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Abstract

In this paper we define a variant of the Ising model in which spins are replaced with
permutations. The energy between two spins is a function of the relative disorder of one
spin, a permutation, to the other. This model is motivated by a complexity measure for
declarative systems. For such systems a state is a permutation and the permutation sorting
complexity measures the average sequential disorder of neighbouring states. To measure the
relative disorder between two spins we use a symmetrized version of the descent permutation
statistic that has appeared in the works of Chatterjee & Diaconis and Petersen. The classical
Ising model corresponds to the length-2 permutation case of this new model. We consider
and prove some elementary properties for the 1D case of this model in which spins are
length-3 permutations.

1 Introduction

Since it was introduced by Bandt and Pompe [4] in 2002, permutation entropy has become
an established time series tool [18, 15, 23, 20, 24] and been developed in several ways [1].
The permutation entropy of a time series is formed by mapping the sequence to a sequence
of contiguous length-k blocks, and then transforming the entries in each of these blocks into a
length-k permutation that summarizes how the values in the blocks relate to one another. In
the permutations literature this transformation is called the standardization. For example, the
standardization of the length-4 block (0.5, 7.1,−1, 2.75) is the permutation (2, 4, 1, 3). To then
calculate the permutation entropy of the time series one considers k! empty boxes labelled with
the permutations of the set {1, . . . , k}. For each permutation that appears as the standardization
of a block, put a ball into the box having that permutation as its label. The permutation entropy
is then the Shannon entropy of the distribution of balls amongst boxes.

Central to the calculation of the permutation entropy is the representation of the data or
sequence as a sequence of permutations:

(π(1), π(2), . . . , π(m)) where each π(i) ∈ Sk,

and Sk is the set of permutations of the set {1, . . . , k}. Permutations representing states of a
system is not a new concept [3, 13, 10, 11, 22]. Recently, permutations (of subsets) of a set have
been used to classify the allowed outcomes of declarative processes [9]. Declarative processes
are processes that can happen in any way so long as it is not forbidden by a set of declarative
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constraints. A declarative constraint specifies some type of dependency on the order in which
activities can occur. The execution of a declarative process is a permutation of the activities
showing the order in which they occur. Such processes have been used to model policy and
healthcare processes [8, 7], and a comparative analysis of such processes has been achieved
through the introduction of combinatorial diversity metrics for these systems.

When a permutation represents the state of a system, information regarding how different
the subsequent state is to the current one is essential in order to gain an insight into the diversity
of such a process. In particular, if one considers the day-to-day execution of healthcare processes,
then information that there are wildly differing executions or extremely consistent executions of
such a process help to inform the planning needs and resource requirements of the practitioners
and healthcare providers.

Although the permutation complexity mentioned at the beginning of this paper is not a
measure that captures the properties in which we are currently interested, the intermediate rep-
resentation of the time series as a sequence of permutations in the calculation of the permutation
entropy is useful. The simplest and most natural candidate for a permutation sorting complex-
ity measure to capture the sequential disorder in relation to what we will call a permutation
process:

Π = (π(1), π(2), . . . , π(m)),

where each π(i) ∈ Sk, is an averaging over all neighbouring states:

PSC(lin)(Π) = PSC
(lin)
φ,m (Π) :=

1

m− 1

m−1∑
t=1

φ(π(t), π(t+1)). (1)

In this equation φ(α, β) is a measure of how different the permutation β is to α. More will
be mentioned about a precise form for φ in Section 2. This complexity measure PSC(lin) can
be seen to resemble a Hamiltonian for a yet-to-be-defined model on a line, with a yet-to-be
specified interaction energy. It is this fact that motivates the Ising model that we now define
and study in this paper.

1.1 A permaspin model

The Ising model [14], a well-established model of magnetism, has witnessed several variants [5]
since its inception. In this paper we introduce a toy model that is a variant of the Ising model
that we term the permaspin model. The key feature of this model that distinguishes it from
other Ising-like models is that a site’s spin is some permutation of the set {1, . . . , k}. The
interaction energy between two neighbouring sites will be a measure of how unordered the
state, a permutation, of one site is with respect to the state of the other site. The external field
acting on a site will be a measure of the disorder of that site’s spin, in and of itself.

First let us define the permaspin model on a general graph. The length k of a permutation
representing the spin state of a site is a parameter of the model and we will signify this by using
the term k-permaspin. Let G = G(V,E) be a simple graph with vertex set V = {v1, . . . , vn}
and edge set E. Let Sk be the set of all permutations of the set {1, . . . , k} and let id be the
identity permutation. It will be useful to use the notation Snk = Sk × · · · × Sk for the n-fold
Cartesian product that will be the state space of the system.

