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This Perspective presents a comprehensive account of the dissipaton theories developed in our group since
2014, including the physical picture of dissipatons and the phase–space dissipaton algebra. The dissipaton–
equation–of–motion–space (DEOM–space) formulations cover the Schrödinger picture, the Heisenberg picture,
and further the imaginary–time DEOM. Recently developed are also the dissipaton theories for studying
equilibrium and nonequilibrium thermodynamic mixing processes. The Jarzynski equality and Crooks relation
are accurately reproduced numerically. It is anticipated that dissipaton theories would remain essential
towards a maturation of quantum mechanics of open systems.

I. INTRODUCTION

Open quantum systems are ubiquitous in various
fields of science,1–4 covering quantum optics,5–9 nu-
clear magnetic resonance,10–12 condensed matter and ma-
terial physics,13–17 quark-gluon plasma,18–21 nonlinear
spectroscopy,22–29 chemical and biological physics.30–35
In all these studies, the total system–plus–bath compos-
ite Hamiltonian assumes the form of HT = HS+hB+HSB,
which together with temperature and/or chemical poten-
tials constitute a thermodynamic system. Irreversibility
takes place, in terms of not only relaxation, dephasing
and quantum transport events, but also those fundamen-
tal processes subject to the Laws of Thermodynamics.

In literature, quantum dissipation theories (QDTs),
such as quantum master equations,36–40 focus mainly on
the reduced system density operator, ρS(t) ≡ trBρT(t).
Exact QDTs include the Feynman–Vernon influence func-
tional path integral formalism41 and its time–derivative
equivalence, hierarchical equations of motion (HEOM),
with either bosonic42–49 or fermionic bath environment
influence.50–52 However, as mentioned earlier, the re-
duced system (HS) is just the primarily interested part
of the thermodynamic system that is characterized by
not only the total composite HT, but also temperatures
and other thermodynamic parameters. The relevant in-
formation encoded in the reduced system dynamics alone
would be insufficient to deal with experimental measure-
ments on open systems. The entangled system–and–
environment dynamics are also crucially important.53,54

In this paper, we present a systematic framework of
quantum mechanics of open systems, in terms of dissi-
paton theories. These are universal theories developed
on the basis of both quantum mechanics and statistical
thermodynamics principles. In Sec. II, we present the
statistical quasi-particle picture of dissipatons, followed
by the related algebraic constructions.55,56 Adopted for
the bath Hamiltonian (hB) is the Gaussian environments
ansatz that is rooted at the well–known central limit the-
orem. In other words, the bath effectively consists of in-
finite number of noninteracting (quasi) particles, either
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bosonic or fermionic. Consider further the system–bath
coupling (HSB), a superposition of {Q̂S

uF̂
B
u }, in which the

dissipative system modes {Q̂S
u} are arbitrary and the hy-

brid bath modes {F̂B
u } assume linear. This is the scenario

of Gauss–Wick’s environments. The bath influences are
then completely characterized by the hybridization bath
correlation functions. Dissipatons can now be deduced
for satisfying the generalized diffusion equation as re-
quired by the theory. Dynamical variables are dissipa-
ton density operators (DDOs), whose time–evolutions are
governed by the dissipaton equation of motion (DEOM).
The reduced system density operator (ρS) is just a mem-
ber of DDOs. Another fundamental ingredient of dissi-
paton algebra is the generalized Wick’s theorem. This
enables dissipaton theories for not only the reduced sys-
tem but also the hybrid bath modes.

Section III comprises a complete description of
DEOM–space quantum mechanics of open systems, con-
structed in parallel to those traditional Liouville–space
formulations. These include the real–time dynamics in
Schrödinger versus Heisenberg pictures, the imaginary–
time dynamics, and the DEOM evaluations on such as
expectation values and correlation functions.

Section IV is concerned with the thermodynamic
mixing via the dissipaton implementations. These in-
clude the equilibrium λ-DEOM for the Helmholtz free–
energy change57 and the nonequilibrium λ(t)-DEOM for
the work distributions.58 The Jarzynski equality and
Crooks relation are accurately reproduced with numeri-
cal DEOM evaluations.58

Section V is concerned with the dissipaton thermofield
(DTF) theory. This covers the thermofield dissipaton
Langevin equation and the nonequilibrium system–bath
entanglement theorem. Established are the relations be-
tween the local system correlation functions and those
involving the nonlocal hybrid bath modes. In Sec.VI, we
discuss the future prospect of the dissipaton theories to-
wards the quantum mechanics of open systems. Finally,
we conclude this paper.
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II. ONSETS OF DISSIPATONS

A. Prelude

Let us start with the total system–plus–bath composite
Hamiltonian in the generic form of

HT = HS + hB +HSB = HS +
∑
α

hα +
∑
αu

Q̂uF̂αu. (1)

Both the system Hamiltonian HS and the dissipative
system modes {Q̂u} are arbitrary, including the time–
dependence via the classical external fields, which act
on the system and/or the neighboring environment. For
brevity, we set throughout this paper ~ = 1 and βα =
1/(kBTα), the inverse temperature of the α–reservoir.

The hybrid reservoir bath modes {F̂αu} assume to be
linear. This together with noninteracting and indepen-
dent reservoir bath, hB =

∑
α hα, constitute the so–

called Gaussian–Wick’s coupling environments.1,2 Their
influences are fully characterized by the hybridization
bath correlation functions, satisfying the fluctuation–
dissipation theorem,1–4,59

〈F̂B
αu(t)F̂B

αv(0)〉B =
1

π

∫ ∞
−∞

dω
e−iωtJαuv(ω)

1− e−βαω
. (2)

Here, F̂B
αu(t) ≡ eihBtF̂αue

−ihBt = eihαtF̂αue
−ihαt and

〈( · )〉B ≡ trB[( · )ρ0
B], with ρ0

B = ⊗α[e−βαhα/trB(e−βαhα)].
The involving hybridization bath spectral densities are

Jαuv(ω) =
1

2i

∫ ∞
−∞

dt eiωtφαuv(t) (3)

with

φαuv(t) ≡ i〈[F̂B
αu(t), F̂B

αv(0)]〉B. (4)

