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In this paper, using the notion of nonlinear coherent states, we define a deformed bosonic dephas-
ing channel modelling the impact of a Kerr medium on a quantum state, as it occurs, for instance,
in quantum communication based on optical fibers. We show that, in certain regimes, the Kerr
nonlinearity is able to compensate the dephasing. In addition, our studies reveal that the quantum
capacity of the deformed bosonic dephasing channel can be greater than that of the undeformed,
standard bosonic dephasing channel for certain nonlinearity parameters.

I. INTRODUCTION

One of the great aims of quantum information sci-
ence is to encode and process information coherently [1]
between several subsystems, a capability which enables
quantum algorithms to, for instance, factor large integers
[2, 3], simulate complex physical dynamics [4, 5], or solve
unstructured search problems with proven speedups [6–
8]. In addition, information can be transmitted at high
speed using the concept of joint detection receivers [9–
12], with entanglement assistance [13], or securely over
quantum channels [14, 15]. However, in practice, huge
practical challenges arise. Among these are the control
of non-linearities in the quantum devices [16–19] and the
omnipresent decoherence effects [20].

The classical theory of communications was developed
mostly in the context of linear channels with additive
noise, which was adequate for electromagnetic propaga-
tion through wires, cables and air within certain bound-
ary conditions, for example, on the power of the trans-
mitted signal. However, since the advent of optical fibers
as the backbone of the internet, we are also faced with a
non-linear propagation channel. These channels are nor-
mally described by a non-linear Schrödinger equation,
posing major challenges to our understanding. The dif-
ficulty is that the input–output relationship of an opti-
cal fiber channel is obtained by integrating a non-linear
partial differential equation and may not be represented
by an instantaneous non-linearity [21]. For optical fiber
communication systems, nonlinear interactions have a
huge impact on the capacity [22]. While in theory a
large enough transmission power would enable the trans-
mission of an arbitrarily large number of bits per second
(depending mainly on the input power), the fiber non-
linearities put very practical limits on the transmission
power. The question to what degree quantum methods
could be used to overcome design limitations in such sys-
tems is not only open, but can be answered only based
on corresponding system models. In this domain, the
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work of Ref. [19] is the first systematic analysis of the
fiber nonlinearity in this context. In that work [19], a
system model restricted to coherent-state input is de-
rived. This model clearly shows the decoherence of the
coherent-state input. Our model improves upon this ear-
lier work by modelling the impact of the Kerr medium
for arbitrary quantum states.

Decoherence by definition is a process in which a coher-
ent superposition state is reduced to an incoherent proba-
bilistic mixture of the states, i.e.,

∑
n,m cnc

∗
m |ψn〉〈ψm| →∑

n |cn|2 |ψn〉〈ψn|. Preventing decoherence is one of the
biggest challenges in the quantum domain [23]. How-
ever, to properly protect against decoherence, the ways
in which it takes place need to be understood first. As a
simple model for decoherence we can consider a dynami-
cal process by which the inputs are mapped to an output
as follows,∑

n,m

cnc
∗
m |n〉〈m| 7→

∑
n,m

e−γ(n−m)2/2cnc
∗
m |n〉〈m| . (1)

In this model the decoherence parameter γ > 0 is re-
lated to the strength of the decoherence. In the limit
γ →∞, all off-diagonal components approach zero, while
the magnitude of the diagonal components are retained.
Such processes have been studied from several differ-
ent angles in quantum processing [23–27]. The above-
mentioned transition can be described for bosonic sys-
tems via the so-called bosonic dephasing channel [27–31]

ρ 7→ Nγ(ρ̂) =
∑
n,m=0

e−
1
2γ(m−n)

2

ρm,n |m〉〈n| , (2)

in which ρ =
∑
m,n ρm,n |m〉〈n|. It is possible [27] to de-

rive the bosonic dephasing channel Nγ via an interaction
between system S and environment E as

Nγ = TrE

[
Û (ρ⊗ |0〉〈0|) Û†

]
, (3)

where ρ ∈ T (HS) is an initial state of the system and
|0〉 ∈ HE is a fixed initial state of the environment.

The unitary operator Û = exp
[
−i√γâ†â

(
b̂+ b̂†

)]
de-

fines the interaction between system and environment
and is composed of annihilation and creation operators â
and â† acting on the system Hilbert space and their cor-

responding counterparts b̂ and b̂† acting on the Hilbert
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space of the environment. Note that while this unitary is
generated by a cubic two-mode Hamiltonian, correspond-
ing to a non-linear, non-Gaussian mode transformation
and hence (after tracing out the environment E) a non-
Gaussian channel acting on mode S (the system), the

involved phase rotation of S enacted by Û depends only
linearly on the environmental mode operators and the
free evolution of S is, as usual, quadratic in the system’s
mode operators (or, equivalently, linear in the system’s
energy).

However, the creation and annihilation operators are
derived from the Hamiltonian Ĥ0 = ωn̂ where n̂ = â†â
and thus a natural question to ask is how the channel
Nγ behaves when a different Hamiltonian is used in its
definition.