Given a configuration of permaspins
˜
π := (π(1), . . . , π(n)) ∈ Snk on G where π(i) is the

permaspin of vertex vi, let us define the energy of this configuration through the Hamiltonian

H(
˜
π) = −J

∑
(vi,vj)∈E

φ(π(i), π(j))−H
∑
vi∈V

φexternal(π(i)), (2)
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for some yet to be specified interaction energies φ and φexternal. We consider J to be positive
so that the model is ferromagnetic. Note that the Hamiltonian for the line graph with J = −1
and H = 0 is the complexity measure PSC(lin)/|E|. The partition function for the permaspin
model is

Z(β) =
∑

˜
π∈Smk

exp(−βH(
˜
π)), (3)

where H(
˜
π) is given in equation (2). The free energy is

f(β) = − lim
n→∞

1

βn
logZ(β). (4)

We will assume the configuration probability for this canonical ensemble is given by the Boltz-
mann distribution so that the probability that the state σ has a prescribed sequence of per-
maspins

˜
π is Pβ(σ =

˜
π) = exp(−βH(

˜
π))/Z(β).

In this paper we will take some first steps in considering simple instances of the permaspin
model. In Section 2 we will discuss the interaction energy for this model and make a choice
for the interaction energy based on both interaction symmetry and simplicity. Our choice of
interaction energy yields the classical Ising model as the 2-permaspin model. In Section 3 we
consider the 1D k-permaspin model in the absence of an external field, and see how closed forms
for both the partition function and free energy can be given as simple transformations of the
generating function for the interaction energy.

In Section 4 we consider the 1D 3-permaspin model in an external field. It is not possible
to give closed form expressions for the six eigenvalues associated with this system. However,
we are able to rule out several eigenvalues from being largest and see that the characteristic
polynomial for the associated transition matrix factors as a cubic and three linear terms (two
of which are equal). Experimentally, it seems the largest eigenvalue is one of the cubic roots
and we note some properties in relation to it. We further note that one of the eigenvalues with
an explicit expression could be a potentially close lower bound for the largest eigenvalue. We
consider a low-temperature approximation for the free energy of the 1D 3-permaspin model.
In Section 5 we consider the mean-field 1D 3-permaspin model that results in a sum for the
partition function. Finally, we conclude with a discussion in Section 6.

2 A double Eulerian interaction energy

For two neighbouring permaspins, σ and π, we would like the interaction energy φ to be a
measure of how much one differs from the other. There are several ways to model this, but
for the purposes of this paper we will consider this interaction energy to be a function of the
permutation τ that is required to sort σ into π,

τ = σ−1π.

In the literature this permutation τ has become known as the transcript of the pair of permuta-
tions (σ, π), see e.g. [16, 2]. If σ and π are the same then τ = id whereas if σ is the reverse of π
(i.e. σi = πn+1−i) then τ will be id reversed. For permaspins α, β ∈ Sk and τ := α−1β, suppose
the generic permutation statistic stat(τ) takes values in the set {0, 1, . . . , smax}. To normalize
the interaction energy we define

φ(α, β) := 1− 2

smax
stat(α−1β),

3



n CDdesn(x)

1 1
2 1 + x2

3 1 + 4x2 + x4

4 1 + 10x2 + 2x3 + 10x4 + x6

5 1 + 20x2 + 12x3 + 54x4 + 12x5 + 20x6 + x8

6 1 + 35x2 + 42x3 + 212x4 + 140x5 + 212x6 + 42x7 + 35x8 + x10

Table 1: The generating functions CDdesn(x) =
∑

π∈Sn x
cddes(π) for small n.

that takes values in the closed interval [−1, 1] ⊂ R. A further requirement is one of symmetry:
the interaction energy between α and β must be the same as the interaction energy between β
and α, i.e. φ(α, β) = φ(β, α). This is equivalent to the statistic stat satisfying

stat(π) = stat(π−1) for all permutations π. (5)

There are several permutation statistics that might be used to measure how unordered a
given permutation is. These include, but are not limited to, the permutation statistics num-
ber of descents (des), number of inversions (inv), number of exceedances, and number of weak
exceedances. For example, the number of descents in a permutation π = (π1, . . . , πn) is the
number of indices i for which πi > πi+1. A permutation statistic that is equidistributed with
the descent statistic on permutations is called Eulerian whereas one that is equidistributed
with the major index permutation statistic is called Mahonian. Many of the more common
permutation statistics are either Eulerian or Mahonian. Different statistics will of course lead
to different calculation challenges, with those for Mahonian statistics being more involved due
mainly to the range of values the statistic may take.