To proceed, we decompose Eq. (2) into (t ≥ 0)

cαuv(t) ≡ 〈F̂B
αu(t)F̂B

αv(0)〉B '
K∑
k=1

ηαuvke
−γαkt. (5)

This can be readily achieved with some sum–over–pole
schemes49,59–62 or the time–domain Prony fitting decom-
position scheme.63 For simplicity of formulations, we as-
sume all γαuvk = γαk (valid at least when the poles of
Jαuv(ω) contain no explicit system–mode dependence).
Let further k̄ ∈ {k = 1, · · · ,K} via γαk̄ ≡ γ∗αk, since
the exponents {γαk} are either real or complex conjugate
paired. We can then report the required time–reversal
relation, 〈F̂B

αv(0)F̂B
αu(t)〉B = 〈F̂B

αu(t)F̂B
αv(0)〉∗B, in terms of

〈F̂B
αv(0)F̂B

αu(t)〉B =

K∑
k=1

η∗αuvk̄e
−γαkt. (6)

Apparently, k̄ = k if γαk is real, since γαk̄ ≡ γ∗αk.

B. Dissipaton decomposition

The dissipaton theory provides a statistical quasi-
particle (dissipaton) picture to account for the environ-
ment, starting with the dissipaton decomposition,

F̂αu =

K∑
k=1

f̂αuk, (7)

where {f̂αuk} are known as dissipaton operator. To re-
produce the required Eqs. (5) and (6), we set

〈f̂B
αuk(t)f̂B

α′vk′(0)〉B = δαα′δkk′η
>

αuvke
−γαkt,

〈f̂B
α′vk′(0)f̂B

αuk(t)〉B = δαα′δkk′η
<

αuvke
−γαkt,

(8)

where

η>αuvk ≡ 〈f̂αukf̂αvk〉
>

B ≡ 〈f̂αuk(0+)f̂αvk〉B = ηαuvk,

η<αuvk ≡ 〈f̂αvkf̂αuk〉
<

B ≡ 〈f̂αvkf̂αuk(0+)〉B = η∗αuvk̄.
(9)

Note that 〈f̂B
α′vk̄

(0)f̂B
αuk̄

(t)〉B = 〈f̂B
αuk(t)f̂B

α′vk(0)〉∗B.
The dissipaton decomposition, Eqs. (7)–(9), repre-

sented by the first mapping arrow in Fig. 1, is concerned
with individual F̂αu that assumes by far to be a linear
operator in the bare bath hα–subspace. The resulting
{f̂B
αuk(t) ≡ eihBtf̂αuke

−ihBt} are linear and statistically
independent diffusive environmental modes [cf. Eq. (8)],
with the diffusion constant γαk that can be complex.
In other words, Eq. (7) essentially represents a mapping
from the α-reservoir bath to K independent auxiliary
baths, which intrinsically conserves the correlation func-
tions in Eqs. (5) and (6).

To proceed, we introduce the irreducible dissipaton
product notation, (

f̂kf̂j
)◦

=
(
f̂j f̂k

)◦
. (10)

This is true for bosonic dissipatons. As Eqs. (7)–(9)
reproduce the bosonic fluctuation–dissipation theorem,
Eq. (2), the dissipatons {f̂αuk} in Eq. (7) are bosonic. In
this paper the dissipaton theories are illustrated with the
bosonic scenario.

C. Disspaton density operators as dynamical variables

Dynamical variables in dissipaton theories are the so-
called dissipaton density operators (DDOs):55,64,65

ρ(n)
n (t) ≡ trB

[(∏
αuk

f̂nαukαuk

)◦
ρT(t)

]
. (11)

This describes a configuration that is irreducible and la-
beled by an ordered collection of indexes, n ≡ {nαuk},
with nαuk = 0, 1, 2, · · · being the participation number
of individual bosonic f̂αuk-dissipaton. The total number
of dissipaton excitations in ρ(n)

n (t) is given by

n =
∑
αuk

nαuk. (12)
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FIG. 1. Dissipaton decomposition [cf. Eq. (7)] followed by the
DTF decomposition. The latter will be explained in Sec.V
[cf. Eqs. (77a) and (77b)].

The reduced system density operator is ρS(t) = ρ
(0)
0 (t),

just a special member of DDOs.
Let ρ(n±1)

n±αuk
be the associated (n±1)-dissipatons config-

uration, with n±αuk differing from n only at the specified
f̂αuk-disspaton participation number, nαuk, by ±1. For
presenting the related dissipaton algebra, adopt hereafter
the following notations:

ρ(n)
n (t; Â×) ≡ trB

[(∏
αuk

f̂nαukαuk

)◦
Â×ρT(t)

]
,

ρ(n)
n (t; Â≶) ≡ trB

[(∏
αuk

f̂nαukαuk

)◦
Â≶ρT(t)

]
,

(13)

where Â× ≡ Â> − Â<,

Â>ρT(t) ≡ ÂρT(t) and Â<ρT(t) ≡ ρT(t)Â. (14)

The above notations will appear in the generalized diffu-
sion equation and the generalized Wick’s theorem. These
are two fundamental ingredients of dissipaton algebra as
follows; see also Sec. III.

