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Continuous-time quantum walk is one of the alternative approaches to quantum computation,
where a universal set of quantum gates can be achieved by scattering a quantum walker on some
specially-designed structures embedded in a sparse graph [Childs, Phys. Rev. Lett. 2009]. Recent
advances in femtosecond laser-inscribed optical waveguides represent a promising physical platform
for realizing this quantum-walk model of quantum computation. However, the major challenge is
the problem of preparing a plane-wave initial state. Previously, the idea of quantum slide has been
proposed and experimentally realized for demonstrating the working principle of NAND tree [Wang
et al. Phy. Rev. Lett. 2020]. Here we show how quantum slide can be further applied to realize
universal quantum computation, bypassing the plane-wave requirement. Specifically, we apply an
external field to the perfect-state-transfer chain, which can generate a moving Gaussian wave packet
with an arbitrary momentum. When the phase is properly tuned, the universal gate set in Childs’
proposal can be realized in our scheme. Furthermore, we show that the gate fidelities increase with
the length of the slide, and can reach unity asymptotically.

I. INTRODUCTION

Random walk is a powerful classical algorithm for a
large class of search and sampling problems. As its quan-
tum counterpart, quantum walk (QW) is an interesting
framework for designing fast quantum algorithms in con-
tinuous time or discrete time [1–12]. Below, we shall
focus on continuous-time QW, which deals with the time
evolution of a quantum state, where the Hamiltonian is
in the form of an adjacency matrix of a certain graph [13].

Continuous-time quantum walk (CTQW) exploits ex-
otic quantum phenomena to achieve quantum speedup
against its classical counterparts. For instance, uti-
lizing quantum superposition or interference property,
it achieves an exponential algorithmic speedup for the
black-box traversal problem on the glued tree graph
[14, 15], compared with any classical algorithm (even
those not based on a classical random walk). Also,
quadratic speedup against classical computers (as pow-
erful as Grover’s algorithm [16]) can be obtained for the
spatial search problems on several different graphs [17].
Furthermore, due to the walker’s scattering properties in
distinct graph structures, it can evaluate the NAND tree
problem faster than ever known best classical algorithms
[18] and is proved to be a universal model for quantum
computation [19, 20].

In the above applications of CTQW, especially those
considering scattering processes, preparing initial wave
packets with appropriate momentum is an important
step. For example, in the NAND tree problem, an
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initial wave packet is required whose momentum is
around −π2 to start the evaluation process. Moreover,
in Childs’ method, initial wave packets with momentum
only around −π4 is an essential element to implement
universal quantum gates in the CTQW framework [19].
However, Childs’ method uses an infinitely long structure
called momentum filter to filter out undesired momentum
and prepare an initial wave packet with the desired mo-
mentum, which may be infeasible experimentally. As far
as we know, few studies in CTQW have discussed the
issue of preparing an initial wave packet that possesses
a proper momentum. On the other hand, a recent work
[21] proposed a method to realize Gaussian wave packets
of −π2 momentum by adopting a “quantum slide” used
for solving the NAND tree problem and is experimen-
tally verified. Unfortunately, the momentum of the wave
packets formed in the slide is fixed to −π2 , which limits
its application to other problems.

In this work, based on the quantum slide method, we
present a new scheme capable of generating wave pack-
ets with arbitrary momentum. By adding an external
field, a novel Hamiltonian is obtained that can “accel-
erate or decelerate” (which means changing the momen-
tum of) the original wave packets with fixed −π2 momen-
tum. Furthermore, by adjusting the strength of the ex-
ternal field and the evolution time, the momentum can
be regulated precisely and cover the entire momentum
space of (−π, π]. After showing its capability of carry-
ing out arbitrary momentum, we apply our scheme to
simulate universal quantum computation using Childs’
method, where preparing wave packets with momentum
−π/4 is essential. Our numerical experiments show that
we can use relatively short quantum slide to achieve high-
precision gates. Moreover, we found the precision can
be improved by simply increasing the length of the slide

ar
X

iv
:2

21
1.

