is essential to understand what the cells are saying to each other: what information is
available to groups of cells, and how its propagation through the tissue enable the cohesion of multiple competent
agents into an emergent individual at a higher level of organization that achieves a morphogenetic goal. Thus, we
next applied information-theoretic measures to analyze the dynamics of the tissue during anatomical homeostasis. We
computed the local active information and local transfer entropy for the original simulation without any perturbation
(see Figure 2). We also computed the transfer entropy from one stripe to another to understand if one sub-collective
could drive the information dynamics and ultimately the anatomical homeostasis (see Figure 8).

The transfer entropy from stress of one agent to its neighbour started to increase in the tissue at timestep 55.
Then we wave an important increase at timestep 59 in the locations of the grey and red stripes. This correlates
with the increase of stress in the same spatial locations. The overall transfer entropy was almost 300 bits at this
timestep (see Figure 8C). Then, the transfer entropy decreased and reached a steady-state around 0. The black
squares represent negative local transfer entropy, meaning that the cells receive information from the stress that is
misleading for predicting their next state. We also compared the transfer entropy from stress of one cell to its own
state and found it to be much less important than the transfer entropy from the stress of one cell to the states of its
neighbours (see Figure 8C). This suggests the key signaling mode for the stress is paracrine, not autocrine.

The dynamics of the local active information storage on the cell states of the cells followed a different dynamics.
When transfer entropy was increasing, we could observe several spatially located negative local active information
storage among the spatial locations of the grey and red stripes (see Figure 8A). At 55, 59 and 60 timesteps, the AIS
was mainly negative, after which it would increase gradually for the grey until it reached the steady-state (see Figure
8A and 8B). For the red stripe, AIS was also globally decreasing and then we observed an important increase around
70 steps, the cells could predict better their future state from the past memory. Concurrently, the stress is decreasing.
The local AIS of the blue stripe was 0 all along the dynamics as the cell never changed their states. Thus, stress is
increasing concurrently with a decrease in local active information storage in the tissue as seen in Figure 8B) or in
other words when the memory in the past is not effective to predict the future. This is compatible with the definition
of stressors as unpredictable and/or uncontrollable stimuli [50].

We also computed the average local transfer entropy from one stripe to another, from the cells corresponding to
the spatial locations of the red stripe to the grey and conversely (see Figure 8D). This averaged transfer entropy was 0
at each time step for the blue to red and grey stripes and oppositely. With a time window of k = 4, before 60 steps,
the tissue change seemed driven by the red stripe as we have a peak of 250 bits of transfer entropy from the red stripe
to the grey. Just after 60 steps, it became the opposite, transfer entropy was much higher from the grey stripe to the
red with a peak around 450 bits of information suggesting that it was now the grey stripe that was driving the change
in the states. The ’organizer’ region seemed to change over time: embryonic regions take turns driving the large-scale
process.

Finally, we computed the average of the local transfer entropy from energy to the state of one cell for the
whole tissue and conversely from the cell state to energy (see Figure 9A). The first peak we observed around 55
steps corresponded to the transfer entropy from energy to states. The information flow came from the anatomical
homeostatic loop then the two transfer entropies overlapped after 60 steps, and at the same moment the averaged
energy of all stripes was increasing or stopped decreasing (see Figure 9B). In our scheme, the information was first
driven by the anatomical loop, and the energy that was needed for single-cell survival was controlled by this loop.