D. Generalized diffusion equation

Equation (8) highlights two important features of dis-
sipatons: (i) Dissipatons with different “color-γαk” are
statistically independent with respective to the (αk)-
index; (ii) Each individual dissipaton goes by a single-
exponential correlation function, with a same exponent
for both the forward and the backward paths. These fea-
tures are closely related to the dissipaton algebra used in
the DEOM construction. In particular, the feature (ii)
above leads to55

trB

[( ∂
∂t
f̂αuk

)
B
ρT(t)

]
= −γαk trB

[
f̂αukρT(t)

]
. (15)

This is the generalized diffusion equation for dissipatons.
It together with ( ∂∂t f̂αuk)B = i[hB, f̂αuk] ≡ ih×B f̂αuk gives
rise to the h×B –action on DDOs the result of

ρ(n)
n (t;h×B ) = −i

(∑
αuk

nαukγαk

)
ρ(n)
n (t). (16)

Denote for bookkeeping later,

H0 ≡ HS + hB and L(n)
n ≡ H×S − i

∑
αuk

nαukγαk . (17)

Together with Eq. (16), we obtain

ρ(n)
n (t;H×0 ) = L(n)

n ρ(n)
n (t). (18)

E. Generalized Wick’s theorems

Another important ingredient of dissipaton algebra is
the generalized Wick’s theorem (GWT). Consider first

ρ(n)
n (t; f̂≷

α′vk′) ≡ trB

[(∏
αuk

f̂nαukαuk

)◦
f̂>α′vk′ρT(t)

]
=
∑
αuk

nαuk〈f̂αukf̂α′vk′〉>Bρ
(n−1)

n−αuk
(t) + ρ

(n+1)

n+

α′vk′
(t). (19)

Here, 〈f̂αukf̂α′vk′〉>B ≡ 〈f̂αuk(0+)f̂α′vk′〉B via Eq. (8),
with the nonzero value being only η>αuvk ≡ 〈f̂αukf̂αvk〉>B .
The f̂<α′vk′–action counterpart to Eq. (19) is similar, but
goes with 〈f̂α′vk′ f̂αuk〉<B ≡ 〈f̂α′vk′ f̂αuk(0+)〉B, whose
nonzero value is η<αuvk ≡ 〈f̂αvkf̂αuk〉<B only. We can then
recast Eq. (19) with the unified expression of

ρ(n)
n (t; f̂≷

αuk) = ρ
(n+1)

n+
αuk

(t) +
∑
v

nαvkη
≷

αvukρ
(n−1)

n−αvk
(t). (20)

This is the GWT for bosonic dissipatons, which as seen
later determines ρ(n)

n (t;H×SB), the last two terms in the
DEOM (30). Involved are the pre–exponential coeffi-
cients in Eq. (5) or Eq. (6), since η>αuvk = ηαuvk and
η<αuvk = η∗

αuvk̄
, as specified in Eq. (9).

It is worth re-emphasizing that the GWT, Eq. (20),
goes by the irreducibility nature of ρ(n)

n (t): In Eq. (11),
the product of dissipaton operators inside (· · · )◦ is ir-
reducible, satisfying the bosonic permutation relation of
Eq. (10). In comparison, we may recall some properties
about the “normal order” in textbooks, which arranges
creation operators before annihilation operators. Denote
this also with ( · )◦, such that (â†â)◦ = (ââ†)◦ = â†â. The
ground state |0〉 satisfies â|0〉 = 0. Set f̂ ≡ √η (â + â†),
with η being an arbitrary real parameter. It is easy to ob-
tain (f̂n)◦f̂ = (f̂n+1)◦ + nη(f̂n−1)◦ = f̂(f̂n)◦. Equation
(20) is just the dissipaton generalization of this result.

To complete phase–space dissipaton algebra,66 con-
sider further

Φ̂αu ≡ ˙̂
Fαu = i[hα, F̂αu], (21)

which satisfies

[F̂αu, Φ̂α′v] = iδαα′Θαuv, (22)

with

Θαuv ≡
1

π

∫ ∞
−∞

dω ωJαuv(ω). (23)
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The dissipaton momentum decomposition is [cf. Eq. (7)]

Φ̂αu =

K∑
k=1

ϕ̂αuk. (24)

The resulting GWT for dissipaton momentums reads66

ρ(n)
n (t; ϕ̂≷

αuk) = γαk
∑
v

nαvkη
≷

αvukρ
(n−1)

n−αvk
(t)

− γαkρ(n+1)

n+
αuk

(t). (25)

Introduce now

θ̂±αuk ≡
1

2

(
f̂αuk ∓

ϕ̂αuk
γαk

)
. (26)

We obtain Eqs. (20) and (25) the alternative expressions,

ρ(n)
n (t; θ̂+;≷

αuk) = ρ
(n+1)

n+
αuk

(t),

ρ(n)
n (t; θ̂−;≷

αuk) =
∑
v

nαvkη
≷

αvukρ
(n−1)

n−αvk
(t).

(27)

III. DEOM–SPACE QUANTUM MECHANICS

A. Time-evolutions of DDOs

The construction of DEOM starts with

ρ̇T(t) = −i[H0 +HSB, ρT(t)], (28)

where H0 ≡ HS + hB and [cf. Eq. (7)]

HSB =
∑
αu

Q̂uF̂αu =
∑
αuk

Q̂uf̂αuk. (29)

Applying Eq. (28) to Eq. (11) and further Eqs. (18)–(20),
we obtain

ρ̇(n)
n = −iL(n)

n ρ(n)
n − i

∑
αuk

Q̂×u ρ
(n+1)

n+
αuk

− i
∑
αuvk

nαuk
(
ηαuvkQ̂

>

v − η∗αuvk̄Q̂
<

v

)
ρ

(n−1)

n−αuk
. (30)

In parallel to ρ̇T(t) = −iLTρT(t) [cf. Eq. (28)], we can
recast the set of linear equations (30) as

ρ̇(t) = −iLρ(t), with ρ(t) ≡ {ρ(n)
n (t)}. (31)

The dynamical generator L, defined via Eq. (30), can be
time–dependent in general. In line with ρT → ρ and
LT → L, the DEOM–space formulations are those of the
Liouville–space mappings, as follows.

Evidently, DEOM (30) is identical to the well–
established HEOM formalism.42–49 All numerical meth-
ods developed for HEOM, illustrated in Sec. IIID, are
applicable in DEOM evaluations. Now the observables

cover not only the reduced system but also the hy-
brid bath properties [cf. Eq. (33)]; see also Sec. IV for
the dissipaton theory implementations of equilibrium and
nonequilibrium thermodynamics. It is worth emphasiz-
ing that the underlying dissipaton algebra can be readily
extended to nonlinear coupling environments.67–69 This
scenario is beyond the conventional HEOM approach
that is rooted at the Feynman–Vernon influence func-
tional path integral formalism.