The inversions statistic, being the only one mentioned above to satisfy the interaction sym-
metry property for permaspins (Equation 5) would seem like the natural choice. However, even
for the 3-permaspin case, the calculation and comparative analysis of eigenvalues for the inv
statistic case (to be discussed in the last section) appears difficult. The reason for this is the
larger range of values that the inversion statistic can take. With this point in mind, in this
paper we choose the symmetrized statistic cddes whereby:

cddes(π) := des(π) + des(π−1). (6)

Note that smax for cddes on Sn is 2(n − 1). This statistic was investigated in Chatterjee &
Diaconis [6] and Petersen [19]. The coefficients of the generating function for this statistic have
become known as the double Eulerian numbers [17, A298248]. See Table 1 for the first few
double Eulerian numbers.

The generating function for this statistic is (see [19, Theorem 2])

CDdesn(u) =
∑
π∈Sn

ucddes(π) = (1− u)2n+2
∑
i,j≥1

(
ij + n− 1

n

)
ui+j−2. (7)

We will write φcddes to signify the use of Equation 6 in the interaction energy. With the
interaction energy defined using the cddes statistic, the 2-permaspin model is the classical Ising
model where the spins take values in {−1,+1}. This is easily seen via the identification of the
permutations (1, 2) and (2, 1) with the classical spins +1, −1, respectively. If α, β ∈ S2 with
corresponding classical spins sα, sβ, then one finds φ(α, β) = sαsβ.
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One outstanding matter is the term in the Hamiltonian that represents the energy interaction
φexternal of a permaspin with an hypothesized external field. The term in the Hamiltonian
(Equation 2) that corresponds to this is −Hφexternal(π). We will assume that φexternal(π) :=
1− 2

smax
stat(π), which is precisely the same value one gets from assuming this is the energy of

the permaspin π with another permaspin that is the identity permutation, i.e. φexternal(π) =
φ(id, π) = φ(π, id). In other words, one can consider the hypothesized external field to have
permaspin id.

3 The 1D permaspin model without external field

In this section we consider the 1D permaspin model without external field. There are two
distinct cases to consider: the path graph and the cycle graph. The path graph is the graph
with vertex set V (G) = {v1, . . . , vn} and edge set E(G) = {(vi, vi+1) : 1 ≤ i < n}. The cycle
graph is the path graph with vertex vn joined to v1. The partition function for this 1D model is
easily calculated since the partition function can be written as a deformation of the generating
function for the stat statistic.

Proposition 1. The partition functions for the path and cycle graphs are:

Z(stat,path)
n (β) =k!eβJ

(
exp(βJ)Statk

(
exp

(
−2βJ

smax

)))n−1
, and

Z(stat,cycle)
n (β) =

(
exp(βJ)Statk

(
exp

(
−2βJ

smax

)))n
,

where Statk(x) :=
∑

π∈Sk x
stat(π). The free energy for both cases is

f (stat)(β) = −J − 1

β
ln Statk

(
e−2βJ/smax

)
.

Proof. As the the edges are pairs (vi, vi+1) the partition function is

Z(stat,path)
n (β) =

∑
˜
π∈Snk

exp

(
βJ

n−1∑
i=1

φ(π(i), π(i+1))

)

=
∑
˜
π∈Snk

exp

(
βJ

n−1∑
i=1

(
1− 2

smax
stat((π(i))−1π(i+1))

))
.

Unity from the internal sum can be extracted and moved outside, and the internal exponent
containing a sum can be written as a product of exponents:

Z(stat,path)
n (β) = exp(βJn)

∑
˜
π∈Snk

exp

(
−2βJ

smax

n−1∑
i=1

(
stat((π(i))−1π(i+1))

))

= exp(βJn)
∑
˜
π∈Snk

n−1∏
i=1

exp

(
−2βJ

smax
stat((π(i))−1π(i+1))

)
.

Fix π(1) and set σ(1) = (π(1))−1π(2). Instead of summing over all π(2) ∈ Sk, we can exploit the
form in the exponent to sum over all σ(1) ∈ Sk, and extend this to σ(2), . . . , σ(n−1). The above
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expression becomes:

Z(stat,path)
n (β) = exp(βJn)

∑
π(1)∈Sk

∑
σ(1)∈Sk

e
−2βJ
smax

stat(σ(1))
∑

σ(2)∈Sk

e
−2βJ
smax

stat(σ(2)) · · ·
∑

σ(n−1)∈Sk

e
−2βJ
smax

stat(σ(n−1))

= exp(βJn)k!