08
65

9v
2 

 [
qu

an
t-

ph
] 

 1
0 

M
ay

 2
02

3

mailto:11849207@mail.sustech.edu.cn
mailto:yung@sustech.edu.cn


2

and could reach 1 asymptotically when the slide is long
enough.

II. QUANTUM WALK AND QUANTUM SLIDE

Continuous-time quantum walk was first introduced
in [13] by extending the classical Morkov process to the
quantum regime. It can be described as Hamiltonian evo-
lution of the adjacency matrices indicating the connectiv-
ity of the underlying graphs or networks. Given a graph
G of N+1 nodes and with adjacency matrix A, we repre-
sent the walker’s state in the basis {|0〉 , |1〉 , . . . , |N〉} and
use the time-evolution operator e−iAt to characterize the
evolution. Consider quantum walk in a one-dimensional
chain. In this case, the Hamiltonian or adjacency ma-
trix corresponding to the chain can be described by an
(N + 1)-by-(N + 1) Jacobi matrix in the following form:

H =


B0 J1

J1 B1 J2

. . .
. . .

. . .

. . .
. . . JN
JN BN

 . (1)

In physics, such Hamiltonians could be used for depicting
the one-excitation subspace of a quantum spin chain with
the nearest-neighbor Heisenberg interaction, where Jn is
the coupling strength between the (n−1)-th site and the
n-th site and Bn is the strength of the magnetic field at
the n-th site (n = 0, 1, 2 . . . , N) [22].

This form of Hamiltonian can be used to describe per-
fect state transfer (PST) in a pre-engineered coupling
chain with N + 1 nodes [23]. The Hamiltonian HPST for
perfect state transfer can be obtained by setting

Jn =
√
n(N + 1− n) Bn = 0 , (2)

in Eq. (1). Indeed, for the site |r〉, the transition ampli-
tude of the time evolution governed by HPST at time t
(0 ≤ t ≤ π

2 ) is given by [21],

〈r|e−itHPST |0〉 =

√(
N

r

)
(sin t)r(cos t)N−re−i

π
2 r . (3)

Then, by setting r = N and t = π/2, one can show that

〈N |e−iπ2HPST |0〉 = 1 . (4)

That is, quantum information can be perfectly trans-
ferred in the spin chain in an arbitrarily long distance
N after a constant time t = π/2 [23].

Besides, with t = π
4 and N large enough in HPST,

a Gaussian wave packet with momentum distributed
around −π2 can be obtained on the pre-engineered chain
via the binomial-Gaussian approximation, achieving the
quantum slide scheme [21]. The basic construction of

FIG. 1: Momentum θ as a function of evolution time t
when a has different values. For each value of a, the

momentum in one period of t is depicted.

the quantum slide scheme is to use half of such a pre-
engineered chain called “quantum slide”, and connect a
uniformly coupled chain called “runway” after it. The
former is used to generate a wave packet with a specific
shape and momentum (cutting in half is mainly to pre-
vent further unwanted evolution), while the latter is used
to stably transmit the wave packet in preparation for the
subsequent scattering process.

III. WAVE PACKETS WITH ARBITRARY
MOMENTUM

Here, we generalize the Hamiltonian HPST to obtain
a new Hamiltonian that can produce wave packets with
any desired momentum. The basic idea is to add linear
diagonal terms to the elements of HPST, i.e.,

Jn =
√
n(N + 1− n) Bn = an (5)

and we denote the new Hamiltonian by Ha. We want to
compute the transition amplitude of the time evolution
of Ha,

A(r, a, t) ≡ 〈r|e−iHat|0〉 . (6)

According to Vinet and Zhedanov [22], for a general
Jacobi matrix H of the form (1), it could be diagonalized
into,

H = PWΛWTPT , (7)
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FIG. 2: Settings of the scattering experiments for the two certain single-qubit gates. (a) Settings for Ub. (b)
Settings for Uc. (c) The concrete data of the coupling strengths and the external fields on the control chain and the

first uniform coupling chain.

where

Λ = diag(λ0, λ1, . . . , λN ) (8)

P =


1 1 . . . 1

χ1(λ0) χ1(λ1) . . . χ1(λN )
χ2(λ0) χ2(λ2) . . . χ2(λN )

...
...