We conclude that stress was very informative in the state changes of direct neighbours of one cell. Stress was
increasing concurrently with a decrease in local active information storage in the tissue as seen in Figure 8B) similarly
to biological system where stressors are defined as an unpredictable stimuli. In our scheme, evolution used the stress
system as a communication system that was activated when the memory in the past was not effective for predicting
the future. There was a wave of information flow from red to grey stripes, and it seems that the larger anatomical
homeostasis loop came first in terms of information flow from energy to differentiation state. Taken together, these
analyses reveal the dynamics of the information flow in the tissue, we observed an emergent behavior when the
”organizer” region change over time, stress is used as a communication system with the neighbours, and the higher
level of homeostasis (anatomical homeostasis) came first in the dynamics suggesting that top-down information is key
to manipulate the dynamics of the tissue.
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Figure 8: Information-theoretic analysis of the dynamics of the tissue during the resolution of the French
flag problem. A. Time-lapses of the dynamics of resolution of the French flag problem by the tissue. The
dynamics of the tissue is represented by 10 time-lapses taken at 0, 55, 59, 60, 65, 70, 74, 80, 90 and 100
steps. The first column represents these steps, the second column represents the states of the cells in the
tissue (blue, grey, red), and the third represents the use of the stress system on a red scale. The last two
columns represent active information and transfer entropy from stress to state of the neighbours. B. This
figure represents the sum of local active information storage (AIS) by stripes, s1 is the blue stripe (blue), s2
is the white stripe (green), and s3 is the red stripe (red). AIS peaked first for the red stripe. C. This figure
represents the sum of the averaged local transfer entropy from stress time series to the state time series of
the neighbors (black) and the transfer entropy from stress states to the internal states of the cells (green).
The transfer entropy was much higher for the first one. D. This figure represents the transfer entropy from
one stripe to another: grey to red stripe (black), and red to grey (red). The transfer entropy from one stripe
to another peaked at different times suggesting that they alternated in driving the changes.
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Figure 9: Information-theoretic analysis of the multi-scale homeostasis during the resolution of the French
flag problem. A. This figure represents the transfer entropy from energy to states (blue) and the transfer
entropy from state to energy (red). The first one peaks first suggesting that the information flow was coming
primarily from the anatomical homeostatic loop. B. This figure represents the amount of molecules by stripes.
The blue stripe is represented in blue, the grey stripe in green, and the red stripe in red. When the French
flag configuration was reached, the cells received energy.

6 Experimental results on repatterning of planaria

The sudden remodeling of cell fates after a long period of apparently quiescent, stable pattern in our model (see Figure
4) predicts that something similar may occur in biological systems. Might some phenotypes that seem complete in fact
need to be followed out for much longer to observe the true dynamic? We indeed found this to be the case [7], with
planarian flatworms [10] regenerating after exposure to U0126, a blocker of ERK/MAP Kinase signaling which plays an
important role in many model systems of regeneration [72,96,100,108]. Several studies have shown that ERK inhibition
immediately following amputation leads to the formation of headless animals [72,96,100]. The headless animals that
regenerate after ERK inhibition had previously been assumed to have reached a terminal, stable morphology [72].
However, monitoring the headless animals for 18 weeks, we observed a remarkable phenotype in which some of the
headless animals suddenly began to repattern, with some regaining a wild-type single-headed morphology.

To quantify this phenomenon, we defined repatterning as any morphology change occurring after 4 weeks post-
cutting. In headless animals observed from when they were cut until their death (n=181), 22% showed some form
of sudden repatterning even though regeneration had completed and morphogenesis had ceased weeks prior (Figure
10B). Importantly, this repatterning occurred without any intervention. The remaining 78% of headless animals
did not show any change in morphology except for shrinking in size, as headless animals are unable to feed and
therefore lifetime allometrically scale down over time [70]. We observed repatterning from 4 weeks onwards with
the majority of repatterning occurred between 4 and 10 weeks (Figure 10C). After 10 weeks only sporadic new
repatterning was observed, although some worms began forming new heads as late as 18 weeks after cutting. This
spontaneous repatterning that allows the re-establishment of a normal morphology many weeks after regeneration is
completed suggests the existence of tissue processes that operate on a time scale much longer than previously known.
Anatomically, the observed repatterning fell into 4 different categories. The most common repatterning type was
single-headed repatterning where a normal wild-type morphology was regained (61% of all repatterning worms, Figure
10B, D-i). The second most common phenotype was a polarity reversal, in which, following fissioning of a headless
animal, the posterior blastema formed into a head (18%, Figure 10B, D-ii). The remaining two categories represent
the rare animals that exhibited growths which did not lead to the formation of a head, either in the form of dorsal
outgrowths (D/V repatterning, 10%, Figure 10D-iii) or lateral outgrowths (11%, Figure 10D-iv). When headless
animals repatterned to form a new head, the pigmentation of the round anterior end began to lighten and the tissue
flattened out, forming a structure resembling a blastema (Figure 10E). Once the blastema formed, first one eyespot
appeared (Figure 10E-ii) and then the second one formed with a few days delay (Figure 10E-iii), along with the head
reshaping to regain the typical morphology (Figure 10E-iv and v). Animals were stained using synapsin antibodies
to visualize the regrowth of the underlying brain tissue at intervals during the repatterning process. This showed
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Figure 10: Headless animals can regain normal morphology over long timeframes. A. Illustration of the
experimental procedure in which pre-tail fragments were treated for 3 days with U0126 to induce headless
animals which were then observed for changes in morphology over long timeframes. B. Out of 181 headless
worms tracked individual over time, 22% repatterned, while the remaining 78% did not change their morphology.
The repatterned animals fell into 4 different categories – 61% Single-head (1H) repatterning, 18% polarity flip,
10% D/V repatterning, and 11% Lateral growths. C. Repatterning rate over time showing steady increase
in the number of repatterned animals from 4 to 10 weeks after the initial amputation. D. Representative
images of the 4 different repatterning types – i) 1H repatterning, ii) Polarity flip, iii) D/V repatterning (arrow
marking dorsal outgrowth), and iv) Lateral growths. E. Repatterning to regain a single-headed morphology
in one animal tracked over time. Scale bar 500 µm. F. Samples fixed and stained with synapsin antibody at
different stages of repatterning, arranged into a putative neural repatterning timeline. Scale bar 500 µm.