(
Statk

(
exp

(
−2βJ

smax

)))n−1
= k!eβJ

(
exp(βJ)Statk

(
exp

(
−2βJ

smax

)))n−1
,

where Statk(x) :=
∑

π∈Sk x
stat(π). For the cycle graph, the derivation is almost identical to the

path case except, when writing the partition function as a sum over all (π(1), σ(1), . . . , σ(n)), the
sum over all π(1) ∈ Sk does not appear but there is an extra term for the interaction between
the edges vn and vn+1 = v1 which was absent for the path graph case. The partition function is

Z(stat,cycle)
n (β) = exp(βJn)

∑
σ(1)∈Sk

e
−2βJ
smax

stat(σ(1))
∑

σ(2)∈Sk

e
−2βJ
smax

stat(σ(2)) · · ·
∑

σ(n)∈Sk

e
−2βJ
smax

stat(σ(n))

= exp(βJn)

(
Statk

(
exp

(
−2βJ

smax

)))n
=

(
exp(βJ)Statk

(
exp

(
−2βJ

smax

)))n
.

The free energy for both cases is

f (stat)(β) = − lim
n

1

βn
lnZ(stat)

n (β) = − 1

β
ln

(
exp(βJ)Statk

(
exp

(
−2βJ

smax

)))
.

For the case in which the length of permaspins is large, we have the following approximation
for the free energy.

Proposition 2. Let stat be the double Eulerian statistic cddes and consider the k-permaspin
model for k large. Then the free energy for both the path and cycle graphs is

f (cddes)(β) ≈− 2J − kβJ2

12
− 1

β
(k ln k − k +O(ln k)).

Proof. Chatterjee and Diaconis [6, Thm 1.1] established the following properties for the statistic
cddes. For π chosen uniformly at random from the symmetric group Sk,

E(cddes(π)) = k − 1 and var(cddes(π)) =
k + 7

6
− 1

k
,

for k ≥ 2. Normalized by its mean and variance, cddes(π) has a limiting standard normal
distribution. When the permutation statistic stat is cddes, by Proposition 1 the free energy for
both cases is

f (cddes)(β) =− J − 1

β
lnCDdesk

(
e−βJ/(k−1)

)
= −J − 1

β
ln
∑
π∈Sk

e−βJcddes(π)/(k−1)

where CDdesk(x) is given in Equation 7. Let z = e−βJ and consider

gk(z) =
∑
π∈Sk

zcddes(π)/(k−1).

6



This is the probability generating function of the random variable Xk := 1
k−1cddesk. As cddesk

has mean k − 1 and variance
k + 7

6
− 1

k
, the random variable Xk will have mean E(Xk) = 1

and variance var(Xk) =
k + 7

6(k − 1)2
− 1

k(k − 1)2
. Since cddesk, when normalized by its mean and

variance, has a limiting standard normal distribution, the same is true for Xk. The p.g.f.

gk(z) = k!
∑

x∈{0,1/(k−1),...,2}

P(Xk = x)zx

so for k large:

gk(e
−βJ) ≈k!

∫
1

σ
√

2π
exp

(
−1

2

(
x− 1

σ

)2
)

(exp(−βJ))xdx

=k!

∫
1

σ
√

2π
exp

(
−1

2

(
x− (1 + σ2βJ)

σ

)2
)

exp

(
− 1

2σ2
(1− (1 + σ2βJ)2)

)
dx

=k! exp

(
βJ +

1

2
σ2β2J2

)
.

For k large, the free energy is then

f (cddes)(β) ≈− J − 1

β
ln

(
k! exp

(
βJ +

1

2
σ2β2J2

))
=− J − 1

β

(
k ln k − k +O(ln k) + βJ +

1

2
σ2β2J2

)
=− 2J − kβJ2

12
− 1

β
(k ln k − k +O(ln k)).

Notice that the high and low temperature contributions in Proposition 2 are clear:

f (cddes)(β small) ≈ − 1

β
(k ln k − k) and f (cddes)(β large) ≈ −kβJ

2

12
.

As we mentioned in the introduction, the cddes2 interaction energy corresponds to the classical
1D Ising model and, using CDdes2(x) = 1 +x2, one recovers the well-known free energy for this
case: f (cddes)(β) = − 1

β ln(2 cosh(βJ)).