...
...

χN (λ0) χN (λ2) . . . χN (λN )

 (9)

W = diag(
√
ω0,
√
ω1, . . . ,

√
ωN ) . (10)

Here, λn is the n-th eigenvalues of H; ωn and the orthog-
onal polynomial χn(x) satisfy the following orthogonality
relation,

N∑
s=0

ωsχn(λs)χm(λs) = δmn . (11)

Moreover, χn(x) satisfies the three-term recurrence rela-
tion,

xχn(x) = Jnχn−1(x) +Bnχn(x) + Jn+1χn+1(x), (12)

with initial conditions χ−1(x) = 0 and χ0(x) = 1. Fi-
nally, note that e−iHt = PWe−iΛtWTPT , and that

WTPT |0〉 = (
√
ω0, · · · ,

√
ωN )T (13)

WTPT |r〉 = (
√
ω0χr(λ0), · · · ,

√
ωNχr(λN ))T . (14)

This gives the expression for the transition amplitude of
the time evolution operator e−iHt,

〈r| e−iHt |0〉 =

N∑
n=0

ωnχr(λn)e−iλnt , (15)

which holds for a general Jacobi matrix H.
To find an analytic expression for A(r, a, t), one can

first find the set of eigenvalues λn of Ha, and then derive
ωn and χr(λn) using the orthogonality relation (11) and
the recurrence relation (12). Then, substituting them
into Eq. (15) gives

A(r, a, t) =

√(
N

r

)
q
r
2 (1− q)

N−r
2 eirθ(t,a), (16)

where q ≡ 4b2 sin2
(
t
2b

)
and b ≡

√
1

a2+4 ; for the detailed

derivation, we refer to Appendix A. |A(r, a, t)|2 is the
probability of finding the walker at site r after an evolu-
tion time t and satisfies the binomial distribution here.
The momentum of the wave packet is given by θ(t, a),
which has the following expression,

θ(t, a) =

{
− tan−1(ab tan ( t

2b ))−
π
2 , t ∈ (0, bπ]

− tan−1(ab tan ( t
2b )) + π

2 , t ∈ (bπ, 2bπ)
.

(17)
Specifically, choosing a = 0, HPST can be recovered

from Eq. (5) and the transition amplitude reduces to:√(
N

r

)
(sin t)r(cos t)N−re−i

π
2 r, (18)

in time t ∈ (0, π/2], which is consistent with Eq. (3).
Above, we obtain the explicit expression of the mo-

mentum as a function of the evolution time t and the
parameter a of magnetic field. Fig. 1 gives visualization
of this expression, which shows that one can obtain ar-
bitrary momentum in (−π, π] by varying a and t. When
a > 0 and 0 < t < 2π√

a2+4
, θ could cover the interval
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FIG. 3: Time evolution processes including the wave packet preparation and scattering process in position space and
corresponding momentum space for simulating Ub and Uc.

(−π,−π2 ) ∪ (π2 , π] and when a < 0, θ could take value
from the interval (−π2 ,

π
2 ). When a = 0, our method

reduces to the original case of HPST, and hence θ can
just be ±π2 . Also note that in all the cases, the lines are

symmetric about (bπ, 0) with b =
√

1
a2+4 , which indi-

cates that the state of the walker comes back to |0〉 when
t = 2bπ and completes a periodic motion.