This question is the starting point of our work which
improves upon [27] by considering instead of the Hamil-

tonian Ĥ0 the Kerr Hamiltonian, Ĥω,λ = ωn̂ + λn̂2/2,
where n̂ is a number operator, and λ defines the power of
the non-linearity. For convenience, we make a distinction
between the negative and positive values of the non-linear
parameter. We then decompose Ĥλ as Ĥω,λ = Â†Â and
use these deformed annihilation- and creation operators
Â† and Â to redefine the unitary interaction between sys-
tem and environment as

Û = exp
[
−i√γÂ†Â

(
B̂ + B̂†

)]
. (4)

By using a calculus based on the treatment of non-linear
coherent states, we are able to derive an explicit expres-
sion resembling Eq. (2) for this deformed dephasing chan-
nel. This approach allows us to study the impact of a
non-linear environment. Surprisingly, we observe that
the non-linearity λ is able to compensate the dephasing
rate in the case of negative values of the non-linearity
parameter λ. In addition, we indicate that the quantum
capacity of the deformed dephasing bosonic channel is
strictly decreasing as a function of λ.

Note that for the deformed channel in Eq. (4), the
“free” evolution of the system mode S now includes
a quadratic energy dependence and so the phase of
S evolves non-linearly with its photon number (which
nonetheless is preserved) and also non-linearly with the
environmental mode operators.

The paper is organized as follows. First, we define our
model in Section II. Then, we state our main results in
Section III. Finally, in Section V we present the methods
and details regarding the proof (of Section IV) and we
give some further, numerical methods (Subsection V C)
of our work.

II. DEFORMED QUANTUM DEPHASING
CHANNEL

Let us consider the Hamiltonian of an anharmonic os-
cillator

Ĥ = Ωâ†â+
λ

2
â†2â2, (5)

in which â† and â are the creation and annihilation
bosonic operators, n̂ = â†â is a number operator and λ

2 ,
the so-called anharmonicity, is related to the non-linear
susceptibility of the Kerr medium. The Hamiltonian (5)
has been vastly applied to model different phenomena.
It can be mathematically considered as a description of a
position-dependent quantum oscillator [32]; it models an
oscillator confined in a finite or infinite well [33]; it de-
scribes a confined oscillator on a one-dimensional space
with constant curvature, i.e., circle and hyperbolic [34].
In addition, it models a Kerr medium [35] and a Trans-
mon gate [36].

We define deformed annihilation and creation opera-
tors as

Â(λ, ω) = âf(n̂) = f(n̂+ 1)â, (6)

Â†(λ, ω) = f(n̂)â† = a†f(n̂+ 1), (7)

in which ω := Ω − λ
2 and the deformation function is

given by

f(n̂) =
√
1+ λ

2ω n̂. (8)

With this choice, we can rewrite the Hamiltonian (5)
as

Ĥ = ωÂ†(λ, ω)Â(λ, ω). (9)

In what follows, we assume λ and ω to be arbitrary but
fixed, and for simplicity, we write A(λ, ω) = Â. Since
these deformed operators are assumed to dictate the be-
haviour both on system and environment, we equivalently
write B̂ for the deformed annihilation operator on the en-
vironment. Now, similar to the definition of the dephas-
ing channel [24, 27], we can define a deformed quantum
dephasing channel.

Definition II.1. Given λ ∈ R and γ, ω > 0 the deformed
quantum dephasing channel is defined as

Nγ(ρ) := TrE
[
U (ρ̂⊗ σ̂)U†

]
(10)

in which the unitary operator Û is

Û = exp
[
−i√γÂ†Â

(
B̂ + B̂†

)]
∈ L(F ⊗ F) (11)

where Â and B̂ are the deformed annihilation operators,
defined by Eq. (6), of the system and environment, re-
spectively.

III. RESULTS

Based on Definition II.1, we can provide as our main
result an analytic expression of the action of the dephas-
ing channel. Since we require the Hamiltonian (5) to
have only non-negative energies (eigenvalues), the Hilbert
space representing the quantum system has be of finite
dimension if λ < 0 holds. Therefore, our result is split
into the two different cases when λ ≥ 0 and when λ < 0.
Then, we can write our main theorem as follows:
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FIG. 1. Density plot of functions K−(τn, τm;λ) and K+(τn, τm;λ) as a function of parameters λ and γ.

Theorem 1. Let ρ =
∑∞
m,n=0 |m〉〈n| ∈ S(F). Let p =

(γ, λ, ω). Then the deformed dephasing bosonic channel
is given by

Nγ(ρ) =

∞∑
n,m=0

Kpn,mρnm |n〉 〈m| (12)

in which Kpn,m has a different structure depending on λ

as follows: if λ > 0, we set τn :=
√
γ λ
2ω n(1+n λ

2ω ), then

with ν := 1 + 2ω/λ we have

Kpm,n =

(
1− tanh2 τ+n

)ν (
1− tanh2 τ+m

)ν[
1− tanh τ+n tanh τ+m

]2ν . (13)

If λ = 0, then

Kpn,m = e−
γ
2 (m−n)

2

. (14)

Lastly if λ < 0, then

Kpm,n =
(1 + tan τm tan τn)2ν

(1 + tan2 τm)ν(1 + tan2 τn)ν
(15)

in which ν := 1 + 2ω/λ.