4 The 1D 3-permaspin model in an external field

In the previous section we saw that knowledge of the generating function for the cddes statistic
and its limiting behaviour allowed us to present several exact and limiting results. In this section
we will consider the 1D 3-permaspin model in an external field. As the 2-permaspin model on
a general graph corresponds to the classical Ising model on that same graph, any properties
relating to the latter are also properties of the 2-permaspin model.

The 3-permaspin model is the simplest one to first consider and for which results are not
known. It is a well-known fact that (see e.g. [12, Cor. 6.41]) that classical lattice models with
finitely-many spin states per vertex and local interactions cannot exhibit a phase transition.
In order to calculate the partition function and free energy for the 3-permaspin model on a
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ring, we require the eigenvalues of an order 6 matrix. The partition function for the general 1D
3-permaspin model is:

Z(stat)
n (β) =

∑
˜
π∈Sn3

exp

−β
−J ∑

(vi,vj)n.n.

φ(π(i), π(j))−H
∑
vi

φ(π(i))


=
∑
˜
π∈Sn3

exp

(
βJ

n∑
i=1

(
1− 2stat((π(i))−1π(i+1))

smax

)
+ βH

n∑
i=1

(
1− 2stat(π(i))

smax

))

= eβ(J+H)n
∑
˜
π∈Sn3

exp

(
− 2βJ

smax

n∑
i=1

(
stat((π(i))−1π(i+1))

)
− 2βH

smax

n∑
i=1

(
stat(π(i))

))
.

Set J ′ = −2βJ/smax and H ′ = −2βH/smax so that the previous expression becomes:

Z(stat)
n (β) = eβ(J+H)n

∑
˜
π∈Sn3

exp

(
J ′

n∑
i=1

(
stat((π(i))−1π(i+1))

)
+H ′

n∑
i=1

(
stat(π(i)

))

= eβ(J+H)n
∑
˜
π∈Sn3

n∏
i=1

exp

(
H ′stat(π(i))

2
+ J ′stat((π(i))−1π(i+1)) +

H ′stat(π(i+1))

2

)

= eβ(J+H)n
∑
˜
π∈Sn3

n∏
i=1

exp

(
H ′(stat(π(i)) + stat(π(i+1)))

2
+ J ′stat((π(i))−1π(i+1))

)
.

(8)

Let A be the 6 × 6 wherein row ith corresponds to the ith permutation of S3 listed in
lexicographic order, and the same labelling convention for the columns. Define entry Aπ,σ of A
to be

Aπ,σ := exp

(
H ′

2
(stat(π) + stat(σ)) + J ′stat(π−1σ)

)
= astat(π)+stat(σ)bstat(π

−1σ),

where we have used the substitution a = e
1
2
H′ and b = eJ

′
. Using this matrix formalization, we

can now write

Z(stat)
n (β) = eβ(J+H)nTr(An) = eβ(J+H)n(λn1 + . . .+ λnk), (9)

where λ1, . . . , λk are the eigenvalues of A. Since we assume the statistic stat to satisfy the inter-
action symmetry condition (Equation 5) the matrix A will be symmetric. That A is symmetric
guarantees all eigenvalues of A are real. We have

A =



1 a2b2 a2b2 a2b2 a2b2 a4b4

a2b2 a4 a4b2 a4b4 a4b2 a6b2

a2b2 a4b2 a4 a4b2 a4b4 a6b2

a2b2 a4b4 a4b2 a4 a4b2 a6b2

a2b2 a4b2 a4b4 a4b2 a4 a6b2

a4b4 a6b2 a6b2 a6b2 a6b2 a8

 . (10)
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The characteristic polynomial of A is

cA(λ) =−
(
a12(b12 + 2b10 − 7b8 + 7b4 − 2b2 − 1)

+ a4λ(1− 3a8b4 − a4b8 + 2a8b2 + a8 + a4 − 3b4 + 2b2)

+ λ2(−a4 − a8 − a4b4 − 2 a4b2 − 1) + λ3
)

(
a4b4 − 2 a4b2 + a4 − λ

)(
a4b4 − a4 + λ

)2
.

Substitute c for a4 and d for b2 to write

cA(λ) =−
(

(d2 + 4d+ 1)c3(d+ 1)(d− 1)3 − λc(cd3 + 3c2d+ cd2 + c2 + cd+ c+ 3d+ 1)(d− 1)

− λ2(cd2 + c2 + 2cd+ c+ 1) + λ3
)(

cd2 − 2cd+ c− λ
) (
cd2 − c+ λ

)
.