B. DEOM–space observables

Consider the expectation values,

Ā(t) ≡ Tr[ÂρT(t)] ≡ 〈〈Â|ρT(t)〉〉

= 〈〈Â|ρ(t)〉〉 ≡
∑
n

trS

[
Â(n)

n ρ(n)
n (t)

]
. (32)

The second line denotes the DEOM–space evaluation,
which as inferred from the Eqs. (20) and (25), supports
the following types of operators,

Â ∈ {ÂS, B̂Sf̂αuk, B̂Sϕ̂αuk}. (33)

Here, ÂS and B̂S are arbitrary observables in the system
subspace, including B̂S = ÎS, whereas {f̂αuk} and {ϕ̂αuk}
are related to hybrid bath modes {F̂αu} and {Φ̂αu ≡
˙̂
Fαu} via Eqs. (7) and (24), respectively. To complete
Eq. (32), we map Â into the DEOM–space operators,

Â→ Â ≡ {Â(n)
n ;n = 0, 1, 2, · · · }. (34)

The dissipaton algebra established earlier results in

ÂS → Â = {Â(0) = ÂS; Â(n>0)
n = 0}, (35a)

B̂Sf̂αuk → Â = {Â(1)
αuk = B̂S; others = 0}, (35b)

B̂Sϕ̂αuk → Â = {Â(1)
αuk = −γαkB̂S; others = 0}. (35c)

We can then evaluate the expectation values for these
types of operators via the last identity of Eq. (32).

Turn to the steady–state correlation functions, which
in general can be recast as [cf. Eq. (32)]

〈Â(t)B̂(0)〉 = 〈〈Â|ρT(t; B̂>)〉〉 = 〈〈Â|ρ(t; B̂>)〉〉, (36)

with ρT(t; B̂>) = e−iLTtρT(0; B̂>) ≡ e−iLTt(B̂ρst
T ) and

ρT(t; B̂>)→ ρ(t; B̂>) ≡ {ρ(n)
n (t; B̂>)}. (37)

Both Â and B̂ belong to the types of Eq. (33). More-
over, in relation to ρT(0; B̂>) ≡ B̂ρst

T , the initial values
of DDOs in evaluating Eq. (36) are given by

ρ(n)
n (0; B̂>) ≡ trB

[(∏
αuk

f̂nαukαuk

)◦
B̂>ρst

T

]
. (38)
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For the first type operator of Eq. (34), we have

ρ(n)
n (0; B̂>

S ) = B̂Sρ
(n);st
n . (39a)

The other two types are related to [cf. Eq. (27)]

ρ(n)
n (0; B̂>

S θ̂
+;>
αuk) = B̂Sρ

(n+1)

n+
αuk

(t),

ρ(n)
n (0; B̂>

S θ̂
−;>
αuk) =

∑
v

nαvkηαvukB̂Sρ
(n−1)

n−αvk
(t),

(39b)

since f̂αuk = θ̂−αuk + θ̂+
αuk and ϕ̂αuk = γαk(θ̂−αuk − θ̂

+
αuk);

Eq. (26).
The DEOM evaluations of correlation functions are as

follows: (i) Compute the steady–state DDOs, {ρ(n);st
n };

(ii) Determine the initial values {ρ(n)
n (0; B̂>)} via ap-

plicable Eq. (39) in study; (iii) Propagate DDOs with
Eq. (30) to obtain the required {ρ(n)

n (t; B̂>)}; (iv) Evalu-
ate 〈Â(t)B̂(0)〉 as the expectation value problem by using
Eqs. (32)–(35). Demonstrated examples of these evalua-
tions include such as Fano interferences,64,70 Herzberg–
Teller vibronic spectroscopy71,72 and transport current
noise spectrum.66,73,74

C. DEOM in the Heisenberg picture

The Heisenberg picture of DEOM is concerned with

Â(t) = Âe−iLTt → Â(t) = Âe−iLt ≡ {Â(n)
n (t)},

satisfying

˙̂
A(t) = −iÂ(t)L (40)

and

〈Â(t)〉 = 〈〈Â(t)
∣∣ρ(0)〉〉 = 〈〈Â(0)

∣∣ρ(t)〉〉 (41)

with Â(t = 0) ≡ Â. From 〈〈 ˙̂
A|ρ〉〉 = 〈〈Â|ρ̇〉〉, we obtain

˙̂
A(n)

n = −iÂ(n)
n L(n)

n − i
∑
αuk

Â
(n−1)

n−αuk
Q̂×u − i

∑
αuvk

(nαuk + 1)

× Â(n+1)

n+
αuk

(ηαuvkQ̂
>

v − η∗αuvk̄Q̂
<

v ). (42)

This is the Heisenberg picture counterpart to Eq. (30),
where ÔB̂> = ÔB̂ and ÔB̂< = B̂Ô, in line with Eq. (14).

The main usage of Eq. (42) is concerned with efficient
evaluations of nonlinear correlation functions, such that
〈Â(t2)B̂(t1)Ĉ(0)〉 = 〈〈Â(t2)|B̂|ρ(t1; Ĉ>)〉〉, via the mixed
Heisenberg–Schrödinger DEOM dynamics. The formula-
tion here is closely related to the doorway–window pic-
ture of pump–probe spectroscopy.75 As also known, the
pump can be an optimal control field, whereas the probe
provides a means of feedback.

D. DEOM toolkits and related considerations

As mentioned earlier, the DEOM (30) itself is identical
to the well–established HEOM.46–49 Various methods de-
veloped there can be directly applied; see the recent Per-
spective by Y. Tanimura.42 New developments include
the follows: (i) The adiabatic terminator for hierarchy
level truncation, which alleviates the numerical long–
time instability problems;76 (ii) The time–domain Prony
fitting decomposition scheme for accurate and minimum
dissipaton basis set, applicable to arbitrary hybridiza-
tion bath spectral densities;63 (iii) The implementation
of matrix product state;77–83 (iv) The transformed Brow-
nian oscillator basis;84,85 (v) The construction of rate
kernels via DEOM by utilizing the Nakajima–Zwanzig
projection techniques86,87 and so on.