Sketch of the Proof: We give a high-level sketch of the
proof here, for details, see Sec. IV. We start out by cal-
culating the action of the channel according to Definition
II.1:

Nγ(ρ) = TrE

[
Ûρ⊗ |0〉 〈0| Û†

]
(16)

=
∑
m,n

ρm,n TrE
[
U |m〉〈n| ⊗ |0〉〈0|U†

]
=
∑
m,n=0

ρm,n |m〉〈n|TrE [|−iτm;λ〉〈−iτn;λ|] ,

in which we employed the fact that Â†Â(B̂+B̂†) is a sim-
ple tensor product over system and bath, and |−iτm;λ〉
denotes the associated coherent states. The calculation
of the partial trace over the environment is thus equiva-
lent to calculating the scalar products

Kpn,m = 〈−iτn;λ|−iτm;λ〉 (17)

of non-linear coherent states. The details of the proof are
the content of Sec. IV, the technical lemmata are to be
found in Sec. V. �

Note that in the case of λ ≥ 0, the coefficient Kp, p =
+, 0, in which λ is equal or grater than zero, approaches
zero exponentially when m 6= n, when γ → ∞, which
means the off-diagonal elements of the density matrix
map to zero in this channel, for γ � 1; in other words, the
deformed dephasing bosonic channel with λ ≥ 0 causes
a decohecnce process to occur, while in the case λ < 0,
as a periodic nature of the function K−, we are able to
suppress the decoherence process. Fig. 1 illustrates the
overlap of two non-linear coherent states, i.e., the relation
(17), as a function of parameters λ and γ. Especially, in
the case λ < 0, by adjusting the parameter λ, the off-
diagonal elements can be preserved as well. It is therefore
interesting to investigate the properties of this channel
for the purpose of entanglement transmission and show
how to calculate its quantum capacity:

Definition III.1. The quantum capacity of the bosonic
dephasing channel is defined as

Q(Nγ) = max
ρ̂

J(ρ̂,Nγ), (18)

where

J(ρ̂,Nγ) = S(N (ρ̂))− S(N c(ρ̂)) (19)
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FIG. 2. The optimal von Neumann entropy versus γ, for different values of λ, for N = 1, 2, 3. and N = 4, in plots (a), (b), (c)
and (d), respectively.

and S(ρ̂) = −Tr [ρ̂ log2 ρ̂] is the von Neumann entropy
and the complementary channel N c

γ is given by

N c(ρ̂) = TrS
[
U (ρ̂⊗ σ̂)U†

]
. (20)

We show in Lemma 10 that the optimal input states
in the above definition are diagonal in the number state
basis.

Therefore, the maximization in the relations (18) leads
to the maximization over a classical probability distribu-
tion:

Q(Nγ) = max
pn

[
S

(
N∑
n=0

Pn |n〉 〈n|

)

− S

(
N∑
n=0

Pn |i
√
γn, λ〉 〈i√γn, λ|

)]
, (21)

for the following inputs which are given in a truncated

Hilbert space ρ =
∑N
n=0 Pn |n〉〈n|, with the finite average

energy, i.e.,
∑N
n=0 Pnε

±(n) ≤ E with

ε±(n) = n± |λ|
2
n2. (22)

Note that for λ < 0, we should also impose the following
condition, N ≤ d = b2νc. We evaluate these capacities

numerically for N = 1, · · · , 4.
For N = 1, we consider the following input state:

Ω = p1 |n〉 〈n|+ p2 |n+m〉 〈n+m| (23)

where n, and m are arbitrary non-negative integers. Plot
(a)-Fig. 2 illustrates Q(Nγ), i.e., the relation (21), as a
function of the dephasing parameter γ, for different val-
ues λ. The plot indicates that for the linear environ-
ment, λ = 0, and the Kerr medium, with λ > 0, the
quantum capacity decreases by increasing the dephasing
parameter. Moreover, the quantum capacity for the Kerr
medium with λ < 0 is greater than for the linear case and
for the Kerr medium with positive non-linearity. How-
ever, for every λ < 0, the simulation results indicate that
the capacity is a periodic function of γ, as illustrated in
Fig. 3.

Theorem 2. Let ρ̂ = |α〉 〈α| ⊗ |0〉E 〈0|, which |α〉 is a
coherent state, i.e.,

|α〉 = e−|α|
2/2

∞∑
n=0

αn

n!
|n〉 . (24)
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Then, for λ < 0, we get

Nγ = e−|α|
2

2j∑
n,m=0

K−n,m
αnα∗m√
n!m!

|n〉〈m| (25)

in which K−n,m is given by the relation (15). For λ = 0,
we obtain

Nγ = e−|α|
2
∞∑

n,m=0

e−γ(n−m)2 α
nα∗m√
n!m!

|n〉〈m| . (26)

Finally, for λ > 0, we achieve

Nγ = e−|α|
2
∞∑

n,m=0

K+
n,m

αnα∗m√
n!m!

|n〉〈m| (27)

in which K+
n,m is given by the relation (13).