IV. UNIVERSAL QUANTUM GATES

As a demonstrative example, we apply our method
to Childs’ method for implementing universal quantum
computation. According to Childs [19], by scattering
wave packets with the momentum of −π4 with the widgets
displayed in Fig. 2 (a) and (b), two specific single-qubit
gates could be realized,

Ub ≡
(

1 0
0 ei

π
4

)
Uc ≡ −

1√
2

(
i 1
1 i

)
. (19)

These two single-qubit gates, together with the CNOT
gates, achieve universal quantum computation.

Below, we explain Childs’ method in more detail. The
wire in Fig. 2 (a) simulates the action of Ub applied to
|1〉, while a similar wire without the widget simulates the
action of Ub on |0〉. After the control chain (i.e., quantum
slide, used for generating wave packets from a single node
indexed as 0), the wave packet will evolve into the state
|in〉 with momentum −π/4, which is to guarantee that
it can be transmitted through the widget perfectly (i.e.,

without reflection). Note that |in〉 is not a static state;
instead, it is a wave packet that will propagate forward.
Then, after the widget, the wave packet will gain a global
phase eiπ/4, reminiscent of Ub |1〉; symbolically, we denote
the wave packet after the widget as |out〉, which is also
not static. Without the widget, the wave packet repre-
sented by |in〉 just propagates to become |out〉, without
an extra global phase of eiπ/4; this simulates the action
of Ub applied to |0〉. These two wires combine to simulate
the action of Ub. Similarly, in Fig. 2 (b), the integrated
part of the uniform coupling and the widget simulates
the action of Uc. As in the case of Ub, the wave packets
represented by |0in〉 and |1in〉 need to be of momentum
−π/4, so that they can be transmitted through the wid-
get perfectly. For our later numerical experiment, we
connect the control chain to the wire corresponding to
|0in〉, in order to simulate the preparation of the logical
|0〉 state.

Therefore, in Childs’ method, an important compo-
nent is to generate wave packets with momentum −π/4,
which could be achieved by the Hamiltonian Ha. As
shown in Fig. 1, wave packets with the momentum of
−π4 can indeed be generated by choosing an appropriate
a from (−∞, 0) (we choose a = −2 in the following) and
controlling the corresponding evolution time t accurately.

However, there are some technical issues to be solved
in practice. First, we need to stop the further evolu-
tion of the wave packet when its momentum reaches the
value we want. Here, we adopt the idea of the quan-
tum slide method, which is to “cut” the previously men-
tioned chain corresponding to Ha in half as our control
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chain and connect an uniformly coupled chain behind it.
Such “cutting” can be achieved by preparing a chain of
length N and setting the coupling strength of Ha to be
Jn =

√
n(2N − n). In this way, we virtually prepare a

chain of length 2N , and only take the first half as the con-
trol chain. The uniform chain is to stably transmit the
wave packet with the specific momentum for subsequent
scattering with the widgets. According to Childs’ theory,
there should be uniformly coupled chains on both sides of
the widgets, which is compatible with the quantum slide
method.

Second, what we want is a wave packet with momen-
tum of −π/4 on the uniformly coupled chain on the left
side of the widgets rather than on the control chain. How-
ever, the wave packet will not travel through the connec-
tion point smoothly. On the one hand, we need to turn
off the external fields on the control chain at an appropri-
ate time, so that the wave packet will not reflect at the
connection site. On the other hand, the momentum of
the wave packet will have a small shift, the magnitude of
which depends on the time to turn off the field. There-
fore, the time to turn off the field is not exactly when
the momentum of the wave packet reaches −π4 on the
control chain. We need to choose a time that makes the
wave packet possess a −π4 momentum on the left uniform
coupling chain after the transition.