In the following, we focus on the steady–state solver
and related imaginary–time DEOM formalism.

1. Efficient steady–state solver

Steady states play crucial roles in many equilib-
rium and non-equilibrium open system studies, including
aforementioned correlation function problems. The stan-
dard choices for solving high-dimension linear equations
are the Krylov subspace methods.88 Nevertheless, solv-
ing the steady states DDOs, ρ̇st = 0 or ρ(t → ∞), via
HEOM/DEOM (30) is often a challenging task, since the
vast number of dynamical quantities are involved. The
proposed self–consistent iteration (SCI) approach would
be the choice.89 To be concrete, we set ρ̇(n)

n = 0 and
obtain

0 = −iL(n)
n ρ(n);st

n − i
∑
αuk

Q̂×u ρ
(n+1);st

n+
αuk

− i
∑
αuvk

nαuk
(
ηαuvkQ̂

>

v − η∗αuvk̄Q̂
<

v

)
ρ

(n−1);st

n−αuk
.

Then recast it into the SCI equation,89

ρ(n);st
n = (iL(n)

n + ε)−1

[
ερ(n);st

n − i
∑
αuk

Q̂×u ρ
(n+1);st

n+
αuk

− i
∑
αuvk

nαuk
(
ηαuvkQ̂

>

v − η∗αuvk̄Q̂
<

v

)
ρ

(n−1);st

n−αuk

]
(43)

where ε > 0 is an arbitrary parameter. The SCI evalua-
tion is subject to the constraint trSρ

(0)
0 = 1. The iteration

will converge as long as the diagonal part of (iL(n)
n + ε)

dominates. Increasing ε will increase the numerical sta-
bility, but decrease the convergence speed. For a good
balance between accuracy and efficiency, it is appropri-
ate to have ε the value about the spectrum span of the
system Hamiltonian.

As known, the SCI equation (43) accommodates the
hierarchical structure and the efficient on-the-fly filter-
ing algorithm.90 The numerical practices also show the
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remarkable advantages of SCI scheme over the Krylov
subspace methods.89

2. Imaginary-time DEOM (i-DEOM)

Alternatively, the equilibrium state can be related to
the imaginary–time DEOM,57 which aims at hybridiza-
tion partition function,

Zhyb ≡ ZT/Z0 ≡ Tr%T(β), (44)

with ZT ≡ Tr e−βHT and Z0(T ) ≡ Tr e−βH0 . Only single
bath is involved so that the α-index is dropped. Ev-
idently, Zhyb is related to the hybridization free–energy
that can also be evaluated via the λ–thermodynamic inte-
gral; cf. Sec. IVA. The imaginary–time dynamics is con-
cerned with

%T(τ) = e−τHTe−(β−τ)H0
/
Z0, (45)

which satisfies [cf. Eq. (14)]

d

dτ
%T(τ) = −

(
H×0 +H>

SB

)
%T(τ). (46)

The i-DEOM–space mappings then go by

%T(τ)→ %(τ) ≡ {%(n)
n (τ)}, (47)

with the i-DDOs satisfying

d

dτ
%(n)
n (τ) = −%(n)

n (τ ;H×0 )−
∑
uk

Q̂u%
(n)
n (τ ; f̂>uk). (48)

In parallel to Eqs. (18) and (20), we obtain57

%(n)
n (τ ;H×0 ) = L(n)

n %(n)
n (τ),

%(n)
n (τ ; f̂>uk) = %

(n+1)

n+
uk

(τ) +
∑
v

nvkηvuk%
(n−1)

n−vk
(τ). (49)

In line with %T(0) = e−βH0/Z0 of Eq. (45), the initial
values of i-DDOs are

%
(0)
0 (0) = e−βHS/ZS and %(n>0)

n (0) = 0, (50)

where ZS = trSe
−βHS . We then propagate the i–DEOM

until τ = β and evaluate

Zhyb = trS%
(0)
0 (β). (51)

It can be further verified that57

%
(n)
n (β)

trS[%
(0)
0 (β)]

= ρ(n);eq
n . (52)

The right–hand–side are the equilibrium DDOs, which
can be obtained via steady–state solvers, such as the SCI
[cf. Eq. (43)].

IV. DISSIPATON IMPLEMENTATIONS OF
THERMODYNAMIC MIXING

The system–bath entanglement plays crucially impor-
tant roles in not only dynamics but also the thermody-
namic properties.57,91,92 The latter has just been illus-
trated with the i-DEOM formalism. In the following, we
will introduce an alternative approach and further extend
this method to the nonequilibrium scenarios.

A. Equilibrium λ-DEOM formalism

The equilibrium λ-DEOM focuses on the free–energy
change before and after isotherm system–bath mixing,

Ahyb(T ) ≡ AT(T )−A0(T ). (53)

Evidently, Ahyb(T ) = −β−1 lnZhyb(T ) [cf. Eq. (44)]. Ac-
cording to the thermodynamic integral formalism, the
hybridization free–energy can be expressed as57,91–95

Ahyb(T ) =

∫ 1

0

dλ

λ
〈HSB〉λ (54)

where λ is the mixing parameter and

〈HSB〉λ ≡ Tr[(λHSB)ρeq
T (T ;λ)] (55)

with ρeq
T (T ;λ) = e−βHT(λ)/Zλ(T ) and Zλ(T ) ≡

Tr e−βHT(λ) [cf. Eq. (56)]. The involving total composite
Hamiltonian reads

HT(λ) = H0 + λHSB, (56)

with H0 ≡ HS + hB [cf. Eq. (17)].
Equation (55) implies that 〈HSB〉λ is just the λ–

augmented equivalence to the original 〈HSB〉 where λ = 1.
As seen from Sec. III, DEOM supports accurate evalua-
tions of 〈HSB〉λ for the Gauss–Wick’s bath. In particular,
for HSB =

∑
u Q̂uF̂u, by using Eqs. (32) with (35b), we

obtain

〈HSB〉λ = λ
∑
uk

trS

[
Q̂uρ

eq
uk(T ;λ)