Proof. By inserting the relation (24) into the definition
(12), we can directly obtain the result. �

IV. PROOF OF THEOREM 1

We calculate the partial trace over the environment as

Nγ(ρ) = TrE

[
Ûρ⊗ |0〉 〈0| Û†

]
(28)

=
∑
m,n

ρm,n TrE
[
U |m〉〈n| ⊗ |0〉〈0|U†

]
, (29)

where the sums can run from 0 to ∞ in case of λ ≥ 0,
or to a finite number d in case of λ < 0, i.e., a finite
dimension d. The calculation of the partial trace in (28)
relies on the following:

Û |m〉 |0〉 =

∞∑
k=0

(−i√γA†A)k
(B +B†)k

k!
|m〉 |0〉 (30)

= |m〉
∞∑
k=0

(−iτm(B +B†))k

k!
|0〉 (31)

where τm =
√
γ ·〈m| Â†Â |m〉 is defined explicitly in The-

orem 1. We can thus define the deformed displacement
operator as

D(µ, p) =

∞∑
k=0

[
−iµ(B̂ + B̂†)

]k
k!

= exp
[
−iµ(B̂ + B̂†)

]
, (32)

to arrive at

Û |m〉 |0〉 = |m〉D(
√
γτm, p) |0〉 . (33)

This shows that calculation of quantities like

exp
[
−iµ(B̂ + B̂†)

]
|0〉 is relevant to proving Theorem

1. To compute matrix exponentials of the form

FIG. 3. The optimal von Neumann entropy versus γ, for
N = 1, 2, 3. and N = 4, with λ = −2.

exp
[
−iµ(B̂ + B̂†)

]
, we use the method derived in

Ref. [37] and the commutation relations (51)-(53) which
yield our Lemma 6. The deformed annihilation and cre-
ation operators and the Hamiltonian Ĥ take the form
{Â, K̂0, Â

†} of a Holstein-Primakoff representation of a λ-
deformed algebra. Note that in the special case in which
λ = ±2, it can be identified as a su(1, 1) and a su(2)-
algebra, respectively.

For simplicity, we derive the Gaussian decomposition
of the displacement operators separately for the positive
and negative sign of λ.

1. The case λ > 0

Let us assume for a start that Â =
√
x+ yn̂â and

B̂ =
√
x+ yn̂b̂ with generic parameters x, y to be ad-

justed later. Using Lemma 7 we can develop a more
explicit expression for the generalized coherent state. To
eventually arrive at an analytic expression for the action
of the channel Nγ , we calculate partial traces by relying
on the following relation:

U |m〉 ⊗ |0〉 = |m〉 ⊗ exp
[
−iµm(B̂ + B̂†)

]
|0〉 (34)

in which we set µm :=
√
γ 〈m| Â†Â |m〉 leading to µm =√

γm(x + y · m); thus, we obtain for the parameter t

in Lemma 7 tm := tanh
(
y1/2τm

)
and via Lemma 7 the

relation

trE(U |m〉〈n| ⊗ |0〉〈0|U†)

= |m〉 〈n| tr(e−iµm(B̂+B̂†) |0〉 〈0| eiµm(B̂+B̂†)) (35)

= |m〉 〈n| cmcn〈φ(x+y)/ytm , φ
(x+y)/y
tn 〉 (36)

= |m〉 〈n| cmcn(1− tmtn)−(x+y)/y, (37)
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where

cm = cosh
2
x+y
−y (
√
yµm) =

(
1− tanh2(

√
yµm)

)x+y
y (38)

tm = tanh(
√
yµm). (39)

Thus setting

κm =
√
y · γm(x+ y ·m) (40)

we get the result

trE(U |m〉〈n| ⊗ |0〉〈0|U†)

=
((1− tanh2 κm)(1− tanh2 κn))

x+y
y

(1− tanhκm tanhκn)(x+y)/y
|m〉 〈n| . (41)

We observe that a transformation x′ := θx, y′ := θy,
γ′ = θ−3 with θ > 0 yields

x′+y′

y′ = x+y
y , (42)

κ′m =
√
y′γ′m(x′ + y′m) = κm. (43)

By our convention, we have ω := Ω − λ/2, x = 1 and

y = λ
2ω . This results in τm =

√
γλ
2ωm(1 + mλ

2ω ).

2. The Case λ < 0

By using Lemma 6, we can write:

Lemma 3. Let µ ∈ C and B̂ = B̂λ be as defined in (6).
Then it holds that

eµ(B̂+B̂†) |0〉 = e|λ|ν/2 ln(ζ0)

b2νc∑
k=0

(
ζ+

√
|λ|
2

)k√
(2ν)k
k!
|k〉

= cos2ν

(√
λ

2
|µ|

) b2νc∑
k=0

e−imφ

× tank

(√
λ

2
|µ|

)√
(2ν)k
k!
|k〉 (44)

where ν := |λ|−1 − 1/2, (x)q = Γ(x+ 1)/Γ(x− q + 1) is
the falling factorial and b2νc is the floor function defined
by floor(x) = bxc, i.e., the greatest integer less than or
equal to x.