that early brain repatterning occurred via the formation of a cluster of neural tissue at the anterior rounding of the
ventral nerve cord (Figure 10F-i). Brain structures formed progressively from there, first in an apparently unorganized
manner (Figure 10F-ii), before expanding and reforming into a well-organized brain resembling that of a normal
animal (Figure 10F iii-v). While the repatterning process resembles normal head regeneration in its progression, the
timeframe was distinctly slower than normal head regeneration [11], taking up to 25 days from the first observation of
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changes at the anterior to a fully formed head.

7 Discussion

One of the key open questions in evolutionary developmental biology, as well as basal cognition [27, 44], is how
single-cell capacities (competency in physiological and metabolic spaces) scale up to enable systems to solve problems
in morphogenetic space (anatomical homeostasis), such as axial polarity and body-wide positional information
axes. Because intelligence can be defined as competency in navigating arbitrary problem spaces, and all agents
are fundamentally composites of other parts, it is important to understand how evolutionary forces and generic
dynamics [32, 33, 68] work together to scale up collectives and pivot their simple homeostatic properties into more
complex capabilities. Here, we presented an evolutionary simulation of the scaling of goals from cell-level metabolism
to embryo-wide axial positional information. This system is a model of multi-scale homeostasis that illustrates how
cells can join into collectives that solve problems in new spaces. We found that evolution was able to use the shared
stress system to coordinate across space and time, and developed error-minimization and homeostatic capacities
(robustness to perturbation). The resulting tissue was found to be robust to external perturbation, using stress was
both instructive for initial morphogenesis and necessary for long-term survival.

While maintaining allostasis, the tissue also tried to get rid of the blue cells after development, taking the collective
temporarily away from the French flag target morphology, to then allow homeostatic mechanisms to drive it back to
normal (resulting in long-term maintenance and survival of the tissue, it corresponds in the TAME framework to delayed
gratification - the ability to not get trapped in a local minima). This ability to move away from the goal in order to
reach a better solution later (following not only minimum-distance paths) is an important capability of some cognitive
systems. Degrees of this kind of “delayed gratification” in cybernetic systems enable more sophisticated behavior,
along the continuum from simple “roll downhill” mechanisms to complex problem-solving systems [48]. Interestingly,
neither of these things were directly selected for during the evolutionary cycle, revealing how some capabilities of
multi-scale homeostatic systems can emerge as a kind of “free lunch”, without direct selection pressure [21,40].

Our analysis reveals the emergent functional connections between the single-cell and the anatomical homeostatic
loops. Each cell has one goal, to survive and it corresponds to be in the appropriate state in order to receive energy
(with the other members of the collective), e.g. navigating in a 1-dimensional metabolic continuous space but by
discretizing it: the new emergent problem space solutions has three instances (blue, red, white) corresponding to
different cell fates along a positional information axis. On the other hand, the collective/tissue has a morphogenetic
goal, the French flag and it is simultaneously navigating a problem space of 3n instances (n: number of cells).

The observation that planarians are capable of recovering a wild-type bodyplan by spontaneously triggering a
regeneration-like process, after maintaining a stable abnormal morphology for long periods of time, poses interesting
questions about how abnormal morphologies are first maintained and how they are eventually detected to trigger
correction. In other organisms there is some evidence that remodeling of tissues to fit new morphologies can be part
of regeneration, such as the remodeling of transplanted tail tissue into a limb in amphibia [24]. The repatterning
reported here is distinct from previous studies where it was shown that general injury signals can induce regeneration
in headless animals [72], as here there is no triggering injury of any kind. The newly demonstrated ability to mount a
regenerative response without any injury to trigger it is consistent with the idea that a missing tissue response (MTR)
may not be necessary for regeneration to occur [97] and that subtle internal dynamics may be sufficient to initiate
change long after the process appears to have reached a stable point. Our finding that the spontaneous repatterning is
slower than normal regeneration is also consistent with other examples of regeneration in the absence of the MTR [97].
The timepoint at which repatterning starts appears to be stochastic within the population. The observation of sudden
initiation of repatterning in a seemingly quiescent tissue raises a key question: what process in the tissue serves as
a “clock” that enables remodeling at a particular time frame? It must be distinct from the on-going and obvious
morphogenetic processes because remodeling initiates suddenly, on a background of constant cell identity distributions.