]
. (57)

Here, ρeq
uk(T ;λ) ≡ ρ

(1);eq

0+
uk

(T ;λ) is a λ–augmented DDO
at thermal equilibrium, with the generic form of Eq. (11)
but

ρ(n);eq
n (T ;λ) ≡ trB

[(∏
uk

f̂nukuk

)◦
ρeq

T (T ;λ)
]
. (58)

The hybridization free–energy in Eq. (53) can be then
obtained via the integration of λ by using Eq. (54).
This is the equilibrium λ-DEOM formalism. Practi-
cally, we evaluate ρeq(T ;λ) ≡

{
ρ

(n);eq
n (T ;λ)

}
progres-

sively, by noting that ρ
(0);eq
0 (T ; 0) = e−βHS/ZS and

ρ
(n>0);eq
n (T ; 0) = 0. Then use the known ρeq(T ;λ) as
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the initial values for calculating ρeq(T ;λ+ δλ) via either
the real–time (t → ∞) propagation or the steady–state
solver. We have also developed the free–energy spectrum
theory for thermodynamics of open quantum impurity
systems, which relates the thermodynamic spectral func-
tions to the local impurity properties.92

B. Nonequilibrium λ(t)-DEOM formalism

Turn to the isotherm mixing processes that are irre-
versible. A time–dependent mixing function λ(t), sub-
ject to λ(t = 0) = 0 and λ(t = tf ) = 1, would be used
instead. This represents nonequilibrium scenarios in gen-
eral, where the work distribution p(w) is the key quantity
in related studies. There are the Jarzynski equality,96〈

e−βw
〉
≡
∫ ∞
−∞

dw e−βwp(w) = e−βAhyb (59)

and the Crooks relation,97

p(w) = eβ(w−Ahyb)p̄(−w). (60)

The latter is about a pair of conjugate processes, with
the forward and backward processes being controlled by
λ(t) and λ̄(t) ≡ λ(tf − t), respectively.98 Evidently, the
forward work distribution p(w) and the backward p̄(−w)
cross at the point of reversible work, w = Ahyb that can
be obtained via the equilibrium λ-DEOM formalism.

The nonequilibrium λ(t)–DEOM is a viable means to
the accurate evaluation of p(w). The formulations start
with H0|n〉 = HT(λ = 0)|n〉 = εn|n〉 and HT(λ =
1)|N〉 = EN |N〉 before and after mixing. The distri-
bution of mixing work is given by99

p(w) =
∑
N,n

δ(w − EN + εn)PN,n(tf , 0)Pn(0). (61)

Here, Pn(0) = e−βεn/Z0 is the initial probability distri-
bution, and PN,n(t, 0) =

∣∣〈N |ÛT(t)|n〉
∣∣2 is the transition

probability with the propagator UT(t) being governed by
the Hamiltonian HT(t) = H0 + λ(t)HSB. The non-zero
λ̇(t) that describes the irreversibility engages in

V̂±(t; τ) = exp±

[
iτ

2

∫ t

0

dt′ λ̇(t′)HSB

]
, (62)

which participates in the work generating operator,99,100

ŴT(t; τ) = ÛT(t)V̂+(t; τ)ρeq
0 (T )V̂−(t; τ)Û†T(t). (63)

It can be shown that99,100

p(w) =
1

2π

∫ ∞
−∞

dτ e−iwτ
{

Tr[ŴT(tf ; τ)]
}
. (64)

Turn to the equation of motion for the work generating
operator Ŵ (t; τ). Its dynamics can be obtained as

∂ŴT

∂t
= −i[H×0 + λ−(t)H>

SB − λ+(t)H<

SB]ŴT, (65)
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FIG. 2. Jarzynski equality (left panel) and Crooks rela-
tion (right panel), cited from Ref. 58. Numerical demon-
strations are carried out with a spin-boson model, in which
the system Hamiltonian and dissipative mode are HS =
εσ̂z + ∆σ̂x and Q̂ = σ̂z, respectively. Adopt for the bath
spectral density the Drude model, J(ω) = ηγω/(ω2 + γ2).
In all the simulations, we set ε = 0.5∆, γ = 4∆ and
η = 0.5∆. The forward time–dependent mixing function
adopts λ(t) = (1 − e−αt)/(1 − e−αtf ), with α = 0.01∆ and
tf = 50∆−1. Simulations are carried out at different temper-
atures. In the left panel T ranges from near 0 to 10∆, while
it adopts (a) T = 2∆ and (b) T = 0.3∆ in the right panel.

with λ±(t) ≡ λ(t) ± (τ/2)λ̇(t). Initially, ŴT(0; τ) =
ρeq

0 (T ) = e−βH0/Z0, as inferred from Eq. (63). Simi-
lar to DDOs in Eq. (11), we introduce the dissipatons–
augmented work generating operators (D-WGOs),

ŴT(t; τ)→ Ŵ (t; τ) ≡ {Ŵ (n)
n (t; τ)}. (66)

The same procedure from Eq. (28) to Eq. (30) now gives
rise to Eq. (65) the D-WGO correspondence,58

∂Ŵ
(n)
n

∂t
= −iL(n)

n Ŵ (n)
n − i

∑
uk

Au(t)Ŵ
(n+1)

n+
uk

− i
∑
uk

nukCuk(t)Ŵ
(n−1)

n−uk
, (67)

where

Au(t) ≡ λ−(t)Q̂>

u − λ+(t)Q̂<

u ,

Cuk(t) ≡
∑
v

[
λ−(t)ηuvkQ̂

>

v − λ+(t)η∗uvk̄Q̂
<

v

]
. (68)

In relation to ŴT(0; τ) = ρeq
0 (T ) = e−βH0/Z0, the initial

values to Eq. (67) are

Ŵ
(0)
0 (0; τ) = e−βHS/ZS and Ŵ (n>0)

n (0; τ) = 0. (69)

Finally, in line with Eq. (64), we evaluate

p(w) =
1

2π

∫ ∞
−∞

dw e−iwτ trS[Ŵ
(0)
0 (tf ; τ)]. (70)

Figure 2 reports the results in terms of the Jarzynski
equality (59) and the Crooks relation (60); see the figure
caption for the details of model system.
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V. DISSIPATON THERMOFIELD THEORY

A. Prelude

Generally speaking, thermofield theory101 is an im-
portant ingredient for quantum mechanics of open sys-
tems and closely related to nonequilibrium Green’s func-
tion formalisms.102–104 The dissipaton thermofield the-
ory (DTF)105 to be presented in this section comprises
in particular the nonequilibrium system–bath entangle-
ment theorem. This gives rise to relations between the
local system correlation functions and those involving the
nonlocal hybrid bath modes. The development exploits
further decomposition of each dissipaton into the absorp-
tive (+) and emissive (−) components, as schematically
represented in the last column of Fig. 1.