Using Lemma 3 we can develop a more explicit ex-
pression for the generalized coherent state. To eventu-
ally arrive at an analytic expression for the action of the
channel Nγ , we calculate partial traces by relying on the
following:

Lemma 4. Let, for generic complex numbers x and fixed
N states, φx be defined via

φx =

bαc∑
k=0

√
(α)k
k!

xk |k〉 . (45)

Then

〈φx, φy〉 = (1 + x · y)α. (46)

Proof. Using the generalized binomial formula the above
sum can be turned into the result [? ]. �

Using Lemma 3 and Lemma 4 we thus conclude that

U |m〉 ⊗ |0〉 = |m〉 ⊗ exp
[
µm(B̂ + B̂†)

]
|0〉 , (47)

in which we set µm := −iτm; thus we obtain via Lemma
3 the relation

trE(U |m〉〈n| ⊗ |0〉〈0|U†) =

= (1 + x2m)−ν(1 + y2n)−ν〈φx, φy〉 |m〉〈n| (48)

=
(1 + xmyn)2ν

(1 + x2m)ν(1 + y2n)ν
|m〉〈n| , (49)

with xm := tan(τm). Therefore for λ < 0 we have

Kpm,n =
(1 + tan τm tan τn)2ν

(1 + tan2 τm)ν(1 + tan2 τn)ν
. (50)

V. METHODS

A. Properties of Deformed Algebra

Before we go into detailed calculations, we first derive
some important commutation relations in full generality,
which we summarize in the Lemma below.

Lemma 5. Let {|n〉}dn=0 be a countable orthonormal ba-
sis of a Hilbert space, where d ∈ N or d = ∞. Let

Â := âĝ(x, y) with ĝ(x, y) :=
√
x+ yâ†â where x ≥ 0

and y ≥ −x/d and â†, â are the creation- and annihi-
lation operators satisfying â |n〉 =

√
n |n− 1〉, â† |n〉 =√

n+ 1 |n+ 1〉 and [â, â†] = 1. Define K̂0 := [Â, Â†]/2
and n̂ := â†â. Then the following are true:

1. ĝ(x, y) ≥ 0

2. a ≥ 0, b ≥ −x/d implies [ĝ(x, y), ĝ(a, b)] = 0

3. Â†Â = (x+ y)n̂+ yâ†2â2

4. [K̂0, Â] = −yÂ

5. [K̂0, Â
†] = yÂ†.

Lemma 5 allows us to prove further statements which
enter the proof of Theorem 1. The second tool we need is
the Gaussian decomposition of exp

[
βA† − β∗A

]
, which

is derived in the following Lemma:

Lemma 6. Let the operators Â, Â† and K̂0 satisfy the
commutation relations

[Â, Â†] = 2K̂0, (51)

[K̂0, Â] = −λ
2
Â, (52)

[K̂0, Â
†] =

λ

2
Â†. (53)
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Then the Gaussian decomposition of the displacement op-
erator D(β, λ) = exp

[
βA† − β∗A

]
is given by

D(β, λ+) = eβA
†−β∗A = eζA

†
eln[ζ0]K0e−ζ

∗A (54)

where

ζ = β
|β|

√
2

λ
tanh

(√
λ

2
|β|

)
, (55)

ζ0 = cosh−4/λ

(√
λ

2
|β|

)
. (56)

Via application of the Gaussian decomposition from
Lemma 6, a substantial part of the proof of Theorem 1
can be reduced to the following Lemma:

Lemma 7. Let µ ∈ C and B̂ = â(x1 + yn̂)1/2. Let

K̂0 := [B̂, B̂†]/2. Then

e−iµ(B̂+B̂†) |0〉 = cosh
−2x+yy (

√
y|µ|))

∞∑
k=0

tk
√

(x/y)(k)√
k!

|k〉

where t := β
|β| tanh

(
y1/2|β|

)
and the symbol (x)(q) :=

Γ(x+ q)/Γ(x) denotes the rising factorial.

Finally, Umbral calculus [39] is employed to calculate
sums of the following type:

Lemma 8. Let, for generic complex numbers x, y and a
real number α, vectors φαx be defined via

φαx =

∞∑
k=0

√
(α)(k)

k!
xk |k〉 . (57)

Then

〈φαx , φαy 〉 = (1− x · y)−α. (58)

With Lemmas 5, 6, 7 and 8 at hand we are ready for
the proof of Theorem 1.

1. Kraus Representation

The Kraus representation of the channel is given by

ρ 7→ Nγ(ρ), (59)

in which

Nγ(ρ) = TrE

[
Ûρ⊗ |0〉E 〈0| Û

†
]

=

∞∑
l=0

K̂lρSK̂
†
l . (60)

Now by considering the fact that
∑∞
l=0 |l〉E 〈l| = I and

using the relation (12), we can obtain

Kl(λ
−) = E 〈l|U |0〉E

= cos2ν

(√
|λ|
2
Â†Â

)

×
√

(2ν)l
l!

tanl

(√
|λ|
2
Â†Â

)
, (61)

and

Kl(λ
+) = E 〈l|U |0〉E

= cosh−2ν

(√
|λ|
2
Â†Â

)