This yields eigenvalues λ4 = c(1− d)2, λ5 = c(1− d2) of A. Since A has only real eigenvalues,
the other three real eigenvalues λ1, λ2, λ3 are solutions to t(λ) = 0 where

t(λ) :=λ3 − (cd2 + c2 + 2cd+ c+ 1)λ2 − c(cd3 + 3c2d+ cd2 + c2 + cd+ c+ 3d+ 1)(d− 1)λ

+ (d2 + 4d+ 1)c3(d+ 1)(d− 1)3

=A′λ3 +B′λ2 + C ′λ+D′.

Let λ∗ be the largest root of t(λ) = 0. It remains to see which of the eigenvalues λ∗, λ4, and
λ5 is largest. Numerical investigations indicate that λ∗ appears to be the largest and this is
supported by the evidence presented by in Figures 1a and 1b. (The blue surface corresponds to
λ∗ while the orange and green surfaces correspond to λ4 and λ5, respectively.) We summarize
the results of these observations and analysis as follows:

Proposition 3. If λ∗ = max(λ∗, λ4, λ5) above, then the free energy for the 1D 3-permaspin
model is

f (cddes)(β) =− (J +H)− 1

β
ln
(
(c2d+ c2 + 2 cd+ c+ 1)− 2Re(z)

)
where z is the unique root of the cubic

λ3 − (cd2 + c2 + 2cd+ c+ 1)λ2

− c(cd3 + 3c2d+ cd2 + c2 + cd+ c+ 3d+ 1)(d− 1)λ+ (d2 + 4d+ 1)c3(d+ 1)(d− 1)3 = 0.

for which arg(z) ∈ [2π/3, π] and where c = e−2βH and d = e−2βJ .

For larger values of c and d it seems that that λ4 serves as a close lower bound to the λ∗.
This suggests that free energy for the 1D 3-permaspin model at low-temperature has behaviour:

f (cddes)(β) ≈− lim
n

1

βn
ln(eβ(J+H)λn4 ) = − 1

β
(β(J +H) + lnλ4)

=− (J +H)− 1

β
ln c(1− d)2

=− (J +H)− 1

β
ln a4(1− b2)2.

9



(a)
(b)

Figure 1: Surfaces for λ∗ (blue), λ4 (orange), and λ5 (green).

As a = e−βH/2 and b = e−βJ this becomes

f (cddes)(β) ≈− (J +H)− 1

β
ln(e−βH/2)4(1− (e−βJ)2)2

=− (J +H)− 1

β
ln e−2βH(1− e−2βJ)2

=− (J +H) + 2H − 2

β
ln(1− e−2βJ).

Comment 4. The free energy for the 1D 3-permaspin model at low-temperature seems to have
the behaviour:

f (cddes)(β) ≈− (J −H)− 2

β
ln(1− e−2βJ) ≈ −(J −H)− 2

β
lnβ.

Notice that as β →∞ in the above expression, −(J −H)− 2

β
lnβ → −(J −H).

Consider the configurations that represent the ‘largest’ terms in the partition function for
low temperatures, i.e. when β is large. These will be when all permaspins are the same. The
contribution to the partition function Z for configurations of this type is∑

π∈S3

exp (nβJφ(π, π) + nβHφ(π, id)) = enβJ
∑
π∈S3

exp (nβHφ(π, id))

= enβJ
(
e−nβH + 4 + enβH

)
. (11)

In the event that H = 0 the expression 11 is dominated by the term enβJ ; H > 0 it is dominated
by the term enβ(J+H); H < 0 it is dominated by the term enβ(J−H). These dominating terms
imply the following low-temperature behavior:

Comment 5. A lower bound for free energy for the 1D 3-permaspin model at low-temperature
seems to have the behaviour:

f (cddes)(β) ≈ − (J + |H|).

This approximation coincides with the prediction of Comment 4 for H ≤ 0, but differs from
it significantly for H > 0.

10



5 A mean-field 3-permaspin model

Let us suppose that for a 3-permaspin model, each of the n permaspins has q nearest-neighbors,
so that the 1D model corresponds to q = 2 whereas the 2D model corresponds to q = 4. In
this section we will consider a mean-field 3-permaspin model. For a mean-field model, the total
field acting on site vi is

Hφ(π(i), id) +
qJ

n− 1

∑
j 6=i

φ(π(i), π(j)).

Here, the sum over all the interactions of site i with the n − 1 sites that are not i is averaged
out by dividing the sum by n − 1. The q in the numerator reflects the multiplicity of this
quantity with respect to the number of neighbours of site i. This is equivalent to replacing the
Hamiltonian with

H(mean)(
˜
π) = − qJ

n− 1

∑
i 6=j

φ(π(i), π(j))−H
n∑
i=1

φ(π(i), id).