To proceed, we consider the HT–based Heisenberg pic-
ture of the hybrid bath modes. It is easy to obtain106,107

F̂αu(t) = F̂B
αu(t)−

∑
v

∫ t

0

dτ φαuv(t− τ)Q̂v(τ). (71)

This is the precursor to conventional quantum Langevin
equation, with F̂B

αu(t) being the random force and the re-
lated φαuv(t) of Eq. (4). Together with [F̂B

αu(t), Q̂v(0)] =
0, we obtain the system–bath entanglement theorem for
response functions, which is a type of input–output rela-
tions in the total composite space.106,107

On the other hand, 〈F̂B
αu(t)Q̂v(0)〉 6= 0. Equation (71)

is insufficient to obtain the input–output relations be-
tween nonequilibrium correlation functions, such as

CSS(t) ={CSS
uv(t) ≡ 〈Q̂u(t)Q̂v(0)〉}, (72a)

CαS(t) ={CαS
uv (t) ≡ 〈F̂αu(t)Q̂v(0)〉}. (72b)

More specifically, from Eq. (71) we have

CαS(t) = XαS(t)−
∫ t

0

dτ φα(t− τ)CSS(τ), (73)

with

XαS(t) = {XαS
uv (t) ≡ 〈F̂B

αu(t)Q̂v(0)〉}, (74)

to be further resolved. To that end, we exploit the statis-
tical quasi-particles picture, which is used in the DEOM
theory55, and obtain

XαS(t) =
∑
k

XαSk(t), (75)

with

XαS
uvk(t)≡〈f̂B

αuk(t)Q̂v(0)〉=〈f̂αuk(0)Q̂v(0)〉e−γαkt. (76)

Here, {γαk} originates from the exponential decomposi-
tion of the interacting bath correlations as in Eq. (5). Ev-
idently, to establish the aforementioned correlation func-
tion type input–output relations, the key step is to formu-
late XαS

uvk(0) in terms of CSS(t) [cf. Eq. (72a)] and cα(t)
[cf. Eqs. (2) and (5)]. We address this issue within the
scope of DTF theory to be elaborated as follows.

B. Ansatzes

The proposed DTF theory is based on the dissipaton
decomposition of the hybrid reservoir modes, as schemat-
ically represented in Fig. 1. There are three basic ingre-
dients:
(i) Dissipaton decomposition ansatz: The hybrid reser-
voir modes can be decomposed into dissipatons, as in
Eq. (7) with Eq. (8).
(ii) Thermofield dissipatons ansatz : Each f̂αuk consists
of an absorptive (+) and an emissive (−) parts (cf. Fig. 1),

f̂αuk = f̂+
αuk + f̂−αuk, (77a)

defined via

f̂−αukρ
0
B = ρ0

Bf̂
+
αuk = 0. (77b)

This results in

c−αuvk(t) ≡ 〈f̂−;B
αuk(t)f̂+;B

αvk(0)〉B = η>αuvke
−γαkt,

c+αuvk(t) ≡ 〈f̂−;B
αvk(0)f̂+;B

αuk(t)〉B = η<
αuvk̄

e−γαkt.
(78)

As the thermofield excitation is concerned, f̂±αuk resem-
bles the creation/annihilation operator onto the reference
ρ0

B = ⊗α[e−βαhα/trB(e−βαhα)].101
(iii) Thermofield Langevin ansatz : Each thermofield dis-
sipaton satisfies

f̂±αuk(t) = f̂±;B
αuk(t)± i

∑
v

∫ t

0

dτc±αuvk(t− τ)Q̂v(τ). (79)

In compared with Eq. (71), the resolved are not only
the absorptive versus emissive contributions, but also the
Langevin force that reads f̂±;B

αuk(t) = f̂±;B
αuk(0)e−γαkt. This

recovers the generalized diffusion equation of the DEOM
theory.55

C. System–bath entanglement theorem for correlation
functions

In the following, we elaborate above basic ingredients
of the DTF theory, with a class of input–output relations
between local and nonlocal nonequilibrium steady–state
correlation functions. Denote CαSk(t) = {CαSk(t) ≡
〈f̂αuk(t)Q̂v(0)〉} and φαk(t) = i[c−αk(t) − c+

αk(t)] =

{φαuvk(t) = i[c−αuvk(t) − c+αuvk(t)]}. Equations (77) and
(79) give rise to

CαSk(t) = XαSk(t)−
∫ t

0

dτ φαk(t− τ)CSS(τ) (80)

where XαS
uvk(t) = XαS

uvk(0)e−γαkt [cf. Eq. (76)] and

XαSk(0)= i

∫ ∞
0

dτ
[
c+
αk(τ)C†SS(τ)− c−αk(τ)CT

SS(τ)
]
. (81)
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Derivation details of Eq. (81) are shown in the next para-
graph. Here, MT denotes the matrix transpose of M .
Together with Eq. (80), we obtain further

XαS(t) = 2 Im

∫ ∞
0

dτ cTα(t+ τ)CT
SS(τ). (82)

This completes Eq. (73), the system–bath entangle-
ment theorem for nonequilibrium steady–state correla-
tion functions.