×
√

(2ν)(l)

l!
tanhl

(√
|λ|
2
Â†Â

)
. (62)

B. Quantum Capacity

For the channel Nγ , the complementary channel N c
γ is

defined as

N c
γ (ρ) = TrS

[
U (ρ̂⊗ σ̂)U†

]
. (63)

By imposing the above-mentioned condition, i.e., at-
tributing a ground state to the environment, the com-
plementary channel is given by

N c(ρ̂) = TrS
[
ρn,m |n〉 〈m| ⊗

∣∣−iτn, λ±〉 〈−iτm, λ±∣∣]
=
∑
n

ρn,n
∣∣−iτn, λ±〉 〈−iτn, λ±∣∣ , (64)

which is a mixture of deformed coherent states. Note
that by following the same method as in Ref. [? ], it
is possible to show that the complementary channel N c

γ

is entanglement breaking. In fact, by considering the
following state

|Ψ〉 =
∑
n

λn |n〉R |n〉E , (65)

in which λ is squeezing parameter, |n〉R and |n〉E are,
respectively, a state of the Hilbert space of a reference
state and a state of the environment. Therefore, we can
define the following channel:

(IR ⊗N c
γ ) |Ψ〉 〈Ψ| =

∑
n

λ2n |n〉 〈n| ⊗ |−iτn;λ〉 〈−iτn;λ| ,

(66)

which is a mixture of product states and hence is a sepa-
rable state for any value of λ, where N c

γ is entanglement
breaking and Nγ is degradable. Therefore, the quantum
capacity of the bosonic dephasing channel is given by

Q(Nγ) = max
ρ

J(ρ̂,Nγ). (67)

where

J(ρ̂,Nγ) = S(N (ρ̂))− S(N c(ρ̂)) (68)

where S(ρ̂) = −Tr [ρ̂ log2 ρ̂] is the von Neumann entropy.

Lemma 9. The bosonic dephasing channel (10) is a
phase-covariant channel.
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Proof. Using the explicit definition of the deformation

function f(n̂) =
√
1+ λ

2ω n̂, we have

K0 =
1

2
[A,A†] =

λ

2ω
n+

1

2
(1 +

λ

2ω
), (69)

which is a function of number operator n. By defining
the unitary operator Û as

Ûθ = eiK̂0θ, θ ∈ [0, 2π), (70)

we see that Ûθ is diagonal in the number state basis.
Then, using the explicit form (12), we see that the equa-
tion

Nγ(Ûθρ̂Û
†
θ ) = ÛθNγ(ρ̂)Û†θ (71)

has to hold. For the complementary channel, by using
the relation (64), we have

N c(Ûθρ̂Û
†
θ ) = TrS

[
ρn,me

iθ(k0(n)−k0(m)) |n〉 〈m|

⊗
∣∣−iτn, λ±〉 〈−iτm, λ±∣∣ ]

=
∑
n

ρn,n
∣∣−iτn, λ±〉 〈−iτn, λ±∣∣

= N c(ρ)

= ÛθN c(ρ̂)Û†θ , (72)

in which, by using the relation (69), we define K0 |n〉 =
k0(n) |n〉, with k0(n) = λ

2ωn+ 1
2 (1 + λ

2ω ). �

Lemma 10. The optimal input state to Nγ for the quan-
tum capacity (12) is diagonal in the associated basis.

Proof. As the von Neumann entropy is invariant under
unitary conjugation, and using the definition (68) and
Lemma 9, we can easily define:

ρ̂θ = eiK̂0θρ̂e−iK̂0θ (73)

in such way that we have

J(ρ̂,Nγ) = J(ρ̂θ,Nγ). (74)

Since the deformed bosonic dephasing channel is degrad-
able, we can write∫ 2π

0

dϑP (ϑ)J(ρ̂ϑ,Nγ) ≤ J(

∫ 2π

0

dϑP (ϑ)ρ̂ϑ,Nγ) (75)

in which, ϑ = 2θω/λ, P (ϑ) is a probability density.
By considering a normalized constant distribution, i.e.,
P (ϑ) = 1/2π, for both positive and negative values of λ,
we obtain∫ 2π

0

dϑP (ϑ)ρ̂ϑ =

b2νc∑
n=0

ρ̂nn |n〉 〈n| , λ < 0,

∫ 2π

0

dϑP (ϑ)ρ̂ϑ =

∞∑
n=0

ρ̂nn |n〉 〈n| , λ > 0.

�

Therefore, the maximization in the relations (67) leads
to the maximization over classical probability distribu-
tions:

Q(Nγ) = max
pn

[
S

(
d∑

n=0

Pn |n〉 〈n|

)

− S

(
d∑

n=0

Pn |iτn, λ〉 〈iτn, λ|

)]
, (76)

where d is respectively infinity and b2νc, when λ > 0 and
λ < 0. Now, we constrain the input average energy, i.e.,∑s
n=0 Pnε

±(n) ≤ E with

ε±(n) = n± |λ|
2
n2. (77)

Note that for λ < 0, we should also impose the following
condition s ≤ b2νc.