After considering these issues, we perform numerical
experiments with settings as detailed in Fig. 2. For Ub
as shown in Fig. 2 (a), it contains a control chain (nodes
0-199) to “decelerate” the wave packet (from an initial
momentum that is always −π2 ), two uniform coupling
chains which are related to the input (nodes 200-350)
and the output (nodes 356-507) of Ub gate and a wid-
get contributing a π

4 global phase shift to the incident
wave packet with the momentum of −π4 . Our simulation
showed that the length of these uniform coupling chains
does not have a big impact on the precision of the gates,
as long as it is enough to accommodate the wave packets.
But the length of the control chains will strongly affect
the precision of the gates, which we will discuss later. For
Uc as shown in Fig. 2 (b), it differs from Ub in the wid-
get. As for the length of the chains, including the control
chain, inputs and outputs, they are all chosen to have
the same length as the experiment of Ub for convenience.
The coupling strengths and the external field of the con-
trol chain and the left uniform coupling chain are shown
in Fig. 2 (c). The first 200 nodes as the control chain are
effectively the first half of a 400-node chain which has
a corresponding 400-by-400 Ha with a = −2. The fol-
lowing 151 nodes as the input for the quantum gates are
all uniformly coupled (the coupling strength equals that
between the last two sites of the control chain) and with
no external field. In addition, the remaining, including
output chains and widgets, are all uniformly coupled and
with zero external field.

The optimal time to turn off the external field under
this specific setting is determined by repeated tests, and
the value is t = 0.226π as shown in Fig. 3. In this way, the

FIG. 4: Fidelity of Ub and Uc by increasing the length
of the control chain.

momentum of the wave packets on the uniform coupling
chains becomes −0.25π after the momentum shifts in the
transition point between two chains, as indicated by the
snapshots at t = 0.404π. After the scattering process
in the widgets, the wave packet transmitted through the
widget of Ub has transmission probability 99.71%, which
also represents the precision of the gate Ub. As for Uc,
the precision reaches 99.03% and the wave packet split
into two nearly equal parts as shown in Fig. 3 (b).

Moreover, further numerical experiments show that
higher precision can be achieved with longer control
chain. With a control chain consisting of thousands of
nodes, the precision could reach more than 99.9% or even
99.99% as illustrated in Fig. 4. Here, for every increase of
200 nodes in the control chains, we increase the length of
the uniform coupling chains by 25 to adapt to the wider
wave packets. Additionally, in Appendix B, we give a
mathematical analysis of the influence of the length of
the control chain on the fidelity and show that when the
length is large enough, the fidelity could reach 1 asymp-
totically.

The successful experimental implementation of our
proposed scheme relies on incorporating a linear exter-
nal field to the quantum slide. An approach that holds
promise for completing this task is the utilization of the
femtosecond laser direct writing technique [24–26] in con-
structing a system of coupled waveguides. With the
precise control of writing speed, this technique enables
the introduction of a targeted constant detuning to the
propagation constant of each waveguide, including vari-
ous segments within a single waveguide [27]. Since the
propagation constants correspond to the diagonal terms
of the system Hamiltonian, this manipulation provides
an effective means of introducing a desired external field
to each node of the quantum slide.
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V. CONCLUSION

In this work, we propose the improved quantum slide
method to generate wave packets with arbitrary momen-
tum. As a demonstrative example, we apply it to Childs’
scheme to achieve universal quantum computing. Our
method extends the original quantum slide method via
adding a linear external field to the original slide. We de-
rived an analytic expression of the momentum as a func-
tion of the evolution time t and the parameter a of the
external field. As a result, one can prepare wave packets
of the desired momentum by controlling the two parame-
ters. This allows us to apply the improved quantum slide
method to Childs’ scheme for universal quantum compu-
tation, which requires incident wave packets with mo-
mentum −π4 for later scattering processes. Furthermore,
we show how to achieve high-fidelity gates with limited
length of the quantum slide (i.e., the control chain). The
fidelity of the gates could be improved by increasing the
length of the slide and could reach 1 asymptotically when
the slide is long enough. Therefore this method might
become a powerful tool in the development of universal
quantum computation. Lastly, our analysis leads us to
suggest that the system of coupled waveguides, which
has been fabricated utilizing the femtosecond laser di-
rect writing technique, represents a potentially promising
candidate for the successful realization of our proposed
scheme. Our work shall stimulate more development in
the experimental technology in the near future.
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Appendix A: Detailed derivation of the methodology