Recently, Chou et al found a dynamic in bacterial biofilms similar to the clock and wavefront model describing
somitogenesis [17]. Interestingly, they observed that nitrogen stress response in the biofilm can form a complex pattern
of concentric rings – revealing that already at the time of social microbes, spatial distribution of stress responses
occurred. Their results show that the development of bacterial biofilm collectives is driven by an oscillatory process
that can locally amplify nitrogen stress responses, such that spores may develop in different areas of the biofilm even
under a more abundant nutrient environment (not only in the starved interior of the biofilm). Interestingly, in our
model, we observe a similar behavior with a subtle oscillatory stress response of the cells in different areas of the
tissue (see Figures 1B and Figure 8A) allowing the formation of the French flag configuration. We found that the
pattern generated by the stress response in our simulated tissue defines spatial regions where cells differentiate into
the different stripes, a similar mechanism we can find in the biofilm when various strains of bacteria differentiate into
spores. This behavior is similar to somitogenesis where a homogenous tissue becomes segmented (transcriptionally
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Figure 11: Visualizing the self-organization of development as navigation in morphospace. PCA projection
in 3D of the tissue states during the resolution of the French flag (first experiment). The target represents
the region in the morphospace resolving the French flag problem (during development, without any artifical
interventions) enough to be compatible with survival (i.e., a primary body axis that enables high functional
fitness).

and anatomically). In our simulation and in the biofilm, stress seems to play a key role and convey an information
leading to differentiation of the cells and bacteria similarly to the clock and wavefront model. Thus, similar (conserved)
dynamics could be relevant across bacterial, metazoan, and in silico minimal models of the scaling of spatial patterning
from single-cell metabolic and stress dynamics.

The communication system is fundamental for collective intelligence. In our scheme, communication is mediated
via the gap junctions, a well-known system for coordinating physiological and morphogenetic activity which has also
been proposed to be an essential complement to enhancing collectivity [44, 59, 73]. In our simulation, three types
of molecules can be exchanged: the morphogen, the stress molecule and its counterpart, the ”anxiolytics”. In our
simulation, stress plays a key role. Stress is an ambiguous and transdisciplinary concept we can find from material
science to physiology and ecology [74, 86, 109], encompassing different meanings: certain stimuli can be stressors; the
emergency responses to the stressor is defined as the stress response; and the chronic stress is the over-stimulation of
the emergency responses [86]. In addition, the definition of these 3 concepts are mutually-dependent. A stimulus that
initiates a stress response is a stressor, but the physiological or behavioral response is considered a stress response if it
is initiated in response to a stressor. One solution has been to define stressors as stimuli that disrupt or threaten to
disrupt homeostasis [18], but the concept of homeostasis has its own limitations [90]. A more general definition is that
stressors are unpredictable and/or uncontrollable stimuli [50]. Interestingly, this last definition fits with the use of the
stress system in our simulation. Stress was increasing concurrently with a decrease in local active information storage
in the tissue as seen in Figure 8B. In our scheme, evolution used the communication system as a stress system that was
activated when the memory in the past was not effective for predicting the future. This relates to the active inference
framework and the free-energy principle, both of which that have recently been developed to integrate homeostasis
and allostasis [20], as applied to morphogenetic systems [42,81].

Network structure is key to collective intelligence [16,52,89]. It has been shown that flat, fully-connected, network
structures provide the most efficiency for collective to resolve a task since that type of structure maximizes the
aggregation of information received from the members of the collective [16]. However, this kind of network is very
costly as it necessitates n(n− 1) connections and is probably not biologically realistic. Indeed, in most cell networks,
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cells are only connected to their near neighbours. The stress system can be seen as another communication system
and could play a role in changing the network structure to a flat (fully-connected) structure, at least for some part
of the network and thus facilitating information aggregation (see [62] for a review of non-local cell communication
modalities).