C. Numerical Analysis

1. Numerical Analysis for N = 1

For N = 1, we consider the following input state:

Ω = p1 |n〉 〈n|+ p2 |n+m〉 〈n+m| , (78)

where n and m are arbitrary non-negative integers. We
can diagonalize the complementary channel term

A =

(
p1 p1Kpn,n+m

p2Kpn,n+m p2

)
,

(79)

where Kpm,n is given by (13)-(15) for negative, zero and
positive value of parameter λ, respectively. We can easily
find the eigenvalues:

q±(γ, λ) =
1

2

[
1±

√
(p1 − p2)2 + 4p1p2Kpn,n+m

]
.

2. Numerical Analysis for N = 2

We consider the following input state, for N = 2,

Ω = p1 |n〉 〈n|+ p2 |n+m〉 〈n+m|
+ p3 |n+m+ l〉 〈n+m+ l| (80)

where n, m and l are arbitrary non-negative integers and
p1 + p2 + p3 = 1. The second term of the relation (76),
can be written as

A =

 A11 A12 A13

A21 A22 Λ23

A31 A32 A33

 , (81)
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where

A11 = p1,

A12 = p1Kpn,n+m
A13 = p1Kpn,n+m+l

A21 = p2Kpn+m,n
A22 = p2

A23 = p2Kpn+m,n+m+l

A31 = p3Kpn+m+l,n

A32 = p3Kpn+m+l,n+m

A33 = p3

Hence, we are able to calculate the eigenvalues and then
the von Neumann entropy. Therefore, an optimization
method gives the capacity of the channel.

VI. CONCLUSION

We have shown how to model the impact of a Kerr
non-linearity on the evolution of an optical mode, for
instance, propagating in an optical fiber for quantum
communication applications, when the mode is subject
to a non-unitary, continuous-variable, bosonic dephasing
channel. This channel on its own is an important ex-
ample of a non-Gaussian channel for which the quantum
capacity and certain dependencies on the dephasing rate
were known already. In our analytical treatment, based
on the notion of nonlinear coherent states and deformed
annihilation and creation operators, the quantum capac-
ity is obtained even in the presence of a Kerr medium.

The resulting deformed bosonic dephasing channel hence
serves as an elegant and convenient way to describe the
overall non-unitary, non-Gaussian dynamics that origi-
nates from a unitary Kerr evolution combined with non-
unitary dephasing.

Our results show that the quantum capacity includ-
ing deformation can be greater than that for the unde-
formed, standard dephasing channel, i.e., the Kerr non-
linearity can compensate the dephasing to various ex-
tents. Crucially, for this effect to occur, the sign of the
Kerr non-linearity must be chosen appropriately which
is, in principle, possible by engineering or tailoring the
non-linearities as, for instance, occurring in a photonic
crystal [40] and so also in a hollow-core photonic crys-
tal fiber [41]. As a next step, the inclusion of photon
loss would be of practical relevance [19, 31]. Ultimately,
an engineering of the interplay between deterministically
occurring non-linearities, such as the Kerr effect, and ran-
dom, non-deterministic noise channels, such as linear loss
and nonlinear dephasing, on the hardware level of the op-
tical channels could be supplemented with active bosonic
quantum error correction through codes adapted to the
overall error channel evolutions [31].
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Appendix A: Proof of Lemmata

Proof of Lemma 5. the first property follows since ĝ(x, y)
is diagonal in the basis {|n〉}dn=0 for every choice of pa-
rameters x, y, and by explicit inspection of the respective
values of the diagonal entries.
The second property follows again since ĝ(x, y) is diago-
nal in the basis basis {|n〉}dn=0 for every choice of param-
eters x, y.
The third property is proven as follows. First, it holds

Â† =
√
x+ yâ†ââ† (A1)

Â |n〉 =
√

(x+ y) + yâ†ââ |n〉 ∀n. (A2)

Therefore we get

Â = âg(x, y) = ĝ(x+ y, y)â (A3)

Â† = ĝ(x, y)â† = â†ĝ(x+ y, y). (A4)

Equipped with equations (A3) and (A4) we can show
that

Â†Â = (x+ y)â†â+ yâ†2â2. (A5)

To show the fourth property we first calculate K̂0 ex-
plicitly, starting out with the term ÂÂ† which evaluates
to

ÂÂ† = x+ y + (x+ 3y)â†â+ yâ†2â2. (A6)

Therefore it holds

[Â, Â†] = x+ y + 2yâ†â (A7)

= ĝ(x+ y, 2y)2. (A8)

Since K̂0 = [Â, Â†]/2 it then follows that

[K̂0, Â] = â
2 ĝ(x, y)(ĝ(x− y, 2y)2 − ĝ(x+ y, 2y)2) (A9)

= â
2 ĝ(x, y)(x− y + 2yn̂− (x+ y + 2yn̂)) (A10)

= −yâĝ(x, y) (A11)

= −yÂ (A12)

where we used g(x + y, y)â = âg(x, y) repeatedly. Like-
wise, we have

[K̂0, Â
†] = yÂ†. (A13)