In this Appendix, we give the details of deriving
A(r, a, t). First, it is usually convenient to use the monic
polynomials related to χn(x),

Pn(x) := J1J2 . . . Jnχn(x) , (A1)

which has the recurrence relation,

xPn(x) = J2
nPn−1(x) +BnPn(x) + Pn+1(x) . (A2)

Next, we should have applied (15) to Ha, but we first
consider a related Hamiltonian which we denote as Hp

with:

Jn =
√
p(1− p)n(N + 1− n) Bn = (1− 2p)n+ pN .

(A3)

We will first derive the transition amplitude A(r, p, t) of
the time evolution Hp because it is mathematically more
convenient than Ha in derivation. And then utilizing the
relationship between Ha and Hp, we can easily obtain
A(r, a, t) from A(r, p, t). So we will apply (15) to Hp to
get A(r, p, t) in the following.

First of all, Hp has an interesting property that for
whatever value of p in interval (0, 1), its eigenvalues al-
ways observe this rule:

λn = n, n = 0, 1, . . . , N. (A4)

Secondly, we need to find the corresponding orthogonal
polynomial χn(x) of Hp. Here we consider the three-term
recurrence relation of Krawchouk polynomials [28, 29]
Kn(x, p) (p can be viewed as a constant temporarily):

−xKn(x, p) =p(N − n)Kn+1(x, p)− [p(N − n) + n(1− p)]
×Kn(x, p) + n(1− p)Kn−1(x, p), (A5)

or alternatively the recurrence relation of the correspond-
ing monic polynomials:

xPn(x, p)= np(1− p)(N + 1− n)Pn−1(x, p) +

[(1− 2p)n+ pN ]Pn(x, p) + Pn+1(x, p).(A6)

And the relations between the two polynomials are:

Pn(x, p) = (−N)np
nKn(x, p) , (A7)

where (−N)n ≡ (−1)n
(
N
n

)
. By comparing (A6), (A2)

and (A3), we can conclude that for Hp, its Pn(x) is just
the monic Krawchouk polynomial (A7). Hence for Hp,
its χn(x) can be found by (A1):

χn(x) =
1

J1J2 . . . Jn
Pn(x, p)

= (−1)n(p)
n
2 (1− p)−n2

√(
N

n

)
Kn(x, p), (A8)

with J1J2 . . . Jn =
√(

N
n

)
(p(1 − p))n/2. And for Kraw-

chouk polynomials, weight functions are in the following
form:

ωn =

(
N

n

)
pn(1− p)N−n. (A9)

And we can check that (A9) is also the ωn of Hp by
substituting it and (A8) into (11).

Now putting (A4), (A8), (A9) into (15), the amplitudes
of final states after evolution could be expressed as:

A(r, p, t)= (−1)r(p)
r
2 (1− p)− r2

√(
N

r

) N∑
n=0

(
N

n

)
pn

×(1− p)N−nKr(n, p)e
−int. (A10)

From the self-duality of Krawchouk polynomials, i.e.
Kr(n, p) = Kn(r, p)(n, r = 0, 1, . . . , N), then

(A10)= (−1)r(p)
r
2 (1− p)N− r2

√(
N

r

)
(1− e−it)r

(1 +
p

1− p
e−it)N−r, (A11)

where the generating functions of Krawchouk polynomi-
als have been used:

(1− 1− p
p

z)r(1 + z)N−r =

N∑
n=0

(
N

n

)
Kn(r, p)zn, (A12)

by letting z = p
1−pe

−it.