One purpose of these kinds of simulations is to develop protocols that could enable robotics and machine learning
approaches to benefit from the kind of robustness and problem-solving ability that is observed in biology. In AI, the
fact that all intelligences are collective intelligences has not been emphasized [48], but there are recent attempts for
swarm robotics and deep learning to develop new methods based on collective intelligence [34, 65]. Deep learning
has started to integrate the approach with adversarial networks with two networks working together [31]. Artificial
collective intelligence is usually studied from the point of view of swarm intelligence or human society [41, 66,88] but
morphogenetic systems present several characteristics lacking in swarms: a (growing) grid network architecture, the
informational wiping property (cells don’t know the origin of a given signal), or a different communication system
closer to the information processing of a cellular automata that can only communicate with its direct neighbours.
This work is one step toward integrating the scaling of cognition findings into artificial intelligence by demonstrating
dynamics that can lead to desired emergent properties across scales.

Lastly, it is interesting to consider the relevance of this system for basal cognition [54,55]. It has been argued that
body patterning and behavioral control seems to share a common origin, not only via the mechanisms of ion channels
and neurotransmitters, but also via the evolutionary pivot of solving problems from physiological to morphogenetic
and ultimately 3D behavioral spaces [25,27]. Indeed, several somatic tissues exhibit evidence of learning and basal
cognition, including cardiac [110], bone [99] and pancreatic tissues [30], in addition to the large literature on learning
and decision-making in microbes and other unicellular organisms [4, 29, 82, 92, 94, 103]. These capacities are very
old [9,51] and the molecular apparatus of higher cognition (ion channels, neurotransmitters and synaptic mechanisms)
was already present in our unicellular ancestors [3]. Brains and neurons have been speed-optimized by evolution from
other cell types [98]. Somatic cells did not lose their cognitive repertoire and computational capabilities during their
transitions to multicellularity and in becoming part of metazoan swarms (bodies): they scaled them to pursue larger
anatomical goals [76]. The symmetry between development/regeneration and traditional cognition is not simply an
emergent result of hardwired processes, but the emergent result of a very plastic, context-dependent system that
achieves invariant patterning outcomes under uncertainty. Biological systems have remarkable capacities to achieve
the same morphogenetic outcomes despite a range of perturbations, such as different starting conditions, different
numbers and sizes of cells, and various interventions (reviewed in [47,77]). We simulated the transitions from single-cell
homeostasis to anatomical homeostasis using stress in this work, we tested the hypothesis that a minimal evolutionary
framework is sufficient for small, low-level setpoints of metabolic homeostasis in cells to scale up into collectives
(tissues) which solve a problem in morphospace (see Figure 11). These transitions take place in a continuum from body
patterning to cognition, we propose that evolution pivoted the collective intelligence of cells during morphogenesis of
the body into traditional behavioral intelligence by scaling up the goal states at the center of homeostatic processes.
This work is a first step towards a quantitative understanding of the scaling of cognition.
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[11] Francesc Cebrià, Masumi Nakazawa, Katsuhiko Mineta, Kazuho Ikeo, Takashi Gojobori, and Kiyokazu Agata.
Dissecting planarian central nervous system regeneration by the expression of neural-specific genes. Development,
growth & differentiation, 44(2):135–146, 2002.

[12] Lian En Chai, Swee Kuan Loh, Swee Thing Low, Mohd Saberi Mohamad, Safaai Deris, and Zalmiyah Zakaria.
A review on the computational approaches for gene regulatory network construction. Computers in biology and
medicine, 48:55–65, 2014.

[13] Arturo Chavoya and Yves Duthen. Using a genetic algorithm to evolve cellular automata for 2d/3d computational
development. In Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages
231–232, 2006.

[14] Arturo Chavoya and Yves Duthen. Use of a genetic algorithm to evolve an extended artificial regulatory network
for cell pattern generation. In Proceedings of the 9th annual conference on Genetic and evolutionary computation,
pages 1062–1062, 2007.

[15] Nicholas Cheney, Jeff Clune, and Hod Lipson. Evolved electrophysiological soft robots. In Artificial Life
Conference Proceedings 14, pages 222–229. MIT Press, 2014.

[16] Nader Chmait, David L Dowe, Yuan-Fang Li, David G Green, and Javier Insa-Cabrera. Factors of collective
intelligence: How smart are agent collectives? In ECAI 2016, pages 542–550. IOS Press, 2016.

[17] Kwang-Tao Chou, D Lee Dong-yeon, Jian-geng Chiou, Leticia Galera-Laporta, San Ly, Jordi Garcia-Ojalvo, and
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[70] Néstor J Oviedo, Phillip A Newmark, and Alejandro Sánchez Alvarado. Allometric scaling and proportion
regulation in the freshwater planarian schmidtea mediterranea. Developmental dynamics: an official publication
of the American Association of Anatomists, 226(2):326–333, 2003.
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