�

Proof of Lemma 6. Let us consider operator F (t), with
parameter t defined by

F (t) = e[βA
†+β∗A]t = eζ+(t)A†eln[ζ0(t)]K0eζ−(t)A(A14)

http://arxiv.org/abs/2205.00341
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where ζ±(t) and ζ0(t) are c-number functions of param-
eter t to be determined under the following conditions:
ζ±(0) = 0 and ζ0(0) = 1. Once ζ±(t) and ζ0(t) are
determined, ζ± and ζ0 are given by ζ±(1) and ζ0(1), re-
spectively.
Now we have

d

dt
F =

[
βA† + β∗A

]
F (A15)

= ζ̇+Â
†F

+eζ+(t)A† ζ̇0
ζ0
K0e

ln[ζ0(t)]K0eζ−(t)A

+eζ+(t)A†eln[ζ0(t)]K0 ζ̇−Ae
ζ−(t)A (A16)

= ζ̇+Â
†F

+
ζ̇0
ζ0

(K0 −
λ

2
ζ+A

†)F

+ ζ̇−e
−λ ln[ζ0]/2(A− 2ζ+K0 +

ζ2+λ

2
A†)F (A17)

Hence, three coupling differential equations are derived,
i.e., [? ]:

e−λ ln[ζ0]/2
dζ−
dt

= β∗, (A18)

ζ−10

dζ0
dt
− 2e−λ ln[ζ0]/2ζ+

dζ−
dt

= 0 (A19)

dζ+
dt
− λζ+

2ζ0

dζ0
dt

+ e−λ ln[ζ0]/2
λζ2+

2

dζ−
dt

= β (A20)

The simple calculations gives the differential equation:

d

dt
ζ+ +

λ

2
β∗ζ2+ = β (A21)

which leads to the following:

ζ+ =

√
β

β∗

√
2

λ
tanh

[
t

√
λ

2
|β|

]
(A22)

= eiφ
√

2

λ
tanh

[
t

√
λ

2
|β|

]
(A23)

in which β = |β|eiφ. Now by using the equation (A18),
we write

ζ0 = cosh−4/λ

[
t

√
λ

2
|β|

]
. (A24)

Now, by considering t = 1 in the relations (A23) and
(A24), the desire result are obtained. �

Note that Baker-Hausdorff lemma and the communi-
cation relations (51)-(53) can be used to achieve the fol-

lowing relations:

eζ+(t)A†K0e
ζ−(t)A = K0 −

λ

2
ζ+A

†(A25)

eζ+(t)A†eln[ζ0(t)]K0Aeln[ζ0(t)]K0eζ−(t)A = ζ
−λ/2
0

×
(
A− 2ζ+K0 +

ζ2+λ

2
A†
)

(A26)

used to obtain the relations (A17) and (A17), respec-
tively.

Further note that in the case of λ < 0, by using the
fact that cosh ix = cosx and sinh ix = i sinx, we can
rewrite the relations (A23) and (A24) as following:

ζ+ =

√
β

β∗

√
2

|λ|
tan

[
t

√
|λ|
2
|β|

]
(A27)

= eiφ

√
2

|λ|
tan

[
t

√
|λ|
2
|β|

]
(A28)

and

ζ0 = cos4/|λ|

[
t

√
|λ|
2
|β|

]
. (A29)

Proof of Lemma 7. According to Lemma 6 we have

e−iµ(B̂+B̂†) |0〉 = eζÂ
†
eln ζ0K̂0e−ζ∗Â |0〉 (A30)

= eζÂ
†
eln(ζ0)(x+y) |0〉 (A31)

= eln(ζ0)(x+y)
∞∑
k=0

(ζÂ†)k

k! |0〉 (A32)

= eln(ζ0)(x+y)
∞∑
k=0

(ζÂ†)k

k! |0〉 . (A33)

Since A† |k〉 =
√

(k + 1)(x+ y(k + 1)) |k + 1〉, we have

e−iµ(B̂+B̂†) |0〉 = eln(ζ0)(x+y)
∞∑
k=0

ζk
√
k!
∏k
i=1(x+i·y)
k! |k〉

(A34)

= ζ
(x+y)
0

∞∑
k=0

ζk

√
yk
(
x+y
y

)(k)

√
k!

|k〉 . (A35)

Since by definition (see equation (55)) we have ζ =
−iµ
|µ| y

−1/2 tanh
(√
y|µ|

)
and ζ0 = cosh−2/y

(√
y|µ|

)
, the

result follows. �

Proof of Lemma 8. Using the Umbral calculus [38, 39]
the above sum can be lead to the result. �

Appendix B: Probability Distributions for
Optimization Cases

We illustrate optimal values of pn, as shown in Fig. 4
for N = 1, 2, 3, from top to bottom, for different values of
the parameter λ, i.e., λ = −0.1, 0, 0.1, from left to right,
respectively.
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FIG. 4. Optimal value of pn for n = 0, 1, · · · , , N versus γ; plots (a)-(c) demonstrate pn for different values of λ, i.e.,
λ = −0.1, 0, 0.1 and N = 1, respectively; plots (d)-(f) demonstrate pn for the same value of λ and N = 2 respectively;
plots (g)-(i) demonstrate pn for the same value of λ and N = 3, respectively
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