Note that the first sum is over all
(
n
2

)
distinct pairs of vertices {vi, vj}.

Since every permaspin interacts with every other permaspin, we can simplify the above sum
by considering the distribution of permaspins in

˜
π. Let us write nσ for the number of π(i) that

equal σ. Then
n123 + n132 + n213 + n231 + n312 + n321 = n.

Table 2(a) illustrates cddes(σ−1π) for all σ and π, and the internal energy corresponding to a
nearest neighbour pairing is given in Table 2(b). So if

˜
π is a configuration with nσ permaspins

0 2 2 2 2 4
2 0 2 4 2 2
2 2 0 2 4 2
2 4 2 0 2 2
2 2 4 2 0 2
4 2 2 2 2 0





1 0 0 0 0 −1
0 1 0 −1 0 0
0 0 1 0 −1 0
0 −1 0 1 0 0
0 0 −1 0 1 0
−1 0 0 0 0 1


(a) cddes(σ−1π) (b) φ(σ, π)

Table 2: (a) the (symmetric) matrix illustrating cddes(σ−1π) for all σ, π ∈ S3 where the
rows and columns are indexed with the permutations from S3 in lexicographic order. (b) the
(symmetric) matrix illustrating φ(σ, π) := 1 − cddes(σ−1π)/2 for all σ, π ∈ S3 where the rows
and columns are indexed with the permutations from S3 in lexicographic order.

equal to σ, then the Hamiltonian H(mean)(
˜
π) equals H(mean)(n123, . . . , n321) where

H(mean)(n123, . . . , n321)

=− qJ

n− 1

∑
σ∈S3

(
nσ
2

)
φ(σ, σ) +

∑
σ≺τ∈S3

nσnτφ(σ, τ)

−H ∑
σ∈S3

nσφ(σ, id)

=− qJ

n− 1

∑
σ∈S3

(
nσ
2

)
− (n123n321 + n132n231 + n213n312)

−H (n123 − n321) .
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The binomial coefficients give rise to quadratic terms that can be neatly rewritten:

H(mean)(n123, . . . , n321)

=− qJ
2(n−1)

(
(n123 − n321)2 + (n132 − n231)2 + (n213 − n312)2 − (n123 + . . .+ n321)

)
−H (n123 − n321)

=− qJ
2(n−1)

(
(n123 − n321)2 + (n132 − n231)2 + (n213 − n312)2 − n

)
−H (n123 − n321)

= nqJ
2(n−1) + H2(n−1)

2qJ − qJ
2(n−1)

((
n123 − n321 + H(n−1)

qJ

)2
+ (n132 − n231)2 + (n213 − n312)2

)
.

The partition function is

Zn(β) =
∑

n123+...+n321=n

(
n

n123, n132, . . . , n321

)
exp

(
−βH(mean)(n123, . . . , n321)

)
. (12)

Using the expression for the mean-field Hamiltonian above, we can now write the partition
function as a reduced sum:

Proposition 6. The mean-field partition function is

Z(mean)
n (β) = exp

(
−β

2

(
nqJ

n− 1
+
H2(n− 1)

qJ

))
∑

a+b+c=n

(
n

a, b, c

)
Ga

(
H(n−1)
qJ ; e

βqJ
2(n−1)

)
Gb

(
0; e

βqJ
2(n−1)

)
Gc

(
0; e

βqJ
2(n−1)

)
(13)

where

Gm(`;x) :=
∑

i+j=m

(
m

i

)
x(i−j+`)

2
=
∑
i

(
m

i

)
x(2i−m+`)2 .

Given the quadratic term in the exponent of x, there is no closed formula for Gm(`, x)
that can help us achieve a closed form for Zn(β). This does not rule out the possibility of
approximating Zn(β) for some special cases. For the high-temperature case, which corresponds
to β being very small, let us observe that the exponential term in Equation 12 is

1− βH(mean)(n123, . . . , n321) +O(β2),

so the partition function for this case is given by a simple application of the multinomial theorem
and we will have

Z(mean)
n (β) ≈ 6n.

The same reasoning can be used to show for the high-temperature mean-field k-permaspin case
we will have

Z(mean)
n (β) ≈ (k!)n.

These results can also be seen from the non-mean-field case as for β small, the partition function
can be written as a product of the partition function of the n consistent subsystems (whose
interaction energy is negligible), each of which has k! different states.