Then consider the following equations:

1 + ce−it= 1 + c cos t− ic sin t =
√
c2 + 2c cos t+ 1eiα,

α = − arctan
c sin t

1 + c cos t
, (A13)

and substitute it into (A11) by letting c = −1, c = p
1−p

respectively, then we get the final result of the ampli-
tudes:

A(r, p, t)=

√(
N

r

)
[4p(1− p) cos2(

t

2
) + (1− 2p)2]

N−r
2 ×

[4p(1− p) sin2(
t

2
)]
r
2 eirθ(t,p)eiNθg(t,p), (A14)

with

θ(t, p) =

{
− arctan

(
(1− 2p) tan ( t2 )

)
− π

2 , t ∈ (0, π]

− arctan
(
(1− 2p) tan ( t2 )

)
+ π

2 , t ∈ (π, 2π)
,

(A15)

θg(t, p) = arctan (
p sin t

1− p+ p cos t
). (A16)

Now back to case of Ha, we consider:

a =
1− 2p√
p(1− p)

, (A17)
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and for p ∈ (0, 1), we have a ∈ (−∞,∞). Conversely,

p =


1
2 (1 +

√
a2

a2+4 ), a <= 0

1
2 (1−

√
a2

a2+4 ), a > 0
. (A18)

Then, ignoring some unimportant constant diagonal
terms, which only bring some global phases to the final
state, Ha and Hp can be related by the following formula:

Ha =
Hp√
p(1− p)

. (A19)

Hence, up to some global phases,

〈r|e−iHat|0〉 = 〈r|e
−iHp t√

p(1−p) |0〉

= A(r, p,
t√

p(1− p)
) (A20)

Lastly put the Eq. (A14) and (A18) into Eq. (A20), we
have the final results shown in the equations (16)-(17).

Appendix B: Analytical transmission probability of
the wave packets

Considering the wave packets with the amplitudes
shown in (16), when N is large enough, we can use the
binomial-Gaussian approximation:

A(r, a, t) ≈ 1

(2πσ2)
1
4

e−
(r−Nq)2

4σ2 eiθr (B1)

with σ2 = Nq(1 − q). Then take a Fourier Transfor-
mation to the amplitudes, we obtain the amplitudes in
momentum space:

Ã(k, a, t) ≈
√

2σ

(2π)
1
4

e−σ
2(k+θ)2eiNq(k+θ), (B2)

hence the probability distribution in the momentum
space which is also a Gaussian distribution with respect

to k:

|Ã|2(k, a, t) ≈ 1√
2πσk

e−(k−θ)2/2σ2
k (B3)

with the standard deviation σk = 1
2σ . And we know the

transmission probability of the plane waves to the wid-
gets from [19], which we denote by T (b)(k) and T (c)(k);
for instance,

T (b)(k) =
64

64 + cos2 2k csc6 k sec2 k
. (B4)

for k ∈ (−π, 0).
Then the transmission probability for the Gaussian

wave packets could be obtained as the expectation values
of T (b)(k) and T (c)(k) in the probability distribution in
the corresponding momentum space. So we can calculate
the transmission probability of the Gaussian wave pack-
ets as a function of θ to the widget b via the following
integral:

T
(b)
G (θ) =

∫ 0

−π
|Ã|2(k, a, t)T (b)(k)dk

=

∫ 0

−π

1√
2πσk

e−(k−θ)2/2σ2
k

64

64 + cos2 2k csc6 k sec2 k
dk.

(B5)

When N → ∞, so σk → 0, then the Gaussian distribu-
tion would approximate a Dirac delta function:

lim
σk→0

1√
2πσk

e−(k−θ)2/2σ2
k = δ(k − θ). (B6)

So (B5) can just reduce to the expression of a plane wave
with the momentum θ:

T
(b)
G (θ) =

64

64 + cos2 2θ csc6 θ sec2 θ
= T (b)(θ), (B7)

which could reach 1 when θ = −π4 ; and the same for

T
(c)
G (θ).
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