The derivations of the key expression (81) are as fol-
lows. (i) Start with 〈Â(0)〉 = limt→∞Tr

[
Â(t)ρinit

T ] for
any operator Â. This asymptotic identity holds for any
physically supported initial total composite density op-
erator ρinit

T . In particular, we choose ρinit
T = ρinit

S ⊗ ρ0
B,

with ρ0
B being the pure bath canonical ensemble den-

sity operator; (ii) Split XαS
uvk(0) ≡ 〈f̂αuk(0)Q̂v(0)〉 =

〈f̂+
αuk(0)Q̂v(0)〉 + 〈Q̂v(0)f̂−αuk(0)〉. This is true since the

system and reservoir operators are commutable at any
given local time; (iii) Obtain Tr[f̂+

αuk(t)Q̂v(t)ρ
init
T ] and

Tr[Q̂v(t)f̂
−
αuk(t)ρinit

T ] from Eq. (79), with focus on their
t→∞ expressions, where f̂B;±

αuk(t) makes no contribution
according to Eq. (77b). The resulting XαS

uvk(0) according
to Step (ii) is just Eq. (81).

D. Comments

It is worth emphasizing that the DTF formalism, is
rather general in relation to the absorptive and emissive
processes. Its application to obtain Eqs. (80)–(82) is an
example that can be numerically verified by DEOM eval-
uations. However, Eqs. (80)–(82) can not be obtained
within the original DEOM framework. That is to say,
although both the DTF theory and DEOM method are
numerically exact for Gaussian environments, DTF the-
ory helps reveal more explicit relations. Furthermore,
the t = 0 behaviour of Eq. (73) with Eq. (82) is closely re-
lated to the nonequilibrium Green’s function formalism of
transport current.54,102,103,108,109 For example, consider
the heat transport from the α–reservoir to the local im-
purity system. The heat current operator reads

Ĵα ≡ −
dhα
dt

= −i[HT, hα] =
∑
u

˙̂
FαuQ̂u. (83)

This is the electron transport analogue.110,111 The heat
current is then [cf. Eq. (72b)]

Jα =
∑
u

〈 ˙̂
FαuQ̂u〉 =

∑
u

ĊαS
uu(t = 0). (84)

Now apply Eq. (73), with noticing that its second term
does not contribute to ĊαS

uu(0). We obtain107

Jα = 2 Im

∫ ∞
0

dτ tr
[
ċα(τ)CSS(τ)

]
. (85)

Dissipaton
theories

DTF

λ, λ(t)-

DEOM

DEOM

SFD-DEOM

i-DEOM

FIG. 3. The family of dissipaton theories, including now
real–time DEOM, imaginary–time DEOM (i-DEOM), equi-
librium λ-DEOM, nonequilibrium λ(t)-DEOM, stochastic–
field–dressed DEOM (SFD-DEOM) and the dissipaton ther-
mofield (DTF) theory. Future family members are antici-
pated.

This is the time–domain Meir–Wingreen’s formula.108
The DTF theory would be better physically supported

than the conventional thermofield approach. The latter
involves the purification of bare bath canonical thermal
states onto effective zero–temperature environments.101
On the other hand, the DTF approach exploits the of
discrete Brownian quasi-particle picture as implied in the
dissipaton Langevin equation (79). This not only avoids
introducing the auxiliary degrees of freedom, but also
goes with the effectively resolved random force, in line
with the generalized diffusion equation (15) of the DEOM
theory. Moreover, the system–bath entanglement theo-
rem for the properties of Eq. (72) can be readily extended
to those such as 〈F̂αu(t)F̂α′v(0)〉 and also 〈F̂αu(t)ÂS(0)〉
via 〈Q̂u(t)ÂS(0)〉 for an arbitrary system operator ÂS.

Additionally, it is also worth noting that Eq. (71) im-
mediately results in92

〈F̂αu〉 = −
∑
v

θαuv〈Q̂v〉, (86)

with θαuv ≡
∫∞

0
dt φαuv(t) [cf. Eq. (4)]. This result can

also be obtained via the DEOM formulations.

VI. CONCLUDING AND PROSPECTIVE REMARKS

To conclude, dissipaton theories are essential building
blocks of quantum mechanics of open systems, compris-
ing rich ingredients. These include the Brownian quasi-
particles picture and the phase–space dissipaton alge-
bra, together with the dynamical variables (Sec. II). The
resulting real–time DEOM (30) unambiguously support
various formulations such as expectation values, corre-
lation functions, the Heisenberg picture, the imaginary–
time DEOM and so on (Sec. III). The λ- and λ(t)-DEOM
formalisms are also readily established for various stud-
ies of thermodynamics (Sec. IV). Dissipaton thermofield
(DTF) theory is also established along the similar line
(Sec.V).
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As noticed, the fermionic dissipaton theories can
also been readily established in a similar manner, with(
f̂kf̂j

)◦
= −

(
f̂j f̂k

)◦ for fermionic dissipaton opera-
tors [cf. Eq. (10)]. Moreover, the fermionic DEOM has
been integrated with electronic structure theory for the
first–principle simulations on realistic spintronic sys-
tems in experimental measurements.52 These studies in-
clude Kondo transport, magnetic anisotropy manipula-
tion, spin–polarized scanning tunneling spectroscopy and
so on.112–115 Furthermore, there would be a so–called dis-
sipaton embedded quantum master equation formalism,
with system–plus–dissipatons being all incorporated into
a single master equation. This provides an alternative
formalism for quantum simulations in both bosonic and
fermionic scenarios.

It is worth emphasizing that dissipatons are linear bath
hybrid modes. Nevertheless, the unavoidable backac-
tion of system to environment will result in simultane-
ous actions of two or more dissipatons. The further de-
velopment of dissipaton theories should take nonlinear
environments into account. For the quadratic bath cou-
pling, we proposed the stochastic–field–dressed DEOM
(SFD-DEOM).116 We had also developed the extended
Wick’s theorem approach to deal with a model quadratic
environment.67–69 Last but not least, it is also antici-
pated that dissipaton theories discussed in this Perspec-
tive would remain essential to relativistic quantum me-
chanics of open systems.
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