Consider now the case of no external field, H = 0, and when every vertex is a neighbour of
every other vertex. This corresponds to q = n−1 which is essentially the case of the mean-field
model on the complete graph. Let w = w(β) = eβJ/2. We have

Z(mean)
n (β) =w−n

∑
a+b+c=n

(
n

a, b, c

)
ga (w) gb (w) gc (w) , (14)
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where

gm(x) :=
∑
i

(
m

i

)
x(2i−m)2 .

Let G(x, z) :=
∑

m≥0 gm(x)zm/m!. Multiplying both sides of Equation 14 by zn and reorganiz-
ing, the above equation becomes

Z
(mean)
n (β)wnzn

n!
=

∑
a+b+c=n

1

a!b!c!
ga (w) zagb (w) zbgc (w) zc. (15)

By summing both sides over non-negative n, this allows us to give an exact expression for the
exponential generating function of the mean-field partition function in terms of a power of a
simple (but difficult to analyse) generating function involving the binomial coefficients.∑

n≥0
Z(mean)
n (β)

(wz)n

n!
= G3(w, z).

Note that g0(x) = 1, g1(x) = 2x, g2(x) = 1 + 2x4, g3(x) = 2(x + x9), g4(x) = 1 + 2(x4 + x16).
The largest term in gm(x) depends on whether x ≷ 1. If x < 1 then the largest term in gm(x)
will be attained when 2i −m is as small as possible. When m is even this will be attained at
i = m/2 and will be

(
m
m/2

)
whereas for m odd it will be

(
m

(m+1)/2

)
x. If x > 1 then the largest

term in gm(x) will be attained when 2i−m is as large as possible. This occurs for i = m and
will be xm

2
.

6 Remarks

This paper introduced a variant of the Ising model in which permutations and permutation
statistics play a leading role. This was motivated by a complexity measure for declarative
systems. While the 2-permaspin model corresponds exactly to the classical Ising model, we
explored the next non-trivial case, the 1D 3-permaspin model. For the 1D 3-permaspin model
in the absence of an external field, we were able to give exact expressions for the partition
function and free energy based on the generating function of the cddes statistic, and were also
able to give an expression for the free energy for the case when there are a large number of
allowed spins.

We saw that the calculations involved in the derivations of the partition function and free
energy for the 1D 3-permaspin model in an external field were challenging and non-trivial.
Experimental evidence was used to provide several results for this case in relation to the free
energy. We also considered a mean-field version of the model and saw that the partition function
the 1D 3-permaspin case could be neatly written as a certain trinomial sum. The no-external-
field case admitted a particularly nice form in terms of an exponential generating function.

In our discussion in Section 2, we noted that the number of inversions permutation statistic
could be another natural choice to replace cddes in the calculation of the free energy. The
reason is that the inv statistic satisfies the symmetry property given in Equation 5 without
modification. In order to consider the 1D 3-permaspin model using the inv statistic in place of
cddes, the transition matrix is:

A(inv) =



1 ab ab a2b2 a2b2 a3b3

ab a2 a2b2 a3b3 a3b a4b2

ab a2b2 a2 a3b a3b3 a4b2

a2b2 a3b3 a3b a4 a4b2 a5b
a2b2 a3b a3b3 a4b2 a4 a5b
a3b3 a4b2 a4b2 a5b a5b a6

 .
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The characteristic polynomial for this matrix is

cA(inv)(λ) =
(

(b2 + b+ 1)(b2 − b+ 1)a12(b+ 1)4(b− 1)4

− λ(a4b2 − a2b4 + a4 + b2 + 1)(a2 + 1)a6(b+ 1)2(b− 1)2

− λ2(a8 + 2a6b2 + 2a4b4 + a6 + 3a4b2 + 2a4 + 2a2b2 + a2 + 1)a2(b2 − 1)

+ λ3(−(a4 + a2b2 + 1)(a2 + 1)) + λ4
)

(
a6(1 + b)3(1− b)3 + λ(a2 + 1)a2(b+ 1)(b− 1) + λ2

)
.

We note that the determination of the eigenvalues now relies on solving a quartic that does not
factorize any further.

A main goal when dealing with permutation statistics is to derive their generating function
since it encodes the distribution of the statistic for arbitrary length permutations. In this paper
we have seen that information about such a generating function is useful for the zero-field case,
but not so for the case of an external field. Instead, determining the eigenvalues of a (transition)
matrix whose exponents are encoded by the permutation statistic is the main goal. Might these
eigenvalues have other uses, perhaps in some spectral theory of permutations that has yet to
be formalized?
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